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Abstract

The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and
extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for
optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliabil-
ity, polynomial chaos, stochastic collocation, and epistemic methods; parameter estimation with nonlinear least
squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods.
These capabilities may be used on their own or as components within advanced strategies such as hybrid opti-
mization, surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty.
By employing object-oriented design to implement abstractions of the key components required for iterative sys-
tems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design
and performance analysis of computational models on high performance computers.

This report serves as a user’s manual for the DAKOTA software and provides capability overviews and procedures
for software execution, as well as a variety of example studies.
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Preface

The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) project started in 1994 as an
internal research and development activity at Sandia National Laboratories in Albuquerque, New Mexico. The
original goal of this effort was to provide a common set of optimization tools for a group of engineers who were
solving structural analysis and design problems. Prior to the start of the DAKOTA project, there was not a focused
effort to archive the optimization methods for reuse on other projects. Thus, for each new project the engineers
found themselves custom building new interfaces between the engineering analysis software and the optimization
software. This was a particular burden when attempts were made to use parallel computing resources, where
each project required the development of a unique master program that coordinated concurrent simulations on a
network of workstations or a parallel computer. The initial DAKOTA toolkit provided the engineering and analysis
community at Sandia Labs with access to a variety of different optimization methods and algorithms, with much
of the complexity of the optimization software interfaces hidden from the user. Thus, the engineers were easily
able to switch between optimization software packages simply by changing a few lines in the DAKOTA input file.
In addition to applications in structural analysis, DAKOTA has been applied to applications in computational fluid
dynamics, nonlinear dynamics, shock physics, heat transfer, and many others.

DAKOTA has grown significantly beyond its original focus as a toolkit of optimization methods. In addition
to having many state-of-the-art optimization methods, DAKOTA now includes methods for global sensitivity
and variance analysis, parameter estimation, and uncertainty quantification, as well as meta-level strategies for
surrogate-based optimization, mixed-integer nonlinear programming, hybrid optimization, and optimization un-
der uncertainty. Underlying all of these algorithms is support for parallel computation; ranging from the level of
a desktop multiprocessor computer up to massively parallel computers found at national laboratories and super-
computer centers.

This document corresponds to DAKOTA Version 5.0. Release notes for this release, past releases, and current de-
velopmental releases are available from http://www.cs.sandia.gov/dakota/licensing/release
notes.html.

As of Version 5.0, DAKOTA is publicly released as open source under a GNU Lesser General Public License and
is available for free download world-wide. See http://www.gnu.org/licenses/lgpl.html for more
information on the LGPL software use agreement. DAKOTA Versions 3.0 through 4.2+ were licensed under
the GNU General Public License. The objective of DAKOTA public release is to facilitate research and software
collaborations among the developers of DAKOTA at Sandia National Laboratories and other institutions, including
academic, governmental, and corporate entities. For more information on the objectives of the open source release
and how to contribute, refer to the DAKOTA FAQ at http://www.cs.sandia.gov/dakota/faq.html.

The DAKOTA leadership team consists of Brian Adams (project lead), Mike Eldred (research lead), Bill Bohnhoff
(acting support manager), and Jim Stewart (business manager). DAKOTA development team members include
Keith Dalbey, John Eddy, David Gay, Karen Haskell, Patty Hough, and Laura Swiler. Additional historical
contributors to DAKOTA and it’s third-party libraries are acknowledged on the DAKOTA web page.

http://www.cs.sandia.gov/dakota/licensing/release_notes.html
http://www.cs.sandia.gov/dakota/licensing/release_notes.html
http://www.gnu.org/licenses/lgpl.html
http://www.cs.sandia.gov/dakota/faq.html
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Chapter 1

Introduction

1.1 Motivation for DAKOTA Development

Computational models are commonly used in engineering design activities for simulating complex physical sys-
tems in disciplines such as fluid mechanics, structural dynamics, heat transfer, nonlinear structural mechanics,
shock physics, and many others. These simulators can be an enormous aid to engineers who want to develop
an understanding and/or predictive capability for the complex behaviors that are often observed in the respective
physical systems. Often, these simulators are employed as virtual prototypes, where a set of predefined system
parameters, such as size or location dimensions and material properties, are adjusted to improve or optimize the
performance of a particular system, as defined by one or more system performance objectives. Optimization of
the virtual prototype then requires execution of the simulator, evaluation of the performance objective(s), and
adjustment of the system parameters in an iterative and directed way, such that an improved or optimal solution
is obtained for the simulation as measured by the performance objective(s). System performance objectives can
be formulated, for example, to minimize weight, cost, or defects; to limit a critical temperature, stress, or vibra-
tion response; or to maximize performance, reliability, throughput, agility, or design robustness. In addition, one
would often like to design computer experiments, run parameter studies, or perform uncertainty quantification.
These methods allow one to understand how the system performance changes as a design variable or an uncertain
input changes. Sampling strategies are often used in uncertainty quantification to calculate a distribution on sys-
tem performance measures, and to understand which uncertain inputs are the biggest contributors to the variance
of the outputs.

A primary motivations for the development of DAKOTA (Design Analysis Kit for Optimization and Terascale
Applications) is to provide engineers and other disciplinary scientists with a systematic and rapid means to obtain
improved or optimal designs or understand sensitivity or uncertainty using simulation-based models. These capa-
bilities generally lead to better designs and improved system performance in earlier design stages, and eliminate
some dependence on physical prototypes and testing, shortening the design cycle and reducing overall product
development costs. In addition to providing this environment for answering systems performance questions, the
DAKOTA toolkit also provides an extensible platform for the research and rapid prototyping of customized meth-
ods and strategies [33].
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Figure 1.1: The loosely-coupled or “black-box” interface between DAKOTA and a user-supplied simulation code.

1.2 Capabilities of DAKOTA

The DAKOTA toolkit provides a flexible, extensible interface between your simulation code and a variety of it-
erative methods and strategies. While DAKOTA was originally conceived as an easy-to-use interface between
simulation codes and optimization algorithms, recent versions have been expanded to interface with other types
of iterative analysis methods such as uncertainty quantification with nondeterministic propagation methods, pa-
rameter estimation with nonlinear least squares solution methods, and sensitivity/variance analysis with general-
purpose design of experiments and parameter study capabilities. These capabilities may be used on their own or
as building blocks within more sophisticated strategies such as hybrid optimization, surrogate-based optimization,
mixed integer nonlinear programming, or optimization under uncertainty.

Thus, one of the primary advantages that DAKOTA has to offer is that access to a broad range of iterative capabil-
ities can be obtained through a single, relatively simple interface between DAKOTA and your simulator. Should
you want to try a different type of iterative method or strategy with your simulator, it is only necessary to change
a few commands in the DAKOTA input and start a new analysis. The need to learn a completely different style
of command syntax and the need to construct a new interface each time you want to use a new algorithm are
eliminated.

1.3 How Does DAKOTA Work?

Figure 1.1 depicts a typical loosely-coupled, or “black-box,” relationship between DAKOTA and the simulation
code(s). Such loose coupling is the simplest and most common interfacing approach DAKOTA users employ.
Data is exchanged between DAKOTA and the simulation code by reading and writing short data files, thus using
DAKOTA does not require the source code of the simulation software. DAKOTA is executed using commands
that the user supplies in an input file (not shown in Figure 1.1) which specify the type of analysis to be performed
(e.g., parameter study, optimization, uncertainty quantification, etc.), along with the file names associated with
the user’s simulation code. During its operation, DAKOTA automatically executes the user’s simulation code by
creating a separate process external to DAKOTA.

The solid lines in Figure 1.1 denote file input/output (I/O) operations that are part of DAKOTA or the user’s
simulation code. The dotted lines indicate the passing/conversion of information that must be implemented by
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the user. As DAKOTA runs, it writes out a parameters file containing the current variable values. DAKOTA then
starts the user’s simulation code (or, often, a short driver script wrapping it), and when the simulation completes,
reads the response data from a results file. This process is repeated until all of the simulation code runs required
by the iterative study are complete.

In some cases it is advantageous to have a close coupling between DAKOTA and the simulation code. This close
coupling is an advanced feature of DAKOTA and is accomplished through either a direct interface or a SAND
(simultaneous analysis and design) interface. For the direct interface, the user’s simulation code is modified to
behave as a function or subroutine under DAKOTA. This interface can be considered to be “semi-intrusive” in
that it requires relatively minor modifications to the simulation code. Its major advantage is the elimination of
the overhead resulting from file I/O and process creation. It can also be a useful tool for parallel processing,
by encapsulating everything within a single executable. A SAND interface approach is “fully intrusive” in that
it requires further modifications to the simulation code so that an optimizer has access to the internal residual
vector and Jacobian matrices computed by the simulation code. In a SAND approach, both the optimization
method and a nonlinear simulation code are converged simultaneously. While this approach can greatly reduce
the computational expense of optimization, considerable software development effort must be expended to achieve
this intrusive coupling between SAND optimization methods and the simulation code. SAND may be supported
in future DAKOTA releases.

1.4 Background and Mathematical Formulations

This section provides a basic introduction to the mathematical formulation of optimization, nonlinear least squares,
sensitivity analysis, design of experiments, and uncertainty quantification problems. The primary goal of this sec-
tion is to introduce terms relating to these topics, and is not intended to be a description of theory or numerical
algorithms. There are numerous sources of information on these topics ([8], [60], [74], [75], [103], [139]) and the
interested reader is advised to consult one or more of these texts.

1.4.1 Optimization

A general optimization problem is formulated as follows:

minimize: f(x)
x ∈ <n

subject to: gL ≤ g(x) ≤ gU
h(x) = ht (1.1)
aL ≤ Aix ≤ aU
Aex = at
xL ≤ x ≤ xU

where vector and matrix terms are marked in bold typeface. In this formulation, x = [x1, x2, . . . , xn] is an n-
dimensional vector of real-valued design variables or design parameters. The n-dimensional vectors, xL and xU ,
are the lower and upper bounds, respectively, on the design parameters. These bounds define the allowable values
for the elements of x, and the set of all allowable values is termed the design space or the parameter space. A
design point or a sample point is a particular set of values within the parameter space.

DAKOTA Version 5.0 User’s Manual generated on May 7, 2010



22 CHAPTER 1. INTRODUCTION

The optimization goal is to minimize the objective function, f(x), while satisfying the constraints. Constraints
can be categorized as either linear or nonlinear and as either inequality or equality. The nonlinear inequality
constraints, g(x), are “2-sided,” in that they have both lower and upper bounds, gL and gU , respectively. The
nonlinear equality constraints, h(x), have target values specified by ht. The linear inequality constraints create
a linear system Aix, where Ai is the coefficient matrix for the linear system. These constraints are also 2-sided
as they have lower and upper bounds, aL and aU , respectively. The linear equality constraints create a linear
system Aex, where Ae is the coefficient matrix for the linear system and at are the target values. The constraints
partition the parameter space into feasible and infeasible regions. A design point is said to be feasible if and only
if it satisfies all of the constraints. Correspondingly, a design point is said to be infeasible if it violates one or
more of the constraints.

Many different methods exist to solve the optimization problem given by Equation 1.1, all of which iterate on
x in some manner. That is, an initial value for each parameter in x is chosen, the response quantities, f(x),
g(x), h(x), are computed, and some algorithm is applied to generate a new x that will either reduce the objective
function, reduce the amount of infeasibility, or both. To facilitate a general presentation of these methods, three
criteria will be used in the following discussion to differentiate them: optimization problem type, search goal, and
search method.

The optimization problem type can be characterized both by the types of constraints present in the problem and by
the linearity or nonlinearity of the objective and constraint functions. For constraint categorization, a hierarchy of
complexity exists for optimization algorithms, ranging from simple bound constraints, through linear constraints,
to full nonlinear constraints. By the nature of this increasing complexity, optimization problem categorizations
are inclusive of all constraint types up to a particular level of complexity. That is, an unconstrained problem
has no constraints, a bound-constrained problem has only lower and upper bounds on the design parameters, a
linearly-constrained problem has both linear and bound constraints, and a nonlinearly-constrained problem may
contain the full range of nonlinear, linear, and bound constraints. If all of the linear and nonlinear constraints are
equality constraints, then this is referred to as an equality-constrained problem, and if all of the linear and non-
linear constraints are inequality constraints, then this is referred to as an inequality-constrained problem. Further
categorizations can be made based on the linearity of the objective and constraint functions. A problem where the
objective function and all constraints are linear is called a linear programming (LP) problem. These types of prob-
lems commonly arise in scheduling, logistics, and resource allocation applications. Likewise, a problem where
at least some of the objective and constraint functions are nonlinear is called a nonlinear programming (NLP)
problem. These NLP problems predominate in engineering applications and are the primary focus of DAKOTA.

The search goal refers to the ultimate objective of the optimization algorithm, i.e., either global or local optimiza-
tion. In global optimization, the goal is to find the design point that gives the lowest feasible objective function
value over the entire parameter space. In contrast, in local optimization, the goal is to find a design point that is
lowest relative to a “nearby” region of the parameter space. In almost all cases, global optimization will be more
computationally expensive than local optimization. Thus, the user must choose an optimization algorithm with an
appropriate search scope that best fits the problem goals and the computational budget.

The search method refers to the approach taken in the optimization algorithm to locate a new design point that
has a lower objective function or is more feasible than the current design point. The search method can be clas-
sified as either gradient-based or nongradient-based. In a gradient-based algorithm, gradients of the response
functions are computed to find the direction of improvement. Gradient-based optimization is the search method
that underlies many efficient local optimization methods. However, a drawback to this approach is that gradi-
ents can be computationally expensive, inaccurate, or even nonexistent. In such situations, nongradient-based
search methods may be useful. There are numerous approaches to nongradient-based optimization. Some of the
more well known of these include pattern search methods (nongradient-based local techniques) and genetic algo-
rithms (nongradient-based global techniques). Because of the computational cost of running simulation models,
surrogate-based optimization (SBO) methods are often used to reduce the number of actual simulation runs. In
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SBO, a surrogate or approximate model is constructed based on a limited number of simulation runs. The opti-
mization is then performed on the surrogate model. DAKOTA has an extensive framework for managing a variety
of local, multipoint, global, and hierarchical surrogates for use in optimization.

The overview of optimization methods presented above underscores that there is no single optimization method
or algorithm that works best for all types of optimization problems. Chapter 19 provides some guidelines on
choosing which DAKOTA optimization algorithm is best matched to your specific optimization problem.

1.4.2 Nonlinear Least Squares for Parameter Estimation

Specialized least squares solution algorithms can exploit the structure of a sum of the squares objective function
for problems of the form:

minimize: f(x) =
n∑
i=1

[Ti(x)]2

x ∈ <n

subject to: gL ≤ g(x) ≤ gU
h(x) = ht (1.2)
aL ≤ Aix ≤ aU
Aex = at
xL ≤ x ≤ xU

where f(x) is the objective function to be minimized and Ti(x) is the ith least squares term. The bound, linear,
and nonlinear constraints are the same as described previously for (1.1). Specialized least squares algorithms are
generally based on the Gauss-Newton approximation. When differentiating f(x) twice, terms of Ti(x)T ′′i (x) and
[T ′i (x)]2 result. By assuming that the former term tends toward zero near the solution since Ti(x) tends toward
zero, then the Hessian matrix of second derivatives of f(x) can be approximated using only first derivatives of
Ti(x). As a result, Gauss-Newton algorithms exhibit quadratic convergence rates near the solution for those
cases when the Hessian approximation is accurate, i.e. the residuals tend towards zero at the solution. Thus, by
exploiting the structure of the problem, the second order convergence characteristics of a full Newton algorithm
can be obtained using only first order information from the least squares terms.

A common example for Ti(x) might be the difference between experimental data and model predictions for a
response quantity at a particular location and/or time step, i.e.:

Ti(x) = Ri(x)−Ri (1.3)

where Ri(x) is the response quantity predicted by the model and Ri is the corresponding experimental data. In
this case, x would have the meaning of model parameters which are not precisely known and are being calibrated
to match available data. This class of problem is known by the terms parameter estimation, system identification,
model calibration, test/analysis reconciliation, etc.

1.4.3 Sensitivity Analysis and Parameter Studies

In many engineering design applications, sensitivity analysis techniques and parameter study methods are useful in
identifying which of the design parameters have the most influence on the response quantities. This information is
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helpful prior to an optimization study as it can be used to remove design parameters that do not strongly influence
the responses. In addition, these techniques can provide assessments as to the behavior of the response functions
(smooth or nonsmooth, unimodal or multimodal) which can be invaluable in algorithm selection for optimization,
uncertainty quantification, and related methods. In a post-optimization role, sensitivity information is useful is
determining whether or not the response functions are robust with respect to small changes in the optimum design
point.

In some instances, the term sensitivity analysis is used in a local sense to denote the computation of response
derivatives at a point. These derivatives are then used in a simple analysis to make design decisions. DAKOTA
supports this type of study through numerical finite-differencing or retrieval of analytic gradients computed within
the analysis code. The desired gradient data is specified in the responses section of the DAKOTA input file and
the collection of this data at a single point is accomplished through a parameter study method with no steps.
This approach to sensitivity analysis should be distinguished from the activity of augmenting analysis codes to
internally compute derivatives using techniques such as direct or adjoint differentiation, automatic differentiation
(e.g., ADIFOR), or complex step modifications. These sensitivity augmentation activities are completely sepa-
rate from DAKOTA and are outside the scope of this manual. However, once completed, DAKOTA can utilize
these analytic gradients to perform optimization, uncertainty quantification, and related studies more reliably and
efficiently.

In other instances, the term sensitivity analysis is used in a more global sense to denote the investigation of
variability in the response functions. DAKOTA supports this type of study through computation of response data
sets (typically function values only, but all data sets are supported) at a series of points in the parameter space.
The series of points is defined using either a vector, list, centered, or multidimensional parameter study method.
For example, a set of closely-spaced points in a vector parameter study could be used to assess the smoothness of
the response functions in order to select a finite difference step size, and a set of more widely-spaced points in a
centered or multidimensional parameter study could be used to determine whether the response function variation
is likely to be unimodal or multimodal. See Chapter 4 for additional information on these methods. These more
global approaches to sensitivity analysis can be used to obtain trend data even in situations when gradients are
unavailable or unreliable, and they are conceptually similar to the design of experiments methods and sampling
approaches to uncertainty quantification described in the following sections.

1.4.4 Design of Experiments

Classical design of experiments (DoE) methods and the more modern design and analysis of computer experi-
ments (DACE) methods are both techniques which seek to extract as much trend data from a parameter space as
possible using a limited number of sample points. Classical DoE techniques arose from technical disciplines that
assumed some randomness and nonrepeatability in field experiments (e.g., agricultural yield, experimental chem-
istry). DoE approaches such as central composite design, Box-Behnken design, and full and fractional factorial
design generally put sample points at the extremes of the parameter space, since these designs offer more reliable
trend extraction in the presence of nonrepeatability. DACE methods are distinguished from DoE methods in that
the nonrepeatability component can be omitted since computer simulations are involved. In these cases, space
filling designs such as orthogonal array sampling and Latin hypercube sampling are more commonly employed
in order to accurately extract trend information. Quasi-Monte Carlo sampling techniques which are constructed
to fill the unit hypercube with good uniformity of coverage can also be used for DACE.

DAKOTA supports both DoE and DACE techniques. In common usage, only parameter bounds are used in
selecting the samples within the parameter space. Thus, DoE and DACE can be viewed as special cases of the more
general probabilistic sampling for uncertainty quantification (see following section), in which the DoE/DACE
parameters are treated as having uniform probability distributions. The DoE/DACE techniques are commonly
used for investigation of global response trends, identification of significant parameters (e.g., main effects), and
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as data generation methods for building response surface approximations.

1.4.5 Uncertainty Quantification

Uncertainty quantification (UQ) is the process of determining the effect of input uncertainties on response metrics
of interest. These input uncertainties may be characterized as either aleatory uncertainties, which are irreducible
variabilities inherent in nature, or epistemic uncertainties, which are reducible uncertainties resulting from a lack
of knowledge. Since sufficient data is generally available for aleatory uncertainties, probabilistic methods are
commonly used for computing response distribution statistics based on input probability distribution specifica-
tions. Conversely, for epistemic uncertainties, data is generally sparse, making the use of probability theory
questionable and leading to nonprobabilistic methods based on interval specifications.

UQ is related to sensitivity analysis in that the common goal is to gain an understanding of how variations in the
parameters affect the response functions of the engineering design problem. However, for UQ, some or all of
the components of the parameter vector, x, are considered to be uncertain as specified by particular probability
distributions (e.g., normal, exponential, extreme value). By assigning specific distributional structure to the inputs,
distributional structure for the outputs (i.e., response statistics) can be inferred.

Current methods for modeling aleatory uncertainty include sampling methods, local and global reliability meth-
ods, polynomial chaos expansions (PCE), and stochastic collocation. Current methods for modeling epistemic and
mixed aleatory/epistemic uncertainties include second-order probability, Dempster-Shafer theory of evidence, and
local or global interval estimation. The sampling, reliability, stochastic expansion, Dempster-Shafer, and interval
UQ approaches are described in more detail in Chapter 6. Second-order probability is described in Section 11.6.1.

1.5 Using this Manual

The previous sections in this chapter provide a brief overview of the capabilities in DAKOTA, and introduce some
of the common terms that are used in the fields of optimization, parameter estimation, sensitivity analysis, design
of experiments, and uncertainty quantification. A DAKOTA user new to these techniques and terms is advised to
consult the cited references to obtain more detailed descriptions of methods and algorithms in these disciplines.

Chapter 2 provides information on how to obtain, install, and use DAKOTA. In addition, example problems are
presented in this tutorial chapter to demonstrate some of DAKOTA’s capabilities for parameter studies, optimiza-
tion, and UQ. Chapter 3 provides a brief overview of all of the different software packages and capabilities in
DAKOTA. Chapter 4 through Chapter 8 provide details on the iterative algorithms supported in DAKOTA, and
Chapters 10 and 9 describe DAKOTA’s advanced strategies for optimization and hybrid approaches. Chapter 11
through Chapter 14 provide information on model components which are involved in parameter to response map-
pings and Chapters 15 and 16 describe the inputs to and outputs from DAKOTA. Chapter 17 provides information
on interfacing DAKOTA with engineering simulation codes, Chapter 18 covers DAKOTA’s parallel computing ca-
pabilities, and Chapter 19 provides some usage guidelines for selecting DAKOTA algorithms. Finally, Chapter 20
through Chapter 22 describe restart utilities, failure capturing facilities, and additional test problems, respectively.
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Chapter 2

DAKOTA Tutorial

2.1 Installation Guide

DAKOTA can be compiled for most common computer systems that run Unix and Linux operating systems. The
computers and operating systems actively supported by the DAKOTA project include:

• Intel/AMD Redhat Enterprise Linux 4 and 5 (RHEL4, RHEL5) with gcc and Intel compilers

• Sun Solaris 5.10 with SunPro CC compilers

• IBM AIX 5.3 with xlC compilers

• Mac OS X 10.5 with gcc compilers

In addition, partial support is provided for PC Windows (via Cygwin) with gcc/g95 compilers, PC Windows
(via MinGW) with gcc-4 compilers, and Sandia’s ASC Red Storm with PGI compilers. Additional details are
provided in the file Dakota/README in the distribution (see the following section for download instructions).
Further platform/operating system-specific guidance can be found in Dakota/examples/platforms included with
DAKOTA.

For answers to common questions and solutions to common problems in downloading, building, installing, or run-
ning DAKOTA, refer to http://www.cs.sandia.gov/DAKOTA/faq.html for additional information.

2.1.1 How to Obtain DAKOTA - External to Sandia Labs

Users outside of Sandia National Laboratories may obtain the DAKOTA binary executable files and source code
files through the download link available here:

http://www.cs.sandia.gov/DAKOTA/software.html

To receive the binary or source code files, you are asked to fill out a short online registration form. The information
provided is used by the DAKOTA development team to collect software usage metrics; the form also lets you sign
up for update announcements.

If you wish to run DAKOTA on one of the supported or partially supported platforms, we suggest that you
download the relevant binary executable distribution rather than the source code distribution. This gets you up

http://www.cs.sandia.gov/DAKOTA/faq.html
http://www.cs.sandia.gov/DAKOTA/software.html
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and running quickly and lets you gain an understanding of DAKOTA by running the example problems that are
provided with the binary distributions. For more experienced users, DAKOTA can be customized with additional
packages and ported to other computer platforms when building from the source code.

2.1.2 How to Obtain DAKOTA - Internal to Sandia Labs

DAKOTA binary executable files are routinely compiled and distributed to the engineering sciences LANs and
common compute servers at Sandia, Los Alamos, and Lawrence Livermore. At Sandia, consult the Codes & Tools
tab of the computing.sandia.gov web portal or the DAKOTA internal webpage for specific installation locations
and preferred usage. These installations are typically supported by modules, e.g., module avail dakota.
However, binaries can be located by absolute path as well, e.g., /usr/local/dakota/bin/dakota or
/projects/dakota/bin/<system>/dakota, where “<system>” is linux64, osx, or other. To see
if DAKOTA is available on your computer system and accessible in your Unix environment path settings, type
the command which dakota at the Unix prompt. If the DAKOTA executable file is in your path, its location
will be echoed to the terminal. If the DAKOTA executable file is available on your system but not in your path,
then you will need to locate it and add its directory to your path (the Unix whereis and find commands can
be useful for locating the executable).

If DAKOTA is not available on your system, consider getting an account on one of the common compute servers
where DAKOTA is maintained. If not practical, visit the DAKOTA internal webpage or consult the DAKOTA
developers so we can provide you with the most complete DAKOTA distribution possible, i.e., including Sandia-
specific and/or site-licensed software. As a last resort, you can acquire external versions of DAKOTA as described
above.

2.1.3 Installing DAKOTA - Binary Executable Files

Once you have downloaded a binary distribution from the web site listed above, you will have a Unix tar file that
has a name similar to Dakota 5 x.OSversion.tar.gz.

Use the GNU utility gunzip to uncompress the tar file and the Unix tar utility to extract the files from the
archive by executing the following commands:

gunzip Dakota_5_x.OSversion.tar.gz
tar -xvf Dakota_5_x.OSversion.tar

Slightly faster and less demanding of disk space is to invoke

gzip -dc Dakota_5_x.OSversion.tar.gz | tar xf -

The tar utility will create a subdirectory named Dakota in which the DAKOTA executables and example files
will be stored. The executables are in Dakota/bin, and the example problems are Dakota/test and in
subdirectories of Dakota/examples. See file Dakota/examples/README for more details about these
subdirectories.

A similar process applies to windows distributions which are packaged as ZIP files and can be extracted with the
Windows extractor or WinZIP, for example. For getting started on Windows, see the files INSTALL.cygwin
and INSTALL.mingw in Dakota/examples/platforms.
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2.1.4 Installing DAKOTA - Source Code Files

Following the download, decompression, and extraction of the file Dakota 5 x.src.tar.gz, the basic steps
follow the standard GNU distribution process of:

configure
make

to construct Makefiles and build the system, respectively. After the build complete, one can optionally

make install

to install the executable in a desired location. Please note that these simple steps imply a build process in which
the configuration, object files, libraries, and binary executables all reside in the same directory as the extracted
Dakota source distribution. Many developers on the DAKOTA development team use this approach so it is
encouraged. That said, DAKOTA does support out-of-source build trees as long as GNU make (or other make
installation that supports VPATH variable) is used. Detailed instructions for building DAKOTA are given in the
file Dakota/INSTALL.

2.1.5 Running DAKOTA

The DAKOTA executable file is named dakota. If this command is entered at the command prompt without any
arguments, the following usage message appears (please ensure ’.’ is in your PATH):

usage: dakota [options and <args>]
-help (Print this summary)
-version (Print DAKOTA version number)
-input <$val> (REQUIRED DAKOTA input file $val)
-output <$val> (Redirect DAKOTA standard output to file $val)
-error <$val> (Redirect DAKOTA standard error to file $val)
-parser <$val> (Parsing technology: nidr[strict][:dumpfile])
-check (Perform input checks)
-pre_run [$val] (Perform pre-run (variables generation) phase)
-run [$val] (Perform run (model evaluation) phase)
-post_run [$val] (Perform post-run (final results) phase)
-read_restart [$val] (Read an existing DAKOTA restart file $val)
-stop_restart <$val> (Stop restart file processing at evaluation $val)
-write_restart [$val] (Write a new DAKOTA restart file $val)

Of these available command line inputs, only the “-input” option is required, and “-input” can be omitted
if the input file name is the final item on the command line; all other command-line inputs are optional. The
“-help” option prints the usage message above. The “-version” option prints the version number of the
executable. The “-check” option invokes a dry-run mode in which the input file is processed and checked for
errors, but the study is not performed. The “-input” option provides the name of the DAKOTA input file.
The “-output” and “-error” options provide file names for redirection of the DAKOTA standard output
(stdout) and standard error (stderr), respectively. The “-parser” input is for debugging and will not be further
described here. The “-read restart” and “-write restart” command line inputs provide the names of
restart databases to read from and write to, respectively. The “-stop restart” command line input limits the
number of function evaluations read from the restart database (the default is all the evaluations) for those cases in
which some evaluations were erroneous or corrupted. Restart management is an important technique for retaining
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data from expensive engineering applications. This advanced topic is discussed in detail in Chapter 19. Note that
these command line inputs can be abbreviated so long as the abbreviation is unique, so the following are valid,
unambiguous specifications: “-h”, “-v”, “-c”, “-i”, “-o”, “-e”, “-re”, “-s”, “-w”, “-pr”, “-ru”, and
“-po” and can be used in place of the longer forms of the command line inputs.

To run DAKOTA with a particular input file, the following syntax can be used:

dakota -i dakota.in

or more simply

dakota dakota.in

This will echo the standard output (stdout) and standard error (stderr) messages to the terminal. To redirect stdout
and stderr to separate files, the -o and -e command line options may be used:

dakota -i dakota.in -o dakota.out -e dakota.err

or

dakota -o dakota.out -e dakota.err dakota.in

Alternatively, any of a variety of Unix redirection variants can be used. The simplest of these redirects stdout to
another file:

dakota dakota.in > dakota.out

To append to a file rather than overwrite it, “>>” is used in place of “>”. The syntax to redirect stderr as well as
stdout to the same file depends on the shell you are using. With csh, simply append “&” with no embedded space,
i.e., “>&” or “>>&”. With the Bourne shell (sh or bash) use “>dakota.out 2>&1” or “>>dakota.out
2>&1”. With csh, if you have the noclobber environment variable set but wish either to overwrite an existing
output file or to append to a file that does not yet exist, append “!” to the redirection operators (with no intervening
spaces), i.e., “>!”, “>&!”, “>>!”, or “>>&!”.

To run the dakota process in the background, append an ampersand symbol (&) to the command with an embedded
space, e.g.,

dakota dakota.in > dakota.out &

Refer to [7] for more information on Unix redirection and background commands.

The “-pre run”, “-run”, and “-post run” switches instruct DAKOTA to run one or more execution phases,
excluding others. For example pre-run might generate variable sets, run (core run) invoke the simulation to
evaluate variables, producing responses, and post-run accepts variable/response sets and analyzes the results (for
example, calculate correlations from a set of samples). Currently only two modes are supported and only for
sampling, parameter study, and DACE methods: (1) pre-run only with optional tabular output of variables:

dakota -i dakota.in -pre_run [::myvariables.dat]

and (2) post-run only with required tabular input of variables/responses:

dakota -i dakota.in -post_run myvarsresponses.dat::
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2.2 Rosenbrock and Textbook Test Problems

Many of the example problems in this chapter use the Rosenbrock function [119] (also described in [60], among
other places), which has the form:

f(x1, x2) = 100(x2 − x2
1)

2 + (1− x1)2 (2.1)

A three-dimensional plot of this function is shown in Figure 2.1(a), where both x1 and x2 range in value from −2
to 2. Figure 2.1(b) shows a contour plot for Rosenbrock’s function. An optimization problem using Rosenbrock’s
function is formulated as follows:

minimize f(x1, x2)
x ∈ <2

subject to −2 ≤ x1 ≤ 2 (2.2)
−2 ≤ x2 ≤ 2

(a) (b)

Figure 2.1: Rosenbrock’s function: (a) 3-D plot and (b) contours with x1 on the bottom axis.

Note that there are no linear or nonlinear constraints in this formulation, so this is a bound constrained optimization
problem. The unique solution to this problem lies at the point (x1, x2) = (1, 1), where the function value is zero.

The two-variable version of the “textbook” example problem provides a nonlinearly constrained optimization test
case. It is formulated as:

minimize f = (x1 − 1)4 + (x2 − 1)4

subject to g1 = x2
1 −

x2

2
≤ 0

g2 = x2
2 −

x1

2
≤ 0 (2.3)

0.5 ≤ x1 ≤ 5.8
−2.9 ≤ x2 ≤ 2.9

DAKOTA Version 5.0 User’s Manual generated on May 7, 2010



32 CHAPTER 2. DAKOTA TUTORIAL

Contours of this example problem are illustrated in Figure 2.2(a), with a close-up view of the feasible region given
in Figure 2.2(b).

(a) (b)

Figure 2.2: Contours of the textbook problem (a) on the [−3, 4] × [−3, 4] domain and (b) zoomed into an area
containing the constrained optimum point (x1, x2) = (0.5, 0.5). The feasible region lies at the intersection of the
two constraints g1 (solid) and g2 (dashed).

For the textbook example problem, the unconstrained minimum occurs at (x1, x2) = (1, 1). However, the inclu-
sion of the constraints moves the minimum to (x1, x2) = (0.5, 0.5).

Several other example problems are available. See Chapter 22 for a description of these example problems as well
as further discussion of the Rosenbrock and textbook example problems.

2.3 DAKOTA Input File Format

All of the DAKOTA input files for the simple example problems presented here are included in the distribu-
tion tar files within directory Dakota/examples/tutorial. A simple DAKOTA input file (that is named
dakota rosenbrock 2d.in) for a two-dimensional parameter study on Rosenbrock’s function is shown in
Figure 2.3. This input file will be used to describe the basic format and syntax used in all DAKOTA input files.

There are six specification blocks that may appear in DAKOTA input files. These are identified in the input
file using the following keywords: variables, interface, responses, model, method, and strategy. These keyword
blocks can appear in any order in a DAKOTA input file. At least one variables, interface, responses, and method
specification must appear, and no more than one strategy specification should appear. In Figure 2.3, one of each
of the keyword blocks is used. Additional syntax features include use of the # symbol to indicate a comment, use
of single or double quotes for string inputs (e.g., ’x1’), the use of commas and/or white space for separation
of specifications, and the optional use of “=” symbols to indicate supplied data. See the DAKOTA Reference
Manual [3] for additional details on this input file syntax.

The first section of the input file shown in Figure 2.3 is the strategy section. This keyword section is used to specify
some of DAKOTA’s advanced meta-procedures such as hybrid optimization, surrogate-based optimization, multi-
start optimization, and Pareto optimization. See Chapter 10 for more information on these meta-procedures.
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## DAKOTA INPUT FILE - dakota_rosenbrock_2d.in

strategy,
single_method
graphics,tabular_graphics_data

method,
multidim_parameter_study
partitions = 8 8

model,
single

variables,
continuous_design = 2
lower_bounds -2.0 -2.0
upper_bounds 2.0 2.0
descriptors ’x1’ "x2"

interface,
direct
analysis_driver = ’rosenbrock’

responses,
num_objective_functions = 1
no_gradients
no_hessians

Figure 2.3: Rosenbrock 2-D parameter study example: the DAKOTA input file.

The strategy section also contains the settings for DAKOTA’s graphical output (via the graphics flag) and the
tabular data output (via the tabular graphics data keyword).

The method section of the input file specifies the iterative technique that DAKOTA will employ, such as a parame-
ter study, optimization method, data sampling technique, etc. The keyword multidim parameter study in
Figure 2.3 calls for a multidimensional parameter study, while the keyword partitions specifies the number
of intervals per variable. In this case, there will be eight intervals (nine data points) evaluated between the lower
and upper bounds of both variables (bounds provided subsequently in the variables section), for a total of 81
response function evaluations.

The model section of the input file specifies the model that DAKOTA will use. A model provides the logical unit
for determining how a set of variables is mapped into a set of responses in support of an iterative method. The
model allows one to specify a single interface, or to manage more sophisticated mappings involving surrogates
or nested iteration. For example, one might want to use an approximate model for optimization or uncertainty
quantification, due to the lower computational cost. The model keyword allows one to specify if the iterator will
be operating on a data fit surrogate (such as a polynomial regression, neural net, etc.), a hierarchical surrogate
(which uses the corrected results of a lower fidelity simulation model as an approximation to a higher fidelity
simulation), or a nested model. See Chapter 11 for additional model specification details. If these advanced
facilities for surrogate modeling or nested iteration are not required, then it is not necessary to specify the model
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keyword at all, since the default behavior is the use of a “single” model constructed with the last set of responses,
variables, and interface specified. In Figure 2.3, the keyword single explicitly specifies the use of a single
model in the parameter study, even though this is the default.

The variables section of the input file specifies the characteristics of the parameters that will be used in the
problem formulation. The variables can be continuous or discrete, and can be classified as design variables,
uncertain variables, or state variables. See Chapter 12 for more information on the types of variables supported
by DAKOTA. The variables section shown in Figure 2.3 specifies that there are two continuous design variables.
The sub-specifications for continuous design variables provide the descriptors “x1” and “x2” as well as lower
and upper bounds for these variables. The information about the variables is organized in column format for
readability. So, both variables x1 and x2 have a lower bound of -2.0 and an upper bound of 2.0.

The interface section of the input file specifies what approach will be used to map variables into responses as
well as details on how DAKOTA will pass data to and from a simulation code. In this example, the keyword
direct is used to indicate the use of a function linked directly into DAKOTA. Alternatively, fork or system
executions can be used to invoke instances of a simulation code that is external to DAKOTA, as explained in
Section 2.4.4.2 and Chapter 17. The analysis driver keyword indicates the name of the test function. With
fork or system, default file names would be used for passing data between DAKOTA and the simulation code.

The responses section of the input file specifies the types of data that the interface will return to DAKOTA. For
the example shown in Figure 2.3, the assignment num objective functions = 1 indicates that there is
only one objective function. Since there are no constraints associated with Rosenbrock’s function, the keywords
for constraint specifications are omitted. The keywords no gradients and no hessians indicate that no
derivatives will be provided to the method; none are needed for a parameter study.

2.4 Example Problems

This section serves to familiarize users without how to perform parameter studies, optimization, and uncertainty
quantification through their common DAKOTA interface. The initial examples utilize simple built in driver func-
tions; later we show how to utilize DAKOTA to drive the evaluation of user supplied black box code. The
examples presented in this chapter are intended to show the simplest use of DAKOTA for several methods of each
type. More advanced examples of using DAKOTA for specific purposes are provided in subsequent, topic based,
chapters.

2.4.1 Parameter Studies

Parameter study methods in the DAKOTA toolkit involve the computation of response data sets at a selection of
points in the parameter space. These response data sets are not linked to any specific interpretation, so they may
consist of any allowable specification from the responses keyword block, i.e., objective and constraint functions,
least squares terms and constraints, or generic response functions. This allows the use of parameter studies in
direct coordination with optimization, least squares, and uncertainty quantification studies without significant
modification to the input file. The two examples given in this subsection are for a two-dimensional tensor product
of sample points and a vector parameter study.

2.4.1.1 Two-Dimensional Grid Parameter Study

The 2-D parameter study example problem listed in Figure 2.3 is executed by DAKOTA using the following
command:
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dakota dakota_rosenbrock_2d.in > 2d.out

The output of the DAKOTA run is directed to the file named 2d.out. For comparison, a file named 2d.out.sav
is included in the Dakota/examples/tutorial directory. As for many of the examples, DAKOTA provides
a report on the best design point located during the study at the end of these output files.

This 2-D parameter study produces the grid of data samples shown in Figure 2.4. In general, a multidimensional
parameter study lets one generate a grid in multiple dimensions. The keyword multidim parameter study
indicates that a grid will be generated over all variables. The keyword partitions indicates the number of grid
partitions in each dimension. For this example, the number of the grid partitions are the same in each dimension (8
partitions) but it would be possible to specify (partitions = 8 2), and have only two partitions over the second input
variable. Note that the graphics flag in the strategy section of the input file could be commented out since,
for this example, the iteration history plots created by DAKOTA are not particularly instructive. More interesting
visualizations can be created by importing DAKOTA’s tabular data into an external graphics/plotting package.
Common graphics and plotting packages include Mathematica, Matlab, Microsoft Excel, Origin, Tecplot, and
many others. (Sandia National Laboratories and the DAKOTA developers do not endorse any of these commercial
products.)

Figure 2.4: Rosenbrock 2-D parameter study example: location of the design points (dots) evaluated.

2.4.1.2 Vector Parameter Study

In addition to the multidimensional parameter study, DAKOTA can perform a vector parameter study, i.e., a
parameter study between any two design points in an n-dimensional parameter space.

An input file for the vector parameter study is shown in Figure 2.5. The primary differences between this input
file and the previous input file are found in the variables and method sections. In the variables section, the
keywords for the bounds are removed and replaced with the keyword initial point that specifies the starting
point for the parameter study. In the method section, the vector parameter study keyword is used. The
final point keyword indicates the stopping point for the parameter study, and num steps specifies the
number of steps taken between the initial and final points in the parameter study.

The vector parameter study example problem is executed using the command

dakota dakota_rosenbrock_vector.in > vector.out
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# DAKOTA INPUT FILE - dakota_rosenbrock_vector.in

strategy,
single_method
graphics,tabular_graphics_data

method,
vector_parameter_study
final_point = 1.1 1.3
num_steps = 10

model,
single

variables,
continuous_design = 2
initial_point -0.3 0.2
descriptors ’x1’ "x2"

interface,
direct
analysis_driver = ’rosenbrock’

responses,
num_objective_functions = 1
no_gradients
no_hessians

Figure 2.5: Rosenbrock vector parameter study example: the DAKOTA input file.

Figure 2.6(a) shows the graphics output created by DAKOTA. For this study, the simple DAKOTA graphics are
more useful for visualizing the results. Figure 2.6(b) shows the locations of the 11 sample points generated in this
study. It is evident from these figures that the parameter study starts within the banana-shaped valley, marches
up the side of the hill, and then returns to the valley. The output file vector.out.sav is provided in the
Dakota/examples/tutorial directory.

In addition to the vector and multidimensional examples shown, DAKOTA also supports list and centered param-
eter study methods. Refer to Chapter 4 for additional information.

2.4.2 Optimization

DAKOTA’s optimization capabilities include a variety of gradient-based and nongradient-based optimization
methods. This subsection demonstrates the use of several such methods through the DAKOTA interface.
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(a)

(b)

Figure 2.6: Rosenbrock vector parameter study example: (a) screen capture of the DAKOTA graphics and (b)
location of the design points (dots) evaluated.
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2.4.2.1 Gradient-based Unconstrained Optimization

A DAKOTA input file for a gradient-based optimization of Rosenbrock’s function is listed in Figure 2.7. The
format of the input file is similar to that used for the parameter studies, but there are some new keywords in
the responses and method sections. First, in the responses section of the input file, the keyword block start-
ing with numerical gradients specifies that a finite difference method will be used to compute gradients
for the optimization algorithm. Note that the Rosenbrock function evaluation code inside DAKOTA has the
ability to give analytical gradient values. (To switch from finite difference gradient estimates to analytic gra-
dients, uncomment the analytic gradients keyword and comment out the four lines associated with the
numerical gradients specification.) Next, in the method section of the input file, several new keywords
have been added. In this section, the keyword conmin frcg indicates the use of the Fletcher-Reeves conjugate
gradient algorithm in the CONMIN optimization software package [138] for bound-constrained optimization. The
keyword max iterations is used to indicate the computational budget for this optimization (in this case, a
single iteration includes multiple evaluations of Rosenbrock’s function for the gradient computation steps and the
line search steps). The keyword convergence tolerance is used to specify one of CONMIN’s convergence
criteria (under which CONMIN terminates if the objective function value differs by less than the absolute value
of the convergence tolerance for three successive iterations).

This DAKOTA input file is executed using the following command:

dakota dakota_rosenbrock_grad_opt.in > grad_opt.out

The sample file grad opt.out.sav is included in Dakota/examples/tutorial for comparison. When
this example problem is executed, DAKOTA creates some iteration history graphics similar to the screen capture
shown in Figure 2.8(a). These plots show how the objective function and design parameters change in value
during the optimization steps. The scaling of the horizontal and vertical axes can be changed by moving the scroll
knobs on each plot. Also, the “Options” button allows the user to plot the vertical axes using a logarithmic scale.
Note that log-scaling is only allowed if the values on the vertical axis are strictly greater than zero.

Figure 2.8(b) shows the iteration history of the optimization algorithm. The optimization starts at the point
(x1, x2) = (−1.2, 1.0) as given in the DAKOTA input file. Subsequent iterations follow the banana-shaped
valley that curves around toward the minimum point at (x1, x2) = (1.0, 1.0). Note that the function evaluations
associated with the line search phase of each CONMIN iteration are not shown on the plot. At the end of the
DAKOTA run, information is written to the output file to provide data on the optimal design point. These data
include the optimum design point parameter values, the optimum objective and constraint function values (if any),
plus the number of function evaluations that occurred and the amount of time that elapsed during the optimization
study.

2.4.2.2 Gradient-based Constrained Optimization

This example demonstrates the use of a gradient-based optimization algorithm on a nonlinearly constrained prob-
lem. The “textbook” example problem (see Section 2.2) is used for this purpose and the DAKOTA input file
for this example problem is shown in Figure 2.9. This input file is similar to the input file for the unconstrained
gradient-based optimization example problem involving the Rosenbrock function. Note the addition of commands
in the responses section of the input file that identify the number and type of constraints, along with the upper
bounds on these constraints. The commands direct and analysis driver = ’text book’ specify that
DAKOTA will use its internal version of the textbook problem.

The following command runs this example problem:

dakota dakota_textbook.in > textbook.out
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# DAKOTA INPUT FILE - dakota_rosenbrock_grad_opt.in

strategy,
single_method
graphics,tabular_graphics_data

method,
conmin_frcg
max_iterations = 100
convergence_tolerance = 1e-4

model,
single

variables,
continuous_design = 2
initial_point -1.2 1.0
lower_bounds -2.0 -2.0
upper_bounds 2.0 2.0
descriptors ’x1’ "x2"

interface,
direct
analysis_driver = ’rosenbrock’

responses,
num_objective_functions = 1

# analytic_gradients
numerical_gradients
method_source dakota
interval_type forward
fd_gradient_step_size = 1.e-5

no_hessians

Figure 2.7: Rosenbrock gradient-based unconstrained optimization example: the DAKOTA input file.
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(a)

(b)

Figure 2.8: Rosenbrock gradient-based unconstrained optimization example: (a) screen capture of the DAKOTA
graphics and (b) sequence of design points (dots) evaluated (line search points omitted).

The conmin mfd keyword in Figure 2.9 tells DAKOTA to use the CONMIN package’s implementation of the
Method of Feasible Directions (see Section 7.2.3 for more details). A significantly faster alternative is the DOT
package’s Modified Method of Feasible Directions, i.e. dot mmfd (see Section 7.2.4 for more details). However,
DOT is licensed software that may not be available on a particular system. If it is installed on your system and
DAKOTA has been compiled without the --without-dot flag, you may use it by commenting out the line
with conmin mfd and uncommenting the line with dot mmfd.

The file textbook.out.sav is included in Dakota/examples/tutorial for comparison purposes. The
results of the optimization example problem are listed at the end of the textbook.out file. This information
shows that the optimizer stopped at the point (x1, x2) = (0.5, 0.5), where both constraints are approximately
satisfied, and where the objective function value is 0.128. The progress of the optimization algorithm is shown in
Figure 2.10(a) where the dots correspond to the end points of each iteration in the algorithm. The starting point
is (x1, x2) = (0.9, 1.1), where both constraints are violated. The optimizer takes a sequence of steps to minimize
the objective function while reducing the infeasibility of the constraints. The optimization graphics are also shown
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strategy,
single_method
graphics,tabular_graphics_data

method,
# DOT performs better, but may not be available
# dot_mmfd,

conmin_mfd,
max_iterations = 50,
convergence_tolerance = 1e-4

variables,
continuous_design = 2
initial_point 0.9 1.1
upper_bounds 5.8 2.9
lower_bounds 0.5 -2.9
descriptors ’x1’ ’x2’

interface,
direct
analysis_driver = ’text_book’

responses,
num_objective_functions = 1
num_nonlinear_inequality_constraints = 2
numerical_gradients
method_source dakota
interval_type central
fd_gradient_step_size = 1.e-4

no_hessians

Figure 2.9: Textbook gradient-based constrained optimization example: the DAKOTA input file.

in Figure 2.10(b).

2.4.2.3 Nonlinear Least Squares Methods for Optimization

Both the Rosenbrock and textbook example problems can be formulated as least-squares minimization problems
(see Section 22.1 and Section 22.2). For example, the Rosenbrock problem can be cast as:

minimize (f1)2 + (f2)2 (2.4)

where f1 = 10(x2 − x2
1) and f2 = (1 − x1). When using a least-squares approach to minimize a function,

each of the least-squares terms f1, f2, . . . is driven toward zero. This formulation permits the use of specialized
algorithms that can be more efficient than general purpose optimization algorithms. See Chapter 8 for more detail
on the algorithms used for least-squares minimization, as well as a discussion on the types of engineering design
problems (e.g., parameter estimation) that can make use of the least-squares approach.
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(a)

(b)

Figure 2.10: Textbook gradient-based constrained optimization example: (a) screen capture of the DAKOTA
graphics shows how the objective function was reduced during the search for a feasible design point and (b)
iteration history (iterations marked by solid dots).

Figure 2.11 is a listing of the DAKOTA input file dakota rosenbrock ls.in. This input file differs from
the input file shown in Figure 2.7 in several key areas. The responses section of the input file uses the keyword
num least squares terms = 2 instead of the num objective functions = 1. The method section
of the input file shows that the NL2SOL algorithm [24] (nl2sol) is used in this example. (The Gauss-Newton,
NL2SOL, and NLSSOL SQP algorithms are currently available for exploiting the special mathematical structure
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of least squares minimization problems).

# DAKOTA INPUT FILE - dakota_rosenbrock_ls.in

strategy,
single_method
graphics,tabular_graphics_data

method,
nl2sol
max_iterations = 100
convergence_tolerance = 1e-4

model,
single

variables,
continuous_design = 2
initial_point -1.2 1.0
lower_bounds -2.0 -2.0
upper_bounds 2.0 2.0
descriptors ’x1’ "x2"

interface,
direct
analysis_driver = ’rosenbrock’

responses,
num_least_squares_terms = 2
analytic_gradients
no_hessians

Figure 2.11: Rosenbrock nonlinear least squares example: the DAKOTA input file.

The input file listed in Figure 2.11 is executed using the command:

dakota dakota_rosenbrock_ls.in > leastsquares.out

The file leastsquares.out.sav is included Dakota/examples/tutorial for comparison purposes.
The optimization results at the end of this file show that the least squares minimization approach has found the
same optimum design point, (x1, x2) = (1.0, 1.0), as was found using the conventional gradient-based optimiza-
tion approach. The iteration history of the least squares minimization is given in Figure 2.12, and shows that 14
function evaluations were needed for convergence. In this example the least squares approach required about half
the number of function evaluations as did conventional gradient-based optimization. In many cases a good least
squares algorithm will converge more rapidly in the vicinity of the solution.
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Figure 2.12: Rosenbrock nonlinear least squares example: iteration history for least squares terms f1 and f2.

2.4.2.4 Nongradient-based Optimization via Pattern Search

In addition to gradient-based optimization algorithms, DAKOTA also contains a variety of nongradient-based
algorithms. One particular nongradient-based algorithm for local optimization is known as pattern search (see
Chapter 1 for a discussion of local versus global optimization). The DAKOTA input file shown in Figure 2.13
applies a pattern search method to minimize the Rosenbrock function. While this provides for an interesting
comparison to the previous example problems in this chapter, the Rosenbrock function is not the best test case
for a pattern search method. That is, pattern search methods are better suited to problems where the gradients
are too expensive to evaluate, inaccurate, or nonexistent — situations common among many engineering op-
timization problems. It also should be noted that nongradient-based algorithms generally are applicable only to
unconstrained or bound-constrained optimization problems, although the inclusion of general linear and nonlinear
constraints in nongradient-based algorithms is an active area of research in the optimization community. For most
users who wish to use nongradient-based algorithms on constrained optimization problems, the easiest route is to
create a penalty function, i.e., a composite function that contains the objective function and the constraints, exter-
nal to DAKOTA and then optimize on this penalty function. Most optimization textbooks will provide guidance
on selecting and using penalty functions.

The DAKOTA input file shown in Figure 2.13 is similar to the input file for the gradient-based optimization,
except it has a different set of keywords in the method section of the input file, and the gradient specification in
the responses section has been changed to no gradients. The pattern search optimization algorithm used is
part of the COLINY library [76]. See the DAKOTA Reference Manual [3] for more information on the methods
section commands that can be used with COLINY algorithms.
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# DAKOTA INPUT FILE - dakota_rosenbrock_ps_opt.in

strategy,
single_method
graphics,tabular_graphics_data

method,
coliny_pattern_search
max_iterations = 1000
max_function_evaluations = 2000
solution_accuracy = 1e-4
initial_delta = 0.5
threshold_delta = 1e-4
exploratory_moves basic_pattern
contraction_factor = 0.75

model,
single

variables,
continuous_design = 2
initial_point 0.0 0.0
lower_bounds -2.0 -2.0
upper_bounds 2.0 2.0
descriptors ’x1’ "x2"

interface,
direct
analysis_driver = ’rosenbrock’

responses,
num_objective_functions = 1
no_gradients
no_hessians

Figure 2.13: Rosenbrock pattern search optimization example: the DAKOTA input file.

This DAKOTA input file is executed using the following command:

dakota dakota_rosenbrock_ps_opt.in > ps_opt.out

The file ps opt.out.sav is included in the Dakota/examples/tutorial directory. For this run, the
optimizer was given an initial design point of (x1, x2) = (0.0, 0.0) and was limited to 2000 function evaluations.
In this case, the pattern search algorithm stopped short of the optimum at (x1, x2) = (1.0, 1, 0), although it was
making progress in that direction when it was terminated. (It would have reached the minimum point eventually.)

The iteration history is provided in Figures 2.14(a) and (b), which show the locations of the function evaluations
used in the pattern search algorithm. Figure 2.14(c) provides a close-up view of the pattern search function
evaluations used at the start of the algorithm. The coordinate pattern is clearly visible at the start of the iteration
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history, and the decreasing size of the coordinate pattern is evident at the design points move toward (x1, x2) =
(1.0, 1.0).

(a)

(b) (c)

Figure 2.14: Rosenbrock pattern search optimization example: (a) screen capture of the DAKOTA graphics, (b)
sequence of design points (dots) evaluated and (c) close-up view illustrating the shape of the coordinate pattern
used.

While pattern search algorithms are useful in many optimization problems, this example shows some of the
drawbacks to this algorithm. While a pattern search method may make good initial progress towards an optimum,
it is often slow to converge. On a smooth, differentiable function such as Rosenbrock’s function, a nongradient-
based method will not be as efficient as a gradient-based method. However, there are many engineering design
applications where gradient information is inaccurate or unavailable, which renders gradient-based optimizers
ineffective. Thus, pattern search algorithms (and other nongradient-based algorithms such as genetic algorithms
as discussed in the next section) are often good choices in complex engineering applications when the quality of
gradient data is suspect.

2.4.2.5 Nongradient-based Optimization via Evolutionary Algorithm

In contrast to pattern search algorithms, which are local optimization methods, evolutionary algorithms (EA) are
global optimization methods. As was described above for the pattern search algorithm, the Rosenbrock function
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is not an ideal test problem for showcasing the capabilities of evolutionary algorithms. Rather, EAs are best suited
to optimization problems that have multiple local optima, and where gradients are either too expensive to compute
or are not readily available.

Evolutionary algorithms are based on Darwin’s theory of survival of the fittest. The EA algorithm starts with a
randomly selected population of design points in the parameter space, where the values of the design parameters
form a “genetic string,” analogous to DNA in a biological system, that uniquely represents each design point in
the population. The EA then follows a sequence of generations, where the best design points in the population
(i.e., those having low objective function values) are considered to be the most “fit” and are allowed to survive and
reproduce. The EA simulates the evolutionary process by employing the mathematical analogs of processes such
as natural selection, breeding, and mutation. Ultimately, the EA identifies a design point (or a family of design
points) that minimizes the objective function of the optimization problem. An extensive discussion of EAs is
beyond the scope of this text, but may be found in a variety of sources (cf., [74] pp. 149-158; [67]). Currently, the
EAs available in DAKOTA include a genetic algorithm for problems involving discrete variables and an evolution
strategy with self-adaptation for problems with continuous variables. Details of these algorithms are given in the
DAKOTA Reference Manual [3]. The COLINY library, which provides the EA software that has been linked into
DAKOTA, is described in [76].

Figure 2.15 shows a DAKOTA input file that uses an EA to minimize the Rosenbrock function. For this example
the EA has a population size of 50. At the start of the first generation, a random number generator is used to
select 50 design points that will comprise the initial population. [A specific seed value is used in this example to
generate repeatable results, although, in general, one should use the default setting which allows the EA to choose
a random seed.] A two-point crossover technique is used to exchange genetic string values between the members
of the population during the EA breeding process. The result of the breeding process is a population comprised
of the 10 best “parent” design points (elitist strategy) plus 40 new “child” design points. The EA optimization
process will be terminated after either 100 iterations (generations of the EA) or 2,000 function evaluations. The
EA software available in DAKOTA provides the user with much flexibility in choosing the settings used in the
optimization process. See [3] and [76] for details on these settings.

The following command runs DAKOTA on the input file:

dakota dakota_rosenbrock_ea_opt.in > ea_opt.out

A corresponding output file named ea opt.out.sav appears in Dakota/examples/tutorial. The
EA optimization results printed at the end of this file show that the best design point found was (x1, x2) =
(0.98, 0.95). The file ea tabular.dat.sav provides a listing of the design parameter values and objective
function values for all 2,000 design points evaluated during the running of the EA. Figure 2.16(a) shows the popu-
lation of 50 randomly selected design points that comprise the first generation of the EA, and Figure 2.16(b) shows
the final population of 50 design points, where most of the 50 points are clustered near (x1, x2) = (0.98, 0.95).

As described above, an EA is not well-suited to an optimization problem involving a smooth, differentiable objec-
tive such as the Rosenbrock function. Rather, EAs are better suited to optimization problems where conventional
gradient-based optimization fails, such as situations where there are multiple local optima and/or gradients are
not available. In such cases, the computational expense of an EA is warranted since other optimization methods
are not applicable or impractical. In many optimization problems, EAs often quickly identify promising regions
of the design space where the global minimum may be located. However, an EA can be slow to converge to the
optimum. For this reason, it can be an effective approach to combine the global search capabilities of a EA with
the efficient local search of a gradient-based algorithm in a hybrid optimization strategy. In this approach, the op-
timization starts by using a few iterations of a EA to provide the initial search for a good region of the parameter
space (low objective function and/or feasible constraints), and then it switches to a gradient-based algorithm (us-
ing the best design point found by the EA as its starting point) to perform an efficient local search for an optimum
design point. More information on this hybrid approach is provided in Chapter 10.
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# DAKOTA INPUT FILE - dakota_rosenbrock_ea_opt.in

strategy,
single_method
graphics,tabular_graphics_data

method,
coliny_ea
max_iterations = 100
max_function_evaluations = 2000
seed = 11011011
population_size = 50
fitness_type merit_function
mutation_type offset_normal
mutation_rate 1.0
crossover_type two_point
crossover_rate 0.0
replacement_type chc = 10

model,
single

variables,
continuous_design = 2
lower_bounds -2.0 -2.0
upper_bounds 2.0 2.0
descriptors ’x1’ "x2"

interface,
direct
analysis_driver = ’rosenbrock’

responses,
num_objective_functions = 1
no_gradients
no_hessians

Figure 2.15: Rosenbrock evolutionary algorithm optimization example: the DAKOTA input file.

In addition to the evolutionary algorithm capabilities in the coliny ea method, there is a single-objective ge-
netic algorithm method called soga. For more information on soga, see Chapter 7.

2.4.2.6 Multiobjective Optimization

Multiobjective optimization means that there are two or more objective functions that you wish to optimize simul-
taneously. Often these are conflicting objectives, such as cost and performance. The answer to a multi-objective
problem is usually not a single point. Rather, it is a set of points called the Pareto front. Each point on the Pareto
front satisfies the Pareto optimality criterion, i.e., locally there exists no other feasible vector that would improve
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(a) (b)

Figure 2.16: Rosenbrock evolutionary algorithm optimization example: 50 design points in the (a) initial and (b)
final populations selected by the evolutionary algorithm.

some objective without causing a simultaneous worsening in at least one other objective. Thus a feasible point X ′

from which small moves improve one or more objectives without worsening any others is not Pareto optimal: it
is said to be “dominated” and the points along the Pareto front are said to be “non-dominated”.

Often multi-objective problems are addressed by simply assigning weights to the individual objectives, summing
the weighted objectives, and turning the problem into a single-objective one which can be solved with a variety
of optimization techniques. While this approach provides a useful “first cut” analysis (and is supported within
DAKOTA—see Section 7.3), this approach has many limitations. The major limitation is that a local solver with
a weighted sum objective will only find one point on the Pareto front; if one wants to understand the effects of
changing weights, this method can be computationally expensive. Since each optimization of a single weighted
objective will find only one point on the Pareto front, many optimizations must be performed to get a good
parametric understanding of the influence of the weights and to achieve a good sampling of the entire Pareto
frontier.

Starting with version 3.2 of DAKOTA, a capability to perform multi-objective optimization based on a genetic
algorithm method has been available. This method is called moga. It is based on the idea that as the population
evolves in a GA, solutions that are non-dominated are chosen to remain in the population. Until version 4.0 of
DAKOTA, there was a selection type choice of domination count that performed a custom fitness assessment and
selection operation together. As of version 4.0 of DAKOTA, that functionality has been broken into separate,
more generally usable fitness assessment and selection operators called the domination count fitness assessor and
below limit selector respectively. The effect of using these two operators is the same as the previous behavior
of the domination count selector. This means of selection works especially well on multi-objective problems
because it has been specifically designed to avoid problems with aggregating and scaling objective function values
and transforming them into a single objective. Instead, the fitness assessor works by ranking population members
such that their resulting fitness is a function of the number of other designs that dominate them. The below limit
selector then chooses designs by considering the fitness of each. If the fitness of a design is above a certain limit,
which in this case corresponds to a design being dominated by more than a specified number of other designs, then
it is discarded. Otherwise it is kept and selected to go to the next generation. The one catch is that this selector
will require that a minimum number of selections take place. The shrinkage percentage determines the
minimum number of selections that will take place if enough designs are available. It is interpreted as a percentage
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of the population size that must go on to the subsequent generation. To enforce this, the below limit selector makes
all the selections it would make anyway and if that is not enough, it relaxes its limit and makes selections from
the remaining designs. It continues to do this until it has made enough selections. The moga method has many
other important features. Complete descriptions can be found in the DAKOTA Reference Manual [3].

Figure 2.17 shows an example input file that demonstrates some of the multi-objective capabilities available with
the moga method.

## DAKOTA INPUT FILE - dakota_mogatest1.in

strategy,
single
graphics tabular_graphics_data

method,
moga
output silent
seed = 10983
max_function_evaluations = 2500
initialization_type unique_random
crossover_type shuffle_random
num_offspring = 2 num_parents = 2
crossover_rate = 0.8

mutation_type replace_uniform
mutation_rate = 0.1

fitness_type domination_count
replacement_type below_limit = 6
shrinkage_percentage = 0.9

convergence_type metric_tracker
percent_change = 0.05 num_generations = 40

variables,
continuous_design = 3
initial_point 0 0 0
upper_bounds 4 4 4
lower_bounds -4 -4 -4
descriptors ’x1’ ’x2’ ’x3’

interface,
system
analysis_driver = ’mogatest1’

responses,
num_objective_functions = 2
no_gradients
no_hessians

Figure 2.17: Multiple objective genetic algorithm (MOGA) example: the DAKOTA input file.
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This example has three input variables and two objectives. The example uses objectives different from the Rosen-
brock function because we wanted to demonstrate the capability on a problem with two conflicting objectives.
This example is taken from a testbed of multi-objective problems [21]. The final results from moga are output
to a file called finaldata1.dat in the directory in which you are running. This finaldata1.dat file is
simply a list of inputs and outputs. Plotting the output columns against each other allows one to see the Pareto
front generated by moga. Figure 2.18 shows an example of the Pareto front for this problem. Note that a Pareto
front easily shows the tradeoffs between Pareto optimal solutions. For example, look at the point with f1 and f2
values equal to (0.9, 0.23). One cannot improve (minimize) the value of objective function f1 without increasing
the value of f2: another point on the Pareto front, (0.63, 0.63) represents a better value of objective f1 but a worse
value of objective f2.

Figure 2.18: Multiple objective genetic algorithm (MOGA) example: Pareto front showing tradeoffs between
functions f1 and f2.

Sections 7.2 and 7.3 provide more information on multiobjective optimization. There are three detailed examples
provided in Section 22.11.

2.4.3 Uncertainty Quantification

Uncertainty quantification (UQ) is the process of determining the effect of input uncertainties on response metrics
of interest. These input uncertainties may be characterized as either aleatory uncertainties, which are irreducible
variabilities inherent in nature, or epistemic uncertainties, which are reducible uncertainties resulting from a lack
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of knowledge. Since sufficient data is generally available for aleatory uncertainties, probabilistic methods are
commonly used for computing response distribution statistics based on input probability distribution specifica-
tions. Conversely, for epistemic uncertainties, data is generally sparse, making the use of probability theory
questionable and leading to nonprobabilistic methods based on interval specifications.

The subsection demonstrates the use of several methods of uncertainty quantification methods built into DAKOTA.
These examples include Monte Carlo random sampling, reliability methods, the representation of a stochastic
process by a polynomial chaos expansion, and interval analysis.

2.4.3.1 Monte Carlo Sampling

Figure 2.19 shows the DAKOTA input file for an example problem that demonstrates some of the random sampling
capabilities available in DAKOTA. In this example, the design parameters, x1 and x2, will be treated as uncertain
parameters that have uniform distributions over the interval [-2, 2]. This is specified in the variables section of the
input file, beginning with the keyword uniform uncertain. Another change from earlier input files, such as
Figure 2.5, occurs in the responses section, where the keyword num response functions is used in place
of num objective functions. The final changes to the input file occur in the method section, where the
keyword nond sampling is used; “nond” is an abbreviation for nondeterministic. The other keywords in the
methods section of the input file specify the number of samples (200), the seed for the random number generator
(17), the sampling method (random), and the response threshold (100.0). The seed specification allows a user to
obtain repeatable results from multiple runs. If a seed value is not specified, then DAKOTA’s sampling methods
are designed to generate nonrepeatable behavior (by initializing the seed using a system clock). The keyword
response thresholds allows the user to specify threshold values for which DAKOTA will compute statistics
on the response function output. Note that a unique threshold value can be specified for each response function.

In this example, DAKOTA will select 200 design points from within the parameter space, evaluate the value of
Rosenbrock’s function at all 200 points, and then perform some basic statistical calculations on the 200 response
values.

This DAKOTA input file is executed using the following command:

dakota dakota_rosenbrock_nond.in > nond.out

Figure 2.20 shows example results from this sampling method. See the nond.out.sav file in directory
Dakota/examples/tutorial for comparison with results produced by DAKOTA. Note that your results
will differ from those in this file if your seed value differs or if no seed is specified.

As shown in Figure 2.20, the statistical data on the 200 Monte Carlo samples is printed at the end of the output
file in the section that starts with “Statistics based on 200 samples.” In this section, DAKOTA outputs the mean,
standard deviation, coefficient of variation, and 95% confidence intervals for each of the response functions. For
example, the mean of the Rosenbrock function given uniform input uncertainties on the input variables is 455.4
and the standard deviation is 536.8. This is a very large standard deviation, due to the fact that the Rosenbrock
function varies by three orders of magnitude over the input domain. The statistical information on moments
in the output is followed by the fractions (“Probability Level”) of the response function values that are below
the response threshold values specified in the input file. For example, 34 percent of the sample inputs resulted
in a Rosenbrock function value that was less than or equal to 100, as shown in the line listing the cumulative
distribution function values. Finally, there are several correlation matrices printed at the end, showing simple
and partial raw and rank correlation matrices. Correlations provide an indication of the strength of a monotonic
relationship between input and outputs. More detail on correlation coefficients and their interpretation can be
found in Section 6.2.1. More detail about sampling methods in general can be found in Section 6.2. Finally,
Figure 2.21 shows the locations of the 200 sample sites within the parameter space of the Rosenbrock function
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for this example.

# DAKOTA INPUT FILE - dakota_rosenbrock_nond.in

strategy,
single_method
graphics,tabular_graphics_data

method,
nond_sampling
samples = 200 seed = 17
sample_type random
response_levels = 100.0

model,
single

variables,
uniform_uncertain = 2
lower_bounds -2.0 -2.0
upper_bounds 2.0 2.0
descriptors ’x1’ ’x2’

interface,
direct
analysis_driver = ’rosenbrock’

responses,
num_response_functions = 1
no_gradients
no_hessians

Figure 2.19: Monte Carlo sampling example: the DAKOTA input file.

2.4.3.2 Reliability Methods - via the Mean Value Method

Reliability methods provide an alternative approach to uncertainty quantification which can be less computa-
tionally demanding than sampling techniques. Reliability methods for uncertainty quantification are based on
probabilistic approaches that compute approximate response function distribution statistics based on specified un-
certain variable distributions. These response statistics include response mean, response standard deviation, and
cumulative or complementary cumulative distribution functions (CDF/CCDF). These methods are often more ef-
ficient at computing statistics in the tails of the response distributions (events with low probability) than sampling
based approaches since the number of samples required to resolve a low probability can be prohibitive.

Figure 2.22 shows the DAKOTA input file for an example problem that demonstrates the simplest reliability
method, called the mean value method (also referred to as the Mean Value First Order Second Moment method). It
is specified with method keyword nond local reliability. This method calculates the mean and variance
of the response function based on information about the mean and variance of the inputs and gradient information
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Statistics based on 200 samples:

Moments for each response function:
response_fn_1: Mean = 4.5540183516e+02 Std. Dev. = 5.3682678089e+02
Coeff. of Variation = 1.1787980185e+00

95% confidence intervals for each response function:
response_fn_1: Mean = ( 3.8054757609e+02, 5.3025609422e+02 ),
Std Dev = ( 4.8886795789e+02, 5.9530059589e+02 )

Probabilities for each response function:
Cumulative Distribution Function (CDF) for response_fn_1:
Response Level Probability Level Reliability Index General Rel Index
-------------- ----------------- ----------------- -----------------
1.0000000000e+02 3.4000000000e-01

Simple Correlation Matrix among all inputs and outputs:
x1 x2 response_fn_1

x1 1.00000e+00
x2 -5.85097e-03 1.00000e+00

response_fn_1 -9.57746e-02 -5.08193e-01 1.00000e+00

Partial Correlation Matrix between input and output:
response_fn_1

x1 -1.14659e-01
x2 -5.11111e-01

Simple Rank Correlation Matrix among all inputs and outputs:
x1 x2 response_fn_1

x1 1.00000e+00
x2 -6.03315e-03 1.00000e+00

response_fn_1 -1.15360e-01 -5.04661e-01 1.00000e+00

Partial Rank Correlation Matrix between input and output:
response_fn_1

x1 -1.37154e-01
x2 -5.08762e-01

Figure 2.20: Results of Monte Carlo Sampling on the Rosenbrock Function
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Figure 2.21: Monte Carlo sampling example: locations in the parameter space of the 200 Monte Carlo samples
using a uniform distribution for both x1 and x2.

at the mean of the inputs. The mean value method is extremely cheap computationally (only five runs were
required for the textbook function), but can be quite inaccurate, especially for nonlinear problems and/or problems
with uncertain inputs that are significantly non-normal. More detail on the mean value method can be found in
Section 6.3.1, and more detail on reliability methods in general (including the more advanced methods) is found
in Section 6.3.

Example output from the mean value method is displayed in Figure 2.23. Note that since the mean of both inputs
is 1, the mean value of the output for response 1 is zero. However, the mean values of the constraints are both 0.5.
The mean value results indicate that variable x1 is more important in constraint 1 while x2 is more important in
constraint 2, which is the case based on Equation 2.3.

This DAKOTA input file is executed using the following command:

dakota dakota_mv.in > mv.out

See the file mv.out.sav in Dakota/examples/tutorial for comparison with results from DAKOTA.

2.4.3.3 Polynomial Chaos

The term “Polynomial Chaos” refers to the representation of a stochastic process as a polynomial expansion in
random (or stochastic) variables. This representation acts as a response surface that maps stochastic inputs to
stochastic outputs. Desired statistics can then be obtained from the response surface either analytically or by
re-sampling the fast surrogate. Exponential convergence of the error with increasing polynomial order can be
obtained by using (an) orthogonal polynomial series whose weighting function(s) is/are the probability density
functions of the stochastic inputs. Coefficients in the Chaos expansion are determined through orthogonal projec-
tion. For non-intrusive implementations, such as in DAKOTA, numerical integration via quadrature or cubature is
used to evaluate the orthogonal projections. Additional details regarding the method are provided in Section 6.4.

A typical DAKOTA input file for performing an uncertainty quantification using polynomial chaos expansions is
shown in Figure 2.24. In this example, we compute CDF probabilities for six response levels of Rosenbrock’s
function. Since Rosenbrock is a fourth order polynomial and we employ a fourth-order expansion using an optimal
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# test file with a specific test. The is used to designate lines

interface,
system asynch
analysis_driver = ’text_book’

variables,
lognormal_uncertain = 2
means = 1. 1.
std_deviations = 0.5 0.5
descriptors = ’TF1ln’ ’TF2ln’

responses,
num_response_functions = 3
numerical_gradients
method_source dakota
interval_type central
fd_gradient_step_size = 1.e-4

no_hessians

strategy,
single_method #graphics

method,
nond_local_reliability

Figure 2.22: Mean Value Reliability Method: the DAKOTA input file.

basis (Legendre for uniform random variables), we can readily obtain a polynomial expansion which exactly
matches the Rosenbrock function. In this example, we select Gaussian quadratures using an anisotropic approach
(fifth-order quadrature in x1 and third-order quadrature in x2), resulting in a total of 15 function evaluations to
compute the PCE coefficients.

The tensor product quadature points upon which the expansion is calculated are shown in Figure 2.25. The tensor
product generates all combinations of values from each individual dimension: it is an all-way pairing of points.

Once the expansion coefficients have been calculated, some statistics are available analytically and others must be
evaluated numerically. For the numerical portion, the input file specifies the use of 10000 samples, which will be
evaluated on the expansion to compute the CDF probabilities. In Figure 2.26, excerpts from the results summary
are presented, where we first see a summary of the PCE coefficients which exactly reproduce Rosenbrock for a
Legendre polynomial basis. The analytic statistics for mean, standard deviation, and COV are then presented.
For example, the mean is 455.66 and the standard deviation is 606.56. The moments are followed by global
sensitivity indices (Sobol indices).This example shows that variable x1 has the largest main effect (0.497) as
compared with variable x2 (0.296) or the interaction between x1 and x2 (0.206). After the global sensitivity
indices, the local, analytic random variable sensitivities are presented, evaluated at the mean values. Finally, we
see the numerical results for the CDF probabilities based on 10000 samples performed on the expansion. For
example, the probability that the Rosenbrock function is less than 100 over these two uncertain variables is 0.342.
Note that this is a very similar estimate to what was obtained using 200 Monte Carlo samples, with fewer function
evaluations.
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-----------------------------------------------------------------
MV Statistics for response_fn_1:
Approximate Mean Response = 0.0000000000e+00
Approximate Standard Deviation of Response = 0.0000000000e+00
Importance Factors not available.

MV Statistics for response_fn_2:
Approximate Mean Response = 5.0000000000e-01
Approximate Standard Deviation of Response = 1.0307764064e+00
Importance Factor for variable TF1ln = 9.4117647059e-01
Importance Factor for variable TF2ln = 5.8823529412e-02

MV Statistics for response_fn_3:
Approximate Mean Response = 5.0000000000e-01
Approximate Standard Deviation of Response = 1.0307764064e+00
Importance Factor for variable TF1ln = 5.8823529412e-02
Importance Factor for variable TF2ln = 9.4117647059e-01

-----------------------------------------------------------------

Figure 2.23: Results of the Mean Value Method on the Textbook Function

strategy,
single_method #graphics

method,
nond_polynomial_chaos
quadrature_order = 5 3
samples = 10000
seed = 12347 rng rnum2
response_levels =
.1 1. 50. 100. 500. 1000.

variables,
uniform_uncertain = 2
lower_bounds = -2. -2.
upper_bounds = 2. 2.
descriptors = ’x1’ ’x2’

interface,
direct
analysis_driver = ’rosenbrock’

responses,
num_response_functions = 1
no_gradients
no_hessians

Figure 2.24: DAKOTA input file for performing UQ using polynomial chaos expansions.
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Figure 2.25: Rosenbrock polynomial chaos example: tensor product quadrature points.

2.4.3.4 Interval Analysis

Interval analysis is often used to model epistemic uncertainty. In interval analysis, one assumes that nothing
is known about an epistemic uncertain variable except that its value lies somewhere within an interval. In this
situation, it is NOT assumed that the value has a uniform probability of occuring within the interval. Instead, the
interpretation is that any value within the interval is a possible value or a potential realization of that variable. In
interval analysis, the uncertainty quantification problem is one of determining the resulting bounds on the output
(defining the output interval) given interval bounds on the inputs. Again, any output response that falls within the
output interval is a possible output with no frequency information assigned to it.

We can do interval analysis using either nond global interval est or nond local interval est.
In the global approach, one uses either a global optimization method or a sampling method to assess the bounds,
whereas the local method uses gradient information in a derivative-based optimization approach.

An example of interval estimation is found in the test file dakota uq interval.in, and also in Figure 2.27,
with example results in Figure 2.28. This example is a demonstration of calculating interval bounds for three
outputs of the cantilever beam problem. The cantilever beam problem is described in detail in Section 22.9.
Given input intervals of [1,10] on beam width and beam thickness, we can see that the interval estimate of beam
weight is approximately [1,100].

2.4.4 User Supplied Simulation Code Examples

This subsection provides examples of how to use DAKOTA to drive user supplied black box code.

2.4.4.1 Optimization with a User-Supplied Simulation Code - Case 1

Many of the previous examples made use of the direct interface to access the Rosenbrock and textbook test
functions that are compiled into DAKOTA. In engineering applications, it is much more common to use the
system or fork interface approaches within DAKOTA to manage external simulation codes. In both of these
cases, the communication between DAKOTA and the external code is conducted through the reading and writ-
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Polynomial Chaos coefficients for response_fn_1:
coefficient u1 u2
----------- ---- ----

4.5566666667e+02 P0 P0
-4.0000000000e+00 P1 P0
9.1695238095e+02 P2 P0
-4.9737991503e-14 P3 P0
3.6571428571e+02 P4 P0
-5.3333333333e+02 P0 P1
2.3980817332e-14 P1 P1
-1.0666666667e+03 P2 P1
-2.6112445539e-13 P3 P1
1.3069545446e-12 P4 P1
2.6666666667e+02 P0 P2
2.1982415888e-13 P1 P2
4.6629367034e-13 P2 P2
2.7977620221e-13 P3 P2
-2.6478819137e-13 P4 P2

-------------------------------------------------------------------
Statistics derived analytically from polynomial expansion:

Moments for each response function:
response_fn_1: Mean = 4.5566666667e+02 Std. Dev. = 6.0656024184e+02
Coeff. of Variation = 1.3311490311e+00

Global sensitivity indices for each response function:
response_fn_1 Sobol indices:

4.9746891383e-01 x1
2.9636448672e-01 x2
2.0616659946e-01 x1 x2

response_fn_1 total Sobol indices:
7.0363551328e-01 x1
5.0253108617e-01 x2

Local sensitivities for each response function evaluated at uncertain
variable means:
response_fn_1:
[ -2.0000000000e+00 2.4505397711e-13 ]

Statistics based on 10000 samples performed on polynomial expansion:
Probabilities for each response function:
Cumulative Distribution Function (CDF) for response_fn_1:

Response Level Probability Level Reliability Index General Rel Index
-------------- ----------------- ----------------- -----------------

1.0000000000e-01 1.9000000000e-03
1.0000000000e+00 1.3600000000e-02
5.0000000000e+01 2.4390000000e-01
1.0000000000e+02 3.4230000000e-01
5.0000000000e+02 7.1090000000e-01
1.0000000000e+03 8.5240000000e-01

-------------------------------------------------------------------

Figure 2.26: Excerpt of UQ output for polynomial chaos example.
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strategy,
single_method tabular_graphics_data

method,
nond_global_interval_est ego
seed = 1234567 rng rnum2
output verbose

variables,
interval_uncertain = 2
num_intervals = 1 1
interval_probs = 1.0 1.0
interval_bounds = 1. 10. 1. 10
descriptors ’beam_width’ ’beam_thickness’

continuous_state = 4
initial_state = 40000. 29.E+6 500. 1000.
descriptors = ’R’ ’E’ ’X’ ’Y’

interface,
direct
analysis_driver = ’cantilever’

responses,
num_response_functions = 3
response_descriptors = ’weight’ ’stress’ ’displ’
no_gradients
no_hessians

Figure 2.27: DAKOTA input file for performing UQ using interval analysis.

------------------------------------------------------------------
Min and Max estimated values for each response function:
weight: Min = 1.0000169352e+00 Max = 9.9999830649e+01
stress: Min = -9.7749994284e-01 Max = 2.1499428450e+01
displ: Min = -9.9315677360e-01 Max = 6.7429714485e+01
-----------------------------------------------------------------

Figure 2.28: Excerpt of UQ output for interval example.
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ing of short text files. For this example, the C++ program rosenbrock.C in Dakota/test is used as the
simulation code. This file is compiled to create the stand-alone rosenbrock executable that is referenced as
the analysis driver in Figure 2.29. This stand-alone program performs the same function evaluations as
DAKOTA’s internal Rosenbrock test function.

Figure 2.29 shows the text of the DAKOTA input file named dakota rosenbrock syscall.in that is
provided in the directory Dakota/examples/tutorial. The only differences between this input file and
the one in Figure 2.7 occur in the interface keyword section. The keyword system indicates that DAKOTA
will use system calls to create separate Unix processes for executions of the user-supplied simulation code. The
name of the simulation code, and the names for DAKOTA’s parameters and results file are specified using the
analysis driver, parameters file, and results file keywords, respectively.

This example problem is executed using the command:

dakota dakota_rosenbrock_syscall.in > syscall.out

This run of DAKOTA takes longer to complete than the previous gradient-based optimization example since
the system interface method has additional process creation and file I/O overhead, as compared to the inter-
nal communication that occurs when the direct interface method is used. File syscall.out.sav in the
Dakota/examples/tutorial directory permits comparison with output results you get by executing the
command given above.

To gain a better understanding of what exactly DAKOTA is doing with the system interface approach, add the
keywords file tag and file save to the interface specification and re-run DAKOTA. Check the listing of
the local directory and you will see many new files with names such as params.in.1, params.in.2, etc.,
and results.out.1, results.out.2, etc. There is one params.in.X file and one results.out.X
file for each of the function evaluations performed by DAKOTA. This is the file listing for params.in.1:

2 variables
-1.200000000000000e+00 x1
1.000000000000000e+00 x2

1 functions
1 ASV_1
2 derivative_variables
1 DVV_1
2 DVV_2
0 analysis_components

The basic pattern is that of array lengths and string identifiers followed by listings of the array entries, where the
arrays consist of the variables, the active set vector (ASV), the derivative values vector (DVV), and the analysis
components (AC). For the variables array, the first line gives the total number of variables (2) and the “variables”
string identifier, and the subsequent two lines provide the array listing for the two variable values (-1.2 and 1.0) and
descriptor tags (“x1” and “x2” from the DAKOTA input file). The next array conveys the ASV, which indicates
what simulator outputs are needed. The first line of the array gives the total number of response functions (1) and
the “functions” string identifier, followed by one ASV code and descriptor tag (“ASV 1”) for each function. In
this case, the ASV value of 1 indicates that DAKOTA is requesting that the simulation code return the response
function value in the file results.out.X. (Possible ASV values: 1 = value of response function value, 2 =
response function gradient, 4 = response function Hessian, and any sum of these for combinations up to 7 =
response function value, gradient, and Hessian; see 12.7 for more detail.) The next array provides the DVV,
which defines the variable identifiers used in computing derivatives. The first line of the array gives the number
of derivative variables (2) and the “derivative variables” string identifier, followed by the listing of the two DVV
variable identifiers (the first and second variables) and descriptor tags (“DVV 1” and “DVV 2”). The final array
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provides the AC array used to provide additional strings for use by the simulator (e.g., to provide the name of
a particular mesh file). The first line of the array gives the total number of analysis components (0) and the
“analysis components” string identifier, followed by the listing of the array, which is empty in this case.

The executable program rosenbrock reads in the params.in.X file and evaluates the objective function at the
given values for x1 and x2. Then, rosenbrock writes out the objective function data to the results.out.X file.
Here is the listing for the file results.out.1:

2.420000000000000e+01 f

The value shown above is the value of the objective function, and the descriptor ‘f’ is an optional tag returned by
the simulation code. When the system call has completed, DAKOTA reads in the data from the results.in.X

# DAKOTA INPUT FILE - dakota_rosenbrock_syscall.in

strategy,
single_method
graphics,tabular_graphics_data

method,
conmin_frcg
max_iterations = 100
convergence_tolerance = 1e-4

model,
single

variables,
continuous_design = 2
initial_point -1.2 1.0
lower_bounds -2.0 -2.0
upper_bounds 2.0 2.0
descriptors ’x1’ "x2"

interface,
system
analysis_driver = ’rosenbrock’
parameters_file = ’params.in’
results_file = ’results.out’

responses,
num_objective_functions = 1
numerical_gradients
method_source dakota
interval_type forward
fd_gradient_step_size = 1.e-5

no_hessians

Figure 2.29: DAKOTA input file for gradient-based optimization using the system call interface to an external
rosenbrock simulator.
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file and processes the results. DAKOTA then continues with additional executions of the rosenbrock program
until the optimization process is complete.

2.4.4.2 Optimization with a User-Supplied Simulation Code - Case 2

In many situations the user-supplied simulation code cannot be modified to read and write the params.in.X
file and the results.out.X file, as described above. Typically, this occurs when the simulation code is
a commercial or proprietary software product that has specific input file and output file formats. In such cases,
it is common to replace the executable program name in the DAKOTA input file with the name of a Unix shell
script containing a sequence of commands that read and write the necessary files and run the simulation code. For
example, the executable program named rosenbrock listed in Figure 2.29 could be replaced by a Unix C-shell
script named simulator script, with the script containing a sequence of commands to perform the following
steps: insert the data from the parameters.in.X file into the input file of the simulation code, execute the
simulation code, post-process the files generated by the simulation code to compute response data, and return the
response data to DAKOTA in the results.out.X file. The steps that are typically used in constructing and
using a Unix shell script are described in Section 17.1.

2.5 Where to Go from Here

This chapter has provided an introduction to the basic capabilities of DAKOTA including parameter studies, vari-
ous types of optimization, and uncertainty quantification sampling. More information on the DAKOTA input file
syntax is provided in the remaining chapters in this manual and in the DAKOTA Reference Manual [3]. Addi-
tional example problems that demonstrate some of DAKOTA’s advanced capabilities are provided in Chapter 6,
Chapter 9, Chapter 10, Chapter 17, and Chapter 22.

Here are a few pointers to sections of this manual that many new users find useful:

• Chapter 16 describes the different DAKOTA output file formats, including commonly encountered error
messages.

• Chapter 17 demonstrates how to employ DAKOTA with a user-supplied simulation code.
Most DAKOTA users will follow the approach described in Chapter 17.

• Chapter 19 provides guidelines on how to choose an appropriate optimization, uncertainty quantification,
or parameter study method based on the characteristics of your application.

• Chapter 20 describes the file restart and data re-use capabilities of DAKOTA.
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Chapter 3

DAKOTA Capability Overview

3.1 Purpose

This chapter provides a brief, but comprehensive, overview of DAKOTA’s capabilities. Additional details and
example problems are provided in subsequent chapters in this manual.

3.2 Parameter Study Methods

Parameter studies are often performed to explore the effect of parametric changes within simulation models.
DAKOTA users may select from four parameter study methods.

Multidimensional: Forms a regular lattice or grid in an n-dimensional parameter space, where the user specifies
the number of intervals used for each parameter.

Vector: Performs a parameter study along a line between any two points in an n-dimensional parameter space,
where the user specifies the number of steps used in the study.

Centered: Given a point in an n-dimensional parameter space, this method evaluates nearby points along the
coordinate axes of the parameter space. The user selects the number of steps and the step size.

List: The user supplies a list of points in an n-dimensional space where DAKOTA will evaluate response data
from the simulation code.

Additional information on these methods is provided in Chapter 4.

3.3 Design of Experiments

Design of experiments are often used to explore the parameter space of an engineering design problem, for exam-
ple to perform global sensitivity analysis. In design of experiments, especially design of computer experiments,
one wants to generate input points that provide good coverage of the input parameter space. There is significant
overlap between design of experiments and sampling methods, and both techniques can yield similar results about
response function behavior and the relative importance of the input variables. We consider design of experiment
methods to generate sets of uniform random variables on the interval [0, 1], with the goal of characterizing the
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behavior of the response functions over the input parameter ranges of interest. Uncertainty quantification, in con-
trast, involves characterizing the uncertain input variables with probability distributions such as normal, Weibull,
triangular, etc., sampling from the input distributions, and propagating the input uncertainties to obtain a cumu-
lative distribution function on the output or system response. We typically use the Latin Hypercube Sampling
software (also developed at Sandia) for generating samples on input distributions used in uncertainty quantifi-
cation. LHS is explained in more detail in the subsequent section 3.4. Two software packages are available in
DAKOTA for design of computer experiments, DDACE (developed at Sandia Labs) and FSUDACE (developed
at Florida State University).

DDACE (Distributed Design and Analysis of Computer Experiments): The DACE package includes both
stochastic sampling methods and classical design of experiments methods [135]. The stochastic methods are
Monte Carlo (random) sampling, Latin Hypercube sampling, orthogonal array sampling, and orthogonal array-
latin hypercube sampling. The orthogonal array sampling allows for the calculation of main effects. The DDACE
package currently supports variables that have either normal or uniform distributions. However, only the uni-
form distribution is available in the DAKOTA interface to DDACE. The classical design of experiments meth-
ods in DDACE are central composite design (CCD) and Box-Behnken (BB) sampling. A grid-based sampling
method also is available. DDACE is available under a GNU Lesser General Public License and is distributed with
DAKOTA.

FSUDace (Florida State University Design and Analysis of Computer Experiments): The FSUDace pack-
age provides quasi-Monte Carlo sampling (Halton and Hammersley) and Centroidal Voronio Tesselation (CVT)
methods. The quasi-Monte Carlo and CVT methods are designed with the goal of low discrepancy. Discrepancy
refers to the nonuniformity of the sample points within the unit hypercube. Low discrepancy sequences tend to
cover the unit hypercube reasonably uniformly. Quasi-Monte Carlo methods produce low discrepancy sequences,
especially if one is interested in the uniformity of projections of the point sets onto lower dimensional faces of
the hypercube. CVT does very well volumetrically: it spaces the points fairly equally throughout the space, so
that the points cover the region and are isotropically distributed with no directional bias in the point placement.
FSUDace is available under a GNU Lesser General Public License and is distributed with DAKOTA.

PSUADE (Problem Solving Environment for Uncertainty Analysis and Design Exploration): PSUADE is a
Lawrence Livermore National Laboratory tool for metamodeling, sensitivity analysis, uncertainty quantification,
and optimization. Its features include non-intrusive and parallel function evaluations, sampling and analysis meth-
ods, an integrated design and analysis framework, global optimization, numerical integration, response surfaces
(MARS and higher order regressions), graphical output with Pgplot or Matlab, and fault tolerance [134]. While
PSUADE is only available internally at LLNL, DAKOTA includes a prototype interface to its MOAT sampling
method, a valuable tool for global sensitivity analysis.

Additional information on these methods is provided in Chapter 5.

3.4 Uncertainty Quantification

Uncertainty quantification methods (also referred to as nondeterministic analysis methods) involve the computa-
tion of probabilistic information about response functions based on sets of simulations taken from the specified
probability distributions for uncertain input parameters. Put another way, these methods perform a forward uncer-
tainty propagation in which probability information for input parameters is mapped to probability information for
output response functions. We usually distinguish the UQ methods in terms of their capability to handle aleatory
or epistemic uncertainty. Input uncertainties may be characterized as either aleatory uncertainties, which are irre-
ducible variabilities inherent in nature, or epistemic uncertainties, which are reducible uncertainties resulting from
a lack of knowledge. Since sufficient data is generally available for aleatory uncertainties, probabilistic methods
are commonly used for computing response distribution statistics based on input probability distribution speci-
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fications. Conversely, for epistemic uncertainties, data is generally sparse, making the use of probability theory
questionable and leading to nonprobabilistic methods based on interval specifications. The aleatory UQ methods
in DAKOTA include various sampling-based approaches (e.g., Monte Carlo and Latin Hypercube sampling), local
and global reliability methods, and stochastic expansion approaches. The epistemic UQ methods include interval
analysis and Dempster-Shafer evidence theory.

LHS (Latin Hypercube Sampling): This package provides both Monte Carlo (random) sampling and Latin Hy-
percube sampling methods, which can be used with probabilistic variables in DAKOTA that have the following
distributions: normal, lognormal, uniform, loguniform, triangular, exponential, beta, gamma, gumbel, frechet,
weibull, poisson, binomial, negative binomial, geometric, hypergeometric, and user-supplied histograms. In addi-
tion, LHS accounts for correlations among the variables [85], which can be used to accommodate a user-supplied
correlation matrix or to minimize correlation when a correlation matrix is not supplied. The LHS package cur-
rently serves two purposes: (1) it can be used for uncertainty quantification by sampling over uncertain variables
characterized by probability distributions, or (2) it can be used in a DACE mode in which any design and state
variables are treated as having uniform distributions (see the all variables flag in the DAKOTA Reference
Manual [3]). The LHS package historically came in two versions: “old” (circa 1980) and “new” (circa 1998), but
presently only the latter is supported in DAKOTA, requiring a Fortran 90 compiler. This “new” LHS is available
under a separate GNU Lesser General Public License and is distributed with DAKOTA. In addition to a standard
sampling study, we support the capability to perform “incremental” LHS, where a user can specify an initial LHS
study of N samples, and then re-run an additional incremental study which will double the number of samples
(to 2N, with the first N being carried from the initial study). The full incremental sample of size 2N is also
a Latin Hypercube, with proper stratification and correlation. Finally, DAKOTA offers preliminary support for
importance sampling using LHS, specified with nond importance.

Reliability Methods: This suite of methods includes both local and global reliability methods. Local methods
include first- and second-order versions of the Mean Value method (MVFOSM and MVSOSM) and a variety of
most probable point (MPP) search methods, including the Advanced Mean Value method (AMV and AMV2),
the iterated Advanced Mean Value method (AMV+ and AMV2+), the Two-point Adaptive Nonlinearity Approx-
imation method (TANA-3), and the traditional First Order and Second Order Reliability Methods (FORM and
SORM) [75]. Each of the MPP search techniques solve local optimization problems in order to locate the MPP,
which is then used as the point about which approximate probabilities are integrated (using first- or second-
order integrations in combination with refinements based on importance sampling). Reliability mappings may
involve computing reliability and probability levels for prescribed response levels (forward reliability analysis,
commonly known as the reliability index approach or RIA) or computing response levels for prescribed reliability
and probability levels (inverse reliability analysis, commonly known as the performance measure approach or
PMA). Approximation-based MPP search methods (AMV, AMV2, AMV+, AMV2+, and TANA) may be applied
in either x-space or u-space, and mappings may involve either cumulative or complementary cumulative distribu-
tion functions. Global reliability methods are designed to handle nonsmooth and multimodal failure surfaces, by
creating global approximations based on Gaussian process models. They accurately resolve a particular contour
of a response function and then estimate probabilities using multimodal adaptive importance sampling.

Stochastic Expansion Methods: The objective of these techniques is to characterize the response of systems
whose governing equations involve stochastic coefficients. The development of these techniques mirrors that of
deterministic finite element analysis utilizing the notions of projection, orthogonality, and weak convergence [57], [58].
Rather than estimating point probabilities, they form an approximation to the functional relationship between re-
sponse functions and their random inputs, which provides a more complete uncertainty representation for use in
multi-code simulations. Expansion methods include the Wiener-Askey generalized polynomial chaos expansion
(PCE), which employs a family of multivariate orthogonal polynomials that are well matched to particular in-
put probability distributions, and stochastic collocation (SC), which employs multivariate Lagrange interpolation
polynomials. For PCE, expansion coefficients may be evaluated using a spectral projection approach (based on
sampling, quadrature, or sparse grid methods for integration) or a point collocation approach (based on linear
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regression). For SC, interpolants may be formed over tensor-product quadrature grids or Smolyak sparse grids.
Both methods provide analytic response moments; however, CDF/CCDF probabilities are evaluated by sampling
on the expansion.

Interval Analysis: Interval analysis is often used to model epistemic uncertainty. In interval analysis, one assumes
that nothing is known about an epistemic uncertain variable except that its value lies somewhere within an interval.
In this situation, it is NOT assumed that the value has a uniform probability of occuring within the interval.
Instead, the interpretation is that any value within the interval is a possible value or a potential realization of that
variable. In interval analysis, the uncertainty quantification problem is one of determining the resulting bounds
on the output (defining the output interval) given interval bounds on the inputs. Again, any output response that
falls within the output interval is a possible output with no frequency information assigned to it.

We have the capability to perform interval analysis using either global or local methods. In the global approach,
one uses either a global optimization method (based on a Gaussian process surrogate model) or a sampling method
to assess the bounds. The local method uses gradient information in a derivative-based optimization approach,
using either SQP (sequential quadratic programming) or a NIP (nonlinear interior point) method to obtain bounds.

Dempster-Shafer Theory of Evidence: The objective of Evidence theory is to model the effects of epistemic
uncertainties. Epistemic uncertainty refers to the situation where one does not know enough to specify a proba-
bility distribution on a variable. Sometimes epistemic uncertainty is referred to as subjective, reducible, or lack
of knowledge uncertainty. In contrast, aleatory uncertainty refers to the situation where one does have enough
information to specify a probability distribution. In Dempster-Shafer theory of evidence, the uncertain input vari-
ables are modeled as sets of intervals. The user assigns a basic probability assignment (BPA) to each interval,
indicating how likely it is that the uncertain input falls within the interval. The intervals may be overlapping,
contiguous, or have gaps. The intervals and their associated BPAs are then propagated through the simulation
to obtain cumulative distribution functions on belief and plausibility. Belief is the lower bound on a probability
estimate that is consistent with the evidence, and plausibility is the uppder bound on a probability estimate that is
consistent with the evidence. In addition to the full evidence theory structure, we have a simplified capability for
users wanting to perform pure interval analysis (e.g. what is the interval on the output given intervals on the input)
using either global or local optimization methods. Interval analysis is often used to model epistemic variables in
nested analyses, where probability theory is used to model aleatory variables.

Additional information on these methods is provided in Chapter 6.

3.5 Optimization

Several optimization software packages have been integrated with DAKOTA. These include freely-available soft-
ware packages developed by research groups external to Sandia Labs, Sandia-developed software that has been
released to the public under GNU licenses, and commercially-developed software. These optimization software
packages provide the DAKOTA user with access to well-tested, proven methods for use in engineering design
applications, as well as access to some of the newest developments in optimization algorithm research.

APPSPACK: is a derivative-free optimization library [69]. More specifically, it is an asynchronous implemen-
tation of generating set search. APPSPACK can handle unconstrained problems as well as those with bound
constraints, linear constraints [71], and general nonlinear constraints [70]. APPSPACK was previously integrated
with DAKOTA via COLINY, but is now directly integrated. APPSPACK is available to the public under the
GNU LGPL and the source code is included with DAKOTA (web page: http://software.sandia.gov/
appspack).

COLINY: Methods for nongradient-based local and global optimization which utilize the Common Optimiza-
tion Library INterface (COLIN). COLINY currently includes evolutionary algorithms (including several ge-
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netic algorithms and Evolutionary Pattern Search), simple pattern search, Monte Carlo sampling, and the DI-
RECT and Solis-Wets algorithms. COLINY also include interfaces to third-party optimizer COBYLA2. This
software is available to the public under a GNU Lesser General Public License (LGPL) through ACRO (A
Common Repository for Optimizers) and the source code for COLINY is included with DAKOTA (web page:
http://www.cs.sandia.gov/Acro).

CONMIN (CONstrained MINimization): Methods for gradient-based constrained and unconstrained optimiza-
tion [138]. The constrained optimization algorithm is the method of feasible directions (MFD) and the uncon-
strained optimization algorithm is the Fletcher-Reeves conjugate gradient (CG) method. This software is freely
available to the public from NASA, and the CONMIN source code is included with DAKOTA.

DOT (Design Optimization Tools): Methods for gradient-based optimization for constrained and unconstrained
optimization problems [140]. The algorithms available for constrained optimization are modified-MFD, SQP, and
sequential linear programming (SLP). The algorithms available for unconstrained optimization are the Fletcher-
Reeves CG method and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton technique. DOT is a com-
mercial software product of Vanderplaats Research and Development, Inc. (web page: http://www.vrand.
com). Sandia National Laboratories and Los Alamos National Laboratory have limited seats for DOT. Other users
may obtain their own copy of DOT and compile it with the DAKOTA source code by following the steps given in
the file Dakota/INSTALL.

JEGA: provides SOGA and MOGA (single- and multi-objective genetic algorithms) optimization methods. The
SOGA method provides a basic GA optimization capability that uses many of the same software elements as the
MOGA method. The MOGA package allows for the formulation of multiobjective optimization problems without
the need to specify weights on the various objective function values. The MOGA method directly identifies non-
dominated design points that lie on the Pareto front through tailoring of its genetic search operators. The advantage
of the MOGA method versus conventional multiobjective optimization with weight factors (see Section 3.6), is
that MOGA finds points along the entire Pareto front whereas the multiobjective optimization method produces
only a single point on the Pareto front. The advantage of the MOGA method versus the Pareto-set optimization
strategy (see Section 3.9) is that MOGA is better able to find points on the Pareto front when the Pareto front
is nonconvex. However, the use of a GA search method in MOGA causes the MOGA method to be much more
computationally expensive than conventional multiobjective optimization using weight factors.

NCSUOpt: Nongradient-based optimizers from North Carolina State University, including DIRECT and, even-
tually, impicit filtering (web site: http://www4.ncsu.edu/∼ctk/matlab darts.html). We currently
incorporate only an implementation of the DIRECT (DIviding RECTangles) algorithm [53]. While this is some-
what redundant with DIRECT supplied by Coliny, we have found that NCCSU DIRECT performs better in some
cases, and presently we maintain both versions in DAKOTA.

NLPQLP: Methods for gradient-based constrained and unconstrained optimization problems using a sequen-
tial quadratic programming (SQP) algorithm [122]. NLPQLP is a commercial software product of Prof. Klaus
Schittkowski (web site: http://www.uni-bayreuth.de/departments/math/∼kschittkowski/
nlpqlp20.htm). Users may obtain their own copy of NLPQLP and compile it with the DAKOTA source code
by following the steps given in the file Dakota/INSTALL.

NPSOL: Methods for gradient-based constrained and unconstrained optimization problems using a sequential
quadratic programming (SQP) algorithm [59]. NPSOL is a commercial software product of Stanford University
(web site: www.sbsi-sol-optimize.com). Sandia National Laboratories, Lawrence Livermore National Laboratory,
and Los Alamos National Laboratory all have site licenses for NPSOL. Other users may obtain their own copy of
NPSOL and compile it with the DAKOTA source code by following the steps given in the file Dakota/INSTALL.

OPT++: Methods for gradient-based and nongradient-based optimization of unconstrained, bound-constrained,
and nonlinearly constrained optimization problems [97]. OPT++ includes a variety of Newton-based methods
(quasi-Newton, finite-difference Newton, Gauss-Newton, and full-Newton), as well as the Polak-Ribeire CG
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method and the parallel direct search (PDS) method. OPT++ now contains a nonlinear interior point algorithm
for handling general constraints. OPT++ is available to the public under the GNU LGPL and the source code is
included with DAKOTA (web page: http://csmr.ca.sandia.gov/opt++).

PICO (Parallel Integer Combinatorial Optimization): PICO’s branch-and-bound algorithm can be applied to
nonlinear optimization problems involving discrete variables or a combination of continuous and discrete vari-
ables [32]. The discrete variables must be noncategorical (see Section 12.2.2). PICO is available to the public
under the GNU LGPL (web page: http://www.cs.sandia.gov/PICO) and the source code is included
with DAKOTA as part of the Acro package. Notes: (1) PICO’s linear programming solvers are not included with
DAKOTA, (2) PICO is being migrated into COLINY and is not operational in DAKOTA 5.0.

Additional information on these methods is provided in Chapter 7, as is a facility for using other solvers made
available to DAKOTA via shared libraries.

3.6 Additional Optimization Capabilities

The optimization software packages described above provide algorithms to handle a wide variety of optimization
problems. This includes algorithms for constrained and unconstrained optimization, as well as algorithms for
gradient-based and nongradient-based optimization. Listed below are additional optimization capabilities that are
available in DAKOTA.

Multiobjective Optimization: There are three capabilities for multiobjective optimization in DAKOTA. First,
there is the MOGA capability described previously in Section 3.5. This is a specialized algorithm capability.
The second capability involves the use of response data transformations to recast a multiobjective problem as a
single-objective problem. Currently, DAKOTA supports the weighting factor approach for this transformation,
in which a composite objective function is constructed from a set of individual objective functions using a user-
specified set of weighting factors. This approach is optimization algorithm independent, in that it works with any
of the optimization methods listed in Section 3.5. Constraints are not affected by the weighting factor mapping;
therefore, both constrained and unconstrained multiobjective optimization problems can be formulated and solved
with DAKOTA, assuming selection of an appropriate constrained or unconstrained single-objective optimization
algorithm. Future multiobjective response data transformations for goal programming, normal boundary inter-
section, etc. are planned. The third capability is the Pareto-set optimization strategy described in Section 3.9.
This capability also utilizes the multiobjective response data transformations to allow optimization algorithm in-
dependence; however, it builds upon the basic approach by computing sets of optima in order to generate a Pareto
trade-off surface.

User-Specified or Automatic Scaling: Some optimization algorithms are sensitive to the relative scaling of prob-
lem inputs and outputs. With any optimizer or least squares solver, user-specified (and in some cases automatic or
logarithmic) scaling may be applied to continuous design variables, responses (objectives or residuals), nonlinear
inequality and equality constraints, and/or linear inequality and equality constraints.

Additional information on these capabilities is provided in Chapter 7.

3.7 Nonlinear Least Squares for Parameter Estimation

Nonlinear least squares methods are optimization algorithms which exploit the special structure of a least squares
objective function (see Section 1.4.2). These problems commonly arise in parameter estimation and test/analysis
reconciliation. In practice, least squares solvers will tend to converge more rapidly than general-purpose opti-
mization algorithms when the residual terms in the least squares formulation tend towards zero at the solution.
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Least squares solvers may experience difficulty when the residuals at the solution are significant, although experi-
ence has shown that the NL2SOL method can handle some problems that are highly nonlinear and have nonzero
residuals at the solution.

NL2SOL: The NL2SOL algorithm [24] uses a secant-based algorithm to solve least-squares problems. In prac-
tice, it is more robust to nonlinear functions and nonzero residuals than conventional Gauss-Newton algorithms.

Gauss-Newton: DAKOTA’s Gauss-Newton algorithm utilizes the Hessian approximation described in Section 1.4.2.
The exact objective function value, exact objective function gradient, and the approximate objective function Hes-
sian are defined from the least squares term values and gradients and are passed to the full-Newton optimizer from
the OPT++ software package. As for all of the Newton-based optimization algorithms in OPT++, unconstrained,
bound-constrained, and generally-constrained problems are supported. However, for the generally-constrained
case, a derivative order mismatch exists in that the nonlinear interior point full Newton algorithm will require
second-order information for the nonlinear constraints whereas the Gauss-Newton approximation only requires
first order information for the least squares terms.

NLSSOL: The NLSSOL algorithm is a commercial software product of Stanford University (web site: http:
//www.sbsi-sol-optimize.com) that is bundled with current versions of the NPSOL library. It uses an
SQP-based approach to solve generally-constrained nonlinear least squares problems. It periodically employs
the Gauss-Newton Hessian approximation to accelerate the search. It requires only first-order information for
the least squares terms and nonlinear constraints. Sandia National Laboratories, Lawrence Livermore National
Laboratory, and Los Alamos National Laboratory all have site licenses for NLSSOL. Other users may obtain their
own copy of NLSSOL and compile it with the DAKOTA source code by following the NPSOL installation steps
given in the file Dakota/INSTALL.

Additional information on these methods is provided in Chapter 8.

3.8 Surrogate-Based Minimization

Surrogate-Based Local Minimization: This method combines the design of experiments methods, surrogate
models, and optimization capabilities of DAKOTA. In SBO, the optimization algorithm operates on a surrogate
model instead of directly operating on the computationally expensive simulation model. The surrogate model can
be formed from data fitting methods (local, multipoint, or global), from a lower fidelity version of the compu-
tational model, or from a mathematically-generated reduced-order model (see Section 3.10). For each of these
surrogate model types, the SBO algorithm periodically validates the progress using the surrogate model against
the original high-fidelity model. The SBO strategy in DAKOTA can be configured to employ heuristic rules (less
expensive) or to be provably convergent to the optimum of the original model (more expensive). The development
of SBO strategies is an area of active research in the DAKOTA project.

Surrogate-Based Global Minimization: Similar to surrogate-based local minimization, this method combines
design of experiments and surrogate modeling with optimization. However, rather than employing trust region
model management to localize and control the extent of the approximation in order to ensure convergence to a
local minimum, the surrogate-based global method sequentially refines the full range of a global approximation
using global optimizers.

Efficient Global Minimization: Methods for nongradient-based constrained and unconstrained optimization and
nonlinear least squares based on Gaussian process models. This approach uses an expected improvement function
derived from the expected value and variance estimators in Gaussian process models, and is designed to balance
exploitation of regions with good solutions and exploration of regions with limited data. [86]

Additional information on these methods is provided in Chapter 9.

DAKOTA Version 5.0 User’s Manual generated on May 7, 2010

http://www.sbsi-sol-optimize.com
http://www.sbsi-sol-optimize.com


72 CHAPTER 3. DAKOTA CAPABILITY OVERVIEW

3.9 Optimization Strategies

Due to the flexibility of DAKOTA’s object-oriented design, it is relatively easy to create algorithms that combine
several of DAKOTA’s capabilities. These algorithms are referred to as strategies:

Multilevel Hybrid Optimization: This strategy allows the user to specify a sequence of optimization methods,
with the results from one method providing the starting point for the next method in the sequence. An example
which is useful in many engineering design problems involves the use of a nongradient-based global optimization
method (e.g., genetic algorithm) to identify a promising region of the parameter space, which feeds its results into
a gradient-based method (quasi-Newton, SQP, etc.) to perform an efficient local search for the optimum point.

Multistart Local Optimization: This strategy uses many local optimization runs (often gradient-based), each of
which is started from a different initial point in the parameter space. This is an attractive strategy in situations
where multiple local optima are known to exist or may potentially exist in the parameter space. This approach
combines the efficiency of local optimization methods with the parameter space coverage of a global stratification
technique.

Pareto-Set Optimization: The Pareto-set optimization strategy allows the user to specify different sets of weights
for the individual objective functions in a multiobjective optimization problem. DAKOTA executes each of these
weighting sets as a separate optimization problem, serially or in parallel, and then outputs the set of optimal de-
signs which define the Pareto set. Pareto set information can be useful in making trade-off decisions in engineering
design problems. [Refer to 3.6 for additional information on multiobjective optimization methods.]

Mixed Integer Nonlinear Programming (MINLP): This strategy uses the branch and bound capabilities of the
PICO package to perform optimization on problems that have both discrete and continuous design variables. PICO
provides a branch and bound engine targeted at mixed integer linear programs (MILP), which when combined
with DAKOTA’s nonlinear optimization methods, results in a MINLP capability. In addition, the multiple NLPs
solved within MINLP provide an opportunity for concurrent execution of multiple optimizations. For DAKOTA
5.0, branch and bound is currently inoperative due to ongoing restructuring of PICO and its incorporation into
COLINY. This will be supported again in future releases.

These strategies are covered in more detail in Chapter 10.

3.10 Surrogate Models

Surrogate models are inexpensive approximate models that are intended to capture the salient features of an
expensive high-fidelity model. They can be used to explore the variations in response quantities over regions of the
parameter space, or they can serve as inexpensive stand-ins for optimization or uncertainty quantification studies
(see, for example, the surrogate-based optimization strategy in Section 3.9). The surrogate models supported in
DAKOTA can be categorized into three types: data fits, multifidelity, and reduced-order model surrogates.

Data fitting methods involve construction of an approximation or surrogate model using data (response values,
gradients, and Hessians) generated from the original truth model. Data fit methods can be further categorized as
local, multipoint, and global approximation techniques, based on the number of points used in generating the data
fit. Local methods involve response data from a single point in parameter space. Available techniques currently
include:

Taylor Series Expansion: This is a local first-order or second-order expansion centered at a single point in the
parameter space.

Multipoint approximations involve response data from two or more points in parameter space, often involving the
current and previous iterates of a minimization algorithm. Available techniques currently include:
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TANA-3: This multipoint approximation uses a two-point exponential approximation [155, 46] built with re-
sponse value and gradient information from the current and previous iterates.

Global methods, often referred to as response surface methods, involve many points spread over the parameter
ranges of interest. These surface fitting methods work in conjunction with the sampling methods and design of
experiments methods described in Section 3.3.

Polynomial Regression: First-order (linear), second-order (quadratic), and third-order (cubic) polynomial re-
sponse surfaces computed using linear least squares regression methods. Note: there is currently no use of
forward- or backward-stepping regression methods to eliminate unnecessary terms from the polynomial model.

Kriging Interpolation: An implementation of spatial interpolation using kriging methods and Gaussian corre-
lation functions [66]. The algorithm used in the kriging process generates a C2-continuous surface that exactly
interpolates the data values.

Gaussian Process (GP): Closely related to kriging, this technique is a spatial interpolation method that assumes
the outputs of the simulation model follow a multivariate normal distribution. The implementation of a Gaussian
process currently in DAKOTA assumes a constant mean function. The hyperparameters governing the covariance
matrix are obtained through Maximum Likelihood Estimation (MLE). We also use a jitter term to better condition
the covariance matrix, so the Gaussian process may not exactly interpolate the data values.

Artificial Neural Networks: An implementation of the stochastic layered perceptron neural network developed
by Prof. D. C. Zimmerman of the University of Houston [156]. This neural network method is intended to have a
lower training (fitting) cost than typical back-propagation neural networks.

Multivariate Adaptive Regression Splines (MARS): Software developed by Prof. J. H. Friedman of Stanford
University [51]. The MARS method creates a C2-continuous patchwork of splines in the parameter space.

Radial Basis Functions (RBF): Radial basis functions are functions whose value typically depends on the dis-
tance from a center point, called the centroid. The surrogate model approximation is constructed as the weighted
sum of individual radial basis functions.

Moving Least Squares (MLS): Moving Least Squares can be considered a more specialized version of linear
regression models. MLS is a weighted least squares approach where the weighting is “moved” or recalculated for
every new point where a prediction is desired. [100]

In addition to data fit surrogates, DAKOTA supports multifidelity and reduced-order model approximations:

Multifidelity Surrogates: Multifidelity modeling involves the use of a low-fidelity physics-based model as a
surrogate for the original high-fidelity model. The low-fidelity model typically involves a coarsher mesh, looser
convergence tolerances, reduced element order, or omitted physics. It is a separate model in its own right and
does not require data from the high-fidelity model for construction. Rather, the primary need for high-fidelity
evaluations is for defining correction functions that are applied to the low-fidelity results.

Reduced Order Models: A reduced-order model (ROM) is mathematically derived from a high-fidelity model
using the technique of Galerkin projection. By computing a set of basis functions (e.g., eigenmodes, left singular
vectors) that capture the principal dynamics of a system, the original high-order system can be projected to a much
smaller system, of the size of the number of retained basis functions.

Additional information on these surrogate methods is provided in Sections 11.4.1 through 11.4.3.
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3.11 Nested Models

Nested models utilize a sub-iterator and a sub-model to perform a complete iterative study as part of every eval-
uation of the model. This sub-iteration accepts variables from the outer level, performs the sub-level analysis,
and computes a set of sub-level responses which are passed back up to the outer level. The nested model con-
structs admit a wide variety of multi-iterator, multi-model solution approaches. For example, optimization within
optimization (for hierarchical multidisciplinary optimization), uncertainty quantification within uncertainty quan-
tification (for second-order probability), uncertainty quantification within optimization (for optimization under
uncertainty), and optimization within uncertainty quantification (for uncertainty of optima) are all supported, with
and without surrogate model indirection. Three important examples are highlighted: mixed epistemic-aleatory
uncertainty quantification, optimization under uncertainty, and surrogate-based uncertainty quantification.

Mixed Epistemic-Aleatory Uncertainty Quantification: Mixed uncertainty quantification (UQ) refers to ca-
pabilities for performing UQ calculations on both epistemic uncertainties (also known as reducible uncertainties
resulting from a lack of knowledge) and aleatory uncertainties (also known as irreducible uncertainties that are in-
herent variabilities). Mixed UQ approaches employ nested models to embed one uncertainty quantification within
another. The outer level UQ is commonly linked to epistemic uncertainties, and the inner UQ is commonly linked
to aleatory uncertainties. We have two main approaches: second-order probability and nested Dempster-Shafer.
In second-order probability, the outer level generates sets of realizations, typically from sampling within interval
distributions. These realizations define values for distribution parameters used in a probabilistic analysis for the
inner level UQ. The term “second-order” derives from this use of distributions on distributions and the generation
of statistics on statistics. In DAKOTA release 5.0, we have the capability to use interval analysis to perform the
outer loop calculations (e.g. find intervals on inner loop statistics). Interval analysis can use efficient optimization
methods to obtain interval bound estimates. Nested Dempster-Shafer refers to using Dempster-Shafer evidence
theory on the outer loop, and an aleatory UQ method such as sampling or stochastic expansions on the inner
loop. Evidence theory results in measures of belief and plausbility, so in a nested context, this produces belief and
plausibility bounds on inner loop statistics.

Optimization Under Uncertainty (OUU): Many real-world engineering design problems contain stochastic fea-
tures and must be treated using OUU methods such as robust design and reliability-based design. For OUU,
the uncertainty quantification methods of DAKOTA are combined with optimization algorithms. This allows
the user to formulate problems where one or more of the objective and constraints are stochastic. Due to the
computational expense of both optimization and UQ, the simple nesting of these methods in OUU can be com-
putationally prohibitive for real-world design problems. For this reason, surrogate-based optimization under un-
certainty (SBOUU), reliability-based design optimization (RBDO), polynomial chaos-based design optimization
(PCBDO), and stochastic collocation-based design optimization (SCBDO) methods have been developed which
can reduce the overall expense by orders of magnitude. OUU methods are an active research area.

Surrogate-Based Uncertainty Quantification (SBUQ): Since many uncertainty quantification (UQ) methods are
computationally costly, requiring many function evaluations to obtain accurate estimates of moments or percentile
values of an output distribution, one may wish to embed surrogate models within the UQ process in order to reduce
expense. By evaluating the true function on a fixed, small set of samples and using these sample evaluations to
create a response surface approximation (e.g. a surrogate model or meta-model) of the underlying “true” function,
the subsequent evaluation of the UQ results (using thousands or millions of samples) based on the approximation
can obtain estimates of the mean, variance, and percentiles of the response at much lower overall cost.

Additional information on these nested approaches is provided in Sections 11.5-11.6.
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3.12 Parallel Computing

The methods and strategies in DAKOTA are designed to exploit parallel computing resources such as those found
in a desktop multiprocessor workstation, a network of workstations, or a massively parallel computing platform.
This parallel computing capability is a critical technology for rendering real-world engineering design problems
computationally tractable. DAKOTA employs the concept of multilevel parallelism, which takes simultaneous
advantage of opportunities for parallel execution from multiple sources:

Parallel Simulation Codes: DAKOTA works equally well with both serial and parallel simulation codes.

Concurrent Execution of Analyses within a Function Evaluation: Some engineering design applications call
for the use of multiple simulation code executions (different disciplinary codes, the same code for different load
cases or environments, etc.) in order to evaluate a single response data set (e.g., abjective functions and con-
straints) for a single set of parameters. If these simulation code executions are independent (or if coupling is
enforced at a higher level), DAKOTA can perform them in parallel.

Concurrent Execution of Function Evaluations within an Iterator: With very few exceptions, the iterative
algorithms described in Section 3.2 through Section 3.7 all provide opportunities for the concurrent evaluation of
response data sets for different parameter sets. Whenever there exists a set of design point evaluations that are
independent, DAKOTA can perform them in parallel.

Concurrent Execution of Iterators within a Strategy: Some of the DAKOTA strategies described in Section 3.9
generate a sequence of iterator subproblems. For example, the MINLP, Pareto-set, and multi-start strategies gener-
ate sets of optimization subproblems, and the optimization under uncertainty strategy generates sets of uncertainty
quantification subproblems. Whenever these subproblems are independent, DAKOTA can perform them in paral-
lel.

It is important to recognize that these four parallelism levels are nested, in that a strategy can schedule and
manage concurrent iterators, each of which may manage concurrent function evaluations, each of which may
manage concurrent analyses, each of which may execute on multiple processors. Additional information on
parallel computing with DAKOTA is provided in Chapter 18.

3.13 Summary

DAKOTA is both a production tool for engineering design and analysis activities and a research tool for the devel-
opment of new algorithms in optimization, uncertainty quantification, and related areas. Because of the extensible,
object-oriented design of DAKOTA, it is relatively easy to add new iterative algorithms, strategies, simulation in-
terfacing approaches, surface fitting methods, etc. In addition, DAKOTA can serve as a rapid prototyping tool for
algorithm development. That is, by having a broad range of building blocks available (i.e., parallel computing,
surrogate models, simulation interfaces, fundamental algorithms, etc.), new capabilities can be assembled rapidly
which leverage the previous software investments. For additional discussion on framework extensibility, refer to
the DAKOTA Developers Manual [4].

The capabilities of DAKOTA have been used to solve engineering design and optimization problems at Sandia
Labs, at other Department of Energy labs, and by our industrial and academic collaborators. Often, this real-world
experience has provided motivation for research into new areas of optimization. The DAKOTA development team
welcomes feedback on the capabilities of this software toolkit, as well as suggestions for new areas of research.
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Chapter 4

Parameter Study Capabilities

4.1 Overview

Parameter study methods in the DAKOTA toolkit involve the computation of response data sets at a selection
of points in the parameter space. These response data sets are not linked to any specific interpretation, so they
may consist of any allowable specification from the responses keyword block, i.e., objective and constraint func-
tions, least squares terms and constraints, or generic response functions. This allows the use of parameter studies
in direct coordination with optimization, least squares, and uncertainty quantification studies without significant
modification to the input file. In addition, response data sets are not restricted to function values only; gradients
and Hessians of the response functions can also be catalogued by the parameter study. This allows for several
different approaches to “sensitivity analysis”: (1) the variation of function values over parameter ranges provides
a global assessment as to the sensitivity of the functions to the parameters, (2) derivative information can be com-
puted numerically, provided analytically by the simulator, or both (mixed gradients) in directly determining local
sensitivity information at a point in parameter space, and (3) the global and local assessments can be combined to
investigate the variation of derivative quantities through the parameter space by computing sensitivity information
at multiple points.

In addition to sensitivity analysis applications, parameter studies can be used for investigating nonsmoothness in
simulation response variations (so that models can be refined or finite difference step sizes can be selected for
computing numerical gradients), interrogating problem areas in the parameter space, or performing simulation
code verification (verifying simulation robustness) through parameter ranges of interest. A parameter study can
also be used in coordination with minimization methods as either a pre-processor (to identify a good starting
point) or a post-processor (for post-optimality analysis).

Parameter study methods will iterate any combination of design, uncertain, and state variables defined over con-
tinuous and discrete domains into any set of responses (any function, gradient, and Hessian definition). Parameter
studies draw no distinction among the different types of continuous variables (design, uncertain, or state) or
among the different types of response functions. They simply pass all of the variables defined in the variables
specification into the interface, from which they expect to retrieve all of the responses defined in the responses
specification. As described in Section 14.3, when gradient and/or Hessian information is being catalogued in the
parameter study, it is assumed that derivative components will be computed with respect to all of the continuous
variables (continuous design, continuous uncertain, and continuous state variables) specified, since derivatives
with respect to discrete variables are assumed to be undefined.

DAKOTA currently supports four types of parameter studies. Vector parameter studies compute response data
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sets at selected intervals along an n-dimensional vector in parameter space. List parameter studies compute
response data sets at a list of points in parameter space, defined by the user. A centered parameter study computes
multiple coordinate-based parameter studies, one per parameter, centered about the initial parameter values. A
multidimensional parameter study computes response data sets for an n-dimensional hypergrid of points. More
detail on these parameter studies is found in Sections 4.2 through 4.5 below.

4.1.1 Initial Values

The vector and centered parameter studies use the initial values of the variables from the variables keyword
block as the starting point and the central point of the parameter studies, respectively. In the case of design vari-
ables, the initial point is used, and in the case of state variables, the initial state is used (see the
DAKOTA Reference Manual [3] for default values when initial point or initial state are unspeci-
fied). In the case of uncertain variables, initial values are inferred from the distribution specification: all uncertain
initial values are set to their means, where mean values for bounded normal and bounded lognormal are repaired
of needed to satisfy the specified distribution bounds, mean values for discrete integer range distributions are
rounded down to the nearest integer, and mean values for discrete set distributions are rounded to the nearest
set value. These parameter study starting values for design, uncertain, and state variables are referenced in the
following sections using the identifier “Initial Values.”

4.1.2 Bounds

The multidimensional parameter study uses the bounds of the variables from the variables keyword block
to define the range of parameter values to study. In the case of design and state variables, the lower bounds
and upper bounds specifications are used (see the DAKOTA Reference Manual [3] for default values when
lower bounds or upper bounds are unspecified). In the case of uncertain variables, these values are either
drawn or inferred from the distribution specification. Distribution lower and upper bounds can be drawn directly
from required bounds specifications for uniform, loguniform, triangular, and beta distributions, as well as from
optional bounds specifications for normal and lognormal. Distribution bounds are implicitly defined for histogram
bin, histogram point, and interval variables (from the extreme values within the bin/point/interval specifications)
as well as for binomial (0 to num trials) and hypergeometric (0 to min(num drawn,num selected)) vari-
ables. Finally, distribution bounds are inferred for normal and lognormal if optional bounds are unspecified, as
well as for exponential, gamma, gumbel, frechet, weibull, poisson, negative binomial, and geometric (which have
no bounds specifications); these bounds are [0, µ+3σ] for exponential, gamma, frechet, weibull, poisson, negative
binomial, geometric, and unspecified lognormal, and [µ− 3σ, µ+ 3σ] for gumbel and unspecified normal.

4.2 Vector Parameter Study

The vector parameter study computes response data sets at selected intervals along an n-dimensional vector in
parameter space. This capability encompasses both single-coordinate parameter studies (to study the effect of
a single variable on a response set) as well as multiple coordinate vector studies (to investigate the response
variations along some arbitrary vector; e.g., to investigate a search direction failure).

DAKOTA’s vector parameter study includes two possible specification formulations which are used in conjunction
with the Initial Values (see Section 4.1.1) to define the vector and steps of the parameter study:

final_point (vector of reals) and num_steps (integer)
step_vector (vector of reals) and num_steps (integer)
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In both of these cases, the Initial Values are used as the parameter study starting point and the specification
selection above defines the orientation of the vector and the increments to be evaluated along the vector. In
the former case, the vector from initial to final point is partitioned by num steps, and in the latter case, the
step vector is added num steps times. In the case of discrete range variables, both final point and
step vector are specified in the actual values; and in the case of discrete sets (integer or real), final point
is specified in the actual values but step vector must instead specify index offsets for the (ordered, unique)
set. In all cases, the number of evaluations is num steps+1. Two examples are included below:

Three continuous parameters with initial values of (1.0, 1.0, 1.0), num steps = 4, and either final point =
(1.0, 2.0, 1.0) or step vector = (0, .25, 0):

Parameters for function evaluation 1:
1.0000000000e+00 c1
1.0000000000e+00 c2
1.0000000000e+00 c3

Parameters for function evaluation 2:
1.0000000000e+00 c1
1.2500000000e+00 c2
1.0000000000e+00 c3

Parameters for function evaluation 3:
1.0000000000e+00 c1
1.5000000000e+00 c2
1.0000000000e+00 c3

Parameters for function evaluation 4:
1.0000000000e+00 c1
1.7500000000e+00 c2
1.0000000000e+00 c3

Parameters for function evaluation 5:
1.0000000000e+00 c1
2.0000000000e+00 c2
1.0000000000e+00 c3

Two continuous parameters with initial values of (1.0, 1.0), one discrete range parameter with initial value of 5,
one discrete real set parameter with set values of (10., 12., 18., 30., 50.) and initial value of 10., num steps = 4,
and either final point = (2.0, 1.4, 13, 50.) or step vector = (.25, .1, 2, 1):

Parameters for function evaluation 1:
1.0000000000e+00 c1
1.0000000000e+00 c2

5 di1
1.0000000000e+01 dr1

Parameters for function evaluation 2:
1.2500000000e+00 c1
1.1000000000e+00 c2

7 di1
1.2000000000e+01 dr1

Parameters for function evaluation 3:
1.5000000000e+00 c1
1.2000000000e+00 c2

9 di1
1.8000000000e+01 dr1

Parameters for function evaluation 4:
1.7500000000e+00 c1
1.3000000000e+00 c2
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11 di1
3.0000000000e+01 dr1

Parameters for function evaluation 5:
2.0000000000e+00 c1
1.4000000000e+00 c2

13 di1
5.0000000000e+01 dr1

4.3 List Parameter Study

The list parameter study computes response data sets at selected points in parameter space. These points are
explicitly specified by the user and are not confined to lie on any line or surface. Thus, this parameter study
provides a general facility that supports the case where the desired set of points to evaluate does not fit the
prescribed structure of the vector, centered, or multidimensional parameter studies.

The user input consists of a list of points specification which lists the requested parameter sets in succes-
sion. The list parameter study simply performs a simulation for the first parameter set (the first n entries in the
list), followed by a simulation for the next parameter set (the next n entries), and so on, until the list of points has
been exhausted. Since the Initial Values will not be used, they need not be specified. In the case of discrete range
or discrete set variables, list values are specified using the actual values (not set indices).

An example specification that would result in the same parameter sets as in the second example in Section 4.2
would be:

list_of_points = 1.0 1.0 5 10.
1.25 1.1 7 12.
1.5 1.2 9 18.
1.75 1.3 11 30.
2.0 1.4 13 50.

4.4 Centered Parameter Study

The centered parameter study executes multiple coordinate-based parameter studies, one per parameter, centered
about the specified Initial Values. This is useful for investigation of function contours in the vicinity of a specific
point. For example, after computing an optimum design, this capability could be used for post-optimality analysis
in verifying that the computed solution is actually at a minimum or constraint boundary and in investigating the
shape of this minimum or constraint boundary.

This method requires step vector (list of reals) and steps per variable (list of integers) specifications,
where the former specifies the size of the increments per variable (employed sequentially, not all at once as
for the vector study in Section 4.2) and the latter specifies the number of increments per variable (employed
sequentially, not all at once) for each of the positive and negative step directions. As for the vector study described
in Section 4.2, step vector includes actual variable steps for continuous and discrete range variables, but
employs index offsets for discrete set variables (integer or real).

For example, with Initial Values of (1.0, 1.0), a step vector of (0.1, 0.1), and a steps per variable of
(2, 2), the center point is evaluated followed by four function evaluations (two negative deltas and two positive
deltas) per variable:

Parameters for function evaluation 1:
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Figure 4.1: Example centered parameter study.

1.0000000000e+00 d1
1.0000000000e+00 d2

Parameters for function evaluation 2:
8.0000000000e-01 d1
1.0000000000e+00 d2

Parameters for function evaluation 3:
9.0000000000e-01 d1
1.0000000000e+00 d2

Parameters for function evaluation 4:
1.1000000000e+00 d1
1.0000000000e+00 d2

Parameters for function evaluation 5:
1.2000000000e+00 d1
1.0000000000e+00 d2

Parameters for function evaluation 6:
1.0000000000e+00 d1
8.0000000000e-01 d2

Parameters for function evaluation 7:
1.0000000000e+00 d1
9.0000000000e-01 d2

Parameters for function evaluation 8:
1.0000000000e+00 d1
1.1000000000e+00 d2

Parameters for function evaluation 9:
1.0000000000e+00 d1
1.2000000000e+00 d2

This set of points in parameter space is depicted in Figure 4.1.
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Figure 4.2: Example multidimensional parameter study

4.5 Multidimensional Parameter Study

The multidimensional parameter study computes response data sets for an n-dimensional hypergrid of points.
Each variable is partitioned into equally spaced intervals between its upper and lower bounds (see Section 4.1.2),
and each combination of the values defined by these partitions is evaluated. As for the vector and centered studies
described in Sections 4.2 and 4.4, partitioning occurs using the actual variable values for continuous and discrete
range variables, but occurs within the space of valid indices for discrete set variables (integer or real). The number
of function evaluations performed in the study is:

n∏
i=1

(partitionsi + 1) (4.1)

The partitions information is specified using the partitions specification, which provides an integer list of the
number of partitions for each variable (i.e., partitionsi). Since the Initial Values will not be used, they need
not be specified.

In a two variable example problem with d1 ∈ [0,2] and d2 ∈ [0,3] (as defined by the upper and lower bounds
from the variables specification) and with partitions = (2,3), the interval [0,2] is divided into two equal-sized
partitions and the interval [0,3] is divided into three equal-sized partitions. This two-dimensional grid, shown in
Figure 4.2, would result in the following twelve function evaluations:

Parameters for function evaluation 1:
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0.0000000000e+00 d1
0.0000000000e+00 d2

Parameters for function evaluation 2:
1.0000000000e+00 d1
0.0000000000e+00 d2

Parameters for function evaluation 3:
2.0000000000e+00 d1
0.0000000000e+00 d2

Parameters for function evaluation 4:
0.0000000000e+00 d1
1.0000000000e+00 d2

Parameters for function evaluation 5:
1.0000000000e+00 d1
1.0000000000e+00 d2

Parameters for function evaluation 6:
2.0000000000e+00 d1
1.0000000000e+00 d2

Parameters for function evaluation 7:
0.0000000000e+00 d1
2.0000000000e+00 d2

Parameters for function evaluation 8:
1.0000000000e+00 d1
2.0000000000e+00 d2

Parameters for function evaluation 9:
2.0000000000e+00 d1
2.0000000000e+00 d2

Parameters for function evaluation 10:
0.0000000000e+00 d1
3.0000000000e+00 d2

Parameters for function evaluation 11:
1.0000000000e+00 d1
3.0000000000e+00 d2

Parameters for function evaluation 12:
2.0000000000e+00 d1
3.0000000000e+00 d2
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Chapter 5

Design of Experiments Capabilities

5.1 Overview

DAKOTA contains several software packages for sampling and design of experiments: LHS (Latin hypercube
sampling), DDACE (distributed design and analysis for computer experiments), FSUDace (Florida State Univer-
sity’s Design and Analysis of Computer Experiments package), and PSUADE (Problem Solving Environment
for Uncertainty Analysis and Design Exploration). LHS [131] is a general-purpose sampling package developed
at Sandia that has been used by the DOE national labs for several decades. DDACE is a more recent pack-
age for computer experiments that is under development by staff at Sandia Labs [135]. DDACE provides the
capability for generating orthogonal arrays, Box-Behnken designs, Central Composite designs, and random de-
signs. The FSUDace package provides the following sampling techniques: quasi-Monte Carlo sampling based
on Halton or Hammersley sequences, and Centroidal Voronoi Tessellation. Lawrence Livermore National Lab’s
PSUADE [134] includes several methods for model exploration, but only the Morris screeing method is exposed
in DAKOTA.

This chapter describes DDACE, FSUDace, and PSUADE, with the primary goal of designing computer exper-
iments. Latin Hypercube Sampling, also used in uncertainty quantification, is discussed in Section 6.2. The
differences between sampling used in design of experiments and sampling used in uncertainty quantification is
discussed in more detail in the following paragraphs. In brief, we consider design of experiment methods to gen-
erate sets of uniform random variables on the interval [0, 1]. These sets are mapped to the lower/upper bounds
of the problem variables and then the response functions are evaluated at the sample input points with the goal
of characterizing the behavior of the response functions over the input parameter ranges of interest. Uncertainty
quantification via LHS sampling, in contrast, involves characterizing the uncertain input variables with probabil-
ity distributions such as normal, Weibull, triangular, etc., sampling from the input distributions, and propagating
the input uncertainties to obtain a cumulative distribution function on the output. There is significant overlap
between design of experiments and sampling. Often, both techniques can be used to obtain similar results about
the behavior of the response functions and about the relative importance of the input variables.

5.2 Design of Computer Experiments

Computer experiments are often different from physical experiments, such as those performed in agriculture,
manufacturing, or biology. In physical experiments, one often applies the same treatment or factor level in an
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experiment several times to get an understanding of the variability of the output when that treatment is applied.
For example, in an agricultural experiment, several fields (e.g., 8) may be subject to a low level of fertilizer and the
same number of fields may be subject to a high level of fertilizer to see if the amount of fertilizer has a significant
effect on crop output. In addition, one is often interested in the variability of the output within a treatment group:
is the variability of the crop yields in the low fertilizer group much higher than that in the high fertilizer group, or
not?

In physical experiments, the process we are trying to examine is stochastic: that is, the same treatment may result
in different outcomes. By contrast, in computer experiments, often we have a deterministic code. If we run the
code with a particular set of input parameters, the code will always produce the same output. There certainly
are stochastic codes, but the main focus of computer experimentation has been on deterministic codes. Thus, in
computer experiments we often do not have the need to do replicates (running the code with the exact same input
parameters several times to see differences in outputs). Instead, a major concern in computer experiments is to
create an experimental design which can sample a high-dimensional space in a representative way with a minimum
number of samples. The number of factors or parameters that we wish to explore in computer experiments is
usually much higher than physical experiments. In physical experiments, one may be interesting in varying a few
parameters, usually five or less, while in computer experiments we often have dozens of parameters of interest.
Choosing the levels of these parameters so that the samples adequately explore the input space is a challenging
problem. There are many experimental designs and sampling methods which address the issue of adequate and
representative sample selection. Classical experimental designs which are often used in physical experiments
include Central Composite designs and Box-Behnken designs.

There are many goals of running a computer experiment: one may want to explore the input domain or the design
space and get a better understanding of the range in the outputs for a particular domain. Another objective is to
determine which inputs have the most influence on the output, or how changes in the inputs change the output.
This is usually called sensitivity analysis. Another goal is to compare the relative importance of model input
uncertainties on the uncertainty in the model outputs, uncertainty analysis. Yet another goal is to use the sampled
inputs points and their corresponding output to create a response surface approximation for the computer code.
The response surface approximation (e.g., a polynomial regression model, a kriging model, a neural net) can then
be used to emulate the computer code. Constructing a response surface approximation is particularly important
for applications where running a computational model is extremely expensive: the computer model may take 10
or 20 hours to run on a high performance machine, whereas the response surface model may only take a few
seconds. Thus, one often optimizes the response surface model or uses it within a framework such as surrogate-
based optimization. Response surface models are also valuable in cases where the gradient (first derivative) and/or
Hessian (second derivative) information required by optimization techniques are either not available, expensive
to compute, or inaccurate because the derivatives are poorly approximated or the function evaluation is itself
noisy due to roundoff errors. Furthermore, many optimization methods require a good initial point to ensure
fast convergence or to converge to good solutions (e.g. for problems with multiple local minima). Under these
circumstances, a good design of computer experiment framework coupled with response surface approximations
can offer great advantages.

In addition to the sensitivity analysis, uncertainty analysis, and response surface modeling mentioned above, we
also may want to do uncertainty quantification on a computer model. Uncertainty quantification (UQ) refers
to taking a particular set of distributions on the inputs, and propagating them through the model to obtain a
distribution on the outputs. For example, if input parameter A follows a normal with mean 5 and variance 1, the
computer produces a random draw from that distribution. If input parameter B follows a weibull distribution with
alpha = 0.5 and beta = 1, the computer produces a random draw from that distribution. When all of the uncertain
variables have samples drawn from their input distributions, we run the model with the sampled values as inputs.
We do this repeatedly to build up a distribution of outputs. We can then use the cumulative distribution function
of the output to ask questions such as: what is the probability that the output is greater than 10? What is the 99th
percentile of the output?
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Note that sampling-based uncertainty quantification and design of computer experiments are very similar. There
is significant overlap in the purpose and methods used for UQ and for DACE. We have attempted to delineate the
differences within DAKOTA as follows: we use the methods DDACE, FSUDACE, and PSUADE primarily for de-
sign of experiments, where we are interested in understanding the main effects of parameters and where we want
to sample over an input domain to obtain values for constructing a response surface. We use the nondeterministic
sampling methods (nond sampling) for uncertainty quantification, where we are propagating specific input
distributions and interested in obtaining (for example) a cumulative distribution function on the output. If one
has a problem with no distributional information, we recommend starting with a design of experiments approach.
Note that DDACE, FSUDACE, and PSUADE currently do not support distributional information: they take an
upper and lower bound for each uncertain input variable and sample within that. The uncertainty quantification
methods in nond sampling (primarily Latin Hypercube sampling) offer the capability to sample from many
distributional types. The distinction between UQ and DACE is somewhat arbitrary: both approaches often can
yield insight about important parameters and both can determine sample points for response surface approxima-
tions.

5.3 DDACE Background

The DACE package includes both classical design of experiments methods [135] and stochastic sampling meth-
ods. The classical design of experiments methods in DDACE are central composite design (CCD) and Box-
Behnken (BB) sampling. A grid-based sampling method also is available. The stochastic methods are orthogonal
array sampling [89], Monte Carlo (random) sampling, and Latin hypercube sampling. Note that the DDACE
version of LHS available through the DAKOTA interface only supports uniform distributions. DDACE does not
currently support enforcement of user-specified correlation structure among the variables.

The sampling methods in DDACE can be used alone or in conjunction with other methods. For example, DDACE
sampling can be used with both the surrogate-based optimization strategy and the optimization under uncertainty
strategy. See Figure 11.5 for an example of how the DDACE settings are used in DAKOTA.

More information on DDACE is available on the web at: http://csmr.ca.sandia.gov/projects/
ddace

The following sections provide more detail about the sampling methods available for design of experiments in
DDACE.

5.3.1 Central Composite Design

A Box-Wilson Central Composite Design, commonly called a central composite design (CCD), contains an em-
bedded factorial or fractional factorial design with center points that is augmented with a group of ’star points’
that allow estimation of curvature. If the distance from the center of the design space to a factorial point is ±1
unit for each factor, the distance from the center of the design space to a star point is ±α with | α |> 1. The
precise value of depends on certain properties desired for the design and on the number of factors involved. The
CCD design is specified in DAKOTA with the method command dace central composite.

As an example, with two input variables or factors, each having two levels, the factorial design is shown in
Table 5.1 .

With a CCD, the design in Table 5.1 would be augmented with the following points shown in Table 5.2 if α = 1.3.
These points define a circle around the original factorial design.

Note that the number of samples points specified in a CCD,samples, is a function of the number of variables in
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Table 5.1: Simple Factorial Design

Input 1 Input 2
-1 -1
-1 +1
+1 -1
+1 +1

Table 5.2: Additional Points to make the factorial design a CCD

Input 1 Input 2
0 +1.3
0 -1.3

1.3 0
-1.3 0

0 0

the problem:

samples = 1 + 2 ∗NumV ar + 2NumV ar

5.3.2 Box-Behnken Design

The Box-Behnken design is similar to a Central Composite design, with some differences. The Box-Behnken
design is a quadratic design in that it does not contain an embedded factorial or fractional factorial design. In this
design the treatment combinations are at the midpoints of edges of the process space and at the center, as compared
with CCD designs where the extra points are placed at ’star points’ on a circle outside of the process space. Box-
Behken designs are rotatable (or near rotatable) and require 3 levels of each factor. The designs have limited
capability for orthogonal blocking compared to the central composite designs. Box-Behnken requires fewer runs
than CCD for 3 factors, but this advantage goes away as the number of factors increases. The Box-Behnken design
is specified in DAKOTA with the method command dace box behnken.

Note that the number of samples points specified in a Box-Behnken design, samples, is a function of the number
of variables in the problem:

samples = 1 + 4 ∗NumV ar + (NumV ar − 1)/2

5.3.3 Orthogonal Array Designs

Orthogonal array (OA) sampling is a widely used technique for running experiments and systematically testing
factor effects [77]. An orthogonal array sample can be described as an 4-tuple (m,n, s, r), where m is the
number of sample points, n is the number of input variables, s is the number of symbols, and r is the strength
of the orthogonal array. The number of sample points, m, must be a multiple of the number of symbols, s. The
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number of symbols refers to the number of levels per input variable. The strength refers to the number of columns
where we are guaranteed to see all the possibilities an equal number of times.

For example, Table 5.3 shows an orthogonal array of strength 2 for m = 8, with 7 variables:

Table 5.3: Orthogonal Array for Seven Variables

Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7
0 0 0 0 0 0 0
0 0 0 1 1 1 1
0 1 1 0 0 1 1
0 1 1 1 1 0 0
1 0 1 0 1 0 1
1 0 1 1 0 1 0
1 1 0 0 1 1 0
1 1 0 1 0 0 1

If one picks any two columns, say the first and the third, note that each of the four possible rows we might see
there, 0 0, 0 1, 1 0, 1 1, appears exactly the same number of times, twice in this case.

DDACE creates orthogonal arrays of strength 2. Further, the OAs generated by DDACE do not treat the factor
levels as one fixed value (0 or 1 in the above example). Instead, once a level for a variable is determined in the
array, DDACE samples a random variable from within that level. The orthogonal array design is specified in
DAKOTA with the method command dace oas.

The orthogonal array method in DDACE is the only method that allows for the calculation of main effects, speci-
fied with the command main effects. Main effects is a sensitivity analysis method which identifies the input
variables that have the most influence on the output. In main effects, the idea is to look at the mean of the response
function when variable A (for example) is at level 1 vs. when variable A is at level 2 or level 3. If these mean
responses of the output are statistically significantly different at different levels of variable A, this is an indication
that variable A has a significant effect on the response. The orthogonality of the columns is critical in performing
main effects analysis, since the column orthogonality means that the effects of the other variables ’cancel out’
when looking at the overall effect from one variable at its different levels. There are ways of developing orthog-
onal arrays to calculate higher order interactions, such as two-way interactions (what is the influence of Variable
A * Variable B on the output?), but this is not available in DDACE currently. At present, one way interactions
are supported in the calculation of orthogonal array main effects within DDACE. The main effects are presented
as a series of ANOVA tables. For each objective function and constraint, the decomposition of variance of that
objective or constraint is presented as a function of the input variables. The p-value in the ANOVA table is used
to indicate if the input factor is significant. The p-value is the probability that you would have obtained samples
more extreme than you did if the input factor has no effect on the response. For example, if you set a level of
significance at 0.05 for your p-value, and the actual p-value is 0.03, then the input factor has a significant effect
on the response.

5.3.4 Grid Design

In a grid design, a grid is placed over the input variable space. This is very similar to a multi-dimensional
parameter study where the samples are taken over a set of partitions on each variable (see Section 4.5). The
main difference is that in grid sampling, a small random perturbation is added to each sample value so that the
grid points are not on a perfect grid. This is done to help capture certain features in the output such as periodic
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functions. A purely structured grid, with the samples exactly on the grid points, has the disadvantage of not being
able to capture important features such as periodic functions with relatively high frequency (due to aliasing).
Adding a random perturbation to the grid samples helps remedy this problem.

Another disadvantage with grid sampling is that the number of sample points required depends exponentially on
the input dimensions. In grid sampling, the number of samples is the number of symbols (grid partitions) raised
to the number of variables. For example, if there are 2 variables, each with 5 partitions, the number of samples
would be 52. In this case, doubling the number of variables squares the sample size. The grid design is specified
in DAKOTA with the method command dace grid.

5.3.5 Monte Carlo Design

Monte Carlo designs simply involve pure Monte-Carlo random sampling from uniform distributions between the
lower and upper bounds on each of the input variables. Monte Carlo designs, specified by dace random, are a
way to generate a set of random samples over an input domain.

5.3.6 LHS Design

DDACE offers the capability to generate Latin Hypercube designs. For more information on Latin Hypercube
sampling, see Section 6.2. Note that the version of LHS in DDACE generates uniform samples (uniform between
the variable bounds). The version of LHS offered with nondeterministic sampling can generate LHS samples
according to a number of distribution types, including normal, lognormal, weibull, beta, etc. To specify the
DDACE version of LHS, use the method command dace lhs.

5.3.7 OA-LHS Design

DDACE offers a hybrid design which is combination of an orthogonal array and a Latin Hypercube sample.
This design is specified with the method command dace oa lhs. This design has the advantages of both
orthogonality of the inputs as well as stratification of the samples (see [107]).

5.4 FSUDace Background

The FSUDace package includes quasi-Monte Carlo sampling methods (Halton and Hammersley sequences) and
Centroidal Voronoi Tesselation sampling. All three methods generate sets of uniform random variables on the
interval [0, 1]. The quasi-Monte Carlo and CVT methods are designed with the goal of low discrepancy. Dis-
crepancy refers to the nonuniformity of the sample points within the unit hypercube. Low discrepancy sequences
tend to cover the unit hypercube reasonably uniformly. Quasi-Monte Carlo methods produce low discrepancy
sequences, especially if one is interested in the uniformity of projections of the point sets onto lower dimensional
faces of the hypercube (usually 1-D: how well do the marginal distributions approximate a uniform?) CVT does
very well volumetrically: it spaces the points fairly equally throughout the space, so that the points cover the re-
gion and are isotropically distributed with no directional bias in the point placement. There are various measures
of volumetric uniformity which take into account the distances between pairs of points, regularity measures, etc.
Note that CVT does not produce low-discrepancy sequences in lower dimensions, however: the lower-dimension
(such as 1-D) projections of CVT can have high discrepancy.
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The quasi-Monte Carlo sequences of Halton and Hammersley are deterministic sequences determined by a set of
prime bases. A Halton design is specified in DAKOTA with the method command fsu quasi mc halton,
and the Hammersley design is specified with the command fsu quasi mc hammersley. For more details
about the input specification, see the Reference Manual. CVT points tend to arrange themselves in a pattern of
cells that are roughly the same shape. To produce CVT points, an almost arbitrary set of initial points is chosen,
and then an internal set of iterations is carried out. These iterations repeatedly replace the current set of sample
points by an estimate of the centroids of the corresponding Voronoi subregions [29]. A CVT design is specified
in DAKOTA with the method command fsu cvt.

The methods in FSUDace are useful for design of experiments because they provide good coverage of the input
space, thus allowing global sensitivity analysis.

5.5 PSUADE MOAT Background

This section describes the Morris One-At-A-Time (MOAT) screening method as implemented in LLNL’s PSUADE
(Problem Solving Environment for Uncertainty Analysis and Design Exploration) [134]. DAKOTA includes a
prototype interface to this DACE method, which is useful for global sensitivity analysis, including interaction
studies.

The Morris One-At-A-Time method, originally proposed by M. D. Morris [98], is a screening method, designed
to explore a computational model to distinguish between input variables that have negligible, linear and additive,
or nonlinear or interaction effects on the output. The computer experiments performed consist of individually
randomized designs which vary one input factor at a time to create a sample of its elementary effects.

With MOAT, each dimension of a k−dimensional input space is uniformly partitioned into p levels, creating a grid
of pk points x ∈ Rk at which evaluations of the model y(x) might take place. An elementary effect corresponding
to input i is computed by a forward difference

di(x) =
y(x + ∆ei)− y(x)

∆
, (5.1)

where ei is the ith coordinate vector, and the step ∆ is typically taken to be large (this is not intended to be a
local derivative approximation). In the present implementation of MOAT, for an input variable scaled to [0, 1],
∆ = p

2(p−1) , so the step used to find elementary effects is slightly larger than half the input range.

The distribution of elementary effects di over the input space characterizes the effect of input i on the output of
interest. After generating r samples from this distribution, their mean,

µi =
1
r

r∑
j=1

d
(j)
i , (5.2)

modified mean

µ∗i =
1
r

r∑
j=1

|d(j)
i |, (5.3)

(using absolute value) and standard deviation

σi =

√√√√1
r

r∑
j=1

(
d
(j)
i − µi

)2

(5.4)
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are computed for each input i. The mean and modified mean give an indication of the overall effect of an input
on the output. Standard deviation indicates nonlinear effects or interactions, since it is an indicator of elementary
effects varying throughout the input space.

The MOAT method is selected with method keyword psuade moat as shown in the sample DAKOTA input
deck in Figure 5.1. The number of samples (samples) must be a positive integer multiple of (number of con-
tinuous design variables k + 1) and will be automatically adjusted if misspecified. The number of partitions
(partitions) applies to each variable being studied and must be odd (the number of MOAT levels p per vari-
able is partitions + 1, similar to DAKOTA multidimensional parameter studies). This will also be adjusted at
runtime as necessary. Finite user-specified lower and upper bounds are required and will be scaled as needed
by the method. For more information on use of MOAT sampling, see the Morris example in Section 22.12, or
Saltelli, et al. [120].

strategy,
single_method

method,
psuade_moat
samples = 84
partitions = 3
seed = 5

variables,
continuous_design = 20
lower_bounds = 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0

upper_bounds = 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0

interface,
system asynchronous evaluation_concurrency = 5
analysis_driver = ’morris’

responses,
num_objective_functions = 1
no_gradients
no_hessians

Figure 5.1: DAKOTA input file dakota psuade.in to invoke the PSUADE MOAT method on the Morris test
problem described in Section 22.12.

5.6 Sensitivity Analysis

Like parameter studies (see Chapter 4), the DACE techniques are useful for characterizing the behavior of the
response functions of interest through the parameter ranges of interest. In addition to direct interrogation and
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visualization of the sampling results, a number of techniques have been developed for assessing the parameters
which are most influential in the observed variability in the response functions. One example of this is the
well-known technique of scatter plots, in which the set of samples is projected down and plotted against one
parameter dimension, for each parameter in turn. Scatter plots with a uniformly distributed cloud of points indicate
parameters with little influence on the results, whereas scatter plots with a defined shape to the cloud indicate
parameters which are more significant. Related techniques include analysis of variance (ANOVA) [99] and main
effects analysis, in which the parameters which have the greatest influence on the results are identified from
sampling results. Scatter plots and ANOVA may be accessed through import of DAKOTA tabular results (see
Section 16.3) into external statistical analysis programs such as S-plus, Minitab, etc.

Running any of the design of experiments or sampling methods allows the user to save the results in a tabular
data file, which then can be read into a spreadsheet or statistical package for further analysis. In addition, we have
provided some functions to help determine the most important variables.

We take the definition of uncertainty analysis from [120]: “The study of how uncertainty in the output of a model
can be apportioned to different sources of uncertainty in the model input.”

As a default, DAKOTA provides correlation analyses when running LHS. Correlation tables are printed with the
simple, partial, and rank correlations between inputs and outputs. These can be useful to get a quick sense of how
correlated the inputs are to each other, and how correlated various outputs are to inputs. The correlation analyses
are explained further in Chapter 6.2.

We also have the capability to calculate sensitivity indices through Variance-based Decomposition (VBD). Variance-
based decomposition is a global sensitivity method that summarizes how the uncertainty in model output can be
apportioned to uncertainty in individual input variables. VBD uses two primary measures, the main effect sen-
sitivity index Si and the total effect index Ti. The main effect sensitivity index corresponds to the fraction of
the uncertainty in the output, Y , that can be attributed to input xi alone. The total effects index corresponds to
the fraction of the uncertainty in the output, Y , that can be attributed to input xi and its interactions with other
variables. The main effect sensitivity index compares the variance of the conditional expectation V arxi [E(Y |xi)]
against the total variance V ar(Y ). Formulas for the indices are:

Si =
V arxi [E(Y |xi)]

V ar(Y )
(5.5)

and

Ti =
E(V ar(Y |x−i))

V ar(Y )
=
V ar(Y )− V ar(E[Y |x−i])

V ar(Y )
(5.6)

where Y = f(x) and x−i = (x1, ..., xi−1, xi+1, ..., xm).

The calculation of Si and Ti requires the evaluation of m-dimensional integrals which are typically approx-
imated by Monte-Carlo sampling. More details on the calculations and interpretation of the sensitivity in-
dices can be found in [120]. VBD can be specified for any of the sampling methods using the command
variance based decomposition. Note that VBD is extremely computationally intensive since replicated
sets of sample values are evaluated. If the user specified a number of samples, N , and a number of nondeter-
ministic variables, M , variance-based decomposition requires the evaluation of N(M + 2) samples. To obtain
sensitivity indices that are reasonably accurate, we recommend that N , the number of samples, be at least one
hundred and preferably several hundred or thousands. Because of the computational cost, variance-based decom-
position is turned off as a default.

In terms of interpretation of the sensitivity indices, a larger value of the sensitivity index, Si (Si in the DAKOTA
output), means that the uncertainty in the input variable i has a larger effect on the variance of the output. Note
that the sum of the main effect indices will be less than or equal to one. If the sum of the main effect indices
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is much less than one, it indicates that there are significant two-way, three-way, or higher order interactions that
contribute significantly to the variance. There is no requirement that the sum of the total effect indices is one: in
most cases, the sum of the total effect indices will be greater than one.

Finally, we have the capability to calculate a set of quality metrics for a particular input sample. These quality
metrics measure various aspects relating to the volumetric spacing of the samples: are the points equally spaced,
do they cover the region, are they isotropically distributed, do they have directional bias, etc.? The quality metrics
are explained in more detail in the Reference Manual.
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Chapter 6

Uncertainty Quantification Capabilities

6.1 Overview

Uncertainty quantification (UQ) is the process of determining the effect of input uncertainties on response metrics
of interest. These input uncertainties may be characterized as either aleatory uncertainties, which are irreducible
variabilities inherent in nature, or epistemic uncertainties, which are reducible uncertainties resulting from a lack
of knowledge. Since sufficient data is generally available for aleatory uncertainties, probabilistic methods are
commonly used for computing response distribution statistics based on input probability distribution specifica-
tions. Conversely, for epistemic uncertainties, data is generally sparse, making the use of probability distribution
assertions questionable and typically leading to nonprobabilistic methods based on interval specifications.

DAKOTA contains capabilities for performing nondeterministic analysis. The methods for uncertainty quantifica-
tion in DAKOTA have been developed by a group of researchers at Sandia Labs, in conjunction with collaborators
in academia [57, 58, 34, 133]. These methods perform a forward uncertainty propagation in which probability
or interval information for input parameters is mapped to probability or interval information for output response
functions. The m functions in the DAKOTA response data set are interpreted as m general response functions by
the DAKOTA methods (with no specific interpretation of the functions as for optimization and least squares).

Within the variables specification, uncertain variable descriptions are employed to define the parameter probability
distributions (see Section 12.3). The continuous aleatory distribution types include: normal (Gaussian), lognor-
mal, uniform, loguniform, triangular, exponential, beta, gamma, gumbel, frechet, weibull, and histogram bin.
The discrete aleatory distribution types include: poisson, binomial, negative binomial, geometric, hypergeomet-
ric, and histogram point. The epistemic distribution type is interval. When gradient and/or Hessian information
is used in an uncertainty assessment, derivative components are normally computed with respect to the active
continuous variables, or in this case, the continuous uncertain variables (aleatory, epistemic, or both, excluding
all variables mode; see Section 14.3).

6.2 Sampling Methods

Sampling techniques are selected using the nond sampling method selection. This method generates sets of
samples according to the probability distributions of the uncertain variables and maps them into corresponding sets
of response functions, where the number of samples is specified by the samples integer specification. Means,
standard deviations, coefficients of variation (COVs), and 95% confidence intervals are computed for the response
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functions. Probabilities and reliabilities may be computed for response levels specifications, and response
levels may be computed for either probability levels or reliability levels specifications (refer
to the Method Commands chapter in the DAKOTA Reference Manual [3] for additional information).

Currently, traditional Monte Carlo (MC) and Latin hypercube sampling (LHS) are supported by DAKOTA and
are chosen by specifying sample type as random or lhs. In Monte Carlo sampling, the samples are selected
randomly according to the user-specified probability distributions. Latin hypercube sampling is a stratified sam-
pling technique for which the range of each uncertain variable is divided into Ns segments of equal probability,
where Ns is the number of samples requested. The relative lengths of the segments are determined by the nature
of the specified probability distribution (e.g., uniform has segments of equal width, normal has small segments
near the mean and larger segments in the tails). For each of the uncertain variables, a sample is selected randomly
from each of these equal probability segments. These Ns values for each of the individual parameters are then
combined in a shuffling operation to create a set of Ns parameter vectors with a specified correlation structure.
A feature of the resulting sample set is that every row and column in the hypercube of partitions has exactly one
sample. Since the total number of samples is exactly equal to the number of partitions used for each uncertain
variable, an arbitrary number of desired samples is easily accommodated (as compared to less flexible approaches
in which the total number of samples is a product or exponential function of the number of intervals for each
variable, i.e., many classical design of experiments methods).

Advantages of sampling-based methods include their relatively simple implementation and their independence
from the scientific disciplines involved in the analysis. The main drawback of these techniques is the large number
of function evaluations needed to generate converged statistics, which can render such an analysis computationally
very expensive, if not intractable, for real-world engineering applications. LHS techniques, in general, require
fewer samples than traditional Monte Carlo for the same accuracy in statistics, but they still can be prohibitively
expensive. For further information on the method and its relationship to other sampling techniques, one is referred
to the works by McKay, et al. [96], Iman and Shortencarier [85], and Helton and Davis [78]. Note that under
certain separability conditions associated with the function to be sampled, Latin hypercube sampling provides a
more accurate estimate of the mean value than does random sampling. That is, given an equal number of samples,
the LHS estimate of the mean will have less variance than the mean value obtained through random sampling.

Figure 6.1 demonstrates Latin hypercube sampling on a two-variable parameter space. Here, the range of both
parameters, x1 and x2, is [0, 1]. Also, for this example both x1 and x2 have uniform statistical distributions.
For Latin hypercube sampling, the range of each parameter is divided into p “bins” of equal probability. For
parameters with uniform distributions, this corresponds to partitions of equal size. For n design parameters,
this partitioning yields a total of pn bins in the parameter space. Next, p samples are randomly selected in the
parameter space, with the following restrictions: (a) each sample is randomly placed inside a bin, and (b) for all
one-dimensional projections of the p samples and bins, there will be one and only one sample in each bin. In a
two-dimensional example such as that shown in Figure 6.1, these LHS rules guarantee that only one bin can be
selected in each row and column. For p = 4, there are four partitions in both x1 and x2. This gives a total of
16 bins, of which four will be chosen according to the criteria described above. Note that there is more than one
possible arrangement of bins that meet the LHS criteria. The dots in Figure 6.1 represent the four sample sites in
this example, where each sample is randomly located in its bin. There is no restriction on the number of bins in
the range of each parameter, however, all parameters must have the same number of bins.

The actual algorithm for generating Latin hypercube samples is more complex than indicated by the description
given above. For example, the Latin hypercube sampling method implemented in the LHS code [131] takes into
account a user-specified correlation structure when selecting the sample sites. For more details on the implemen-
tation of the LHS algorithm, see Reference [131].
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Figure 6.1: An example of Latin hypercube sampling with four bins in design parameters x1 and x2. The dots are
the sample sites.

6.2.1 Uncertainty Quantification Example using Sampling Methods

The two-variable Textbook example problem (see Equation 2.3) will be used to demonstrate the application of
sampling methods for uncertainty quantification where it is assumed that x1 and x2 are uniform uncertain variables
on the interval [0, 1]. The DAKOTA input file for this problem is shown in Figure 6.2. The number of samples to
perform is controlled with the samples specification, the type of sampling algorithm to use is controlled with
the sample type specification, the levels used for computing statistics on the response functions is specified
with the response levels input, and the seed specification controls the sequence of the pseudo-random
numbers generated by the sampling algorithms. The input samples generated are shown in Figure 6.3 for the case
where samples = 5 and samples = 10 for both random (◦) and lhs (+) sample types.

Latin hypercube sampling ensures full coverage of the range of the input variables, which is often a problem with
Monte Carlo sampling when the number of samples is small. In the case of samples = 5, poor stratification
is evident in x1 as four out of the five Monte Carlo samples are clustered in the range 0.35 < x1 < 0.55, and
the regions x1 < 0.3 and 0.6 < x1 < 0.9 are completely missed. For the case where samples = 10, some
clustering in the Monte Carlo samples is again evident with 4 samples in the range 0.5 < x1 < 0.55. In both
cases, the stratification with LHS is superior. The response function statistics returned by DAKOTA are shown
in Figure 6.4. The first two blocks of output specify the response sample means and sample standard deviations
and confidence intervals for these statistics, as well as coefficients of variation. The last section of the output
defines CDF pairs (distribution cumulative was specified) for the response functions by presenting the
probability levels corresponding to the specified response levels (response levels were set and the default
compute probabilities was used). Alternatively, DAKOTA could have provided CCDF pairings, reliabil-
ity levels corresponding to prescribed response levels, or response levels corresponding to prescribed probability
or reliability levels.

In addition to obtaining statistical summary information of the type shown in Figure 6.4, the results of LHS
sampling also include correlations. Four types of correlations are returned in the output: simple and partial “raw”
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strategy
single_method
tabular_graphics_data
method_pointer = ’UQ’

method,
id_method = ’UQ’
nond_sampling,
samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

variables,
uniform_uncertain = 2
lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface,
id_interface = ’I1’
system asynch evaluation_concurrency = 5
analysis_driver = ’text_book’

responses,
num_response_functions = 3
no_gradients
no_hessians

Figure 6.2: DAKOTA input file for UQ example using LHS sampling.
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Figure 6.3: Distribution of input sample points for random (4) and lhs (+) sampling for samples=5 and 10.

correlations, and simple and partial “rank” correlations. The raw correlations refer to correlations performed
on the actual input and output data. Rank correlations refer to correlations performed on the ranks of the data.
Ranks are obtained by replacing the actual data by the ranked values, which are obtained by ordering the data
in ascending order. For example, the smallest value in a set of input samples would be given a rank 1, the next
smallest value a rank 2, etc. Rank correlations are useful when some of the inputs and outputs differ greatly in
magnitude: then it is easier to compare if the smallest ranked input sample is correlated with the smallest ranked
output, for example.

Correlations are always calculated between two sets of sample data. One can calculate correlation coefficients
between two input variables, between an input and an output variable (probably the most useful), or between two
output variables. The simple correlation coefficients presented in the output tables are Pearson’s correlation co-
efficient, which is defined for two variables x and y as: Corr(x, y) =

P
i(xi−x̄)(yi−ȳ)√P

i(xi−x̄)2
P

i(yi−ȳ)2
. Partial correlation

coefficients are similar to simple correlations, but a partial correlation coefficient between two variables measures
their correlation while adjusting for the effects of the other variables. For example, say one has a problem with
two inputs and one output; and the two inputs are highly correlated. Then the correlation of the second input and
the output may be very low after accounting for the effect of the first input. The rank correlations in DAKOTA are
obtained using Spearman’s rank correlation. Spearman’s rank is the same as the Pearson correlation coefficient
except that it is calculated on the rank data.

Figure 6.5 shows an example of the correlation output provided by DAKOTA for the input file in Figure 6.2.
Note that these correlations are presently only available when one specifies lhs as the sampling method under
nond sampling. Also note that the simple and partial correlations should be similar in most cases (in terms of
values of correlation coefficients). This is because we use a default “restricted pairing” method in the LHS routine
which forces near-zero correlation amongst uncorrelated inputs.

Finally, note that the LHS package can be used for design of experiments over design and state variables by
including the all variables flag in the method specification section of the DAKOTA input file. Then, in-
stead of iterating on only the uncertain variables, the LHS package will sample over all of the variables. In
all variables mode, continuous design and continuous state variables are treated as having uniform proba-
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Statistics based on 10 samples:

Moments for each response function:
response_fn_1: Mean = 3.83840e-01 Std. Dev. = 4.02815e-01

Coeff. of Variation = 1.04944e+00
response_fn_2: Mean = 7.47987e-02 Std. Dev. = 3.46861e-01

Coeff. of Variation = 4.63726e+00
response_fn_3: Mean = 7.09462e-02 Std. Dev. = 3.41532e-01

Coeff. of Variation = 4.81397e+00

95% confidence intervals for each response function:
response_fn_1: Mean = ( 9.56831e-02, 6.71997e-01 ),

Std Dev = ( 2.77071e-01, 7.35384e-01 )
response_fn_2: Mean = ( -1.73331e-01, 3.22928e-01 ),

Std Dev = ( 2.38583e-01, 6.33233e-01 )
response_fn_3: Mean = ( -1.73371e-01, 3.15264e-01 ),

Std Dev = ( 2.34918e-01, 6.23505e-01 )

Probabilities for each response function:
Cumulative Distribution Function (CDF) for response_fn_1:

Response Level Probability Level Reliability Index
-------------- ----------------- -----------------

1.0000000000e-01 3.0000000000e-01
2.0000000000e-01 5.0000000000e-01
6.0000000000e-01 7.0000000000e-01

Cumulative Distribution Function (CDF) for response_fn_2:
Response Level Probability Level Reliability Index
-------------- ----------------- -----------------

1.0000000000e-01 5.0000000000e-01
2.0000000000e-01 7.0000000000e-01
6.0000000000e-01 9.0000000000e-01

Cumulative Distribution Function (CDF) for response_fn_3:
Response Level Probability Level Reliability Index
-------------- ----------------- -----------------

1.0000000000e-01 6.0000000000e-01
2.0000000000e-01 6.0000000000e-01
6.0000000000e-01 9.0000000000e-01

Figure 6.4: DAKOTA response function statistics from UQ sampling example.
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Simple Correlation Matrix between input and output:
x1 x2 response_fn_1 response_fn_2 response_fn_3

x1 1.00000e+00
x2 -7.22482e-02 1.00000e+00

response_fn_1 -7.04965e-01 -6.27351e-01 1.00000e+00
response_fn_2 8.61628e-01 -5.31298e-01 -2.60486e-01 1.00000e+00
response_fn_3 -5.83075e-01 8.33989e-01 -1.23374e-01 -8.92771e-01 1.00000e+00

Partial Correlation Matrix between input and output:
response_fn_1 response_fn_2 response_fn_3

x1 -9.65994e-01 9.74285e-01 -9.49997e-01
x2 -9.58854e-01 -9.26578e-01 9.77252e-01

Simple Rank Correlation Matrix between input and output:
x1 x2 response_fn_1 response_fn_2 response_fn_3

x1 1.00000e+00
x2 -6.66667e-02 1.00000e+00

response_fn_1 -6.60606e-01 -5.27273e-01 1.00000e+00
response_fn_2 8.18182e-01 -6.00000e-01 -2.36364e-01 1.00000e+00
response_fn_3 -6.24242e-01 7.93939e-01 -5.45455e-02 -9.27273e-01 1.00000e+00

Partial Rank Correlation Matrix between input and output:
response_fn_1 response_fn_2 response_fn_3

x1 -8.20657e-01 9.74896e-01 -9.41760e-01
x2 -7.62704e-01 -9.50799e-01 9.65145e-01

Figure 6.5: Correlation results using LHS Sampling.
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bility distributions within their upper and lower bounds, discrete values are sampled uniformly from within their
sets or ranges, and any uncertain variables are sampled within their specified probability distributions.

6.2.2 Incremental Sampling

In many situations, one may run an initial sample set and then need to perform further sampling to get better
estimates of the mean, variance, and percentiles, and to obtain more comprehensive sample coverage. We call
this capability incremental sampling. Currently, the LHS incremental sampling capability we have in DAKOTA
requires that the incremental samples are double the sample size of the previous sample. That is, if one starts with
a very small sample size of 10, then one can use the incremental sampling capability to generate sample sizes of
20, 40, 80, etc. Also, a DAKOTA restart file (dakota.rst) must be available from the original sample. There are two
cases, random incremental and Latin Hypercube incremental sampling. We assume that LHS incremental will be
most frequently used. One major advantage of LHS incremental sampling is that it maintains the stratification and
correlation structure of the original LHS sample. That is, if one generated 2 independent LHS samples and just
merged them, the calculation of the accuracy of statistical measures such as the mean and the variance would be
slightly incorrect. However, in the incremental case, the full sample (double the original size) is a Latin Hypercube
sample itself and statistical measures and their accuracy can be properly calculated. The incremental sampling
capability is most useful when one is starting off with very small samples. Once the sample size is more than a
few hundred, the benefit of incremental sampling diminishes.

1. Incremental Random Sampling. With incremental random sampling, the original sample set with N samples
must be generated using sample type as random. Then, the user can create a new DAKOTA input file
that is very similar to the original one except the sample type should be defined to be incremental random.
Random incremental sampling does not require a doubling of samples each time. Thus, the user can specify
the number of samples (samples) to be a desired number (it can range from an additional one sample to a
large integer), and the previous samples should be specified as N. For example, if the first sample has
50 samples, and 10 more samples are desired, in the second DAKOTA run, the number of samples should
be set to 60 and the number of previous samples set to 50. In this situation, only 10 new samples will be
generated and the final statistics will be reported on the full sample of 60. The command line syntax for
running the second sample is dakota -i input2.in -r dakota.rst where input2.in is the input
file with the incremental sampling specification and dakota.rst is the restart file. Note that if the restart file
has a different name, that is fine; the correct restart file name should be used.

2. Incremental Latin Hypercube Sampling. With incremental LHS sampling, the original sample set with N
samples must be generated using sample type as lhs. Then, the user can create a new DAKOTA input
file that is very similar to the original one except the sample type should be defined to be incremental lhs,
the number of samples (samples) should be 2N (twice the number of original samples), and previous samples
should be specified as N. For example, if the first sample has 50 samples, in the second DAKOTA run, the
number of samples should be set to 100 and the number of previous samples set to 50. In this situation, only
50 new samples will be generated and the final statistics will be reported on the full sample of 100. The
command line syntax for running the second sample is dakota -i input2.in -r dakota.rst,
where input2.in is the input file with the incremental sampling specification and dakota.rst is the restart file.
Note that if the restart file has a different name, that is fine; the correct restart file name should be used.

6.3 Reliability Methods

Reliability methods provide an alternative approach to uncertainty quantification which can be less computa-
tionally demanding than sampling techniques. Reliability methods for uncertainty quantification are based on
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probabilistic approaches that compute approximate response function distribution statistics based on specified un-
certain variable distributions. These response statistics include response mean, response standard deviation, and
cumulative or complementary cumulative distribution functions (CDF/CCDF). These methods are often more ef-
ficient at computing statistics in the tails of the response distributions (events with low probability) than sampling
based approaches since the number of samples required to resolve a low probability can be prohibitive.

The methods all answer the fundamental question: “Given a set of uncertain input variables, X, and a scalar
response function, g, what is the probability that the response function is below or above a certain level, z̄?” The
former can be written as P [g(X) ≤ z̄] = Fg(z̄) where Fg(z̄) is the cumulative distribution function (CDF) of the
uncertain response g(X) over a set of response levels. The latter can be written as P [g(X) > z̄] and defines the
complementary cumulative distribution function (CCDF).

This probability calculation involves a multi-dimensional integral over an irregularly shaped domain of interest,
D, where g(X) < z as displayed in Figure 6.6 for the case of two variables. The reliability methods all involve the
transformation of the user-specified uncertain variables, X, with probability density function, p(x1, x2), which
can be non-normal and correlated, to a space of independent Gaussian random variables, u, possessing a mean
value of zero and unit variance (i.e., standard normal variables). The region of interest, D, is also mapped to
the transformed space to yield, Du , where g(U) < z as shown in Figure 6.7. The Nataf transformation [27],
which is identical to the Rosenblatt transformation [118] in the case of independent random variables, is used in
DAKOTA to accomplish this mapping. This transformation is performed to make the probability calculation more
tractable. In the transformed space, probability contours are circular in nature as shown in Figure 6.7 unlike in
the original uncertain variable space, Figure 6.6. Also, the multi-dimensional integrals can be approximated by
simple functions of a single parameter, β, called the reliability index. β is the minimum Euclidean distance from
the origin in the transformed space to the response surface. This point is also known as the most probable point
(MPP) of failure. Note, however, the methodology is equally applicable for generic functions, not simply those
corresponding to failure criteria; this nomenclature is due to the origin of these methods within the disciplines
of structural safety and reliability. Note that there are local and global reliability methods. The majority of the
methods available are local, meaning that a local optimization formulation is used to locate one MPP. In contrast,
global methods can find multiple MPPs if they exist.

6.3.1 Mean Value

The Mean Value method (MV, also known as MVFOSM in [75]) is the simplest, least-expensive reliability method
because it estimates the response means, response standard deviations, and all CDF/CCDF response-probability-
reliability levels from a single evaluation of response functions and their gradients at the uncertain variable means.
This approximation can have acceptable accuracy when the response functions are nearly linear and their distribu-
tions are approximately Gaussian, but can have poor accuracy in other situations. The expressions for approximate
response mean µg , approximate response variance σ2

g , response target to approximate probability/reliability level
mapping (z̄ → p, β), and probability/reliability target to approximate response level mapping (p̄, β̄ → z) are
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Figure 6.6: Graphical depiction of calculation of cumulative distribution function in the original uncertain variable
space.

Figure 6.7: Graphical depiction of integration for the calculation of cumulative distribution function in the trans-
formed uncertain variable space.
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µg = g(µx) (6.1)

σ2
g =

∑
i

∑
j

Cov(i, j)
dg

dxi
(µx)

dg

dxj
(µx) (6.2)

βcdf =
µg − z̄

σg
(6.3)

βccdf =
z̄ − µg
σg

(6.4)

z = µg − σgβ̄cdf (6.5)
z = µg + σgβ̄ccdf (6.6)

respectively, where x are the uncertain values in the space of the original uncertain variables (“x-space”), g(x)
is the limit state function (the response function for which probability-response level pairs are needed), and βcdf
and βccdf are the CDF and CCDF reliability indices, respectively.

With the introduction of second-order limit state information, MVSOSM calculates a second-order mean as

µg = g(µx) +
1
2

∑
i

∑
j

Cov(i, j)
d2g

dxidxj
(µx) (6.7)

This is commonly combined with a first-order variance (Equation 6.2), since second-order variance involves
higher order distribution moments (skewness, kurtosis) [75] which are often unavailable.

The first-order CDF probability p(g ≤ z), first-order CCDF probability p(g > z), βcdf , and βccdf are related to
one another through

p(g ≤ z) = Φ(−βcdf ) (6.8)
p(g > z) = Φ(−βccdf ) (6.9)

βcdf = −Φ−1(p(g ≤ z)) (6.10)
βccdf = −Φ−1(p(g > z)) (6.11)
βcdf = −βccdf (6.12)

p(g ≤ z) = 1− p(g > z) (6.13)

where Φ() is the standard normal cumulative distribution function. A common convention in the literature is to
define g in such a way that the CDF probability for a response level z of zero (i.e., p(g ≤ 0)) is the response metric
of interest. DAKOTA is not restricted to this convention and is designed to support CDF or CCDF mappings for
general response, probability, and reliability level sequences.

With the Mean Value method, it is possible to obtain importance factors indicating the relative importance of
input variables. The importance factors can be viewed as an extension of linear sensitivity analysis combining
deterministic gradient information with input uncertainty information, i.e. input variable standard deviations. The
accuracy of the importance factors is contingent of the validity of the linear approximation used to approximate
the true response functions. The importance factors are determined as:

ImpFactori = (
σxi

σg

dg

dxi
(µx))2 (6.14)
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6.3.2 MPP Search Methods

All other local reliability methods solve an equality-constrained nonlinear optimization problem to compute a
most probable point (MPP) and then integrate about this point to compute probabilities. The MPP search is
performed in uncorrelated standard normal space (“u-space”) since it simplifies the probability integration: the
distance of the MPP from the origin has the meaning of the number of input standard deviations separating the
mean response from a particular response threshold. The transformation from correlated non-normal distribu-
tions (x-space) to uncorrelated standard normal distributions (u-space) is denoted as u = T (x) with the reverse
transformation denoted as x = T−1(u). These transformations are nonlinear in general, and possible approaches
include the Rosenblatt [118], Nataf [27], and Box-Cox [14] transformations. The nonlinear transformations may
also be linearized, and common approaches for this include the Rackwitz-Fiessler [113] two-parameter equiv-
alent normal and the Chen-Lind [20] and Wu-Wirsching [150] three-parameter equivalent normals. DAKOTA
employs the Nataf nonlinear transformation which is suitable for the common case when marginal distributions
and a correlation matrix are provided, but full joint distributions are not known1. This transformation occurs in
the following two steps. To transform between the original correlated x-space variables and correlated standard
normals (“z-space”), a CDF matching condition is applied for each of the marginal distributions:

Φ(zi) = F (xi) (6.15)

where F () is the cumulative distribution function of the original probability distribution. Then, to transform
between correlated z-space variables and uncorrelated u-space variables, the Cholesky factor L of a modified
correlation matrix is used:

z = Lu (6.16)

where the original correlation matrix for non-normals in x-space has been modified to represent the corresponding
“warped” correlation in z-space [27].

The forward reliability analysis algorithm of computing CDF/CCDF probability/reliability levels for specified
response levels is called the reliability index approach (RIA), and the inverse reliability analysis algorithm of
computing response levels for specified CDF/CCDF probability/reliability levels is called the performance mea-
sure approach (PMA) [136]. The differences between the RIA and PMA formulations appear in the objective
function and equality constraint formulations used in the MPP searches. For RIA, the MPP search for achieving
the specified response level z̄ is formulated as computing the minimum distance in u-space from the origin to the
z̄ contour of the limit state response function:

minimize uTu

subject to G(u) = z̄ (6.17)

and for PMA, the MPP search for achieving the specified reliability/probability level β̄, p̄ is formulated as com-
puting the minimum/maximum response function value corresponding to a prescribed distance from the origin in
u-space:

minimize ±G(u)
subject to uTu = β̄2 (6.18)

where u is a vector centered at the origin in u-space and g(x) ≡ G(u) by definition. In the RIA case, the
optimal MPP solution u∗ defines the reliability index from β = ±‖u∗‖2, which in turn defines the CDF/CCDF
probabilities (using Equations 6.8-6.9 in the case of first-order integration). The sign of β is defined by

G(u∗) > G(0) : βcdf < 0, βccdf > 0 (6.19)
G(u∗) < G(0) : βcdf > 0, βccdf < 0 (6.20)

1If joint distributions are known, then the Rosenblatt transformation is preferred.
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where G(0) is the median limit state response computed at the origin in u-space2 (where βcdf = βccdf = 0 and
first-order p(g ≤ z) = p(g > z) = 0.5). In the PMA case, the sign applied to G(u) (equivalent to minimizing or
maximizing G(u)) is similarly defined by β̄

β̄cdf < 0, β̄ccdf > 0 : maximize G(u) (6.21)
β̄cdf > 0, β̄ccdf < 0 : minimize G(u) (6.22)

and the limit state at the MPP (G(u∗)) defines the desired response level result.

6.3.2.1 Limit state approximations

There are a variety of algorithmic variations that are available for use within RIA/PMA reliability analyses. First,
one may select among several different limit state approximations that can be used to reduce computational ex-
pense during the MPP searches. Local, multipoint, and global approximations of the limit state are possible. [34]
investigated local first-order limit state approximations, and [35] investigated local second-order and multipoint
approximations. These techniques include:

1. a single Taylor series per response/reliability/probability level in x-space centered at the uncertain variable
means. The first-order approach is commonly known as the Advanced Mean Value (AMV) method:

g(x) ∼= g(µx) +∇xg(µx)T (x− µx) (6.23)

and the second-order approach has been named AMV2:

g(x) ∼= g(µx) +∇xg(µx)T (x− µx) +
1
2
(x− µx)T∇2

xg(µx)(x− µx) (6.24)

2. same as AMV/AMV2, except that the Taylor series is expanded in u-space. The first-order option has been
termed the u-space AMV method:

G(u) ∼= G(µu) +∇uG(µu)T (u− µu) (6.25)

where µu = T (µx) and is nonzero in general, and the second-order option has been named the u-space
AMV2 method:

G(u) ∼= G(µu) +∇uG(µu)T (u− µu) +
1
2
(u− µu)T∇2

uG(µu)(u− µu) (6.26)

3. an initial Taylor series approximation in x-space at the uncertain variable means, with iterative expansion
updates at each MPP estimate (x∗) until the MPP converges. The first-order option is commonly known as
AMV+:

g(x) ∼= g(x∗) +∇xg(x∗)T (x− x∗) (6.27)

and the second-order option has been named AMV2+:

g(x) ∼= g(x∗) +∇xg(x∗)T (x− x∗) +
1
2
(x− x∗)T∇2

xg(x
∗)(x− x∗) (6.28)

2It is not necessary to explicitly compute the median response since the sign of the inner product 〈u∗,∇uG〉 can be used to determine the
orientation of the optimal response with respect to the median response.
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4. same as AMV+/AMV2+, except that the expansions are performed in u-space. The first-order option has
been termed the u-space AMV+ method.

G(u) ∼= G(u∗) +∇uG(u∗)T (u− u∗) (6.29)

and the second-order option has been named the u-space AMV2+ method:

G(u) ∼= G(u∗) +∇uG(u∗)T (u− u∗) +
1
2
(u− u∗)T∇2

uG(u∗)(u− u∗) (6.30)

5. a multipoint approximation in x-space. This approach involves a Taylor series approximation in intermedi-
ate variables where the powers used for the intermediate variables are selected to match information at the
current and previous expansion points. Based on the two-point exponential approximation concept (TPEA,
[46]), the two-point adaptive nonlinearity approximation (TANA-3, [155]) approximates the limit state as:

g(x) ∼= g(x2) +
n∑
i=1

∂g

∂xi
(x2)

x1−pi

i,2

pi
(xpi

i − xpi

i,2) +
1
2
ε(x)

n∑
i=1

(xpi

i − xpi

i,2)
2 (6.31)

where n is the number of uncertain variables and:

pi = 1 + ln

[
∂g
∂xi

(x1)
∂g
∂xi

(x2)

]/
ln
[
xi,1
xi,2

]
(6.32)

ε(x) =
H∑n

i=1(x
pi

i − xpi

i,1)2 +
∑n
i=1(x

pi

i − xpi

i,2)2
(6.33)

H = 2

[
g(x1)− g(x2)−

n∑
i=1

∂g

∂xi
(x2)

x1−pi

i,2

pi
(xpi

i,1 − xpi

i,2)

]
(6.34)

and x2 and x1 are the current and previous MPP estimates in x-space, respectively. Prior to the availability
of two MPP estimates, x-space AMV+ is used.

6. a multipoint approximation in u-space. The u-space TANA-3 approximates the limit state as:

G(u) ∼= G(u2) +
n∑
i=1

∂G

∂ui
(u2)

u1−pi

i,2

pi
(upi

i − upi

i,2) +
1
2
ε(u)

n∑
i=1

(upi

i − upi

i,2)
2 (6.35)

where:

pi = 1 + ln

[
∂G
∂ui

(u1)
∂G
∂ui

(u2)

]/
ln
[
ui,1
ui,2

]
(6.36)

ε(u) =
H∑n

i=1(u
pi

i − upi

i,1)2 +
∑n
i=1(u

pi

i − upi

i,2)2
(6.37)

H = 2

[
G(u1)−G(u2)−

n∑
i=1

∂G

∂ui
(u2)

u1−pi

i,2

pi
(upi

i,1 − upi

i,2)

]
(6.38)

and u2 and u1 are the current and previous MPP estimates in u-space, respectively. Prior to the availability
of two MPP estimates, u-space AMV+ is used.

7. the MPP search on the original response functions without the use of any approximations. Combining this
option with first-order and second-order integration approaches (see next section) results in the traditional
first-order and second-order reliability methods (FORM and SORM).
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The Hessian matrices in AMV2 and AMV2+ may be available analytically, estimated numerically, or approxi-
mated through quasi-Newton updates. The selection between x-space or u-space for performing approximations
depends on where the approximation will be more accurate, since this will result in more accurate MPP esti-
mates (AMV, AMV2) or faster convergence (AMV+, AMV2+, TANA). Since this relative accuracy depends on
the forms of the limit state g(x) and the transformation T (x) and is therefore application dependent in general,
DAKOTA supports both options. A concern with approximation-based iterative search methods (i.e., AMV+,
AMV2+ and TANA) is the robustness of their convergence to the MPP. It is possible for the MPP iterates to os-
cillate or even diverge. However, to date, this occurrence has been relatively rare, and DAKOTA contains checks
that monitor for this behavior. Another concern with TANA is numerical safeguarding (e.g., the possibility of
raising negative xi or ui values to nonintegral pi exponents in Equations 6.31, 6.33-6.35, and 6.37-6.38). Safe-
guarding involves offseting negative xi or ui and, for potential numerical difficulties with the logarithm ratios in
Equations 6.32 and 6.36, reverting to either the linear (pi = 1) or reciprocal (pi = −1) approximation based on
which approximation has lower error in ∂g

∂xi
(x1) or ∂G

∂ui
(u1).

6.3.2.2 Probability integrations

The second algorithmic variation involves the integration approach for computing probabilities at the MPP, which
can be selected to be first-order (Equations 6.8-6.9) or second-order integration. Second-order integration involves
applying a curvature correction [15, 81, 82]. Breitung applies a correction based on asymptotic analysis [15]:

p = Φ(−βp)
n−1∏
i=1

1√
1 + βpκi

(6.39)

where κi are the principal curvatures of the limit state function (the eigenvalues of an orthonormal transformation
of ∇2

uG, taken positive for a convex limit state) and βp ≥ 0 (a CDF or CCDF probability correction is selected to
obtain the correct sign for βp). An alternate correction in [81] is consistent in the asymptotic regime (βp → ∞)
but does not collapse to first-order integration for βp = 0:

p = Φ(−βp)
n−1∏
i=1

1√
1 + ψ(−βp)κi

(6.40)

where ψ() = φ()
Φ() and φ() is the standard normal density function. [82] applies further corrections to Equation 6.40

based on point concentration methods. At this time, all three approaches are available within the code, but the
Hohenbichler-Rackwitz correction is used by default (switching the correction is a compile-time option in the
source code and has not not currently been exposed in the input specification).

6.3.2.3 Method mapping

Given settings for limit state approximation, approximation order, integration approach, and other details pre-
sented to this point, it is evident that the number of algorithmic combinations is high. Table 6.1 provides a
succinct mapping for some of these combinations to common method names from the reliability literature, where
blue indicates the most well-known combinations and gray indicates other supported combinations.

Within the DAKOTA specification (refer to the Method Commands chapter within the Reference Manual), the
MPP search and integration order selections are explicit in the method specification, but the order of the approx-
imation is inferred from the associated response specification (as is done with local taylor series approximations
described in Section 11.4.1.2). Thus, reliability methods do not have to be synchronized in order as shown in the
table; however, it is often desirable to do so.
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Table 6.1: Mapping from DAKOTA options to standard reliability methods.
Order of approximation and integration

MPP search First order Second order
none MVFOSM MVSOSM

x taylor mean AMV AMV2

u taylor mean u-space AMV u-space AMV2

x taylor mpp AMV+ AMV2+
u taylor mpp u-space AMV+ u-space AMV2+
x two point TANA
u two point u-space TANA
no approx FORM SORM

6.3.3 Global Reliability Methods

Global reliability methods are designed to handle nonsmooth and multimodal failure surfaces, by creating global
approximations based on Gaussian process models. They accurately resolve a particular contour of a response
function and then estimate probabilities using multimodal adaptive importance sampling.

The global reliability method in DAKOTA is called Efficient Global Reliability Analysis (EGRA) [12]. The
name is due to its roots in efficient global optimization (EGO) [86, 84]. The main idea in EGO-type optimization
methods is that a global approximation is made of the underlying function. This approximation, which is a
Gaussian process model, is used to guide the search by finding points which maximize the expected improvement
function (EIF). The EIF is used to select the location at which a new training point should be added to the Gaussian
process model by maximizing the amount of improvement in the objective function that can be expected by adding
that point. A point could be expected to produce an improvement in the objective function if its predicted value
is better than the current best solution, or if the uncertainty in its prediction is such that the probability of it
producing a better solution is high. Because the uncertainty is higher in regions of the design space with fewer
observations, this provides a balance between exploiting areas of the design space that predict good solutions, and
exploring areas where more information is needed.

The general procedure of these EGO-type methods is:

1. Build an initial Gaussian process model of the objective function.

2. Find the point that maximizes the EIF. If the EIF value at this point is sufficiently small, stop.

3. Evaluate the objective function at the point where the EIF is maximized. Update the Gaussian process
model using this new point. Go to Step 2.

Gaussian process (GP) models are used because they provide not just a predicted value at an unsampled point, but
also an estimate of the prediction variance. This variance gives an indication of the uncertainty in the GP model,
which results from the construction of the covariance function. This function is based on the idea that when input
points are near one another, the correlation between their corresponding outputs will be high. As a result, the
uncertainty associated with the model’s predictions will be small for input points which are near the points used
to train the model, and will increase as one moves further from the training points.

The expected improvement function is used in EGO algorithms to select the location at which a new training point
should be added. The EIF is defined as the expectation that any point in the search space will provide a better
solution than the current best solution based on the expected values and variances predicted by the GP model. It
is important to understand how the use of this EIF leads to optimal solutions. The EIF indicates how much the
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objective function value at a new potential location is expected to be less than the predicted value at the current
best solution. Because the GP model provides a Gaussian distribution at each predicted point, expectations can
be calculated. Points with good expected values and even a small variance will have a significant expectation of
producing a better solution (exploitation), but so will points that have relatively poor expected values and greater
variance (exploration).

The application of EGO to reliability analysis, however, is made more complicated due to the inclusion of equality
constraints. In forward reliability analysis, the response function appears as a constraint rather than the objective.
That is, we want to satisfy the constraint that the response equals a threshold value and is on the limit state:
G(u) = z̄. Therefore, the EIF function was modified to focus on feasibility, and instead of using an expected
improvement function, we use an expected feasibility function (EFF) [12]. The EFF provides an indication of
how well the response is expected to satisfy the equality constraint. Points where the expected value is close to
the threshold (µG ≈ z̄) and points with a large uncertainty in the prediction will have large expected feasibility
values.

The general outline of the EGRA algorithm is as follows: LHS sampling is used to generate a small number of
samples from the true response function. Then, an initial Gaussian process model is constructed. Based on the
EFF, the point with maximum EFF is found using the global optimizer DIRECT. The true response function is
then evaluated at this new point, and this point is added to the sample set and the process of building a new GP
model and maximizing the EFF is repeated until the maximum EFF is small. At this stage, the GP model is
accurate in the vicinity of the limit state. The GP model is then used to calculate the probability of failure using
multimodal importance sampling, which is explained below.

One method to calculate the probability of failure is to directly perform the probability integration numerically
by sampling the response function. Sampling methods can be prohibitively expensive because they generally
require a large number of response function evaluations. Importance sampling methods reduce this expense by
focusing the samples in the important regions of the uncertain space. They do this by centering the sampling
density function at the MPP rather than at the mean. This ensures the samples will lie the region of interest,
thus increasing the efficiency of the sampling method. Adaptive importance sampling (AIS) further improves the
efficiency by adaptively updating the sampling density function. Multimodal adaptive importance sampling [28]
is a variation of AIS that allows for the use of multiple sampling densities making it better suited for cases where
multiple sections of the limit state are highly probable.

Note that importance sampling methods require that the location of at least one MPP be known because it is
used to center the initial sampling density. However, current gradient-based, local search methods used in MPP
search may fail to converge or may converge to poor solutions for highly nonlinear problems, possibly making
these methods inapplicable. The EGRA algorithm described above does not depend on the availability of accurate
gradient information, making convergence more reliable for nonsmooth response functions. Moreover, EGRA has
the ability to locate multiple failure points, which can provide multiple starting points and thus a good multimodal
sampling density for the initial steps of multimodal AIS. The probability assessment using multimodal AIS thus
incorporates probability of failure at multiple points.

6.3.4 Uncertainty Quantification Example using Reliability Analysis

In summary, the user can choose to perform either forward (RIA) or inverse (PMA) mappings when performing
a reliability analysis. With either approach, there are a variety of methods from which to choose in terms of limit
state approximations (MVFOSM, MVSOSM, x-/u-space AMV, x-/u-space AMV2, x-/u-space AMV+, x-/u-space
AMV2+, x-/u-space TANA, and FORM/SORM), probability integrations (first-order or second-order), limit state
Hessian selection (analytic, finite difference, BFGS, or SR1), and MPP optimization algorithm (SQP or NIP)
selections.
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All reliability methods output approximate values of the CDF/CCDF response-probability-reliability levels for
prescribed response levels (RIA) or prescribed probability or reliability levels (PMA). In addition, the MV meth-
ods additionally output estimates of the mean and standard deviation of the response functions along with impor-
tance factors for each of the uncertain variables in the case of independent random variables.

This example quantifies the uncertainty in the “log ratio” response function:

g(x1, x2) =
x1

x2
(6.41)

by computing approximate response statistics using reliability analysis to determine the response cumulative
distribution function:

P [g(x1, x2) < z̄] (6.42)

where X1 and X2 are identically distributed lognormal random variables with means of 1, standard deviations of
0.5, and correlation coefficient of 0.3.

A DAKOTA input file showing RIA using FORM (option 7 in limit state approximations combined with first-order
integration) is listed in Figure 6.8. The user first specifies the nond local reliability method, followed
by the MPP search approach and integration order. In this example, we specify mpp search no approx and
utilize the default first-order integration to select FORM. Finally, the user specifies response levels or probabil-
ity/reliability levels to determine if the problem will be solved using an RIA approach or a PMA approach. In the
example figure of 6.8, we use RIA by specifying a range of response levels for the problem. The resulting
output for this input is shown in Figure 6.9, with probability and reliability levels listed for each response level.
Figure 6.10 shows that FORM compares favorably to an exact analytic solution for this problem. Also note that
FORM does have some error in the calculation of CDF values for this problem, but it is a very small error (on the
order of e-11), much smaller than the error obtained when using a Mean Value method, which will be discussed
next.

If the user specifies nond local reliability as a method with no additional specification on how to do
the MPP search, then no MPP search is done: the Mean Value method is used. The MV results are shown in
Figure 6.11 and consist of approximate mean and standard deviation of the response, the importance factors for
each uncertain variable, and approximate probability/reliability levels for the prescribed response levels that have
been inferred from the approximate mean and standard deviation (using Equations 6.3 and 6.8). It is evident that
the statistics are considerably different from the fully converged FORM results; however, these rough approxi-
mations are also much less expensive to calculate. The importance factors are a measure of the sensitivity of the
response function(s) to the uncertain input variables, but in this case, are not separable due to the presence of input
correlation coefficients. A comparison of the mean value results with the FORM results is shown in Figure 6.10.
The mean value results are not accurate near the tail values of the CDF, and can differ from the exact solution
by as much as 0.11 in CDF estimates. A comprehensive comparison of various reliability methods applied to the
logratio problem is provided in [35].

Additional reliability analysis and design results are provided in Sections 22.5-22.10.

6.4 Stochastic Expansion Methods

The objective of these techniques is to characterize the response of systems whose governing equations involve
stochastic coefficients. The development of these techniques mirrors that of deterministic finite element analysis
through the utilization of the concepts of projection, orthogonality, and weak convergence. The polynomial chaos
expansion is based on a multidimensional orthogonal polynomial approximation in standardized random variables,
and the stochastic collocation approach is based on a multidimensional Lagrange interpolation in standardized
random variables. A distinguishing feature of these methodologies is that the final solution is expressed as a
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strategy,
single_method graphics

method,
nond_local_reliability
mpp_search no_approx
response_levels = .4 .5 .55 .6 .65 .7
.75 .8 .85 .9 1. 1.05 1.15 1.2 1.25 1.3
1.35 1.4 1.5 1.55 1.6 1.65 1.7 1.75

variables,
lognormal_uncertain = 2
means = 1. 1
std_deviations = 0.5 0.5
descriptors = ’TF1ln’ ’TF2ln’

uncertain_correlation_matrix = 1 0.3
0.3 1

interface,
system asynch
analysis_driver = ’log_ratio’

responses,
num_response_functions = 1
numerical_gradients
method_source dakota
interval_type central
fd_gradient_step_size = 1.e-4

no_hessians

Figure 6.8: DAKOTA input file for Reliability UQ example using FORM.
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Cumulative Distribution Function (CDF) for response_fn_1:
Response Level Probability Level Reliability Index
-------------- ----------------- -----------------

4.0000000000e-01 4.7624085962e-02 1.6683404020e+00
5.0000000000e-01 1.0346525475e-01 1.2620507942e+00
5.5000000000e-01 1.3818404972e-01 1.0885143628e+00
6.0000000000e-01 1.7616275822e-01 9.3008801339e-01
6.5000000000e-01 2.1641741368e-01 7.8434989943e-01
7.0000000000e-01 2.5803428381e-01 6.4941748143e-01
7.5000000000e-01 3.0020938124e-01 5.2379840558e-01
8.0000000000e-01 3.4226491013e-01 4.0628960782e-01
8.5000000000e-01 3.8365052982e-01 2.9590705956e-01
9.0000000000e-01 4.2393548232e-01 1.9183562480e-01
1.0000000000e+00 5.0000000000e-01 6.8682233460e-12
1.0500000000e+00 5.3539344228e-01 -8.8834907167e-02
1.1500000000e+00 6.0043460094e-01 -2.5447217462e-01
1.2000000000e+00 6.3004131827e-01 -3.3196278078e-01
1.2500000000e+00 6.5773508987e-01 -4.0628960782e-01
1.3000000000e+00 6.8356844630e-01 -4.7770089473e-01
1.3500000000e+00 7.0761025532e-01 -5.4641676380e-01
1.4000000000e+00 7.2994058691e-01 -6.1263331274e-01
1.5000000000e+00 7.6981945355e-01 -7.3825238860e-01
1.5500000000e+00 7.8755158269e-01 -7.9795460350e-01
1.6000000000e+00 8.0393505584e-01 -8.5576118635e-01
1.6500000000e+00 8.1906005158e-01 -9.1178881995e-01
1.7000000000e+00 8.3301386860e-01 -9.6614373461e-01
1.7500000000e+00 8.4588021938e-01 -1.0189229206e+00

Figure 6.9: Output from Reliability UQ example using FORM.

Figure 6.10: Comparison of the cumulative distribution function (CDF) computed by FORM, the Mean Value
method, and the exact CDF for g(x1, x2) = x1

x2
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MV Statistics for response_fn_1:
Approximate Mean Response = 1.0000000000e+00
Approximate Standard Deviation of Response = 5.9160798127e-01
Importance Factors not available.

Cumulative Distribution Function (CDF) for response_fn_1:
Response Level Probability Level Reliability Index
-------------- ----------------- -----------------

4.0000000000e-01 1.5524721837e-01 1.0141851006e+00
5.0000000000e-01 1.9901236093e-01 8.4515425050e-01
5.5000000000e-01 2.2343641149e-01 7.6063882545e-01
6.0000000000e-01 2.4948115037e-01 6.7612340040e-01
6.5000000000e-01 2.7705656603e-01 5.9160797535e-01
7.0000000000e-01 3.0604494093e-01 5.0709255030e-01
7.5000000000e-01 3.3630190949e-01 4.2257712525e-01
8.0000000000e-01 3.6765834596e-01 3.3806170020e-01
8.5000000000e-01 3.9992305332e-01 2.5354627515e-01
9.0000000000e-01 4.3288618783e-01 1.6903085010e-01
1.0000000000e+00 5.0000000000e-01 0.0000000000e+00
1.0500000000e+00 5.3367668035e-01 -8.4515425050e-02
1.1500000000e+00 6.0007694668e-01 -2.5354627515e-01
1.2000000000e+00 6.3234165404e-01 -3.3806170020e-01
1.2500000000e+00 6.6369809051e-01 -4.2257712525e-01
1.3000000000e+00 6.9395505907e-01 -5.0709255030e-01
1.3500000000e+00 7.2294343397e-01 -5.9160797535e-01
1.4000000000e+00 7.5051884963e-01 -6.7612340040e-01
1.5000000000e+00 8.0098763907e-01 -8.4515425050e-01
1.5500000000e+00 8.2372893005e-01 -9.2966967555e-01
1.6000000000e+00 8.4475278163e-01 -1.0141851006e+00
1.6500000000e+00 8.6405064339e-01 -1.0987005257e+00
1.7000000000e+00 8.8163821351e-01 -1.1832159507e+00
1.7500000000e+00 8.9755305196e-01 -1.2677313758e+00

Figure 6.11: Output from Reliability UQ example using MV.
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random process, and not merely as a set of statistics as is the case for many nondeterministic methodologies. This
makes these techniques particularly attractive for use in multi-physics applications which link different analysis
packages.

The first stochastic expansion method is the polynomial chaos expansion (PCE) described in Ghanem, et al. [57], [58].
DAKOTA implements the generalized polynomial chaos approach using the Wiener-Askey scheme [154], in
which Hermite, Legendre, Laguerre, Jacobi, and generalized Laguerre orthogonal polynomials are used for mod-
eling the effect of continuous random variables described by normal, uniform, exponential, beta, and gamma
probability distributions, respectively3. These orthogonal polynomial selections are optimal for these distribution
types since the inner product weighting function and its corresponding support range correspond to the proba-
bility density functions for these continuous distributions. In theory, exponential convergence rates in response
moments can be obtained with the optimal basis. When transformations to independent standard random variables
(in some cases, approximated by uncorrelated standard random variables) are used, the variable expansions are
uncoupled, allowing the polynomial orthogonality properties to be applied on a per-dimension basis. This allows
one to mix and match the polynomial basis used for each variable without interference with the spectral projection
scheme for the response.

In non-intrusive PCE, simulations are used as black boxes and the calculation of chaos expansion coefficients
for response metrics of interest is based on a set of simulation response evaluations. To calculate these response
PCE coefficients, two primary classes of approaches have been proposed: spectral projection and linear regres-
sion. The spectral projection approach projects the response against each basis function using inner products and
employs the polynomial orthogonality properties to extract each coefficient. Each inner product involves a multi-
dimensional integral over the support range of the weighting function, which can be evaluated numerically using
quadrature, cubature, or sampling approaches. The linear regression approach (also known as point collocation
or stochastic response surfaces) uses a single linear least squares solution to solve for the PCE coefficients which
best match a set of response values obtained from a design of computer experiments.

Stochastic collocation (SC) is another stochastic expansion technique for UQ that is closely related to PCE.
Whereas PCE estimates coefficients for known orthogonal polynomial basis functions, SC forms Lagrange in-
terpolation functions for known coefficients. Since the ith interpolation function is 1 at collocation point i and
0 for all other collocation points, it is easy to see that the expansion coefficients are just the response values at
each of the collocation points. The formation of multidimensional interpolants with this property requires the
use of structured collocation point sets derived from tensor product or sparse grids. The key to the approach is
performing collocation using the Gauss points and weights from the same optimal orthogonal polynomials used
in generalized PCE, which results in the same exponential convergence rates. A key distinction is that, whereas
PCE must define an expansion formulation and a corresponding coefficient estimation approach (which may not
be perfectly synchronized), SC requires only a collocation grid definition from which the expansion polynomials
are derived based on Lagrange interpolation.

6.4.1 Orthogonal polynomials in the Askey scheme

Table 6.2 shows the set of polynomials which provide an optimal basis for different continuous probability dis-
tribution types. It is derived from the family of hypergeometric orthogonal polynomials known as the Askey
scheme [9], for which the Hermite polynomials originally employed by Wiener [147] are a subset. The optimality
of these basis selections derives from their orthogonality with respect to weighting functions that correspond to
the probability density functions (PDFs) of the continuous distributions when placed in a standard form. The
density and weighting functions differ by a constant factor due to the requirement that the integral of the PDF
over the support range is one.

3Orthogonal polynomial selections also exist for discrete probability distributions, but are not yet supported in DAKOTA.
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Table 6.2: Linkage between standard forms of continuous probability distributions and Askey scheme of contin-
uous hyper-geometric polynomials.

Distribution Density function Polynomial Weight function Support range

Normal 1√
2π
e
−x2

2 Hermite Hen(x) e
−x2

2 [−∞,∞]
Uniform 1

2 Legendre Pn(x) 1 [−1, 1]

Beta (1−x)α(1+x)β

2α+β+1B(α+1,β+1)
Jacobi P (α,β)

n (x) (1− x)α(1 + x)β [−1, 1]
Exponential e−x Laguerre Ln(x) e−x [0,∞]

Gamma xαe−x

Γ(α+1) Generalized Laguerre L(α)
n (x) xαe−x [0,∞]

Note that Legendre is a special case of Jacobi for α = β = 0, Laguerre is a special case of generalized Laguerre
for α = 0, Γ(a) is the Gamma function which extends the factorial function to continuous values, and B(a, b) is
the Beta function defined as B(a, b) = Γ(a)Γ(b)

Γ(a+b) . Some care is necessary when specifying the α and β parameters
for the Jacobi and generalized Laguerre polynomials since the orthogonal polynomial conventions [2] differ from
the common statistical PDF conventions. The former conventions are used in Table 6.2.

6.4.2 Numerically generated orthogonal polynomials

If all random inputs can be described using independent normal, uniform, exponential, beta, and gamma distri-
butions, then generalized PCE can be directly applied. If correlation or other distribution types are present, then
additional techniques are required. One solution is to employ nonlinear variable transformations as described in
Section 6.4.6 such that an Askey basis can be applied in the transformed space. This can be effective as shown
in [45], but convergence rates are typically degraded. In addition, correlation coefficients are warped by the non-
linear transformation [27], and transformed correlation values are not always readily available. An alternative is to
numerically generate the orthogonal polynomials, along with their Gauss points and weights, that are optimal for
given random variable sets having arbitrary probability density functions [54, 68]. This preserves the exponential
convergence rates for UQ applications with general probabilistic inputs, but performing this process for general
joint density functions with correlation is a topic on ongoing research.

6.4.3 Interpolation polynomials

Lagrange polynomials interpolate a set of points in a single dimension using the functional form

Lj =
m∏
k=1
k 6=j

ξ − ξk
ξj − ξk

(6.43)

where it is evident that Lj is 1 at ξ = ξj , is 0 for each of the points ξ = ξk, and has order m− 1.

For interpolation of a response function R in one dimension over m points, the expression

R(ξ) ∼=
m∑
j=1

r(ξj)Lj(ξ) (6.44)

reproduces the response values r(ξj) at the interpolation points and smoothly interpolates between these values
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at other points. For interpolation in multiple dimensions, a tensor-product approach is used wherein

R(ξ) ∼=
mi1∑
j1=1

· · ·
min∑
jn=1

r
(
ξi1j1 , . . . , ξ

in
jn

) (
Li1j1 ⊗ · · · ⊗ Linjn

)
=

Np∑
j=1

rj(ξ)Lj(ξ) (6.45)

where i = (m1,m2, · · · ,mn) are the number of nodes used in the n-dimensional interpolation and ξikjm is the
jmth point in the kth direction. As will be seen later, interpolation on sparse grids involves a summation of these
tensor products with varying i levels.

6.4.4 Generalized Polynomial Chaos

The set of polynomials from 6.4.1 are used as an orthogonal basis to approximate the functional form between the
stochastic response output and each of its random inputs. The chaos expansion for a response R takes the form

R = a0B0 +
∞∑
i1=1

ai1B1(ξi1) +
∞∑
i1=1

i1∑
i2=1

ai1i2B2(ξi1 , ξi2) +
∞∑
i1=1

i1∑
i2=1

i2∑
i3=1

ai1i2i3B3(ξi1 , ξi2 , ξi3) + ... (6.46)

where the random vector dimension is unbounded and each additional set of nested summations indicates an
additional order of polynomials in the expansion. This expression can be simplified by replacing the order-based
indexing with a term-based indexing

R =
∞∑
j=0

αjΨj(ξ) (6.47)

where there is a one-to-one correspondence between ai1i2...in and αj and betweenBn(ξi1 , ξi2 , ..., ξin) and Ψj(ξ).
Each of the Ψj(ξ) are multivariate polynomials which involve products of the one-dimensional polynomials. For
example, a multivariate Hermite polynomial B(ξ) of order n is defined from

Bn(ξi1 , ..., ξin) = e
1
2 ξT ξ(−1)n

∂n

∂ξi1 ...∂ξin
e−

1
2 ξT ξ (6.48)

which can be shown to be a product of one-dimensional Hermite polynomials involving a multi-index mj
i :

Bn(ξi1 , ..., ξin) = Ψj(ξ) =
n∏
i=1

ψmj
i
(ξi) (6.49)

6.4.4.1 Expansion truncation and tailoring

In practice, one truncates the infinite expansion at a finite number of random variables and a finite expansion order

R ∼=
P∑
j=0

αjΨj(ξ) (6.50)

Traditionally, the polynomial chaos expansion includes a complete basis of polynomials up to a fixed total-order
specification. For example, the multidimensional basis polynomials for a second-order expansion over two ran-
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dom dimensions are

Ψ0(ξ) = ψ0(ξ1) ψ0(ξ2) = 1
Ψ1(ξ) = ψ1(ξ1) ψ0(ξ2) = ξ1

Ψ2(ξ) = ψ0(ξ1) ψ1(ξ2) = ξ2

Ψ3(ξ) = ψ2(ξ1) ψ0(ξ2) = ξ21 − 1
Ψ4(ξ) = ψ1(ξ1) ψ1(ξ2) = ξ1ξ2

Ψ5(ξ) = ψ0(ξ1) ψ2(ξ2) = ξ22 − 1

The total number of terms Nt in an expansion of total order p involving n random variables is given by

Nt = 1 + P = 1 +
p∑
s=1

1
s!

s−1∏
r=0

(n+ r) =
(n+ p)!
n!p!

(6.51)

This traditional approach will be referred to as a “total-order expansion.”

An important alternative approach is to employ a “tensor-product expansion,” in which polynomial order bounds
are applied on a per-dimension basis (no total-order bound is enforced) and all combinations of the one-dimensional
polynomials are included. In this case, the example basis for p = 2, n = 2 is

Ψ0(ξ) = ψ0(ξ1) ψ0(ξ2) = 1
Ψ1(ξ) = ψ1(ξ1) ψ0(ξ2) = ξ1

Ψ2(ξ) = ψ2(ξ1) ψ0(ξ2) = ξ21 − 1
Ψ3(ξ) = ψ0(ξ1) ψ1(ξ2) = ξ2

Ψ4(ξ) = ψ1(ξ1) ψ1(ξ2) = ξ1ξ2

Ψ5(ξ) = ψ2(ξ1) ψ1(ξ2) = (ξ21 − 1)ξ2
Ψ6(ξ) = ψ0(ξ1) ψ2(ξ2) = ξ22 − 1
Ψ7(ξ) = ψ1(ξ1) ψ2(ξ2) = ξ1(ξ22 − 1)
Ψ8(ξ) = ψ2(ξ1) ψ2(ξ2) = (ξ21 − 1)(ξ22 − 1)

and the total number of terms Nt is

Nt = 1 + P =
n∏
i=1

(pi + 1) (6.52)

where pi is the polynomial order bound for the i-th dimension.

It is apparent from Eq. 6.52 that the tensor-product expansion readily supports anisotropy in polynomial order for
each dimension, since the polynomial order bounds for each dimension can be specified independently. It is also
feasible to support anisotropy with total-order expansions, although this involves pruning polynomials that satisfy
the total-order bound (potentially defined from the maximum of the per-dimension bounds) but which violate
individual per-dimension bounds. In this case, Eq. 6.51 does not apply.

Additional expansion form alternatives can also be considered. Of particular interest is the tailoring of expansion
form to target specific monomial coverage as motivated by the integration process employed for evaluating chaos
coefficients. If the specific monomial set that can be resolved by a particular integration approach is known or
can be approximated, then the chaos expansion can be tailored to synchonize with this set. Tensor-product and
total-order expansions can be seen as special cases of this general approach (corresponding to tensor-product
quadrature and Smolyak sparse grids with linear growth rules, respectively), whereas, for example, Smolyak
sparse grids with nonlinear growth rules could generate synchonized expansion forms that are neither tensor-
product nor total-order (to be discussed later in association with Figure 6.14). In all cases, the specifics of the
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expansion are codified in the multi-index, and subsequent machinery for estimating response values at particular
ξ, evaluating response statistics by integrating over ξ, etc., can be performed in a manner that is agnostic to the
exact expansion formulation.

6.4.4.2 Dimension independence

A generalized polynomial basis is generated by selecting the univariate basis that is most optimal for each random
input and then applying the products as defined by the multi-index to define a mixed set of multivariate polyno-
mials. Similarly, multivariate weighting functions involve a product of the one-dimensional weighting functions
and multivariate quadrature rules involve tensor products of the one-dimensional quadrature rules.

The use of independent standard random variables is the critical component that allows decoupling of the mul-
tidimensional integrals in a mixed basis expansion. It is assumed in this work that the uncorrelated standard
random variables resulting from the transformation described in Section 6.4.6 can be treated as independent. This
assumption is valid for uncorrelated standard normal variables (which motivates an approach of using a strictly
Hermite basis for problems with correlated inputs), but could introduce significant error for other uncorrelated
random variable types. For independent variables, the multidimensional integrals involved in the inner products
of multivariate polynomials decouple to a product of one-dimensional integrals involving only the particular poly-
nomial basis and corresponding weight function selected for each random dimension. The multidimensional inner
products are nonzero only if each of the one-dimensional inner products is nonzero, which preserves the desired
multivariate orthogonality properties for the case of a mixed basis.

6.4.5 Stochastic Collocation

The SC expansion is formed as a sum of a set of multidimensional Lagrange interpolation polynomials, one
polynomial per collocation point. Since these polynomials have the feature of being equal to 1 at their particular
collocation point and 0 at all other points, the coefficients of the expansion are just the response values at each of
the collocation points. This can be written as:

R ∼=
Np∑
j=1

rjLj(ξ) (6.53)

where the set of Np collocation points involves a structured multidimensional grid. There is no need for tailoring
of the expansion form as there is for PCE (see Section 6.4.4.1) since the polynomials that appear in the expansion
are determined by the Lagrange construction (Eq. 6.43). That is, any tailoring or refinement of the expansion
occurs through the selection of points in the interpolation grid and the polynomial orders of the basis adapt
automatically.

6.4.6 Transformations to uncorrelated standard variables

Polynomial chaos and stochastic collocation are expanded using polynomials that are functions of independent
standard random variables ξ. Thus, a key component of either approach is performing a transformation of vari-
ables from the original random variables x to independent standard random variables ξ and then applying the
stochastic expansion in the transformed space. The dimension of ξ is typically chosen to correspond to the di-
mension of x, although this is not required. In fact, the dimension of ξ should be chosen to represent the number
of distinct sources of randomness in a particular problem, and if individual xi mask multiple random inputs, then
the dimension of ξ can be expanded to accommodate. For simplicity, all subsequent discussion will assume a
one-to-one correspondence between ξ and x.
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This notion of independent standard space is extended over the notion of “u-space” used in reliability methods
(see Section 6.3.2) in that in includes not just independent standard normals, but also independent standard-
ized uniforms, exponentials, betas and gammas. For problems directly involving independent normal, uniform,
exponential, beta, and gamma distributions for input random variables, conversion to standard form involves a
simple linear scaling transformation (to the form of the density functions in Table 6.2) and then the corresponding
chaos/collocation points can be employed. For other independent distributions, one has a choice of two different
approaches:

1. Numerically generate an optimal polynomial basis for each independent distribution (using Gauss-Wigert [125],
discretized Stieltjes [54], Chebyshev [54], or Gramm-Schmidt [148] approaches) and employ Golub-Welsch [68]
to compute the corresponding Gauss points and weights.

2. Perform a nonlinear variable transformation from a given input distribution to the most similar Askey basis
and employ the Askey orthogonal polynomials and associated Gauss points/weights. For example, lognor-
mal might employ a Hermite basis in a transformed standard normal space and loguniform, triangular, and
bin-based histograms might employ a Legendre basis in a transformed standard uniform space.

For correlated non-normal distributions, a third approach is currently the only acceptable option (although other
options are an active research area):

3. Perform a nonlinear variable transformation from all given input distributions to uncorrelated standard nor-
mal distributions and employ strictly Hermite orthogonal polynomial bases and associated Gauss points/weights.

This third approach is performed using the Nataf transformation, which is described in Section 6.3.2.

6.4.7 Spectral projection

The major practical difference between PCE and SC is that, in PCE, one must estimate the coefficients for known
basis functions, whereas in SC, one must form the interpolants for known coefficients. PCE estimates its coeffi-
cients using any of the approaches to follow: random sampling, tensor-product quadrature, Smolyak sparse grids,
or linear regression. In SC, the multidimensional interpolants need to be formed over structured data sets, such as
point sets from quadrature or sparse grids; approaches based on random sampling may not be used.

The spectral projection approach projects the response against each basis function using inner products and em-
ploys the polynomial orthogonality properties to extract each coefficient. Similar to a Galerkin projection, the
residual error from the approximation is rendered orthogonal to the selected basis. From Eq. 6.50, it is evident
that

αj =
〈R,Ψj〉
〈Ψ2

j 〉
=

1
〈Ψ2

j 〉

∫
Ω

RΨj %(ξ) dξ, (6.54)

where each inner product involves a multidimensional integral over the support range of the weighting function.
In particular, Ω = Ω1 ⊗ · · · ⊗ Ωn, with possibly unbounded intervals Ωj ⊂ R and the tensor product form
%(ξ) =

∏n
i=1 %i(ξi) of the joint probability density (weight) function. The denominator in Eq. 6.54 is the norm

squared of the multivariate orthogonal polynomial, which can be computed analytically using the product of
univariate norms squared

〈Ψ2
j 〉 =

n∏
i=1

〈ψ2
mj

i

〉 (6.55)

where the univariate inner products have simple closed form expressions for each polynomial in the Askey
scheme [2]. Thus, the primary computational effort resides in evaluating the numerator, which is evaluated nu-
merically using sampling, quadrature or sparse grid approaches (and this numerical approximation leads to use of
the term “pseudo-spectral” by some investigators).
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6.4.7.1 Sampling

In the sampling approach, the integral evaluation is equivalent to computing the expectation (mean) of the
response-basis function product (the numerator in Eq. 6.54) for each term in the expansion when sampling within
the density of the weighting function. This approach is only valid for PCE and since sampling does not provide
any particular monomial coverage guarantee, it is common to combine this coefficient estimation approach with
a total-order chaos expansion.

In computational practice, coefficient estimations based on sampling benefit from first estimating the response
mean (the first PCE coefficient) and then removing the mean from the expectation evaluations for all subsequent
coefficients. While this has no effect for quadrature/sparse grid methods (see following two sections) and little ef-
fect for fully-resolved sampling, it does have a small but noticeable beneficial effect for under-resolved sampling.

6.4.7.2 Tensor product quadrature

In quadrature-based approaches, the simplest general technique for approximating multidimensional integrals,
as in Eq. 6.54, is to employ a tensor product of one-dimensional quadrature rules. In the case where Ω is a
hypercube, i.e. Ω = [−1, 1]n, there are several choices of nested abscissas, included Clenshaw-Curtis, Gauss-
Patterson, etc. [101, 102, 56]. In the more general case, we propose to use Gaussian abscissas, i.e. the zeros of
the orthogonal polynomials with respect to some positive weight, e.g. Gauss-Hermite, Gauss-Legendre, Gauss-
Laguerre, generalized Gauss-Laguerre, or Gauss-Jacobi.

We first introduce an index i ∈ N+, i ≥ 1. Then, for each value of i, let {ξi1, . . . , ξimi
} ⊂ Ωi be a sequence

of abscissas for quadrature on Ωi. For f ∈ C0(Ωi) and n = 1 we introduce a sequence of one-dimensional
quadrature operators

U i(f)(ξ) =
mi∑
j=1

f(ξij)w
i
j , (6.56)

with mi ∈ N given. When utilizing Gaussian quadrature, Eq. 6.56 integrates exactly all polynomials of degree
less than 2mi − 1, for each i = 1, . . . , n. Given an expansion order p, the highest order coefficient evaluations
(Eq. 6.54) can be assumed to involve integrands of at least polynomial order 2p (Ψ of order p and R modeled to
order p) in each dimension such that a minimal Gaussian quadrature order of p+1 will be required to obtain good
accuracy in these coefficients.

Now, in the multivariate case n > 1, for each f ∈ C0(Ω) and the multi-index i = (i1, . . . , in) ∈ Nn+ we define
the full tensor product quadrature formulas

Qni f(ξ) =
(
U i1 ⊗ · · · ⊗U in

)
(f)(ξ) =

mi1∑
j1=1

· · ·
min∑
jn=1

f
(
ξi1j1 , . . . , ξ

in
jn

) (
wi1j1 ⊗ · · · ⊗ winjn

)
. (6.57)

Clearly, the above product needs
∏n
j=1mij function evaluations. Therefore, when the number of input random

variables is small, full tensor product quadrature is a very effective numerical tool. On the other hand, approx-
imations based on tensor product grids suffer from the curse of dimensionality since the number of collocation
points in a tensor grid grows exponentially fast in the number of input random variables. For example, if Eq. 6.57
employs the same order for all random dimensions, mij = m, then Eq. 6.57 requires mn function evaluations.

Figure 6.12 displays the monomial coverage for an integrand evaluated using an isotropic Gaussian quadrature
rules in two dimensions (m1 = m2 = 5). Given this type of coverage, the traditional approach of exploying
a total-order chaos expansion (involving integrands indicated by the red horizontal line) neglects a significant
portion of the monomial coverage and one would expect a tensor-product expansion to provide improved syn-
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chronization and more effective usage of the Gauss point evaluations. Note that the integrand monomial coverage
must resolve 2p, such that p1 = p2 = 4 would be selected in this case.

Figure 6.12: Pascal’s triangle depiction of integrand monomial coverage for two dimensions and Gaussian tensor-
product quadrature order = 5. Red line depicts maximal total-order integrand coverage.

6.4.7.3 Smolyak sparse grids

If the number of random variables is moderately large, one should rather consider sparse tensor product spaces
as first proposed by Smolyak [127] and further investigated by Refs. [56, 10, 50, 153, 101, 102] that reduce
dramatically the number of collocation points, while preserving a high level of accuracy.

Here we follow the notation and extend the description in Ref. [101] to describe the Smolyak isotropic formulas
A (w, n), where w is a level that is independent of dimension4. The Smolyak formulas are just linear combinations
of the product formulas in Eq. 6.57 with the following key property: only products with a relatively small number
of points are used. With U 0 = 0 and for i ≥ 1 define

∆i = U i −U i−1. (6.58)

and we set |i| = i1 + · · ·+ in. Then the isotropic Smolyak quadrature formula is given by

A (w, n) =
∑

|i|≤w+n

(
∆i1 ⊗ · · · ⊗∆in

)
. (6.59)

Equivalently, formula Eq. 6.59 can be written as [145]

A (w, n) =
∑

w+1≤|i|≤w+n

(−1)w+n−|i|
(

n− 1
w + n− |i|

)
·
(
U i1 ⊗ · · · ⊗U in

)
. (6.60)

Given an index set of levels, linear or nonlinear growth rules may be defined for the one-dimensional quadrature
orders in order to take advantage of nesting of collocation points. The following growth rules are currently

4Other common formulations use a dimension-dependent level q where q ≥ n. We use w = q − n, where w ≥ 0 for all n.
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available for indices i ≥ 1:

Clenshaw − Curtis : m =
{

1 i = 1
2i−1 + 1 i > 1 (6.61)

Gaussian nonlinear : m = 2i − 1 (6.62)
Gaussian linear : m = 2i− 1 (6.63)

For fully nested quadrature rules such as Clenshaw-Curtis and Gauss-Patterson, nonlinear growth rules are strongly
preferred (Eq. 6.61 for the former and Eq. 6.62 for the latter). For at most weakly nested Gaussian quadrature
rules, either linear or nonlinear rules may be selected, with the former motivated by finer granularity of control and
uniform integrand coverage and the latter motivated by consistency with Clenshaw-Curtis and Gauss-Patterson.
The m = 2i− 1 linear rule takes advantage of weak nesting (e.g., Gauss-Hermite and Gauss-Legendre), whereas
non-nested rules (e.g., Gauss-Laguerre) could alternatively employ anm = i linear rule without any loss of reuse.
In the experiments to follow, Clenshaw-Curtis employs nonlinear growth via Eq. 6.61, and all Gaussian rules
employ either nonlinear growth from Eq. 6.62 or linear growth from Eq. 6.63.

Examples of isotropic sparse grids, constructed from the fully nested Clenshaw-Curtis abscissas and the weakly-
nested Gaussian abscissas are shown in Figure 6.13, where Ω = [−1, 1]2. There, we consider a two-dimensional
parameter space and a maximum level w = 5 (sparse grid A (5, 2)). To see the reduction in function evaluations
with respect to full tensor product grids, we also include a plot of the corresponding Clenshaw-Curtis isotropic
full tensor grid having the same maximum number of points in each direction, namely 2w + 1 = 33. Whereas an
isotropic tensor-product quadrature scales asmn, an isotropic sparse grid scales asmlog n, significantly mitigating
the curse of dimensionality.

Figure 6.13: For a two-dimensional parameter space (n = 2) and maximum level w = 5, we plot the full tensor
product grid using the Clenshaw-Curtis abscissas (left) and isotropic Smolyak sparse grids A (5, 2), utilizing the
Clenshaw-Curtis abscissas (middle) and the Gaussian abscissas (right).

Figure 6.14 displays the monomial coverage in Pascal’s triangle for an isotropic sparse grid with level w = 4
employing Gaussian integration rules in two dimensions. Given this geometric interpretation, subtracted tensor-
product grids from Eqs. 6.59 and 6.60 can be interpreted as regions of overlap where only a single contribution
to the integral should be retained. Figure 6.14(a) shows the case of nonlinear growth rules as given in Eq. 6.62
and Figure 6.14(b) shows the linear growth rule given in Eq. 6.63. Given this type of coverage, the traditional
approach of exploying a total-order chaos expansion (maximal resolvable total-order integrand depicted with red
horizontal line) can be seen to be well synchronized for the case of linear growth rules, since only a few small
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“teeth” protrude beyond the maximal total-order basis, and to be somewhat conservative for nonlinear growth
rules, since the maximal total-order basis is dictated by the concave interior and neglects the outer “legs” (this
shape is sometimes referred to as the “hyperbolic cross”). However, the inclusion of additional terms beyond the
total-order basis in the nonlinear growth rule case, as motivated by the legs in Figure 6.14(a), is error-prone, since
the order of the unknown response function will tend to push the product integrand out into the concave interior,
resulting in product polynomials that are not resolvable by the sparse integration. For the total-order basis, the
integrand monomial coverage must resolve 2p, such that p = 9 would be selected in the nonlinear growth rule
case and p = 7 would be selected in the linear growth rule case.

(a) Nonlinear growth rule. (b) Linear growth rule.

Figure 6.14: Pascal’s triangle depiction of integrand monomial coverage for two dimensions and Gaussian sparse
grid level = 4. Red line depicts maximal total-order integrand coverage.

For anisotropic Smolyak sparse grids, DAKOTA supports the specification of a dimension preference vector in
order to emphasize stochastic dimensions that are more important over ones that are less important. A natural
mechanism for quantifying dimension importance is through the global sensitivity analysis procedure described
in Section 6.4.11, as the attribution of output variance among input sources provides an intuitive measure of
importance in the stochastic setting.

Given a mechanism for defining anisotropy, we must extend the definition of the sparse grid from that of Eq. 6.60.
First, the sparse grid index set constraint becomes

wγ < i · γ ≤ wγ + |γ| (6.64)

where γ is the minimum if the dimension weights γk, k = 1 to n. The dimension weighting vector γ amplifies
the contribution of a particular dimension index within the constraint, and is therefore inversely related to the
dimension preference (higher weighting produces lower index set levels). For the isotropic case of all γk = 1,
it is evident that you reproduce the isotropic index constraint w + 1 ≤ |i| ≤ w + n (note the change from
< to ≤). Second, the combinatorial coefficient for adding the contribution from each of these index sets is
modified as described in [16]. Given the modified index sets and combinatorial coefficients defined from the
dimension preference vector, interpolation (SC) on anisotropic sparse grids proceeds as for the isotropic case.
PCE, however, again has the challenge of expansion tailoring. Fortunately, in the anistropic case, we can assume
that more is known about the form of the response function (especially if the dimension preference was based on
variance-based decomposition). This allows us to abandon the safe total-order basis approach in favor of a tightly-
synchronized expansion formulation that applies the 2p logic to all of the protruding “legs” in the monomial
resolution structure.
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6.4.8 Linear regression

The linear regression approach (also known as point collocation or stochastic response surfaces [143, 83]) uses a
single linear least squares solution of the form:

Ψα = R (6.65)

to solve for the complete set of PCE coefficients α that best match a set of response values R. The set of
response values is typically obtained by performing a design of computer experiments within the density function
of ξ, where each row of the matrix Ψ contains theNt multivariate polynomial terms Ψj evaluated at a particular ξ
sample. An over-sampling is generally advisable (Ref. [83] recommends 2Nt samples), resulting in a least squares
solution for the over-determined system. In the case of 2Nt oversampling, the simulation requirements for this
approach scale as 2(n+p)!

n!p! , which can be significantly more affordable than isotropic tensor-product quadrature
(e.g., (p+ 1)n) for larger problems.

A closely related technique is known as the “probabilistic collocation” approach. Rather than employing ran-
dom over-sampling, this technique uses a selected subset of Nt Gaussian quadrature points (those with highest
tensor-product weighting), which provides more optimal collocation locations and preserves interpolation prop-
erties. Finally, additional regression equations can be obtained through the use of derivative information (gradient
and Hessians) from each collocation point, which aids greatly in scaling with respect to the number of random
variables. Neither of these latter capabilities are currently available in DAKOTA.

6.4.9 Analytic moments

Mean and variance of the polynomial chaos expansion are available in simple closed form:

µR = 〈R〉 ∼=
P∑
j=0

αj〈Ψj(ξ)〉 = α0 (6.66)

σ2
R = 〈(R− µR)2〉 ∼= 〈(

P∑
j=1

αjΨj(ξ))2〉 =
P∑
j=1

P∑
k=1

αjαk〈Ψj(ξ)Ψk(ξ)〉 =
P∑
j=1

α2
j 〈Ψ2

j 〉 (6.67)

where the norm squared of each multivariate polynomial is computed from Eq. 6.55. The moments µR and σR
are exact moments of the expansion, which converge to moments of the true response function. Higher moments
are also available analytically and could be employed in moment fitting approaches (i.e., Pearson and Johnson
models) in order to approximate a response PDF, although this is outside the scope of the current paper.

Similar expressions can be derived for stochastic collocation:

µR = 〈R〉 ∼=
Np∑
j=1

rj〈Lj(ξ)〉 =
Np∑
j=1

rjwj (6.68)

σ2
R = 〈R2〉 − µ2

R
∼=

Np∑
j=1

Np∑
k=1

rjrk〈Lj(ξ)Lk(ξ)〉 − µ2
R =

Np∑
j=1

r2jwj − µ2
R (6.69)

where the expectation of a particular Lagrange polynomial constructed at Gauss points and then integrated at these
same Gauss points leaves only the weight corresponding to the point for which the interpolation value is one.
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6.4.10 Local sensitivity analysis: derivatives with respect to expansion variables

Polynomial chaos expansions are easily differentiated with respect to the random variables [114]. First, using
Eq. 6.50,

dR

dξi
=

P∑
j=0

αj
dΨj(ξ)
dξi

(6.70)

and then using Eq. 6.49,
dΨj(ξ)
dξi

=
dψi
dξi

n∏
k=1
k 6=i

ψmj
k
(ξk) (6.71)

where the univariate polynomial derivatives dψi

dξi
have simple closed form expressions for each polynomial in the

Askey scheme [2]. Finally, using the Jacobian of the (extended) Nataf variable transformation,

dR

dxi
=
dR

dξ

dξ

dxi
(6.72)

which simplifies to dR
dξi

dξi

dxi
in the case of uncorrelated xi.

Similar expressions may be derived for stochastic collocation, starting from Eq. 6.53:

dR

dξi
=

Np∑
j=1

rj
dLj(ξ)
dξi

(6.73)

where the multidimensional interpolant Lj is formed over either tensor-product quadrature points or a Smolyak
sparse grid. For the former case, the derivative of the multidimensional interpolant Lj involves a product rule of
the one-dimensional interpolants Lk:

dLj(ξ)
dξi

=
dLi
dξi

n∏
k=1
k 6=i

Lk(ξk) (6.74)

and for the latter case, the derivative involves a linear combination of these product rules, as dictated by the
Smolyak recursion shown in Eq. 6.60. Finally, calculation of dR

dxi
involves the same Jacobian application shown

in Eq. 6.72.

6.4.11 Global sensitivity analysis: variance-based decomposition

In addition to obtaining derivatives of stochastic expansions with respect to the random variables, it is possible
to obtain variance-based sensitivity indices from the stochastic expansions. Variance-based sensitivity indices are
explained in Section 5.6. The concepts are summarized here as well. Variance-based decomposition is a global
sensitivity method that summarizes how the uncertainty in model output can be apportioned to uncertainty in
individual input variables. VBD uses two primary measures, the main effect sensitivity index Si and the total
effect index Ti. These indices are also called the Sobol’ indices. The main effect sensitivity index corresponds
to the fraction of the uncertainty in the output, Y , that can be attributed to input xi alone. The total effects
index corresponds to the fraction of the uncertainty in the output, Y , that can be attributed to input xi and its
interactions with other variables. The main effect sensitivity index compares the variance of the conditional
expectation V arxi

[E(Y |xi)] against the total variance V ar(Y ). Formulas for the indices are:

Si =
V arxi [E(Y |xi)]

V ar(Y )
(6.75)
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and

Ti =
E(V ar(Y |x−i))

V ar(Y )
=
V ar(Y )− V ar(E[Y |x−i])

V ar(Y )
(6.76)

where Y = f(x) and x−i = (x1, ..., xi−1, xi+1, ..., xm).

The calculation of Si and Ti requires the evaluation of m-dimensional integrals which are typically approximated
by Monte-Carlo sampling. However, in stochastic expansion methods, it is possible to obtain the sensitivity
indices as analytic functions of the coefficients in the stochastic expansion. The derivation of these results is
presented in [132]. The sensitivity indices are printed as a default when running either polynomial chaos or
stochastic collocation in DAKOTA. Note that in addition to the first-order main effects, Si, we are able to calculate
the sensitivity indices for higher order interactions such as the two-way interaction Si,j .

6.4.12 Uncertainty Quantification Example using Stochastic Collocation

A typical DAKOTA input file for performing an uncertainty quantification using polynomial chaos expansions
is shown in the Tutorial Chapter, Section 2.4.3.3. The example in the Tutorial Chapter illustrates PCE built
on anisotropic tensor product quadrature. The uncertain variables are uniforms, so the expansion is built using
classical Legendre polynomials. This section presents a more sophisticated example, where we use stochastic
collocation built on an anisotropic sparse grid defined from numerically-generated orthogonal polynomials. The
uncertain variables are lognormal in this example and the orthogonal polynomials are generated from Gauss-
Wigert recursion coefficients [125] in combination with the Golub-Welsch procedure [68]. The input file is shown
in Figure 6.15. Note that the dimension preference of (2, 1) is inverted to define a γ weighting vector of (0.5, 1)
(and γ of 0.5) for use in Eq. 6.64. In this example, we compute CDF probabilities for six response levels of
Rosenbrock’s function. This example requires 19 function evaluations to calculate the interpolating polynomials
in stochastic collocation and the resulting expansion exactly reproduces Rosenbrock’s function . The placement
of the points generated by the sparse grid is shown in Figure 6.16.

Once the expansion coefficients have been calculated, some statistics are available analytically and others must
be evaluated numerically. For the numerical portion, the input file specifies the use of 10000 samples, which will
be evaluated on the expansion to compute the CDF probabilities. In Figure 6.17, excerpts from the results sum-
mary are presented. We first see the analytic statistics for mean, standard deviation, and COV as computed from
Eqs. 6.68-6.69. The global sensitivity indices (Sobol’ indices) are presented. This example shows that variable
x1 has the largest main effect (0.99) as compared with variable x2 (0.0007) or the interaction between x1 and
x2 (0.005). After the global sensitivity indices, the local, analytic random variable sensitivities are presented, as
computed from Eqs. 6.72-6.73, evaluated at the mean values. Finally, we see the numerical results for the CDF
probabilities based on 10000 samples performed on the expansion. For example, the probability that the Rosen-
brock function is less than 100 is 0.723. Note that these results are significantly different than the ones presented
in Section 2.4.3.3 because of the different assumptions about the inputs: uniform[-2,2] versus lognormals with
means of 1.0 and standard deviations of 0.5.

6.5 Epistemic Nondeterministic Methods

Uncertainty quantification is often used as part of the risk assessment of performance, reliability, and safety of
engineered systems. Increasingly, uncertainty is separated into two categories for analysis purposes: aleatory
and epistemic uncertainty [104, 79]. Aleatory uncertainty is also referred to as variability, irreducible or inherent
uncertainty, or uncertainty due to chance. Examples of aleatory uncertainty include the height of individuals
in a population, or the temperature in a processing environment. Aleatory uncertainty is usually modeled with
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strategy,
single_method #graphics

method,
nond_stoch_collocation
sparse_grid_level = 3
dimension_preference = 2 1
samples = 10000 seed = 12347 rng rnum2
response_levels = .1 1. 50. 100. 500. 1000.
output silent

variables,
lognormal_uncertain = 2
means = 1. 1.
std_deviations = 0.5 0.5
descriptors = ’x1’ ’x2’

interface,
direct
analysis_driver = ’rosenbrock’

responses,
num_response_functions = 1
no_gradients
no_hessians

Figure 6.15: DAKOTA input file for performing UQ using stochastic collocation.
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Figure 6.16: Rosenbrock stochastic collocation example: sparse grid points.

probability distributions, and sampling methods such as Latin Hypercube sampling in DAKOTA can be used to
model aleatory uncertainty. In contrast, epistemic uncertainty refers to lack of knowledge or lack of information
about a particular aspect of the simulation model, including the system and environment being modeled. An
increase in knowledge or information relating to epistemic uncertainty will lead to a reduction in the predicted
uncertainty of the system response or performance. For epistemic uncertain variables, typically one does not
know enough to specify a probability distribution on a variable. Epistemic uncertainty is referred to as subjective,
reducible, or lack of knowledge uncertainty. Examples of epistemic uncertainty include little or no experimental
data for a fixed but unknown physical parameter, incomplete understanding of complex physical phenomena,
uncertainty about the correct model form to use, etc.

There are many approaches which have been developed to model epistemic uncertainty, including fuzzy set theory,
possibility theory, and evidence theory. It is also possible to use simple interval analysis in an epistemic context.
Interval analysis and evidence theory are described in more detail below.

6.5.1 Interval Methods for Epistemic Analysis

In interval analysis, one assumes that nothing is known about an epistemic uncertain variable except that its value
lies somewhere within an interval. In this situation, it is NOT assumed that the value has a uniform probability
of occuring within the interval. Instead, the interpretation is that any value within the interval is a possible value
or a potential realization of that variable. In interval analysis, the uncertainty quantification problem is one of
determining the resulting bounds on the output (defining the output interval) given interval bounds on the inputs.
Again, any output response that falls within the output interval is a possible output with no frequency information
assigned to it.

We have the capability to perform interval analysis using either nond global interval est or nond local interval est.
In the global approach, one uses either a global optimization method or a sampling method to assess the bounds.
nond global interval est allows the user to specify either lhs, which performs Latin Hypercube Sam-
pling and takes the minimum and maximum of the samples as the bounds (no optimization is performed) or ego.
In the case of ego, the efficient global optimization method is used to calculate bounds. The ego method is de-
scribed in Section 9.4. If the problem is amenable to local optimization methods (e.g. can provide derivatives or
use finite difference method to calculate derivatives), then one can use local methods to calculate these bounds.
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Statistics derived analytically from polynomial expansion:

Moments for each response function:
response_fn_1: Mean = 2.5671972656e+02 Std. Dev. = 2.0484189184e+03
Coeff. of Variation = 7.9792034130e+00

Global sensitivity indices for each response function:
response_fn_1 Sobol indices:

9.9391978710e-01 x1
7.1275222945e-04 x2
5.3674606667e-03 x1 x2

response_fn_1 total Sobol indices:
9.9928724777e-01 x1
6.0802128961e-03 x2

Local sensitivities for each response function evaluated at
uncertain variable means:
response_fn_1:
[ -5.1159076975e-13 1.6342482922e-13 ]

Statistics based on 10000 samples performed on polynomial expansion:

Probabilities for each response function:
Cumulative Distribution Function (CDF) for response_fn_1:

Response Level Probability Level Reliability Index General Rel Index
-------------- ----------------- ----------------- -----------------

1.0000000000e-01 1.8100000000e-02
1.0000000000e+00 8.7800000000e-02
5.0000000000e+01 5.8410000000e-01
1.0000000000e+02 7.2330000000e-01
5.0000000000e+02 9.2010000000e-01
1.0000000000e+03 9.5660000000e-01

Figure 6.17: Excerpt of UQ output for stochastic collocation example.
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nond local interval est allows the user to specify either sqp which is sequential quadratic program-
ming, or nip which is a nonlinear interior point method.

Note that when performing interval analysis, it is necessary to define interval uncertain variables as described
in Section 12.3. For interval analysis, one must define only one interval per input variable, in contrast with
Dempster-Shafer evidence theory, where an input can have several possible intervals. Interval analysis can be
considered a subset of Dempster-Shafer evidence theory where each input is defined by one input interval with
a basic probability assignment of one. If you are performing a pure interval analysis, we recommend using ei-
ther nond global interval est or nond local interval est. An example of interval estimation is
found in the test file dakota uq cantilever interval.in, and also in the Tutorial, Section 2.4.3.4. Note
that we have kept separate implementations of interval analysis and Dempster-Shafer evidence theory because our
users often want to couple interval analysis on an “outer loop” with an aleatory, probabilistic analysis on an “inner
loop” for nested, second-order probability calculations. See Section 11.6.1 for more details on nested approaches.

6.5.2 Dempster-Shafer Theory of Evidence

We have chosen to pursue evidence theory at Sandia as a way to model epistemic uncertainty, in part because
evidence theory is a generalization of probability theory. Evidence theory is also referred to as Dempster-Shafer
theory or the theory of random sets [104]. In evidence theory, there are two complementary measures of uncer-
tainty: belief and plausibility. Together, belief and plausibility can be thought of as defining lower and upper
bounds, respectively, on probabilities. Belief and plausibility define the lower and upper limits or intervals on
probability values. Typical plots of cumulative and complementary cumulative belief and plausibility functions
are shown in Figure 6.18 [79]. In evidence theory, it is not possible to specify one probability value. Instead, there
is a range of values that is consistent with the evidence. The range of values is defined by belief and plausibility.
Note that no statement or claim is made about one value within an interval being more or less likely than any other
value.

This section focuses on Dempster-Shafer evidence theory. We also use a technique called second-order probability
to perform uncertainty quantification when there is both epistemic and aleatory uncertainty present. Second-order
probability is a nested technique with two levels of uncertainty quantification. The outer level UQ is typically
linked to epistemic uncertainties and the inner level UQ is commonly associated with aleatory uncertainties. A
common approach used is to sample possible realizations of epistemic variables in the outer loop, then send these
to the inner loop for additional sampling over the aleatory variables. In this way one generates “families” or
ensembles of cumulative distribution functions, where each individual CDF is based on aleatory uncertainty, and
the ensemble is based on epistemic uncertainty. See Section 11.6.1 for more details.

In Dempster-Shafer evidence theory, the uncertain input variables are modeled as sets of intervals. The user
assigns a basic probability assignment (BPA) to each interval, indicating how likely it is that the uncertain in-
put falls within the interval. The BPAs for a particular uncertain input variable must sum to one. The in-
tervals may be overlapping, contiguous, or have gaps. In DAKOTA, an interval uncertain variable is speci-
fied as interval uncertain. When one defines an interval type variable in DAKOTA, it is also neces-
sary to specify the number of intervals defined for each variable with iuv num intervals as well the ba-
sic probability assignments per interval, iuv interval probs, and the associated bounds per each interval,
iuv interval bounds. Figure 6.19 shows the input specification for interval uncertain variables. The ex-
ample shown in Figure 6.19 has two epistemic uncertain interval variables. The first uncertain variable has three
intervals and the second has two. The basic probability assignments for the first variable are 0.5, 0.1, and 0.4,
while the BPAs for the second variable are 0.7 and 0.3. Note that it is possible (and often the case) to define
an interval uncertain variable with only ONE interval. This means that you only know that the possible value of
that variable falls within the interval, and the BPA for that interval would be 1.0. In the case we have shown, the
interval bounds on the first interval for the first variable are 0.6 and 0.9, and the bounds for the second interval for
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Figure 6.18: Example cumulative belief and plausibility distribution functions on left; complementary cumulative
belief and plausibility distribution functions on right

the first variable are 0.1 to 0.5, etc.

Once the intervals, the BPAs, and the interval bounds are defined, the user can run an epistemic analysis by
specifying the method as either nond global evidence or nond local evidence in the DAKOTA input
file. Both of these methods perform Dempster-Shafer calculations: the difference is that the local method uses
a local optimization algorithm to calculate the interval bounds and the global method uses either sampling or
a global optimization approach to calculate an interval bound. These differences are discussed in more detail
below. The intervals and their associated BPAs are then propagated through the simulation to obtain cumulative
distribution functions on belief and plausibility. As mentioned above, belief is the lower bound on a probability
estimate that is consistent with the evidence, and plausibility is the upper bound on a probability estimate that is
consistent with the evidence.

Figure 6.20 shows results for the first response function obtained when running the example in Figure 6.19. In
this example, there are 6 output intervals (as a result of the 2 interval input variables with 3 and 2 intervals, re-
spectively). The output intervals are ordered to obtain cumulative bound functions for both belief and plausibility.
The cumulative distribution function is presented for both belief (CBF) and plausibility (CPF). The CBF value is
the cumulative belief corresponding to a certain output value. For example, the belief that the output value is less
than or equal to 0.2 for response 1 is 0.27, and the plausibility that the output is less than or equal to 0.2 is 1 for
response 1. The belief that the output value is less than 0.6217 is 0.75, while the plausbility that the output is less
than 0.0806 is 0.75. The CBF and CPF may be plotted on a graph and interpreted as bounding the cumulative
distribution function (CDF), which is the probability that the output is less than or equal to a certain value. The
interval bounds on probability values show the value of epistemic uncertainty analysis: the intervals are usually
much larger than expected, giving one a truer picture of the total output uncertainty caused by lack of knowledge
or information about the epistemic input quantities.

As in other nondeterministic methods, with nond local evidence or nond global evidence, one can
specify probability levels and response levels. If response levels are specified, the belief and plausibility function
values corresponding to those response levels are calculated (see Belief Prob Level and Plaus Prob Level in the
tables shown in Figure 6.20). Similarly, if probability levels are specified, these are first interpreted to be belief
values, and the corresponding response levels are calculated (see Belief Resp Level); then they are interpreted to
be plausibility values and the corresponding response levels are calculated (see Plaus Resp Level in the table in
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strategy,
single_method
tabular_graphics_data

method,
nond_global_evidence lhs
samples = 1000
seed = 59334 rng rnum2
response_levels = 0.001 0.03 0.2 0.8 0.001 0.2 0.6 0.8
probability_levels = 0.25 0.5 0.75 0.25 0.5 0.75
distribution cumulative
output verbose

variables,
interval_uncertain = 2
num_intervals = 3 2
interval_probs = 0.5 0.1 0.4 0.7 0.3
interval_bounds = 0.6 0.9 0.1 0.5 0.5 1.0 0.3 0.5 0.6 0.8

interface,
direct
analysis_driver = ’text_book’

responses,
num_response_functions = 2
no_gradients
no_hessians

Figure 6.19: DAKOTA input file for UQ example using Evidence Theory.

Belief and Plausibility for each response function:
Cumulative Belief/Plausibility Functions (CBF/CPF) for response_fn_1:

Response Level Belief Prob Level Plaus Prob Level
-------------- ----------------- ----------------

1.0000000000e-03 0.0000000000e+00 0.0000000000e+00
3.0000000000e-02 0.0000000000e+00 2.7000000000e-01
2.0000000000e-01 2.7000000000e-01 1.0000000000e+00
8.0000000000e-01 9.3000000000e-01 1.0000000000e+00
Probability Level Belief Resp Level Plaus Resp Level
----------------- ----------------- ----------------
2.5000000000e-01 2.6187288772e-01 6.2609206069e-02
5.0000000000e-01 2.9829775860e-01 6.3736734971e-02
7.5000000000e-01 6.2173551556e-01 8.0596931719e-02

Figure 6.20: Results of an Epistemic Uncertainty Quantification using Evidence Theory.
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Figure 6.20). We have recently added the capability to support generalized reliability mappings in the evidence
methods. If the user specifies a generalized reliability level, it will be first converted to a probability, then inter-
preted as a belief and plausibility and the corresponding response levels will be calculated. Likewise, if response
levels are specified, the corresponding belief and plausibility values will be mapped to bounds on the generalized
reliability levels.

To elaborate on the differences between nond global evidence and nond local evidence: both of
these methods take the Dempster-Shafer structures specified on the inputs and calculate a resulting Dempster-
Shafer structure on the outputs (e.g. a cumulative belief and plausibility function). To calculate the belief and
plausibility measures, it is necessary to calculate the minimum and maximum of the response function in each
“interval cell combination.” For example, in a two variable problem, if the first variable had three intervals and
associated BPAs assigned and the second variable had two intervals and associated BPAs assigned, there would
be 6 interval cells in total. In each of these six cells, one needs to identify a minimum and maximum value of
the response function. This is easy to do if the function is monotonic in both variables, but in general it is not.
We offer the capability to use local optimization methods to calculate these bounds: nond local evidence
allows the user to specify either sqp which is sequential quadratic programming, or nip which is a nonlinear
interior point method. We also offer the capability to use global methods to assess these interval cell bounds.
nond global evidence allows the user to specify either lhs, which performs Latin Hypercube Sampling
and takes the minimum and maximum of the samples within each cell as the bounds (no optimization is performed)
or ego. In the case of ego, the efficient global optimization method is used to calculate bounds. The ego method
is described in Section 9.4. Note that for a situation with many uncertain variables, each with a fairly complicated
Dempster-Shafer structure described by many intervals, there will be a huge number of interval calls, and the
overall process of performing Dempster-Shafer analysis will be extremely expensive. Reference [132] provides
more details about the implementation of the optimization methods to perform Dempster-Shafer calculations, as
well as comparisons on test problems.

6.6 Future Nondeterministic Methods

Uncertainty analysis methods under investigation for future inclusion into the DAKOTA framework include ex-
tensions to the stochastic expansion methods and sampling capabilities currently supported. Advanced “smart
sampling” techniques such as bootstrap sampling (BS) and Markov chain Monte Carlo simulation (McMC) are
being considered. We also have an active research focus on adaptive sparse grid methods, to more efficiently
construct stochastic expansions. Efforts have been initiated to allow for the possibility of non-traditional repre-
sentations of uncertainty. We have implemented Dempster-Shafer theory of evidence. We are currently pursuing
Bayesian methods, specifically focusing on Bayesian calibration, where a “prior distribution” on a parameter is
updated through a Bayesian framework involving experimental data and a likelihood function.
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Chapter 7

Optimization Capabilities

7.1 Overview

DAKOTA’s optimization capabilities include a variety of gradient-based and nongradient-based optimization
methods. Numerous packages are available, some of which are commercial packages, some of which are devel-
oped internally to Sandia, and some of which are free software packages from the open source community. The
downloaded version of DAKOTA excludes the commercially developed packages but includes APPSPACK, COL-
INY, CONMIN, JEGA, OPT++, and PICO. Interfaces to DOT, NPSOL, and NLPQL are provided with DAKOTA,
but to use these commercial optimizers, the user must obtain a software license and the source code for these
packages separately. The commercial software can then be compiled into DAKOTA by following DAKOTA’s
installation procedures (see notes in Dakota/INSTALL).

DAKOTA’s input commands permit the user to specify two-sided nonlinear inequality constraints of the form
gLi

≤ gi(x) ≤ gUi
, as well as nonlinear equality constraints of the form hj(x) = htj (see also Section 1.4.1).

Some optimizers (e.g., NPSOL, OPT++, JEGA) can handle these constraint forms directly, whereas other opti-
mizers (e.g., APPSPACK, DOT, CONMIN) require DAKOTA to perform an internal conversion of all constraints
to one-sided inequality constraints of the form gi(x) ≤ 0. In the latter case, the two-sided inequality constraints
are treated as gi(x) − gUi ≤ 0 and gLi − gi(x) ≤ 0 and the equality constraints are treated as hj(x) − htj ≤ 0
and htj − hj(x) ≤ 0. The situation is similar for linear constraints: APPSPACK, NPSOL, OPT++, and JEGA
support them directly, whereas DOT and CONMIN do not. For linear inequalities of the form aLi ≤ aTi x ≤ aUi

and linear equalities of the form aTi x = atj , the nonlinear constraint arrays in DOT and CONMIN are further
augmented to include aTi x − aUi ≤ 0 and aLi − aTi x ≤ 0 in the inequality case and aTi x − atj ≤ 0 and
atj − aTi x ≤ 0 in the equality case. Awareness of these constraint augmentation procedures can be important for
understanding the diagnostic data returned from the DOT and CONMIN algorithms. Other optimizers fall some-
where in between. NLPQL supports nonlinear equality constraints hj(x) = 0 and nonlinear one-sided inequalities
gi(x) ≥ 0, but does not natively support linear constraints. Constraint mappings are used with NLPQL for both
linear and nonlinear cases. Most COLINY methods now support two-sided nonlinear inequality constraints and
nonlinear constraints with targets, but do not natively support linear constraints. Constraint augmentation is not
currently used with COLINY, since linear constraints will soon be supported natively.

When gradient and Hessian information is used in the optimization, derivative components are most commonly
computed with respect to the active continuous variables, which in this case are the continuous design variables.
This differs from parameter study methods (for which all continuous variables are active) and from nondeter-
ministic analysis methods (for which the uncertain variables are active). Refer to Section 14.3 for additional
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information on derivative components and active continuous variables.

7.2 Optimization Software Packages

7.2.1 APPSPACK Library

Asynchronous Parallel Pattern Search (APPS) [69] is available as method asynch pattern search. It is an
asynchronous implementation of generating set search. APPSPACK can handle unconstrained problems as well as
those with bound constraints, linear constraints [71], and general nonlinear constraints [70]. APPSPACK is best
suited for simulation-based problems with less than 100 variables. It has significant advantages over gradient-
based methods when the function is noisy and/or discontinuous. APPSPACK leverages the cddlib software [52]
to handle degeneracy in linear constraints.

An example specification for APPSPACK with nonlinear constraints is:

method,
asynch_pattern_search

initial_delta = .5
contraction_factor = 0.25
threshold_delta = 1.e-4
merit_function merit_max
smoothing_factor = 10.0

See the DAKOTA Reference Manual [3] for additional detail on the APPSPACK commands and sample input
specifications in Dakota/test/dakota apps.in.

7.2.2 COLINY Library

The COLINY library [76] supersedes the SGOPT library and contains a variety of nongradient-based optimization
algorithms. The suite of COLINY optimizers available in DAKOTA currently include the following:

• Global Optimization Methods

– Several evolutionary algorithms, including genetic algorithms (coliny ea)

– DIRECT [110] (coliny direct)

• Local Optimization Methods

– Solis-Wets (coliny solis wets)

– Pattern Search (coliny pattern search)

• Interfaces to Third-Party Local Optimization Methods

– COBYLA2 (coliny cobyla)

For expensive optimization problems, COLINY’s global optimizers are best suited for identifying promising
regions in the global design space. In multimodal design spaces, the combination of global identification (from
COLINY) with efficient local convergence (from CONMIN, DOT, NLPQL, NPSOL, or OPT++) can be highly
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effective. None of the COLINY methods are gradient-based, which makes them appropriate for problems for
which gradient information is unavailable or is of questionable accuracy due to numerical noise. The COLINY
methods support bound constraints and nonlinear constraints, but not linear constraints. The nonlinear constraints
in COLINY are currently satisfied using penalty function formulations [111]. Support for methods which manage
constraints internally is currently being developed and will be incorporated into future versions of DAKOTA. Note
that one observed drawback to coliny solis wets is that it does a poor job solving problems with nonlinear
constraints. Refer to Table 17.1 for additional method classification information.

An example specification for a simplex-based pattern search algorithm from COLINY is:

method,
coliny_pattern_search
max_function_evaluations = 2000
solution_accuracy = 1.0e-4
initial_delta = 0.05
threshold_delta = 1.0e-8
pattern_basis simplex
exploratory_moves adaptive_pattern
contraction_factor = 0.75

The DAKOTA Reference Manual [3] contains additional information on the COLINY options and settings.

7.2.3 Constrained Minimization (CONMIN) Library

The CONMIN library [138] contains two methods for gradient-based nonlinear optimization. For constrained op-
timization, the Method of Feasible Directions (DAKOTA’s conmin mfdmethod selection) is available, while for
unconstrained optimization, the Fletcher-Reeves conjugate gradient method (DAKOTA’s conmin frcg method
selection) is available. Both of these methods are most efficient at finding a local minimum in the vicinity of the
starting point. The methods in CONMIN can be applied to global optimization problems, but there is no guarantee
that they will find the globally optimal design point.

One observed drawback to CONMIN’s Method of Feasible Directions is that it does a poor job handling equality
constraints. This is the case even if the equality constraint is formulated as two inequality constraints. This
problem is what motivates the modifications to MFD that are present in DOT’s MMFD algorithm. For problems
with equality constraints, it is better to use the OPT++ nonlinear interior point methods, NPSOL, NLPQL, or one
of DOT’s constrained optimization methods (see below).

An example specification for CONMIN’s Method of Feasible Directions algorithm is:

method,
conmin_mfd
convergence_tolerance = 1.0e-4
max_iterations = 100
output quiet

Refer to the DAKOTA Reference Manual [3] for more information on the settings that can be used with CONMIN
methods.
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7.2.4 Design Optimization Tools (DOT) Library

The DOT library [140] contains nonlinear programming optimizers, specifically the Broyden-Fletcher-Goldfarb-
Shanno (DAKOTA’s dot bfgsmethod selection) and Fletcher-Reeves conjugate gradient (DAKOTA’s dot frcg
method selection) methods for unconstrained optimization, and the modified method of feasible directions (DAKOTA’s
dot mmfd method selection), sequential linear programming (DAKOTA’s dot slp method selection), and se-
quential quadratic programming (DAKOTA’s dot sqp method selection) methods for constrained optimization.

All DOT methods are local gradient-based optimizers which are best suited for efficient navigation to a local
minimum in the vicinity of the initial point. Global optima in nonconvex design spaces may be missed. Other
gradient based optimizers for constrained optimization include the NPSOL, NLPQL, CONMIN, and OPT++
libraries.

Through the optimization type specification, DOT can be used to solve either minimization or maximiza-
tion problems. For all other optimizer libraries, it is up to the user to reformulate a maximization problem as a
minimization problem by negating the objective function (i.e., maximize f(x) is equivalent to minimize −f(x)).
An example specification for DOT’s BFGS quasi-Newton algorithm is:

method,
dot_bfgs
optimization_type maximize
convergence_tolerance = 1.0e-4
max_iterations = 100
output quiet

See the DAKOTA Reference Manual [3] for additional detail on the DOT commands. More information on DOT
can be obtained by contacting Vanderplaats Research and Development at http://www.vrand.com.

7.2.5 dl solver — Solvers via Shared Libraries

On computer systems that permit use of shared libraries (most modern systems), DAKOTA can avail itself of
optimization solvers contained in shared libraries. This is a first step toward allowing optional parts of DAKOTA,
such as proprietary solvers, to be accessed from shared libraries. For example, the DAKOTA source distributions
illustrate making a sample shared-library interface to SNOPT [61], whose use would be specified by

method,
dl_solver = ’dl_snopt.dll’

The quoted string contains the name of the shared library, optionally followed by keyword assignments known to
the library, such as

method,
dl_solver = ’dl_snopt.dll outlev = 1’

which would turn on some diagnostic printing in the SNOPT example.

7.2.6 JEGA

The JEGA (John Eddy’s Genetic Algorithms) library contains two global optimization methods. The first is
a Multi-objective Genetic Algorithm (MOGA) which performs Pareto optimization. The second is a Single-
objective Genetic Algorithm (SOGA) which performs optimization on a single objective function. These functions
are accessed as (moga and soga) within DAKOTA.
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The moga algorithm directly creates a population of Pareto optimal solutions. Over time, the selection operators
of a genetic algorithm act to efficiently select non-dominated solutions along the Pareto front. Because a GA
involves a population of solutions, many points along the Pareto front can be computed in a single study. Thus,
although GAs are computationally expensive when compared to gradient-based methods, the advantage in the
multiobjective setting is that one can obtain an entire Pareto set at the end of one genetic algorithm run, as
compared with having to run the “weighted sum” single objective problem multiple times with different weights.

The DAKOTA Reference Manual [3] contains additional information on the JEGA options and settings. Sec-
tion 7.3 discusses additional multiobjective optimization capabilities, and there are MOGA examples in Chapters 2
and 22.

7.2.7 NCSU DIRECT

We have an implementation of the global optimization method called DIRECT (DIviding RECTangles algorithm)
that is detailed in [53]. DIRECT is a derivative free global optimization method that balances local search in
promising regions of the design space with global search in unexplored regions. DIRECT adaptively subdivides
the space of feasible design points to guarantee that iterates are generated in the neighborhood of a global mini-
mum in finitely many iterations. In practice, DIRECT has proven an effective heuristic for many applications.

NCSU DIRECT is specified with ncsu direct. One of the controls is volume boxsize limit, which
terminates the optimization when the volume of the particular rectangle which contains the minimum function
value found thus far is less than a certain percentage (given by the volume boxsize limit) of the whole volume of
the hyperrectangle defined by the variable bounds. An example specification is given below:

method,
ncsu_direct
volume_boxsize_limit = 1.e-8

The DAKOTA Reference Manual [3] contains additional information on the NCSU DIRECT options and settings.

7.2.8 NLPQL Library

The NLPQL library contains a sequential quadratic programming (SQP) implementation (DAKOTA’s nlpql sqp
method selection). The particular implementation used is NLPQLP [122], a variant with distributed and non-
monotone line search. SQP is a nonlinear programming approach for constrained minimization which solves a
series of quadratic programming (QP) subproblems, where each QP minimizes a quadratic approximation to the
Lagrangian subject to linearized constraints. It uses an augmented Lagrangian merit function and a BFGS ap-
proximation to the Hessian of the Lagrangian. It is an infeasible method in that constraints will be satisfied at the
final solution, but not necessarily during the solution process. The non-monotone line search used in NLPQLP
is designed to be more robust in the presence of inaccurate or noisy gradients common in many engineering
applications.

NLPQL’s gradient-based approach is best suited for efficient navigation to a local minimum in the vicinity of
the initial point. Global optima in nonconvex design spaces may be missed. Other gradient based optimizers for
constrained optimization include the DOT, CONMIN, NPSOL, and OPT++ libraries.

See the DAKOTA Reference Manual [3] for additional detail on the NLPQL commands. More information on
NLPQL can be obtained from Prof. Klaus Schittkowski at http://www.uni-bayreuth.de/departments/
math/∼kschittkowski/nlpqlp20.htm.
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7.2.9 NPSOL Library

The NPSOL library [59] contains a sequential quadratic programming (SQP) implementation (DAKOTA’s npsol sqp
method selection). Like NLPQL, it solves a series of QP subproblems, uses an augmented Lagrangian merit func-
tion and a BFGS approximation to the Hessian of the Lagrangian, and will not necessarily satisfy the constraints
until the final solution. It uses a sufficient-decrease line search approach, which is a gradient-based line search
for analytic, mixed, or DAKOTA-supplied numerical gradients and is a value-based line search in the vendor
numerical case.

NPSOL’s gradient-based approach is best suited for efficient navigation to a local minimum in the vicinity of the
initial point. Global optima in nonconvex design spaces may be missed. Other gradient based optimizers for
constrained optimization include the DOT, CONMIN, NLPQL, and OPT++ libraries. For least squares methods
based on NPSOL, refer to Section 8.2.2.

An example of an NPSOL specification is:

method,
npsol_sqp
convergence_tolerance = 1.0e-6
max_iterations = 100
output quiet

See the DAKOTA Reference Manual [3] for additional detail on the NPSOL commands. More information on
NPSOL can be obtained by contacting Stanford Business Software at http://www.sbsi-sol-optimize.
com.

The NPSOL library generates diagnostics in addition to those appearing in the DAKOTA output stream. These
diagnostics are written to the default FORTRAN device 9 file (e.g., ftn09 or fort.9, depending on the archi-
tecture) in the working directory.

7.2.10 OPT++ Library

The OPT++ library [97] contains primarily nonlinear programming optimizers for unconstrained, bound con-
strained, and nonlinearly constrained minimization: Polak-Ribiere conjugate gradient (DAKOTA’s optpp cg
method selection), quasi-Newton (DAKOTA’s optpp q newton method selection), finite difference Newton
(DAKOTA’s optpp fd newton method selection), and full Newton (DAKOTA’s optpp newton method
selection). The library also contains the parallel direct search nongradient-based method [26] (specified as
DAKOTA’s optpp pds method selection).

OPT++’s gradient-based optimizers are best suited for efficient navigation to a local minimum in the vicinity of
the initial point. Global optima in nonconvex design spaces may be missed. OPT++’s PDS method does not use
gradients and has some limited global identification abilities; it is best suited for problems for which gradient
information is unavailable or is of questionable accuracy due to numerical noise. Some OPT++ methods are
strictly unconstrained (optpp cg) and some support bound constraints (optpp pds), whereas the Newton-
based methods (optpp q newton, optpp fd newton, and optpp newton) all support general linear and
nonlinear constraints (refer to Table 19.1). Other gradient-based optimizers include the DOT, CONMIN, NLPQL,
and NPSOL libraries. For least squares methods based on OPT++, refer to Section 8.2.1.

An example specification for the OPT++ quasi-Newton algorithm is:

method,
optpp_q_newton
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max_iterations = 50
convergence_tolerance = 1e-4
output debug

See the DAKOTA Reference Manual [3] for additional detail on the OPT++ commands.

The OPT++ library generates diagnostics in addition to those appearing in the DAKOTA output stream. These
diagnostics are written to the file OPT DEFAULT.out in the working directory.

7.2.11 Parallel Integer Combinatorial Optimization (PICO)

For DAKOTA 5.0, branch and bound is currently inoperative due to ongoing restructuring of PICO and its incor-
poration into COLINY. This will be supported again in future releases.

DAKOTA employs the branch and bound capabilities of the PICO library for solving discrete and mixed con-
tinuous/discrete constrained nonlinear optimization problems. This capability is implemented in DAKOTA as a
strategy and is discussed further in Section 10.5.

7.2.12 SGOPT

The SGOPT library has been deprecated, and all methods have been migrated to the COLINY library.

7.3 Additional Optimization Capabilities

DAKOTA provides several capabilities which extend the services provided by the optimization software packages
described in Section 7.2. First, any of the optimization algorithms can be used for multiobjective optimization
problems through the use of multiobjective transformation techniques (e.g., weighted sums). Finally, with any
optimizer (or least squares solver described in Section 8.2), user-specified (and in some cases automatic or loga-
rithmic) scaling may be applied to continuous design variables, objective functions (or least squares terms), and
constraints.

7.3.1 Multiobjective Optimization

Multiobjective optimization means that there are two or more objective functions that you wish to optimize simul-
taneously. Often these are conflicting objectives, such as cost and performance. The answer to a multi-objective
problem is usually not a single point. Rather, it is a set of points called the Pareto front. Each point on the Pareto
front satisfies the Pareto optimality criterion, which is stated as follows: a feasible vector X∗ is Pareto optimal
if there exists no other feasible vector X which would improve some objective without causing a simultaneous
worsening in at least one other objective. Thus, if a feasible pointX ′ exists that CAN be improved on one or more
objectives simultaneously, it is not Pareto optimal: it is said to be “dominated” and the points along the Pareto
front are said to be “non-dominated.”

There are three capabilities for multiobjective optimization in DAKOTA. First, there is the MOGA capability de-
scribed previously in Section 7.2.6. This is a specialized algorithm capability. The second capability involves the
use of response data transformations to recast a multiobjective problem as a single-objective problem. Currently,
DAKOTA supports the simple weighted sum approach for this transformation, in which a composite objective
function is constructed from a set of individual objective functions using a user-specified set of weighting factors.
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This approach is optimization algorithm independent, in that it works with any of the optimization methods listed
previously in this chapter. The third capability is the Pareto-set optimization strategy described in Section 10.4.
This capability also utilizes the multiobjective response data transformations to allow optimization algorithm in-
dependence; however, it builds upon the basic approach by computing sets of optima in order to generate a Pareto
trade-off surface.

In the multiobjective transformation approach in which multiple objectives are combined into one, an appropriate
single-objective optimization technique is used to solve the problem. The advantage of this approach is that one
can use any number of optimization methods that are especially suited for the particular problem class. One
disadvantage of the weighted sum transformation approach is that a linear weighted sum objective cannot locate
all optimal solutions in the Pareto set if the Pareto front is nonconvex. Also, if one wants to understand the effects
of changing weights, this method can become computationally expensive. Since each optimization of a single
weighted objective will find only one point near or on the Pareto front, many optimizations need to be performed
to get a good parametric understanding of the influence of the weights.

The selection of a multiobjective optimization problem is made through the specification of multiple objective
functions in the responses keyword block (i.e., the num objective functions specification is greater than
1). The weighting factors on these objective functions can be optionally specified using the multi objective weights
keyword (the default is equal weightings). The composite objective function for this optimization problem, F ,
is formed using these weights as follows: F =

∑R
k=1 wkfk, where the fk terms are the individual objective

function values, the wk terms are the weights, and R is the number of objective functions. The weighting fac-
tors stipulate the relative importance of the design concerns represented by the individual objective functions; the
higher the weighting factor, the more dominant a particular objective function will be in the optimization pro-
cess. Constraints are not affected by the weighting factor mapping; therefore, both constrained and unconstrained
multiobjective optimization problems can be formulated and solved with DAKOTA, assuming selection of an ap-
propriate constrained or unconstrained single-objective optimization algorithm. Future multiobjective response
data transformations for goal programming, normal boundary intersection, etc. are planned.

Figure 7.1 shows a DAKOTA input file for a multiobjective optimization problem based on the “textbook” test
problem. This input file is named dakota multiobj1.in in the Dakota/test directory. In the standard
textbook formulation, there is one objective function and two constraints. In the multiobjective textbook formula-
tion, all three of these functions are treated as objective functions (num objective functions = 3), with
weights given by the multi objective weights keyword. Note that it is not required that the weights sum
to a value of one. The multiobjective optimization capability also allows any number of constraints, although
none are included in this example.

Figure 7.2 shows an excerpt of the results for this multiobjective optimization problem, with output in verbose
mode. The data for function evaluation 9 show that the simulator is returning the values and gradients of the three
objective functions and that this data is being combined by DAKOTA into the value and gradient of the composite
objective function, as identified by the header “Multiobjective transformation:”. This combination
of value and gradient data from the individual objective functions employs the user-specified weightings of .7,
.2, and .1. Convergence to the optimum of the multiobjective problem is indicated in this case by the gradient
of the composite objective function going to zero (no constraints are active).

By performing multiple optimizations for different sets of weights, a family of optimal solutions can be generated
which define the trade-offs that result when managing competing design concerns. This set of solutions is referred
to as the Pareto set. Section 10.4 describes a solution strategy used for directly generating the Pareto set in order
to investigate the trade-offs in multiobjective optimization problems.
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strategy,
single_method
tabular_graphics_data

method,
npsol_sqp
output verbose
convergence_tolerance = 1.e-8

variables,
continuous_design = 2
initial_point 0.9 1.1
upper_bounds 5.8 2.9
lower_bounds 0.5 -2.9
descriptors ’x1’ ’x2’

interface,
system asynchronous
analysis_driver= ’text_book’

responses,
num_objective_functions = 3
multi_objective_weights = .7 .2 .1
analytic_gradients
no_hessians

Figure 7.1: Example DAKOTA input file for multiobjective optimization.
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------------------------------
Begin Function Evaluation 9
------------------------------
Parameters for function evaluation 9:

5.9388064483e-01 x1
7.4158741198e-01 x2

(text_book /tmp/fileFNNH3v /tmp/fileRktLe9)
Removing /tmp/fileFNNH3v and /tmp/fileRktLe9

Active response data for function evaluation 9:
Active set vector = { 3 3 3 } Deriv vars vector = { 1 2 }

3.1662048106e-02 obj_fn_1
-1.8099485683e-02 obj_fn_2
2.5301156719e-01 obj_fn_3

[ -2.6792982175e-01 -6.9024137415e-02 ] obj_fn_1 gradient
[ 1.1877612897e+00 -5.0000000000e-01 ] obj_fn_2 gradient
[ -5.0000000000e-01 1.4831748240e+00 ] obj_fn_3 gradient

-----------------------------------
Post-processing Function Evaluation
-----------------------------------
Multiobjective transformation:

4.3844693257e-02 obj_fn
[ 1.3827084219e-06 5.8620632776e-07 ] obj_fn gradient

7 1 1.0E+00 9 4.38446933E-02 1.5E-06 2 T TT

Exit NPSOL - Optimal solution found.

Final nonlinear objective value = 0.4384469E-01

Figure 7.2: DAKOTA results for the multiobjective optimization example.
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7.3.2 Optimization with User-specified or Automatic Scaling

Some optimization problems involving design variables, objective functions, or constraints on vastly different
scales may be solved more efficiently if these quantities are adjusted to a common scale (typically on the order
of unity). With any optimizer (or least squares solver described in Section 8.2), user-specified characteristic
value scaling may be applied to any of continuous design variables, functions/residuals, nonlinear inequality and
equality constraints, and linear inequality and equality constraints. Automatic scaling is available for variables or
responses with one- or two-sided bounds or equalities and may be combined with user-specified scaling values.
Logarithmic (log10) scaling is available and may also be combined with characteristic values. Log scaling is not
available for linear constraints. Moreover, when continuous design variables are log scaled, linear constraints are
not permitted in the problem formulation. Discrete variable scaling is not supported.

Scaling is enabled on a per-method basis for optimizers and least squares minimizers by including the scaling
keyword in the relevant method specification in the DAKOTA input deck. When scaling is enabled, variables,
functions, gradients, Hessians, etc., are transformed such that the optimizer iterates in scaled variable space,
whereas evaluations of the computational model as specified in the interface are performed on the original prob-
lem scale. Therefore using scaling does not require rewriting the interface to the simulation code. When the
scaling keyword is omitted, all * scale types and * scales specifications described below are ignored
in the corresponding method, variables, and responses sections. When the method output level is set above
normal, scaling initialization and diagnostic information will be printed.

Scaling for a particular variable or response type is enabled through the * scale types specification (see the
Reference Manual method section and references contained therein for a complete keyword list). Valid options
for this string specification include ’none’ (default), ’value’, ’auto’, or ’log’, for no, characteristic
value, automatic, or logarithmic scaling, respectively (although not all types are valid for scaling all entities). If a
single string is specified with any of these keywords it will apply to each component of the relevant vector, e.g.,
cdv scale types = ’value’ will enable characteristic value scaling for each continuous design variable.

The user may additionally specify no, one, or a vector of characteristic scale values through the * scales
specification. These characteristic values are ignored for scaling type ’none’, required for ’value’, and
optional for ’auto’ and ’log’. If a single value is specified with any of these keywords it will apply to each
component of the relevant vector, e.g., cdv scales = 3.0 will apply a characteristic scaling value of 3.0 to
each continuous design variable.

When scaling is enabled, the following procedures determine the transformations used to scale each component
of a variables or response vector. In all cases, if scaling would result in division by a value smaller in magnitude
than 1.0e-3, a warning is issued and no scaling performed for that component.

• None (’none’): no scaling performed (* scales ignored) on this component.

• Characteristic value (’value’): the corresponding quantity is scaled (divided) by the required character-
istic value provided in the * scales specification, and bounds are adjusted as necessary. If the value is
negative, the sense of inequalities are changed accordingly.

• Automatic (’auto’): First, any characteristic values from the optional * scales specification are ap-
plied. Then, automatic scaling will be attempted according to the following scheme:

– two-sided bounds scaled into the interval [0,1];

– one-sided bounds or targets are scaled by a characteristic value to move the bound or target to 1, and
the sense of inequalities are changed if necessary;

– no bounds or targets: no automatic scaling possible for this component
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Automatic scaling is not available for objective functions nor least squares terms since they lack bound
constraints. Further, when automatically scaled, linear constraints are scaled by characteristic values only,
not affinely scaled into [0,1].

• Logarithmic (’log’): First, any characteristic values from the optional * scales specification are ap-
plied. Then, log10 scaling is applied. Logarithmic scaling is not available for linear constraints. Further,
when continuous design variables are log scaled, linear constraints are not allowed.

Scaling for linear constraints specified through linear inequality scales or linear equality scales
is applied after any (user-specified or automatic) continuous variable scaling. For example, for scaling mapping
unscaled continuous design variables x to scaled variables x̃:

x̃j =
xj − xjO
xjM

,

where xjM is the final component multiplier and xjO the offset, we have the following matrix system for linear
inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM )x̃+ xO) ≤ aU

aL −AixO ≤ Aidiag(xM )x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU ,

and user-specified or automatically computed scaling multipliers are applied to this final transformed system,
which accounts for any continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by characteristic values only, not affinely scaled into the interval [0, 1].

Figure 7.3 demonstrates the use of several scaling keywords for the textbook optimization problem. The contin-
uous design variable x1 is scaled by a characteristic value of 4.0, whereas x2 is scaled automatically into [0, 1]
based on its bounds. The objective function will be scaled by a factor of 50.0, then logarithmically, the first
nonlinear constraint by a factor of 15.0, and the second nonlinear constraint is not scaled.
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strategy,
single_method
graphics,tabular_graphics_data

method,
conmin_frcg
scaling
output verbose

model,
single

variables,
continuous_design = 2
initial_point -1.2 1.0
lower_bounds -2.0 0.001
upper_bounds 2.0 2.0
descriptors ’x1’ "x2"
cdv_scale_types = ’value’ ’log’
cdv_scales = 4.0 0.1

interface,
direct
analysis_driver = ’rosenbrock’

responses,
num_objective_functions = 1
objective_function_scale_types = ’value’
objective_function_scales = 50.0

analytic_gradients
no_hessians

Figure 7.3: Sample usage of scaling keywords in DAKOTA input specification.
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Chapter 8

Nonlinear Least Squares Capabilities

8.1 Overview

Nonlinear least-squares methods are optimization algorithms that exploit the special structure of a sum of the
squares objective function [60]. These problems commonly arise in parameter estimation, system identification,
and test/analysis reconciliation. To exploit the problem structure, more granularity is needed in the response
data than is required for a typical optimization problem. That is, rather than using the sum-of-squares objective
function and its gradient, least-squares iterators require each term used in the sum-of-squares formulation along
with its gradient. This means that the m functions in the DAKOTA response data set consist of the individual
least-squares terms along with any nonlinear inequality and equality constraints. These individual terms are often
called residuals when they denote differences of observed quantities from values computed by the model whose
parameters are being estimated.

The enhanced granularity needed for nonlinear least-squares algorithms allows for simplified computation of an
approximate Hessian matrix. In Gauss-Newton-based methods for example, the true Hessian matrix is approxi-
mated by neglecting terms in which residuals multiply Hessians (matrices of second partial derivatives) of resid-
uals, under the assumption that the residuals tend towards zero at the solution. As a result, residual function value
and gradient information (first-order information) is sufficient to define the value, gradient, and approximate Hes-
sian of the sum-of-squares objective function (second-order information). See Section 1.4.2 for additional details
on this approximation.

In practice, least-squares solvers will tend to be significantly more efficient than general-purpose optimization
algorithms when the Hessian approximation is a good one, e.g., when the residuals tend towards zero at the
solution. Specifically, they can exhibit the quadratic convergence rates of full Newton methods, even though only
first-order information is used. Gauss-Newton-based least-squares solvers may experience difficulty when the
residuals at the solution are significant.

In order to specify a least-squares problem, the responses section of the DAKOTA input should be configured us-
ing num least squares terms (as opposed to num objective functions in the case of optimization).
Any linear or nonlinear constraints are handled in an identical way to that of optimization (see Section 7.1; note
that neither Gauss-Newton nor NLSSOL require any constraint augmentation and NL2SOL supports neither linear
nor nonlinear constraints). Gradients of the least-squares terms and nonlinear constraints are required and should
be specified using either numerical gradients, analytic gradients, or mixed gradients. Since
explicit second derivatives are not used by the least-squares methods, the no hessians specification should be
used. DAKOTA’s scaling options, described in Section 7.3.2 can be used on least-squares problems, using the
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least squares term scales keyword to scale least-squares residuals, if desired.

8.2 Solution Techniques

Nonlinear least-squares problems can be solved using the Gauss-Newton algorithm, which leverages the full
Newton method from OPT++, the NLSSOL algorithm, which is closely related to NPSOL, or the NL2SOL
algorithm, which uses a secant-based algorithm. Details for each are provided below.

8.2.1 Gauss-Newton

DAKOTA’s Gauss-Newton algorithm consists of combining an implementation of the Gauss-Newton Hessian
approximation (see Section 1.4.2) with full Newton optimization algorithms from the OPT++ package [97] (see
Section 7.2.10). This approach can be selected using the optpp g newton method specification. An example
specification follows:

method,
optpp_g_newton
max_iterations = 50
convergence_tolerance = 1e-4
output debug

Refer to the DAKOTA Reference Manual [3] for more detail on the input commands for the Gauss-Newton
algorithm.

The Gauss-Newton algorithm is gradient-based and is best suited for efficient navigation to a local least-squares
solution in the vicinity of the initial point. Global optima in multimodal design spaces may be missed. Gauss-
Newton supports bound, linear, and nonlinear constraints. For the nonlinearly-constrained case, constraint Hes-
sians (required for full-Newton nonlinear interior point optimization algorithms) are approximated using quasi-
Newton secant updates. Thus, both the objective and constraint Hessians are approximated using first-order
information.

8.2.2 NLSSOL

The NLSSOL algorithm is a commercial software product of Stanford University that is bundled with current
versions of the NPSOL library (see Section 7.2.9). It uses an SQP-based approach to solve generally-constrained
nonlinear least-squares problems. It periodically employs the Gauss-Newton Hessian approximation to accelerate
the search. Like the Gauss-Newton algorithm of Section 8.2.1, its derivative order is balanced in that it requires
only first-order information for the least-squares terms and nonlinear constraints. This approach can be selected
using the nlssol sqp method specification. An example specification follows:

method,
nlssol_sqp
convergence_tolerance = 1e-8

Refer to the DAKOTA Reference Manual [3] for more detail on the input commands for NLSSOL.
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8.2.3 NL2SOL

The NL2SOL algorithm [24] is a secant-based least-squares algorithm that is q-superlinearly convergent. It adap-
tively chooses between the Gauss-Newton Hessian approximation and this approximation augmented by a correc-
tion term from a secant update. NL2SOL is appropriate for “large residual” problems, i.e., least-squares problems
for which the residuals do not tend towards zero at the solution.

8.2.4 Additional Features and Future plans

In DAKOTA 4.2, the capability to calculate confidence intervals on the estimated parameters was added. The con-
fidence intervals are determined for individual parameters: these are not joint confidence intervals. The intervals
are 95% intervals around the estimated parameters, and are calculated as the optimal value of the estimated pa-
rameters +/− a t-test statistic times the standard error (SE) of the estimated parameter vector. The SE is based on
a linearization approximation involving the matrix of the derivatives of the model with respect to the derivatives
of the estimated parameters. In the case where these gradients are extremely inaccurate or the model is very non-
linear, the confidence intervals reported are likely to be inaccurate as well. Future work on generating confidence
intervals on the estimated parameters for nonlinear least-squares methods will involve adding Bonferroni confi-
dence intervals and one or two methods for calculating joint confidence intervals (such as a linear approximation
and the F-test method). See [124] and [141] for more details about confidence intervals. Note that confidence
intervals are not calculated when scaling is used, when the number of least-squares terms is less than the number
of parameters to be estimated, or when using numerical gradients.

Dakota 4.2 also allows a form of weighted least squares. The user can specify a set of weights that are used
to weight each residual term using the keyword least squares weights. Note that these weights must be
pre-determined by the user and entered in the DAKOTA input file: they are not calculated on-the-fly. The user
can also specify scaling for the least-squares terms. Scaling is applied before weighting; usually one or the other
would be applied but not both. The Responses section in the DAKOTA Reference Manual [3] has more detail
about weighting and scaling of the residual terms.

The least-squares branch in DAKOTA is an area of continuing enhancements, particularly through the addition
of new least-squares algorithms. One potential future addition is the orthogonal distance regression (ODR) algo-
rithms which estimate values for both independent and dependent parameters.

8.3 Examples

Both the Rosenbrock and textbook example problems can be formulated as nonlinear least-squares problems.
Refer to Chapter 22 for more information on these formulations.

Figure 8.1 shows an excerpt from the output obtained when running NL2SOL on a five-dimensional problem. This
input file is named dakota nl2test.in found in the Dakota/test directory. Note that the optimal param-
eter estimates are printed, followed by the residual norm and values of the individual residual terms, followed by
the confidence intervals on the parameters.

The analysis driver script (the script being driven by DAKOTA) has to perform several tasks in the case of pa-
rameter estimation using nonlinear least-squares methods. The analysis driver script must: (1) read in the values
of the parameters supplied by DAKOTA; (2) run the computer simulation with these parameter values; (3) re-
trieve the results from the computer simulation; (4) compute the difference between each computed simulation
value and the corresponding experimental or measured value; and (5) write these residuals (differences) to an
external file that gets passed back to DAKOTA. Note there will be one line per residual term, specified with
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<<<<< Iterator nl2sol completed.
<<<<< Function evaluation summary: 27 total (26 new, 1 duplicate)
<<<<< Best parameters =

3.7541004764e-01 x1
1.9358463401e+00 x2
-1.4646865611e+00 x3
1.2867533504e-02 x4
2.2122702030e-02 x5

<<<<< Best residual norm = 7.3924926090e-03; 0.5 * normˆ2 = 2.7324473487e-05
<<<<< Best residual terms =

-2.5698266189e-03
4.4759880011e-03
9.9223430643e-04
-1.0634409194e-03

...

Confidence Interval for x1 is [ 3.7116510206e-01, 3.7965499323e-01 ]
Confidence Interval for x2 is [ 1.4845485507e+00, 2.3871441295e+00 ]
Confidence Interval for x3 is [ -1.9189348458e+00, -1.0104382765e+00 ]
Confidence Interval for x4 is [ 1.1948590669e-02, 1.3786476338e-02 ]
Confidence Interval for x5 is [ 2.0289951664e-02, 2.3955452397e-02 ]

Figure 8.1: Example of confidence intervals on optimal parameters

num least squares terms in the DAKOTA input file. It is the last two steps which are different from most
other DAKOTA applications.

To aid the calculation of the residuals, in DAKOTA 4.2 we have added the capability to have the user specify a
data file with the experimental results. In this case, DAKOTA will calculate the residuals (that is, the simulation
model results minus the experimental results), and the user-provided script can omit this step: the script can just
return the simulation results. An example of this can be found in the file named dakota nls datafile.in
in the Dakota/examples/methods directory. In this example, there are 3 residual terms. The data file
of experimental results associated with this example is least squares test.dat. These three values are
subtracted from the least-squares terms to produce residuals for the nonlinear least-squares problem.
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Chapter 9

Surrogate-Based Minimization

9.1 Overview

Surrogate models approximate an original, high fidelity “truth” model, typically at reduced computational cost.
In DAKOTA, several surrogate model selections are possible, which are categorized as data fits, multifidelity
models, and reduced-order models, as described in Section 11.4. In the context of minimization (optimization
or calibration), surrogate models can speed convergence by reducing function evaluation cost or smoothing noisy
response functions.

9.2 Surrogate-Based Local Minimization

In the surrogate-based local minimization method (keyword: surrogate based local) the minimization
algorithm operates on a surrogate model instead of directly operating on the computationally expensive simulation
model. The surrogate model can be based on data fits, multifidelity models, or reduced-order models, as described
in Section 11.4. Since the surrogate will generally have a limited range of accuracy, the surrogate-based local
algorithm periodically checks the accuracy of the surrogate model against the original simulation model and
adaptively manages the extent of the approximate optimization cycles using a trust region approach.

A generally-constrained nonlinear programming problem takes the form

minimize f(x)
subject to gl ≤ g(x) ≤ gu

h(x) = ht
xl ≤ x ≤ xu (9.1)

where x ∈ <n is the vector of design variables, and f , g, and h are the objective function, nonlinear inequal-
ity constraints, and nonlinear equality constraints, respectively1. Individual nonlinear inequality and equality
constraints are enumerated using i and j, respectively (e.g., gi and hj). The corresponding surrogate-based opti-
mization (SBO) algorithm may be formulated in several ways and applied to either optimization or least-squares
calibration problems. In all cases, SBO solves a sequence of k approximate optimization subproblems subject
to a trust region constraint ∆k; however, many different forms of the surrogate objectives and constraints in the

1Any linear constraints are not approximated and may be added without modification to all formulations
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Table 9.1: SBO approximate subproblem formulations.
Original Objective Lagrangian Augmented Lagrangian

No constraints TRAL
Linearized constraints SQP-like
Original constraints Direct surrogate IPTRSAO

approximate subproblem can be explored. In particular, the subproblem objective may be a surrogate of the orig-
inal objective or a surrogate of a merit function (most commonly, the Lagrangian or augmented Lagrangian),
and the subproblem constraints may be surrogates of the original constraints, linearized approximations of the
surrogate constraints, or may be omitted entirely. Each of these combinations is shown in Table 9.1, where black
indicates an inappropriate combination, gray indicates an acceptable combination, and blue indicates a common
combination.

Initial approaches to nonlinearly-constrained SBO optimized an approximate merit function which incorporated
the nonlinear constraints [117, 5]:

minimize Φ̂k(x)
subject to ‖ x− xkc ‖∞ ≤ ∆k (9.2)

where the surrogate merit function is denoted as Φ̂(x), xc is the center point of the trust region, and the trust region
is truncated at the global variable bounds as needed. The merit function to approximate was typically chosen to
be a standard implementation [139, 103, 60] of the augmented Lagrangian merit function (see Eqs. 9.11–9.12),
where the surrogate augmented Lagrangian is constructed from individual surrogate models of the objective and
constraints (approximate and assemble, rather than assemble and approximate). In Table 9.1, this corresponds
to row 1, column 3, and is known as the trust-region augmented Lagrangian (TRAL) approach. While this
approach was provably convergent, convergence rates to constrained minima have been observed to be slowed by
the required updating of Lagrange multipliers and penalty parameters [109]. Prior to converging these parameters,
SBO iterates did not strictly respect constraint boundaries and were often infeasible. A subsequent approach
(IPTRSAO [109]) that sought to directly address this shortcoming added explicit surrogate constraints (row 3,
column 3 in Table 9.1):

minimize Φ̂k(x)
subject to gl ≤ ĝk(x) ≤ gu

ĥk(x) = ht
‖ x− xkc ‖∞ ≤ ∆k . (9.3)

While this approach does address infeasible iterates, it still shares the feature that the surrogate merit function
may reflect inaccurate relative weightings of the objective and constraints prior to convergence of the Lagrange
multipliers and penalty parameters. That is, one may benefit from more feasible intermediate iterates, but the
process may still be slow to converge to optimality. The concept of this approach is similar to that of SQP-like
SBO approaches [5] which use linearized constraints:

minimize Φ̂k(x)
subject to gl ≤ ĝk(xkc ) +∇ĝk(xkc )

T (x− xkc ) ≤ gu
ĥk(xkc ) +∇ĥk(xkc )

T (x− xkc ) = ht
‖ x− xkc ‖∞ ≤ ∆k . (9.4)

in that the primary concern is minimizing a composite merit function of the objective and constraints, but under
the restriction that the original problem constraints may not be wildly violated prior to convergence of Lagrange
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multiplier estimates. Here, the merit function selection of the Lagrangian function (row 2, column 2 in Table 9.1;
see also Eq. 9.10) is most closely related to SQP, which includes the use of first-order Lagrange multiplier up-
dates (Eq. 9.16) that should converge more rapidly near a constrained minimizer than the zeroth-order updates
(Eqs. 9.13-9.14) used for the augmented Lagrangian.

All of these previous constrained SBO approaches involve a recasting of the approximate subproblem objective
and constraints as a function of the original objective and constraint surrogates. A more direct approach is to use
a formulation of:

minimize f̂k(x)
subject to gl ≤ ĝk(x) ≤ gu

ĥk(x) = ht
‖ x− xkc ‖∞ ≤ ∆k (9.5)

This approach has been termed the direct surrogate approach since it optimizes surrogates of the original objective
and constraints (row 3, column 1 in Table 9.1) without any recasting. It is attractive both from its simplicity and
potential for improved performance, and is the default approach taken in DAKOTA. Other DAKOTA defaults in-
clude the use of a filter method for iterate acceptance (see Section 9.2.1), an augmented Lagrangian merit function
(see Section 9.2.2), Lagrangian hard convergence assessment (see Section 9.2.3), and no constraint relaxation (see
Section 9.2.4).

While the formulation of Eq. 9.2 (and others from row 1 in Table 9.1) can suffer from infeasible intermediate iter-
ates and slow convergence to constrained minima, each of the approximate subproblem formulations with explicit
constraints (Eqs. 9.3-9.5, and others from rows 2-3 in Table 9.1) can suffer from the lack of a feasible solution
within the current trust region. Techniques for dealing with this latter challenge involve some form of constraint
relaxation. Homotopy approaches [109, 108] or composite step approaches such as Byrd-Omojokun [105], Celis-
Dennis-Tapia [18], or MAESTRO [5] may be used for this purpose (see Section 9.2.4).

After each of the k iterations in the SBO method, the predicted step is validated by computing f(xk∗), g(xk∗),
and h(xk∗). One approach forms the trust region ratio ρk which measures the ratio of the actual improvement to
the improvement predicted by optimization on the surrogate model. When optimizing on an approximate merit
function (Eqs. 9.2–9.4), the following ratio is natural to compute

ρk =
Φ(xkc )− Φ(xk∗)
Φ̂(xkc )− Φ̂(xk∗)

. (9.6)

The formulation in Eq. 9.5 may also form a merit function for computing the trust region ratio; however, the omis-
sion of this merit function from explicit use in the approximate optimization cycles can lead to synchronization
problems with the optimizer.

Once computed, the value for ρk can be used to define the step acceptance and the next trust region size ∆k+1

using logic similar to that shown in Table 9.2. Typical factors for shrinking and expanding are 0.5 and 2.0,
respectively, but these as well as the threshold ratio values are tunable parameters in the algorithm (see Surrogate-
Based Method controls in the DAKOTA Reference Manual [3]). In addition, the use of discrete thresholds is not
required, and continuous relationships using adaptive logic can also be explored [151, 152]. Iterate acceptance or
rejection completes an SBO cycle, and the cycles are continued until either soft or hard convergence criteria (see
Section 9.2.3) are satisfied.

9.2.1 Iterate acceptance logic

2Exception: retain if xk
∗ in trust region interior for design of experiments-based surrogates (global data fits, S-ROM, global E-ROM)
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Table 9.2: Sample trust region ratio logic.
Ratio Value Surrogate Accuracy Iterate Acceptance Trust Region Sizing
ρk ≤ 0 poor reject step shrink

0 < ρk ≤ 0.25 marginal accept step shrink
0.25 < ρk < 0.75 or ρk > 1.25 moderate accept step retain

0.75 ≤ ρk ≤ 1.25 good accept step expand2

Figure 9.1: Depiction of filter
method.

When a surrogate optimization is completed and the approximate solution
has been validated, then the decision must be made to either accept or reject
the step. The traditional approach is to base this decision on the value of the
trust region ratio, as outlined previously in Table 9.2. An alternate approach
is to utilize a filter method [48], which does not require penalty parameters
or Lagrange multiplier estimates. The basic idea in a filter method is to ap-
ply the concept of Pareto optimality to the objective function and constraint
violations and only accept an iterate if it is not dominated by any previous
iterate. Mathematically, a new iterate is not dominated if at least one of the
following:

either f < f (i) or c < c(i) (9.7)

is true for all i in the filter, where c is a selected norm of the constraint vi-
olation. This basic description can be augmented with mild requirements to
prevent point accumulation and assure convergence, known as a slanting fil-
ter [48]. Figure 9.1 illustrates the filter concept, where objective values are plotted against constraint violation for
accepted iterates (blue circles) to define the dominated region (denoted by the gray lines). A filter method relaxes
the common enforcement of monotonicity in constraint violation reduction and, by allowing more flexibility in
acceptable step generation, often allows the algorithm to be more efficient.

The use of a filter method is compatible with any of the SBO formulations in Eqs. 9.2–9.5.

9.2.2 Merit functions

The merit function Φ(x) used in Eqs. 9.2-9.4,9.6 may be selected to be a penalty function, an adaptive penalty
function, a Lagrangian function, or an augmented Lagrangian function. In each of these cases, the more flexible
inequality and equality constraint formulations with two-sided bounds and targets (Eqs. 9.1,9.3-9.5), have been
converted to a standard form of g(x) ≤ 0 and h(x) = 0 (in Eqs. 9.8,9.10-9.16). The active set of inequality
constraints is denoted as g+.

The penalty function employed in this paper uses a quadratic penalty with the penalty schedule linked to SBO
iteration number

Φ(x, rp) = f(x) + rpg+(x)Tg+(x) + rph(x)Th(x) (9.8)

rp = e(k+offset)/10 (9.9)

The adaptive penalty function is identical in form to Eq. 9.8, but adapts rp using monotonic increases in the
iteration offset value in order to accept any iterate that reduces the constraint violation.

The Lagrangian merit function is

Φ(x,λg,λh) = f(x) + λTg g+(x) + λThh(x) (9.10)
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for which the Lagrange multiplier estimation is discussed in Section 9.2.3. Away from the optimum, it is possible
for the least squares estimates of the Lagrange multipliers for active constraints to be zero, which equates to
omitting the contribution of an active constraint from the merit function. This is undesirable for tracking SBO
progress, so usage of the Lagrangian merit function is normally restricted to approximate subproblems and hard
convergence assessments.

The augmented Lagrangian employed in this paper follows the sign conventions described in [139]

Φ(x,λψ,λh, rp) = f(x) + λTψψ(x) + rpψ(x)Tψ(x) + λThh(x) + rph(x)Th(x) (9.11)

ψi = max
{
gi,−

λψi

2rp

}
(9.12)

where ψ(x) is derived from the elimination of slack variables for the inequality constraints. In this case, simple
zeroth-order Lagrange multiplier updates may be used:

λk+1
ψ = λkψ + 2rpψ(x) (9.13)

λk+1
h = λkh + 2rph(x) (9.14)

The updating of multipliers and penalties is carefully orchestrated [22] to drive reduction in constraint violation of
the iterates. The penalty updates can be more conservative than in Eq. 9.9, often using an infrequent application
of a constant multiplier rather than a fixed exponential progression.

9.2.3 Convergence assessment

To terminate the SBO process, hard and soft convergence metrics are monitored. It is preferable for SBO studies
to satisfy hard convergence metrics, but this is not always practical (e.g., when gradients are unavailable or un-
reliable). Therefore, simple soft convergence criteria are also employed which monitor for diminishing returns
(relative improvement in the merit function less than a tolerance for some number of consecutive iterations).

To assess hard convergence, one calculates the norm of the projected gradient of a merit function whenever the
feasibility tolerance is satisfied. The best merit function for this purpose is the Lagrangian merit function from
Eq. 9.10. This requires a least squares estimation for the Lagrange multipliers that best minimize the projected
gradient:

∇xΦ(x,λg,λh) = ∇xf(x) + λTg∇xg+(x) + λTh∇xh(x) (9.15)

where gradient portions directed into active global variable bounds have been removed. This can be posed as a
linear least squares problem for the multipliers:

Aλ = −∇xf (9.16)

where A is the matrix of active constraint gradients, λg is constrained to be non-negative, and λh is unrestricted
in sign. To estimate the multipliers using non-negative and bound-constrained linear least squares, the NNLS and
BVLS routines [92] from NETLIB are used, respectively.

9.2.4 Constraint relaxation

The goal of constraint relaxation is to achieve efficiency through the balance of feasibility and optimality when
the trust region restrictions prevent the location of feasible solutions to constrained approximate subproblems
(Eqs. 9.3-9.5, and other formulations from rows 2-3 in Table 9.1). The SBO algorithm starting from infeasible
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points will commonly generate iterates which seek to satisfy feasibility conditions without regard to objective
reduction [108].

One approach for achieving this balance is to use relaxed constraints when iterates are infeasible with respect to
the surrogate constraints. We follow Perez, Renaud, and Watson [109], and use a global homotopy mapping the
relaxed constraints and the surrogate constraints. For formulations in Eqs. 9.3 and 9.5 (and others from row 3 in
Table 9.1), the relaxed constraints are defined from

g̃k(x, τ) = ĝk(x) + (1− τ)bg (9.17)

h̃k(x, τ) = ĥk(x) + (1− τ)bh (9.18)

For Eq. 9.4 (and others from row 2 in Table 9.1), the original surrogate constraints ĝk(x) and ĥk(x) in Eqs. 9.17-
9.18 are replaced with their linearized forms (ĝk(xkc ) +∇ĝk(xkc )

T (x− xkc ) and ĥk(xkc ) +∇ĥk(xkc )
T (x− xkc ),

respectively). The approximate subproblem is then reposed using the relaxed constraints as

minimize f̂k(x) or Φ̂k(x)
subject to gl ≤ g̃k(x, τk) ≤ gu

h̃k(x, τk) = ht
‖ x− xkc ‖∞ ≤ ∆k (9.19)

in place of the corresponding subproblems in Eqs. 9.3-9.5. Alternatively, since the relaxation terms are constants
for the kth iteration, it may be more convenient for the implementation to constrain ĝk(x) and ĥk(x) (or their
linearized forms) subject to relaxed bounds and targets (g̃kl , g̃ku, h̃kt ). The parameter τ is the homotopy parameter
controlling the extent of the relaxation: when τ = 0, the constraints are fully relaxed, and when τ = 1, the
surrogate constraints are recovered. The vectors bg,bh are chosen so that the starting point, x0, is feasible with
respect to the fully relaxed constraints:

gl ≤ g̃0(x0, 0) ≤ gu (9.20)
h̃0(x0, 0) = ht (9.21)

At the start of the SBO algorithm, τ0 = 0 if x0 is infeasible with respect to the unrelaxed surrogate constraints;
otherwise τ0 = 1 (i.e., no constraint relaxation is used). At the start of the kth SBO iteration where τk−1 < 1, τk

is determined by solving the subproblem

maximize τk

subject to gl ≤ g̃k(x, τk) ≤ gu
h̃k(x, τk) = ht

‖ x− xkc ‖∞ ≤ ∆k

τk ≥ 0 (9.22)

starting at (xk−1
∗ , τk−1), and then adjusted as follows:

τk = min
{
1, τk−1 + α

(
τkmax − τk−1

)}
(9.23)

The adjustment parameter 0 < α < 1 is chosen so that that the feasible region with respect to the relaxed
constraints has positive volume within the trust region. Determining the optimal value for α remains an open
question and will be explored in future work.

After τk is determined using this procedure, the problem in Eq. 9.19 is solved for xk∗ . If the step is accepted, then
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the value of τk is updated using the current iterate xk∗ and the validated constraints g(xk∗) and h(xk∗):

τk = min {1,mini τi,minj τj} (9.24)

where τi = 1 +
min{gi(x

k
∗)−gli

,gui
−gi(x

k
∗)}

bgi
(9.25)

τj = 1− |hj(x
k
∗)−htj

|
bhj

(9.26)

Figure 9.2: Illustration of SBO iterates
using surrogate (red) and relaxed (blue)
constraints.

Figure 9.2 illustrates the SBO algorithm on a two-dimensional prob-
lem with one inequality constraint starting from an infeasible point, x0.
The minimizer of the problem is denoted as x∗. Iterates generated using
the surrogate constraints are shown in red, where feasibility is achieved
first, and then progress is made toward the optimal point. The iterates
generated using the relaxed constraints are shown in blue, where a bal-
ance of satisfying feasibility and optimality has been achieved, leading
to fewer overall SBO iterations.

The behavior illustrated in Fig. 9.2 is an example where using the re-
laxed constraints over the surrogate constraints may improve the overall
performance of the SBO algorithm by reducing the number of itera-
tions performed. This improvement comes at the cost of solving the
minimization subproblem in Eq. 9.22, which can be significant in some
cases (i.e., when the cost of evaluating ĝk(x) and ĥk(x) is not negligi-
ble, such as with multifidelity or ROM surrogates). As shown in the numerical experiments involving the Barnes
problem presented in [109], the directions toward constraint violation reduction and objective function reduction
may be in opposing directions. In such cases, the use of the relaxed constraints may result in an increase in the
overall number of SBO iterations since feasibility must ultimately take precedence.

9.2.5 SBO with Data Fits

When performing SBO with local, multipoint, and global data fit surrogates, it is necessary to regenerate or
update the data fit for each new trust region. In the global data fit case, this can mean performing a new design
of experiments on the original high-fidelity model for each trust region, which can effectively limit the approach
to use on problems with, at most, tens of variables. Figure 9.3 displays this case. However, an important benefit
of the global sampling is that the global data fits can tame poorly-behaved, nonsmooth, discontinuous response
variations within the original model into smooth, differentiable, easily navigated surrogates. This allows SBO
with global data fits to extract the relevant global design trends from noisy simulation data.

Figure 9.3: SBO iteration pro-
gression for global data fits.

When enforcing local consistency between a global data fit surrogate and a
high-fidelity model at a point, care must be taken to balance this local con-
sistency requirement with the global accuracy of the surrogate. In particular,
performing a correction on an existing global data fit in order to enforce lo-
cal consistency can skew the data fit and destroy its global accuracy. One
approach for achieving this balance is to include the consistency requirement
within the data fit process by constraining the global data fit calculation (e.g.,
using constrained linear least squares). This allows the data fit to satisfy the
consistency requirement while still addressing global accuracy with its re-
maining degrees of freedom. Embedding the consistency within the data fit
also reduces the sampling requirements. For example, a quadratic polyno-
mial normally requires at least (n + 1)(n + 2)/2 samples for n variables to
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perform the fit. However, with embedded first-order consistency constraints,
the minimum number of samples is reduced by n+ 1 to (n2 + n)/2.

In the local and multipoint data fit cases, the iteration progression will ap-
pear as in Fig. 9.5. Both cases involve a single new evaluation of the original
high-fidelity model per trust region, with the distinction that multipoint ap-
proximations reuse information from previous SBO iterates. Like model hierarchy surrogates, these techniques
scale to larger numbers of design variables. Unlike model hierarchy surrogates, they generally do not require
surrogate corrections, since the matching conditions are embedded in the surrogate form (as discussed for the
global Taylor series approach above). The primary disadvantage to these surrogates is that the region of accuracy
tends to be smaller than for global data fits and multifidelity surrogates, requiring more SBO cycles with smaller
trust regions. More information on the design of experiments methods is available in Chapter 5, and the data fit
surrogates are described in Section 11.4.1.

Figure 9.4 shows a DAKOTA input file that implements surrogate-based optimization on Rosenbrock’s function.
This input file is named dakota sbo rosen.in in the Dakota/test directory. The first method keyword
block contains the SBO keyword surrogate based local, plus the commands for specifying the trust region
size and scaling factors. The optimization portion of SBO, using the CONMIN Fletcher-Reeves conjugate gradient
method, is specified in the following keyword blocks for method, model, variables, and responses.
The model used by the optimization method specifies that a global surrogate will be used to map variables into
responses (no interface specification is used by the surrogate model). The global surrogate is constructed
using a DACE method which is identified with the ‘SAMPLING’ identifier. This data sampling portion of SBO
is specified in the final set of keyword blocks for method, model, interface, and responses (the earlier
variables specification is reused). This example problem uses the Latin hypercube sampling method in the
LHS software to select 10 design points in each trust region. A single surrogate model is constructed for the
objective function using a quadratic polynomial. The initial trust region is centered at the design point (x1, x2) =
(−1.2, 1.0), and extends ±0.4 (10% of the global bounds) from this point in the x1 and x2 coordinate directions.

If this input file is executed in DAKOTA, it will converge to the optimal design point at (x1, x2) = (1, 1) in
approximately 800 function evaluations. While this solution is correct, it is obtained at a much higher cost than
a traditional gradient-based optimizer (e.g., see the results obtained from dakota rosenbrock.in). This
demonstrates that the SBO method with global data fits is not really intended for use with smooth continuous
optimization problems; direct gradient-based optimization can be more efficient for such applications. Rather,
SBO with global data fits is best-suited for the types of problems that occur in engineering design where the
response quantities may be discontinuous, nonsmooth, or may have multiple local optima [63]. In these types of
engineering design problems, traditional gradient-based optimizers often are ineffective, whereas global data fits
can extract the global trends of interest despite the presence of local nonsmoothness (for an example problem with
multiple local optima, look in Dakota/test for the file dakota sbo sine fcn.in [64]).

The surrogate-based local minimizer is only mathematically guaranteed to find a local minimum. However, in
practice, SBO can often find the global minimum. Due to the random sampling method used within the SBO
algorithm, the SBO method will solve a given problem a little differently each time it is run (unless the user
specifies a particular random number seed in the dakota input file as is shown in Figure 9.4). Our experience on
the quasi-sine function mentioned above is that if you run this problem 10 times with the same starting conditions
but different seeds, then you will find the global minimum in about 70-80% of the trials. This is good performance
for what is mathematically only a local optimization method.

9.2.6 SBO with Multifidelity Models

When performing SBO with model hierarchies, the low-fidelity model is normally fixed, requiring only a single
high-fidelity evaluation to compute a new correction for each new trust region. Figure 9.5 displays this case. This
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strategy,
single_method
graphics
tabular_graphics_data
method_pointer = ’SBLO’

method,
id_method = ’SBLO’
surrogate_based_local
model_pointer = ’SURROGATE’
approx_method_pointer = ’NLP’
max_iterations = 500
trust_region
initial_size = 0.10
minimum_size = 1.0e-6
contract_threshold = 0.25
expand_threshold = 0.75
contraction_factor = 0.50
expansion_factor = 1.50

method,
id_method = ’NLP’
conmin_frcg,
max_iterations = 50,
convergence_tolerance = 1e-8

model,
id_model = ’SURROGATE’
surrogate global
responses_pointer = ’SURROGATE_RESP’
dace_method_pointer = ’SAMPLING’
correction additive zeroth_order
polynomial quadratic

variables,
continuous_design = 2
initial_point -1.2 1.0
lower_bounds -2.0 -2.0
upper_bounds 2.0 2.0
descriptors ’x1’ ’x2’

responses,
id_responses = ’SURROGATE_RESP’
num_objective_functions = 1
numerical_gradients
method_source dakota
interval_type central
fd_gradient_step_size = 1.e-6

no_hessians

method,
id_method = ’SAMPLING’
model_pointer = ’TRUTH’
nond_sampling
samples = 10
seed = 531 rng rnum2
sample_type lhs
all_variables

model,
id_model = ’TRUTH’
single
interface_pointer = ’TRUE_FN’
responses_pointer = ’TRUE_RESP’

interface,
direct
id_interface = ’TRUE_FN’
analysis_driver = ’rosenbrock’
deactivate evaluation_cache restart_file

responses,
id_responses = ’TRUE_RESP’
num_objective_functions = 1
no_gradients
no_hessians

Figure 9.4: DAKOTA input file for the surrogate-based local optimization example.
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renders the multifidelity SBO technique more scalable to larger numbers of design variables since the number
of high-fidelity evaluations per iteration (assuming no finite differencing for derivatives) is independent of the
scale of the design problem. However, the ability to smooth poorly-behaved response variations in the high-
fidelity model is lost, and the technique becomes dependent on having a well-behaved low-fidelity model3. In
addition, the parameterizations for the low and high-fidelity models may differ, requiring the use of a mapping
between these parameterizations. Space mapping, corrected space mapping, POD mapping, and hybrid POD
space mapping are being explored for this purpose [115, 116].

Figure 9.5: SBO iteration pro-
gression for model hierarchies.

When applying corrections to the low-fidelity model, there is no concern for
balancing global accuracy with the local consistency requirements. However,
with only a single high-fidelity model evaluation at the center of each trust
region, it is critical to use the best correction possible on the low-fidelity
model in order to achieve rapid convergence rates to the optimum of the high-
fidelity model [37].

A multifidelity test problem named dakota sbo hierarchical.in
is available in Dakota/test to demonstrate this SBO approach.
This test problem uses the Rosenbrock function as the high fidelity
model and a function named “lf rosenbrock” as the low fidelity model.
Here, lf rosenbrock is a variant of the Rosenbrock function (see
Dakota/test/lf rosenbrock.C for formulation) with the minimum
point at (x1, x2) = (0.80, 0.44), whereas the minimum of the original Rosen-
brock function is (x1, x2) = (1, 1). Multifidelity SBO locates the high-
fidelity minimum in 11 high fidelity evaluations for additive second-order
corrections and in 208 high fidelity evaluations for additive first-order cor-
rections, but fails for zeroth-order additive corrections by converging to the
low-fidelity minimum.

9.2.7 SBO with Reduced Order Models

When performing SBO with reduced-order models (ROMs), the ROM is mathematically generated from the high-
fidelity model. A critical issue in this ROM generation is the ability to capture the effect of parametric changes
within the ROM. Two approaches to parametric ROM are extended ROM (E-ROM) and spanning ROM (S-ROM)
techniques [146]. Closely related techniques include tensor singular value decomposition (SVD) methods [91]. In
the single-point and multipoint E-ROM cases, the SBO iteration can appear as in Fig. 9.5, whereas in the S-ROM,
global E-ROM, and tensor SVD cases, the SBO iteration will appear as in Fig. 9.3. In addition to the high-fidelity
model analysis requirements, procedures for updating the system matrices and basis vectors are also required.

Relative to data fits and multifidelity models, ROMs have some attractive advantages. Compared to data fits such
as regression-based polynomial models, they are more physics-based and would be expected to be more predictive
(e.g., in extrapolating away from the immediate data). Compared to multifidelity models, ROMS may be more
practical in that they do not require multiple computational models or meshes which are not always available. The
primary disadvantage is potential invasiveness to the simulation code for projecting the system using the reduced
basis.

3It is also possible to use a hybrid data fit/multifidelity approach in which a smooth data fit of a noisy low fidelity model is used in
combination with a high fidelity model
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9.3 Surrogate-Based Global Minimization

Surrogate-based global minimization differs from the surrogate-based local minimization approach discussed in
the previous section in several ways: it is not a trust-region approach; initially there is one surrogate constructed
over a set of sample points and the optimizer operates on that surrogate (as opposed to adaptively selecting points
and re-building a surrogate in each trust region); and there is no guarantee of convergence.

The surrogate based global method was developed to address two needs. The first is the case where a
user wishes to use existing function evaluations or a fixed sample size (perhaps based on computational cost and
allocation of resources) to build a surrogate once and optimize on it. In this case (a single global optimization on
a surrogate model), the set of surrogate building points is determined in advance as opposed to the trust-region
local surrogate optimization in which the number of “true” function evaluations depends on the location and size
of the trust region, the goodness of the surrogate within the trust-region, and problem characteristics.

In the second surrogate based global use case, we want to update the surrogate, but globally. That is, we
add points to the sample set used to create the surrogate, rebuild the surrogate, and then perform another global
optimization on the new surrogate. Thus, surrogate-based global optimization can be used in an iterative scheme.
In one iteration, minimizers of the surrogate model are found, and a selected subset of these are passed to the
next iteration. In the next iteration, these surrogate points are evaluated with the “truth” model, and then added
to the set of points upon which the next surrogate is constructed. This presents a more accurate surrogate to the
minimizer at each subsequent iteration, presumably driving to optimality quickly. Note that a global surrogate is
constructed using the same bounds in each iteration. This approach has no guarantee of convergence.

The surrogate-based global method was originally designed for MOGA (a multi-objective genetic algorithm).
Since genetic algorithms often need thousands or tens of thousands of points to produce optimal or near-optimal
solutions, surrogates can help by reducing the necessary truth model evaluations. Instead of creating one set of
surrogates for the individual objectives and running the optimization algorithm on the surrogate once, the idea is
to select points along the (surrogate) Pareto frontier, which can be used to supplement the existing points. In this
way, one does not need to use many points initially to get a very accurate surrogate. The surrogate becomes more
accurate as the iterations progress.

Most single objective optimization methods will return only a single optimal point. In that case, only one point
from the surrogate model will be evaluated with the “true” function and added to the pointset upon which the
surrogate is based. In this case, it will take many iterations of the surrogate-based global optimization for the
approach to converge, and its utility may not be as great as for the multi-objective case when multiple optimal
solutions are passed from one iteration to the next to supplement the surrogate. Note that the user has the option of
appending the optimal points from the surrogate model to the current set of truth points or using the optimal points
from the surrogate model to replace the optimal set of points from the previous iteration. Although appending to
the set is the default behavior, at this time we strongly recommend using the option replace points because
it appears to be more accurate and robust.

When using the surrogate-based global method, we first recommend running one optimization on a single sur-
rogate model. That is, set max iterations to 1. This will allow one to get a sense of where the optima are
located and also what surrogate types are the most accurate to use for the problem. Note that by fixing the seed
of the sample on which the surrogate is built, one can take a DAKOTA input file, change the surrogate type, and
re-run the problem without any additional function evaluations by specifying the use of the dakota restart file
which will pick up the existing function evaluations, create the new surrogate type, and run the optimization on
that new surrogate. Also note that one can specify that surrogates be built for all primary functions and constraints
or for only a subset of these functions and constraints. This allows one to use a ”truth” model directly for some of
the response functions, perhaps due to them being much less expensive than other functions. Finally, a diagnostic
threshold can be used to stop the method if the surrogate is so poor that it is unlikely to provide useful points. If
the goodness-of-fit has an R-squared value less than 0.5, meaning that less than half the variance of the output can
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be explained or accounted for by the surrogate model, the surrogate-based global optimization stops and outputs
an error message. This is an arbitrary threshold, but generally one would want to have an R-squared value as close
to 1.0 as possible, and an R-squared value below 0.5 indicates a very poor fit.

For the surrogate-based global method, we initially recommend a small number of maximum iterations, such as
3–5, to get a sense of how the optimization is evolving as the surrogate gets updated globally. If it appears to be
changing significantly, then a larger number (used in combination with restart) may be needed.

Figure 9.6 shows a DAKOTA input file that implements surrogate-based global optimization on a multi-objective
test function. This input file is named dakota su mogatest1.in in the Dakota/test directory. The first
method keyword block contains the keyword surrogate based global, plus the commands for specifying
five as the maximum iterations and the option to replace points in the global surrogate construction. The method
block identified as MOGA specifies a multi-objective genetic algorithm optimizer and its controls. The model
keyword block specifies a surrogate model. In this case, a gaussian process model is used as a surrogate.
The dace method pointer specifies that the surrogate will be build on 100 Latin Hypercube samples with a
seed = 531. The remainder of the input specification deals with the interface to the actual analysis driver and the
2 responses being returned as objective functions from that driver.

9.4 Efficient Global Minimization

Efficient Global Optimization (EGO) is a global optimization technique that employs response surface surro-
gates [86, 84]. In each EGO iteration, a Gaussian process (GP) approximation for the objective function is
constructed based on sample points of the true simulation. The GP allows one to specify the prediction at a new
input location as well as the uncertainty associated with that prediction. The key idea in EGO is to maximize an
Expected Improvement Function (EIF), defined as the expectation that any point in the search space will provide
a better solution than the current best solution, based on the expected values and variances predicted by the GP
model. It is important to understand how the use of this EIF leads to optimal solutions. The EIF indicates how
much the objective function value at a new potential location is expected to be less than the predicted value at
the current best solution. Because the GP model provides a Gaussian distribution at each predicted point, ex-
pectations can be calculated. Points with good expected values and even a small variance will have a significant
expectation of producing a better solution (exploitation), but so will points that have relatively poor expected val-
ues and greater variance (exploration). The EIF incorporates both the idea of choosing points which minimize the
objective and choosing points about which there is large prediction uncertainty (e.g., there are few or no samples
in that area of the space, and thus the probability may be high that a sample value is potentially lower than other
values). Because the uncertainty is higher in regions of the design space with few observations, this provides a
balance between exploiting areas of the design space that predict good solutions, and exploring areas where more
information is needed.

There are two major differences between our implementation and that of [86]: we do not use a branch and bound
method to find points which maximize the EIF. Rather, we use the DIRECT algorithm. Second, we allow for
multiobjective optimization and nonlinear least squares including general nonlinear constraints. Constraints are
handled through an augmented Lagrangian merit function approach (see Section 9.2.2 and Eqs. 9.11-9.14).

The method is specified as efficient global. Currently we do not expose any specification controls for the
underlying Gaussian process model used or for the optimization of the expected improvement function, which is
currently performed by the NCSU DIRECT algorithm. The only item the user can specify is a seed which is used
in the Latin Hypercube Sampling to generate the initial set of points which is used to construct the initial Gaussian
process. An example specification for the EGO algorithm is shown in Figure 9.7:
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strategy,
single_method
tabular_graphics_data
method_pointer = ’SBGO’

method,
id_method = ’SBGO’
surrogate_based_global
model_pointer = ’SURROGATE’
approx_method_pointer = ’MOGA’
max_iterations = 5
replace_points
output verbose

method,
id_method = ’MOGA’
moga
output silent

seed = 10983
population_size = 300
max_function_evaluations = 5000
initialization_type unique_random
crossover_type shuffle_random

num_offspring = 2 num_parents = 2
crossover_rate = 0.8

mutation_type replace_uniform
mutation_rate = 0.1

fitness_type domination_count
replacement_type below_limit = 6

shrinkage_percentage = 0.9
niching_type distance 0.05 0.05
postprocessor_type

orthogonal_distance 0.05 0.05
convergence_type metric_tracker

percent_change = 0.05 num_generations = 10

model,
id_model = ’SURROGATE’
surrogate global

responses_pointer = ’SURROGATE_RESP’
dace_method_pointer = ’SAMPLING’
correction additive zeroth_order

# polynomial quadratic
gaussian_process

variables,
continuous_design = 3

initial_point 0 0 0
upper_bounds 4 4 4
lower_bounds -4 -4 -4
descriptors ’x1’ ’x2’ ’x3’

responses,
id_responses = ’SURROGATE_RESP’
num_objective_functions = 2
no_gradients
no_hessians

method,
id_method = ’SAMPLING’
model_pointer = ’TRUTH’
nond_sampling
samples = 100
seed = 531
sample_type lhs
all_variables

model,
id_model = ’TRUTH’
single
interface_pointer = ’TRUE_FN’
responses_pointer = ’TRUE_RESP’

interface,
id_interface = ’TRUE_FN’
system
analysis_driver = ’mogatest1’

responses,
id_responses = ’TRUE_RESP’
num_objective_functions = 2
no_gradients
no_hessians

Figure 9.6: DAKOTA input file for the surrogate-based global optimization example.
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strategy,
single_method
tabular_graphics_data

method,
efficient_global
seed = 123456

variables,
continuous_design = 2
lower_bounds -2.0 -2.0
upper_bounds 2.0 2.0
descriptors ’x1’ ’x2’

interface,
system
analysis_driver = ’rosenbrock’

responses,
num_objective_functions = 1
no_gradients
no_hessians

Figure 9.7: DAKOTA input file for the efficient global optimization example.
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Chapter 10

Advanced Strategies

10.1 Overview

DAKOTA’s strategy capabilities were developed in order to provide a control layer for managing multiple iterators
and models. It was driven by the observed need for “meta-optimization” and other high level systems analysis
procedures in real-world engineering design problems. This capability allows the use of existing iterative algo-
rithm and computational model software components as building blocks to accomplish more sophisticated studies,
such as hybrid minimization, multistart local minimization, Pareto optimization, or mixed integer nonlinear pro-
gramming (MINLP). Other strategy-like capabilities are enabled by the model recursion capabilities described
in Chapter 11. When these model recursion specifications are sufficient to completely describe a multi-iterator,
multi-model solution approach, then a separate strategy specification is not used (see Section 11.6 for examples).
In addition, some previous strategy capabilities (i.e., the surrogate-based minimization approaches descibed in
Chapter 9) have migrated into the method specification to allow their componentization and reuse elsewhere. This
trend will continue in future releases with migration of the MINLP strategy to the method specification, such that
only the most generic coordination approaches will remain.

10.2 Hybrid Minimization

In the hybrid minimization strategy (keyword: hybrid), a sequence of minimization methods are applied to find
an optimal design point. The goal of this strategy is to exploit the strengths of different minimization algorithms
through different stages of the minimization process. Global/local optimization hybrids (e.g., genetic algorithms
combined with nonlinear programming) are a common example in which the desire for a global optimum is
balanced with the need for efficient navigation to a local optimum. An important related feature is that the
sequence of minimization algorithms can employ models of varying fidelity. In the global/local case, for example,
it would often be advantageous to use a low-fidelity model in the global search phase, followed by use of a more
refined model in the local search phase.

The specification for hybrid minimization involves a list of method identifier strings, and each of the corre-
sponding method specifications has the responsibility for identifying the model specification (which may in turn
identify variables, interface, and responses specifications) that each method will use (see the DAKOTA Reference
Manual [3] and the example discussed below). Currently, only the sequential hybrid approach is available. The
embedded and collaborative approaches are not fully functional at this time.
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In the sequential hybrid minimization approach, a sequence of minimization methods is invoked in the order
specified in the DAKOTA input file. In the default mode, the best solution from each method is used as the starting
point for the following method. If the user specifies num solutions transferred and the method returns
multiple optimal solutions (for example, with an evolutionary algorithm or DIRECT or a sampline method), then
the specified number of solutions from the previous method will be used to initialize the subsequent method. If
the subsequent method cannot accept multiple input points (currently only a few methods such as the genetic
algorithms in JEGA allow multiple input points), then multiple instances of the subsequent method are generated,
each one initialized by one of the optimal solutions from the previous method. For example, if LHS sampling
were run as the first method and the number of solutions transferred was 10 and the DOT conjugate gradient
was the second method, there would be 10 instances of dot frcg started, each with a separate LHS sample
solution as its initial point. Method switching is governed by the separate convergence controls of each method;
that is, each method is allowed to run to its own internal definition of completion without interference. Individual
method completion may be determined by convergence criteria (e.g., convergence tolerance) or iteration
limits (e.g., max iterations). The adaptive option is similar, with the difference that the progress of each
method is monitored and method switching is enforced according to externally-defined relative progress metrics.

Figure 10.1 shows a DAKOTA input file that specifies a sequential hybrid optimization strategy to solve the
“textbook” optimization test problem. This input file is named dakota hybrid.in in the Dakota/test
directory. The three optimization methods are identified using the method list specification in the strategy
section of the input file. The identifier strings listed in the specification are ‘GA’ for genetic algorithm, ‘PS’
for pattern search, and ‘NLP’ for nonlinear programming. Following the strategy keyword block are the three
corresponding method keyword blocks. Note that each method has a tag following the id method keyword
that corresponds to one of the method names listed in the strategy keyword block. By following the identifier
tags from method to model and from model to variables, interface, and responses, it is easy to
see the specification linkages for this problem. The GA optimizer runs first and uses model ‘M1’ which includes
variables ‘V1’, interface ‘I1’, and responses ‘R1’. Once the GA is complete, the PS optimizer starts from the
best GA result and again uses model ‘M1’. Since both GA and PS are nongradient-based optimization methods,
there is no need for gradient or Hessian information in the ‘R1’ response keyword block. The NLP optimizer runs
last, using the best result from the PS method as its starting point. It uses model ‘M2’ which includes the same
‘V1’ and ‘I1’ keyword blocks, but uses the responses keyword block ‘R2’ since the full Newton optimizer used
in this example (optpp newton) needs analytic gradient and Hessian data to perform its search.

10.3 Multistart Local Minimization

A simple, heuristic, global minimization technique is to use many local minimization runs, each of which is
started from a different initial point in the parameter space. This is known as multistart local minimization. This
is an attractive strategy in situations where multiple local optima are known or expected to exist in the parameter
space. However, there is no theoretical guarantee that the global optimum will be found. This approach com-
bines the efficiency of local minimization methods with a user-specified global stratification (using a specified
starting points list, a number of specified random starts, or both; see the DAKOTA Reference Man-
ual [3] for additional specification details). Since solutions for different starting points are independent, parallel
computing may be used to concurrently run the local minimizations.

An example input file for multistart local optimization on the “quasi sine” test function (see quasi sine fcn.C
in Dakota/test) is shown in Figure 10.2. The strategy keyword block in the input file contains the keyword
multi start, along with the set of starting points (3 random and 5 listed) that will be used for the optimization
runs. The other keyword blocks in the input file are similar to what would be used in a single optimization run.

The quasi sine test function has multiple local minima, but there is an overall trend in the function that tends
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strategy,
graphics
hybrid sequential
method_list = ’GA’ ’PS’ ’NLP’

method,
id_method = ’GA’
model_pointer = ’M1’
coliny_ea
seed = 1234
population_size = 10
verbose output

method,
id_method = ’PS’
model_pointer = ’M1’
coliny_pattern_search stochastic
seed = 1234
initial_delta = 0.1
threshold_delta = 1.e-4
solution_accuracy = 1.e-10
exploratory_moves basic_pattern
verbose output

method,
id_method = ’PS2’
model_pointer = ’M1’
max_function_evaluations = 10
coliny_pattern_search stochastic
seed = 1234
initial_delta = 0.1
threshold_delta = 1.e-4
solution_accuracy = 1.e-10
exploratory_moves basic_pattern
verbose output

method,
id_method = ’NLP’
model_pointer = ’M2’
optpp_newton
gradient_tolerance = 1.e-12
convergence_tolerance = 1.e-15
verbose output

model,
id_model = ’M1’
single
variables_pointer = ’V1’
interface_pointer = ’I1’
responses_pointer = ’R1’

model,
id_model = ’M2’
single
variables_pointer = ’V1’
interface_pointer = ’I1’
responses_pointer = ’R2’

variables,
id_variables = ’V1’
continuous_design = 2
initial_point 0.6 0.7
upper_bounds 5.8 2.9
lower_bounds 0.5 -2.9
descriptors ’x1’ ’x2’

interface,
id_interface = ’I1’
direct
analysis_driver= ’text_book’

responses,
id_responses = ’R1’
num_objective_functions = 1
no_gradients
no_hessians

responses,
id_responses = ’R2’
num_objective_functions = 1
analytic_gradients
analytic_hessians

Figure 10.1: DAKOTA input file for a hybrid optimization strategy.
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strategy,
multi_start graphics
method_pointer = ’NLP’
random_starts = 3 seed = 123
starting_points = -.8 -.8

-.8 .8
.8 -.8
.8 .8
0. 0.

method,
id_method = ’NLP’
dot_bfgs

variables,
continuous_design = 2
lower_bounds -1.0 -1.0
upper_bounds 1.0 1.0
descriptors ’x1’ ’x2’

interface,
system #asynchronous
analysis_driver = ’quasi_sine_fcn’

responses,
num_objective_functions = 1
analytic_gradients
no_hessians

Figure 10.2: DAKOTA input file for a multistart local optimization strategy.
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<<<<< Results summary:
set_id x1 x2 x1* x2* obj_fn

1 -0.8 -0.8 -0.8543728666 -0.8543728666 0.5584096919
2 -0.8 0.8 -0.9998398719 0.177092822 0.291406596
3 0.8 -0.8 0.177092822 -0.9998398719 0.291406596
4 0.8 0.8 0.1770928217 0.1770928217 0.0602471946
5 0 0 0.03572926375 0.03572926375 0.08730499239
6 -0.7767971993 0.01810943539 -0.7024118387 0.03572951143 0.3165522387
7 -0.3291571008 -0.7697378755 0.3167607374 -0.4009188363 0.2471403213
8 0.8704730469 0.7720679005 0.177092899 0.3167611757 0.08256082751

Figure 10.3: DAKOTA results summary for a multistart local optimization strategy.

toward the global minimum at (x1, x2) = (0.177, 0.177). See [64] for more information on this test function.
Figure 10.3 shows the results summary for the eight local optimizations performed. From the five specified starting
points and the 3 random starting points (as identified by the x1, x2 headers), the eight local optima (as identified
by the x1*, x2* headers) are all different and only one of the local optimizations finds the global minimum.

10.4 Pareto Optimization

The Pareto optimization strategy (keyword: pareto set) is one of three multiobjective optimization capabilities
discussed in Section 7.3.1. In the Pareto optimization strategy, multiple sets of multiobjective weightings are eval-
uated. The user can specify these weighting sets in the strategy keyword block using a multi objective weight sets
list, a number of random weight sets, or both (see the DAKOTA Reference Manual [3] for additional specifi-
cation details). Figure 10.4 shows the input commands from the file dakota pareto.in in the Dakota/test
directory.

DAKOTA performs one multiobjective optimization problem for each set of multiobjective weights. The col-
lection of computed optimal solutions form a Pareto set, which can be useful in making trade-off decisions in
engineering design. Since solutions for different multiobjective weights are independent, parallel computing may
be used to concurrently execute the multiobjective optimization problems.

Figure 10.5 shows the results summary for the Pareto-set optimization strategy. For the four multiobjective
weighting sets (as identified by the w1, w2, w3 headers), the local optima (as identified by the x1, x2 head-
ers) are all different and correspond to individual objective function values of (f1, f2, f3) = (0.0,0.5,0.5), (13.1,-
1.2,8.16), (532.,33.6,-2.9), and (0.125,0.0,0.0) (note: the composite objective function is tabulated under the
obj fn header). The first three solutions reflect exclusive optimization of each of the individual objective func-
tions in turn, whereas the final solution reflects a balanced weighting and the lowest sum of the three objectives.
Plotting these (f1, f2, f3) triplets on a 3-dimensional plot results in a Pareto surface (not shown), which is useful
for visualizing the trade-offs in the competing objectives.

10.5 Mixed Integer Nonlinear Programming (MINLP)

For DAKOTA 5.0, branch and bound is currently inoperative due to ongoing restructuring of PICO and its incor-
poration into COLINY. This will be supported again in future releases.

Many nonlinear optimization problems involve a combination of discrete and continuous variables. These are
known as mixed integer nonlinear programming (MINLP) problems. A typical MINLP optimization problem is
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strategy,
pareto_set
graphics
opt_method_pointer = ’NLP’
multi_objective_weight_sets =

1. 0. 0.
0. 1. 0.
0. 0. 1.

.333 .333 .333

method,
id_method = ’NLP’
dot_bfgs

model,
single

variables,
continuous_design = 2
initial_point 0.9 1.1
upper_bounds 5.8 2.9
lower_bounds 0.5 -2.9
descriptors ’x1’ ’x2’

interface,
system #asynchronous
analysis_driver = ’text_book’

responses,
num_objective_functions = 3
analytic_gradients
no_hessians

Figure 10.4: DAKOTA input file for the Pareto optimization strategy.

<<<<< Results summary:
set_id w1 w2 w3 x1 x2 obj_fn

1 1 0 0 0.9996554048 0.997046351 7.612301561e-11
2 0 1 0 0.5 2.9 -1.2
3 0 0 1 5.8 1.12747589e-11 -2.9
4 0.333 0.333 0.333 0.5 0.5000000041 0.041625

Figure 10.5: DAKOTA results summary for the Pareto-set optimization strategy.
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formulated as follows:

minimize: f(x,d)
subject to: gL ≤ g(x,d) ≤ gU

h(x,d) = ht (10.1)
xL ≤ x ≤ xU
d ∈ {−2,−1, 0, 1, 2}

where d is a vector whose elements are integer values. In situations where the discrete variables can be tem-
porarily relaxed (i.e., noncategorical discrete variables, see Section 12.2.2), the branch-and-bound algorithm can
be applied. Categorical variables (e.g., true/false variables, feature counts, etc.) that are not relaxable cannot be
used with the branch and bound strategy. During the branch and bound process, the discrete variables are treated
as continuous variables and the integrality conditions on these variables are incrementally enforced through a se-
quence of optimization subproblems. By the end of this process, an optimal solution that is feasible with respect
to the integrality conditions is computed.

DAKOTA’s branch and bound strategy (keyword: branch and bound) can solve optimization problems having
either discrete or mixed continuous/discrete variables. This strategy uses the parallel branch-and-bound algorithm
from the PICO software package [31, 32] to generate a series of optimization subproblems (“branches”). These
subproblems are solved as continuous variable problems using any of DAKOTA’s nonlinear optimization algo-
rithms (e.g., DOT, NPSOL). When a solution to a branch is feasible with respect to the integrality constraints,
it provides an upper bound on the optimal objective function, which can be used to prune branches with higher
objective functions that are not yet feasible. Since solutions for different branches are independent, parallel com-
puting may be used to concurrently execute the optimization subproblems.

PICO, by itself, targets the solution of mixed integer linear programming (MILP) problems, and through coupling
with DAKOTA’s nonlinear optimizers, is extended to solution of MINLP problems. In the case of MILP problems,
the upper bound obtained with a feasible solution is an exact bound and the branch and bound process is provably
convergent to the global minimum. For nonlinear problems which may exhibit nonconvexity or multimodality,
the process is heuristic in general, since there may be good solutions that are missed during the solution of a
particular branch. However, the process still computes a series of locally optimal solutions, and is therefore a
natural extension of the results from local optimization techniques for continuous domains. Only with rigorous
global optimization of each branch can a global minimum be guaranteed when performing branch and bound on
nonlinear problems of unknown structure.

In cases where there are only a few discrete variables and when the discrete values are drawn from a small set,
then it may be reasonable to perform a separate optimization problem for all of the possible combinations of the
discrete variables. However, this brute force approach becomes computationally intractable if these conditions
are not met. The branch-and-bound algorithm will generally require solution of fewer subproblems than the
brute force method, although it will still be significantly more expensive than solving a purely continuous design
problem.

10.5.1 Example MINLP Problem

As an example, consider the following MINLP problem [43]:
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Figure 10.6: Branching history for example MINLP optimization problem.

minimize: f(x) =
6∑
i=1

(xi − 1.4)4

g1 = x2
1 −

x2

2
≤ 0

g2 = x2
2 −

x1

2
≤ 0 (10.2)

−10 ≤ x1, x2, x3, x4 ≤ 10
x5, x6 ∈ {0, 1, 2, 3, 4}

This problem is a variant of the textbook test problem described in Section 22.1. In addition to the introduction
of two integer variables, a modified value of 1.4 is used inside the quartic sum to render the continuous solution a
non-integral solution.

Figure 10.6 shows the sequence of branches generated for this problem. The first optimization subproblem relaxes
the integrality constraint on parameters x5 and x6, so that 0 ≤ x5 ≤ 4 and 0 ≤ x6 ≤ 4. The values for x5 and x6

at the solution to this first subproblem are x5 = x6 = 1.4. Since x5 and x6 must be integers, the next step in the
solution process “branches” on parameter x5 to create two new optimization subproblems; one with 0 ≤ x5 ≤ 1
and the other with 2 ≤ x5 ≤ 4. Note that, at this first branching, the bounds on x6 are still 0 ≤ x6 ≤ 4.
Next, the two new optimization subproblems are solved. Since they are independent, they can be performed in
parallel. The branch-and-bound process continues, operating on both x5 and x6 , until a optimization subproblem
is solved where x5 and x6 are integer-valued. At the solution to this problem, the optimal values for x5 and x6

are x5 = x6 = 1.

In this example problem, the branch-and-bound algorithm executes as few as five and no more than seven opti-
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mization subproblems to reach the solution. For comparison, the brute force approach would require 25 optimiza-
tion problems to be solved (i.e., five possible values for each of x5 and x6 ).
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Chapter 11

Models

11.1 Overview

Chapters 4 through 8 have presented the different “iterators” available in DAKOTA. An iterator iterates on a model
in order to map a set of variables into a set of responses. This model may involve a simple mapping involving a
single interface, or it may involve recursions using sub-iterator and sub-models. These recursion capabilities were
developed in order to provide mechanisms for “nesting,” “layering,” and “recasting” of software components,
which allows the use of these components as building blocks to accomplish more sophisticated studies, such as
surrogate-based optimization or optimization under uncertainty. In a nested relationship, a sub-iterator is executed
using its sub-model for every evaluation of the nested model. In a layered relationship, on the other hand, sub-
iterators and sub-models are used only for periodic updates and verifications. And in a recast relationship, the
input variable and output response definitions in a sub-model are reformulated in order to support new problem
definitions. In each of these cases, the sub-model is of arbitrary type, such that model recursions can be chained
together in as long of a sequence as needed (e.g., layered containing nested contained layered containing single
in Section 11.6.2.2). Figure 11.1 displays the model class hierarchy from the DAKOTA Developers Manual [4],
with derived classes for single models, nested models, recast models, and two types of surrogate models: data fit
and hierarchical/multifidelity. A third type of derived surrogate model supporting reduced-order models (ROM)
is planned for future releases.

Section 11.2 describes single models; Section 11.3 describes recast models; Section 11.4 describes surrogate mod-
els of the data fit, multifidelity, and ROM type; and Section 11.5 describes nested models. Finally, Section 11.6
presents a number of advanced examples demonstrating model recursion.

Figure 11.1: The DAKOTA model class hierarchy.
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11.2 Single Models

The single model is the simplest model type. It uses a single interface instance (see Chapter 13) to map variables
(see Chapter 12) into responses (see Chapter 14). There is no recursion in this case. Refer to the Models chapter
in the DAKOTA Reference Manual [3] for additional information on the single model specification.

11.3 Recast Models

The recast model is not directly visible to the user within the input specification. Rather, it is used “behind the
scenes” to recast the inputs and outputs of a sub-model for the purposes of reformulating the problem posed
to an iterator. Examples include variable and response scaling (see Section 7.3.2), transformations of uncer-
tain variables and associated response derivatives to employ standardized random variables (see Sections 6.3.2
and 6.4.4), multiobjective optimization (see Section 7.3.1), merit functions (see Section 9.2), and expected im-
provement/feasibility (see Sections 9.4 and 6.3.3). Refer to the DAKOTA Developers Manual [4] for additional
details on the mechanics of recasting problem formulations.

11.4 Surrogate Models

Surrogate models provide an approximation to an original, high fidelity “truth” model. A number of surrogate
model selections are possible, which are categorized as data fits, multifidelity models, and reduced-order models.

Each of the surrogate model types supports the use of correction factors that improve the local accuracy of the
surrogate models. The correction factors force the surrogate models to match the true function values and possibly
true function derivatives at the center point of each trust region. Currently, DAKOTA supports either zeroth-, first-,
or second-order accurate correction methods, each of which can be applied using either an additive, multiplicative,
or combined correction function. For each of these correction approaches, the correction is applied to the surrogate
model and the corrected model is then interfaced with whatever algorithm is being employed. The default behavior
is that no correction factor is applied.

The simplest correction approaches are those that enforce consistency in function values between the surrogate
and original models at a single point in parameter space through use of a simple scalar offset or scaling applied
to the surrogate model. First-order corrections such as the first-order multiplicative correction (also known as
beta correction [19]) and the first-order additive correction [93] also enforce consistency in the gradients and
provide a much more substantial correction capability that is sufficient for ensuring provable convergence in SBO
algorithms (see Section 9.2). SBO convergence rates can be further accelerated through the use of second-order
corrections which also enforce consistency in the Hessians [37], where the second-order information may involve
analytic, finite-difference, or quasi-Newton Hessians.

Correcting surrogate models with additive corrections involves

ˆfhiα(x) = flo(x) + α(x) (11.1)

where multifidelity notation has been adopted for clarity. For multiplicative approaches, corrections take the form

ˆfhiβ (x) = flo(x)β(x) (11.2)

where, for local corrections, α(x) and β(x) are first or second-order Taylor series approximations to the exact
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correction functions:

α(x) = A(xc) +∇A(xc)T (x− xc) +
1
2
(x− xc)T∇2A(xc)(x− xc) (11.3)

β(x) = B(xc) +∇B(xc)T (x− xc) +
1
2
(x− xc)T∇2B(xc)(x− xc) (11.4)

where the exact correction functions are

A(x) = fhi(x)− flo(x) (11.5)

B(x) =
fhi(x)
flo(x)

(11.6)

Refer to [37] for additional details on the derivations.

A combination of additive and multiplicative corrections can provide for additional flexibility in minimizing the
impact of the correction away from the trust region center. In other words, both additive and multiplicative
corrections can satisfy local consistency, but through the combination, global accuracy can be addressed as well.
This involves a convex combination of the additive and multiplicative corrections:

ˆfhiγ (x) = γ ˆfhiα(x) + (1− γ) ˆfhiβ (x) (11.7)

where γ is calculated to satisfy an additional matching condition, such as matching values at the previous design
iterate.

11.4.1 Data Fit Surrogate Models

A surrogate of the data fit type is a non-physics-based approximation typically involving interpolation or re-
gression of a set of data generated from the original model. Data fit surrogates can be further characterized by
the number of data points used in the fit, where a local approximation (e.g., first or second-order Taylor series)
uses data from a single point, a multipoint approximation (e.g., two-point exponential approximations (TPEA) or
two-point adaptive nonlinearity approximations (TANA)) uses a small number of data points often drawn from
the previous iterates of a particular algorithm, and a global approximation (e.g., polynomial response surfaces,
kriging, neural networks, radial basis functions, splines) uses a set of data points distributed over the domain of
interest, often generated using a design of computer experiments.

DAKOTA contains several types of surface fitting methods that can be used with optimization and uncertainty
quantification methods and strategies such as surrogate-based optimization and optimization under uncertainty.
These are: polynomial models (linear, quadratic, and cubic), first-order Taylor series expansion, kriging spatial
interpolation, artificial neural networks, multivariate adaptive regression splines, radial basis functions, and mov-
ing least squares. With the exception of Taylor series methods, all of the above methods listed in the previous
sentence are accessed in DAKOTA through the Surfpack library. All of these surface fitting methods can be ap-
plied to problems having an arbitrary number of design parameters. However, surface fitting methods usually are
practical only for problems where there are a small number of parameters (e.g., a maximum of somewhere in the
range of 30-50 design parameters). The mathematical models created by surface fitting methods have a variety of
names in the engineering community. These include surrogate models, meta-models, approximation models, and
response surfaces. For this manual, the terms surface fit model and surrogate model are used.

The data fitting methods in DAKOTA include software developed by Sandia researchers and by various re-
searchers in the academic community.
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11.4.1.1 Procedures for Surface Fitting

The surface fitting process consists of three steps: (1) selection of a set of design points, (2) evaluation of the true
response quantities (e.g., from a user-supplied simulation code) at these design points, and (3) using the response
data to solve for the unknown coefficients (e.g., polynomial coefficients, neural network weights, kriging correla-
tion factors) in the surface fit model. In cases where there is more than one response quantity (e.g., an objective
function plus one or more constraints), then a separate surface is built for each response quantity. Currently, the
surface fit models are built using only 0th-order information (function values only), although extensions to using
higher-order information (gradients and Hessians) are possible. Each surface fitting method employs a different
numerical method for computing its internal coefficients. For example, the polynomial surface uses a least-squares
approach that employs a singular value decomposition to compute the polynomial coefficients, whereas the krig-
ing surface uses Maximum Likelihood Estimation to compute its correlation coefficients. More information on
the numerical methods used in the surface fitting codes is provided in the DAKOTA Developers Manual [4].

The set of design points that is used to construct a surface fit model is generated using either the DDACE software
package [135] or the LHS software package [85]. These packages provide a variety of sampling methods including
Monte Carlo (random) sampling, Latin hypercube sampling, orthogonal array sampling, central composite design
sampling, and Box-Behnken sampling. More information on these software packages is provided in Chapter 5.

11.4.1.2 Taylor Series

The Taylor series model is purely a local approximation method. That is, it provides local trends in the vicinity of
a single point in parameter space. The first-order Taylor series expansion is:

f̂(x) ≈ f(x0) +∇xf(x0)T (x− x0) (11.8)

and the second-order expansion is:

f̂(x) ≈ f(x0) +∇xf(x0)T (x− x0) +
1
2
(x− x0)T∇2

xf(x0)(x− x0) (11.9)

where x0 is the expansion point in n-dimensional parameter space and f(x0), ∇xf(x0), and ∇2
xf(x0) are the

computed response value, gradient, and Hessian at the expansion point, respectively. As dictated by the responses
specification used in building the local surrogate, the gradient may be analytic or numerical and the Hessian may
be analytic, numerical, or based on quasi-Newton secant updates.

In general, the Taylor series model is accurate only in the region of parameter space that is close to x0 . While the
accuracy is limited, the first-order Taylor series model reproduces the correct value and gradient at the point x0,
and the second-order Taylor series model reproduces the correct value, gradient, and Hessian. This consistency is
useful in provably-convergent surrogate-based optimization. The other surface fitting methods do not use gradient
information directly in their models, and these methods rely on an external correction procedure in order to satisfy
the consistency requirements of provably-convergent SBO.

11.4.1.3 Two Point Adaptive Nonlinearity Approximation

The TANA-3 method [155] is a multipoint approximation method based on the two point exponential approxima-
tion [46]. This approach involves a Taylor series approximation in intermediate variables where the powers used
for the intermediate variables are selected to match information at the current and previous expansion points. The
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form of the TANA model is:

f̂(x) ≈ f(x2) +
n∑
i=1

∂f

∂xi
(x2)

x1−pi

i,2

pi
(xpi

i − xpi

i,2) +
1
2
ε(x)

n∑
i=1

(xpi

i − xpi

i,2)
2 (11.10)

where n is the number of variables and:

pi = 1 + ln

[
∂f
∂xi

(x1)
∂f
∂xi

(x2)

]/
ln
[
xi,1
xi,2

]
(11.11)

ε(x) =
H∑n

i=1(x
pi

i − xpi

i,1)2 +
∑n
i=1(x

pi

i − xpi

i,2)2
(11.12)

H = 2

[
f(x1)− f(x2)−

n∑
i=1

∂f

∂xi
(x2)

x1−pi

i,2

pi
(xpi

i,1 − xpi

i,2)

]
(11.13)

and x2 and x1 are the current and previous expansion points. Prior to the availability of two expansion points, a
first-order Taylor series is used.

11.4.1.4 Linear, Quadratic, and Cubic Polynomial Models

Linear, quadratic, and cubic polynomial models are available in DAKOTA. The form of the linear polynomial
model is

f̂(x) ≈ c0 +
n∑
i=1

cixi (11.14)

the form of the quadratic polynomial model is:

f̂(x) ≈ c0 +
n∑
i=1

cixi +
n∑
i=1

n∑
j≥i

cijxixj (11.15)

and the form of the cubic polynomial model is:

f̂(x) ≈ c0 +
n∑
i=1

cixi +
n∑
i=1

n∑
j≥i

cijxixj +
n∑
i=1

n∑
j≥i

n∑
k≥j

cijkxixjxk (11.16)

In all of the polynomial models, f̂(x) is the response of the polynomial model; the xi, xj , xk terms are the com-
ponents of the n-dimensional design parameter values; the c0 , ci , cij , cijk terms are the polynomial coefficients,
and n is the number of design parameters. The number of coefficients, nc, depends on the order of polynomial
model and the number of design parameters. For the linear polynomial:

nclinear
= n+ 1 (11.17)
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for the quadratic polynomial:

ncquad
=

(n+ 1)(n+ 2)
2

(11.18)

and for the cubic polynomial:

nccubic
=

(n3 + 6n2 + 11n+ 6)
6

(11.19)

There must be at least nc data samples in order to form a fully determined linear system and solve for the poly-
nomial coefficients. In DAKOTA, a least-squares approach involving a singular value decomposition numerical
method is applied to solve the linear system.

The utility of the polynomial models stems from two sources: (1) over a small portion of the parameter space, a
low-order polynomial model is often an accurate approximation to the true data trends, and (2) the least-squares
procedure provides a surface fit that smooths out noise in the data. For this reason, the surrogate-based opti-
mization strategy often is successful when using polynomial models, particularly quadratic models. However, a
polynomial surface fit may not be the best choice for modeling data trends over the entire parameter space, unless
it is known a priori that the true data trends are close to linear, quadratic, or cubic. See [99] for more information
on polynomial models.

11.4.1.5 Kriging Spatial Interpolation Models

In DAKOTA 4.2, we have 2 versions of spatial interpolation models. They are denoted by kriging and
gaussian process, respectively. We are in the process of migrating from the kriging model to the
gaussian process model. For now, both are supported. They are very similar: the differences are explained
in more detail below.

The kriging method uses techniques developed in the geostatistics and spatial statistics communities ( [23], [89])
to produce smooth, C2-continuous surface fit models of the response values from a set of data points. The form
of the kriging model is

f̂(x) ≈ β + rTR−1(f − βe) (11.20)

where x is the current point in n-dimensional parameter space; β is the estimate of the mean response value, r
is the correlation vector of terms between x and the data points, R is the correlation matrix for all of the data
points, f is the vector of response values, and e is a vector with all values set to one. The terms in the correlation
vector and matrix are computed using a Gaussian correlation function and are dependent on an n-dimensional
vector of correlation parameters, Θ = {θ1, . . . , θn}. In DAKOTA, a Maximum Likelihood Estimation procedure
is performed to compute the correlation parameters for the kriging model. More detail on this kriging approach
may be found in [66].

The kriging interpolation model is a nonparametric surface fitting approach. That is, the kriging surface does not
assume that there is an underlying trend in the response data. This is in contrast to the quadratic polynomial model
and the linear Taylor series model. Since the kriging model is nonparametric, it can be used to model surfaces
with slope discontinuities along with multiple local minima and maxima. Kriging interpolation is useful for both
SBO and OUU, as well as for studying the global response value trends in the parameter space. This surface
fitting method can be constructed using a minimum of nclinear

design points, but it is recommended to use at least
ncquad

design points when possible (refer to Section 11.4.1.4 for nc definitions).
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The kriging model is guaranteed to pass through all of the response data values that are used to construct the
model. Generally, this is a desirable feature. However, if there is considerable numerical noise in the response
data, then a surface fitting method that provides some data smoothing (e.g., quadratic polynomial, MARS) may be
a better choice for SBO and OUU applications. Another feature of the kriging model is that the predicted response
values, f̂(x), decay to the mean value, β, when x is far from any of the data points from which the kriging model
was constructed (i.e., when the model is used for extrapolation). This is neither a positive nor a negative aspect
of kriging, but rather a different behavior than is exhibited by the other surface fitting methods. One drawback
to the kriging model is that data points in close proximity lead to ill-conditioning in the numerical procedure
and the kriging software will terminate if such a situation occurs. For this reason, the user is advised to avoid
sample reuse (reuse samples = region and reuse samples = all specifications) when performing
surrogate-based optimization.

As mentioned above, there are two surrogate models in DAKOTA 4.2 which provide Gaussian process surrogates,
the kriging model and the gaussian process model. More details on the gaussian process model
can be found in [95]. The differences between these models are as follows:

• Trend Function: In general, a GP model may incorporate a parametric trend function whose purpose is to
capture large-scale variations. The trend function in the kriging model is a constant, whereas the trend
function in the gaussian process model can be specified as a constant, linear,or quadratic trend func-
tion. This is specified by the keyword trend followed by one of constant, linear, or quadratic.

• Correlation Parameter Determination: Both the kriging and Gaussian process model use a Maximum Likeli-
hood Estimation (MLE) approach to find the optimal values of the hyper-parameters governing the mean and
correlation functions. The krigingmodel using a CONMIN local optimizer while the gaussian process
model uses a global optimization method called DIRECT. Also, the gaussian process model has an
iterative solution approach where the coefficients defining the trend function and the process variance are
determined, then these values are used when determining the optimal values for the correlation coefficients,
and the process iterates. We have found the optimization of the correlation parameters to be more robust
in the gaussian process model. Note that one can pre-define the correlation parameters in kriging
but not in the gaussian process.

• Ill-conditioning. One of the major problems in determining the governing values for a Gaussian process or
kriging model is the fact that the correlation matrix can easily become ill-conditioned when there are too
many input points close together. Since the predictions from the Gaussian process model involve inverting
the correlation matrix, ill-conditioning can lead to poor predictive capability and should be avoided. The
gaussian process model has two features to overcome ill-conditioning. The first is that the algorithm
will add a small amount of noise to the diagonal elements of the matrix (this is often referred to as a
“nugget”) and sometimes this is enough to improve the conditioning. The second is that the user can
specify to build the GP based only on a subset of points. The algorithm chooses an optimal subset of points
(with respect to predictive capability on the remaining unchosen points) using a greedy heuristic. This
option is specified with the keyword point selection in the input file. The kriging model does not
have provisions to deal with ill-conditioning: it stops if the problem is too ill-conditioned.

11.4.1.6 Artificial Neural Network (ANN) Models

The ANN surface fitting method in DAKOTA employs a stochastic layered perceptron (SLP) artificial neural
network based on the direct training approach of Zimmerman [156]. The SLP ANN method is designed to have
a lower training cost than traditional ANNs. This is a useful feature for SBO and OUU where new ANNs are
constructed many times during the optimization process (i.e., one ANN for each response function, and new
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ANNs for each optimization iteration). The form of the SLP ANN model is

f̂(x) ≈ tanh(tanh((xA0 + θ0)A1 + θ1)) (11.21)

where x is the current point in n-dimensional parameter space, and the terms A0, θ0,A1, θ1 are the matrices and
vectors that correspond to the neuron weights and offset values in the ANN model. These terms are computed
during the ANN training process, and are analogous to the polynomial coefficients in a quadratic surface fit. A
singular value decomposition method is used in the numerical methods that are employed to solve for the weights
and offsets.

The SLP ANN is a non parametric surface fitting method. Thus, along with kriging and MARS, it can be used
to model data trends that have slope discontinuities as well as multiple maxima and minima. However, unlike
kriging, the ANN surface is not guaranteed to exactly match the response values of the data points from which
it was constructed. This ANN can be used with SBO and OUU strategies. As with kriging, this ANN can be
constructed from fewer than ncquad

data points, however, it is a good rule of thumb to use at least ncquad
data

points when possible.

11.4.1.7 Multivariate Adaptive Regression Spline (MARS) Models

This surface fitting method uses multivariate adaptive regression splines from the MARS3.5 package [51] devel-
oped at Stanford University.

The form of the MARS model is based on the following expression:

f̂(x) =
M∑
m=1

amBm(x) (11.22)

where the am are the coefficients of the truncated power basis functions Bm, and M is the number of basis
functions. The MARS software partitions the parameter space into subregions, and then applies forward and
backward regression methods to create a local surface model in each subregion. The result is that each subregion
contains its own basis functions and coefficients, and the subregions are joined together to produce a smooth,
C2-continuous surface model.

MARS is a nonparametric surface fitting method and can represent complex multimodal data trends. The regres-
sion component of MARS generates a surface model that is not guaranteed to pass through all of the response
data values. Thus, like the quadratic polynomial model, it provides some smoothing of the data. The MARS ref-
erence material does not indicate the minimum number of data points that are needed to create a MARS surface
model. However, in practice it has been found that at least ncquad

, and sometimes as many as 2 to 4 times ncquad
,

data points are needed to keep the MARS software from terminating. Provided that sufficient data samples can
be obtained, MARS surface models can be useful in SBO and OUU applications, as well as in the prediction of
global trends throughout the parameter space.
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11.4.1.8 Radial Basis Functions

Radial basis functions are functions whose value typically depends on the distance from a center point, called the
centroid, c. The surrogate model approximation is then built up as the sum of K weighted radial basis functions:

f̂(x) =
K∑
k=1

wkφ(‖ x− ck ‖) (11.23)

where the φ are the individual radial basis functions. These functions can be of any form, but often a Gaussian
bell-shaped function or splines are used. Our implementation uses a Gaussian radial basis function. The weights
are determined via a linear least squares solution approach. See [106] for more details.

11.4.1.9 Moving Least Squares

Moving Least Squares can be considered a more specialized version of linear regression models. In linear re-
gression, one usually attempts to minimize the sum of the squared residuals, where the residual is defined as
the difference between the surrogate model and the true model at a fixed number of points. In weighted least
squares, the residual terms are weighted so the determination of the optimal coefficients governing the polyno-
mial regression function, denoted by f̂(x), are obtained by minimizing the weighted sum of squares at N data
points:

N∑
n=1

wn(‖ f̂(xn)− f(xn) ‖) (11.24)

Moving least squares is a further generalization of weighted least squares where the weighting is “moved” or
recalculated for every new point where a prediction is desired. [100] The implementation of moving least squares
is still under development. We have found that it works well in trust region methods where the surrogate model
is constructed in a constrained region over a few points. It does not appear to be working as well globally, at least
at this point in time.

11.4.2 Multifidelity Surrogate Models

A second type of surrogate is the model hierarchy type (also called multifidelity, variable fidelity, variable com-
plexity, etc.). In this case, a model that is still physics-based but is of lower fidelity (e.g., coarser discretization,
reduced element order, looser convergence tolerances, omitted physics) is used as the surrogate in place of the
high-fidelity model. For example, an inviscid, incompressible Euler CFD model on a coarse discretization could
be used as a low-fidelity surrogate for a high-fidelity Navier-Stokes model on a fine discretization.

11.4.3 Reduced Order Models

A third type of surrogate model involves reduced-order modeling techniques such as proper orthogonal decompo-
sition (POD) in computational fluid dynamics (also known as principal components analysis or Karhunen-Loeve
in other fields) or spectral decomposition (also known as modal analysis) in structural dynamics. These surrogate
models are generated directly from a high-fidelity model through the use of a reduced basis (e.g., eigenmodes for
modal analysis or left singular vectors for POD) and projection of the original high-dimensional system down to a
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small number of generalized coordinates. These surrogates are still physics-based (and may therefore have better
predictive qualities than data fits), but do not require multiple system models of varying fidelity (as required for
model hierarchy surrogates).

11.5 Nested Models

Nested models utilize a sub-iterator and a sub-model to perform a complete iterative study as part of every evalu-
ation of the model. This sub-iteration accepts variables from the outer level, performs the sub-level analysis, and
computes a set of sub-level responses which are passed back up to the outer level. As described in the Models
chapter of the Reference Manual [3], mappings are employed for both the variable inputs to the sub-model and
the response outputs from the sub-model.

In the variable mapping case, primary and secondary variable mapping specifications are used to map from the top-
level variables into the sub-model variables. These mappings support three possibilities in any combination: (1)
insertion of an active top-level variable value into an identified sub-model distribution parameter for an identified
active sub-model variable, (2) insertion of an active top-level variable value into an identified active sub-model
variable value, and (3) addition of an active top-level variable value as an inactive sub-model variable, augmenting
the active sub-model variables.

In the response mapping case, primary and secondary response mapping specifications are used to map from the
sub-model responses back to the top-level responses. These specifications provide real-valued multipliers that are
applied to the sub-iterator response results to define the outer level response set. These nested data results may be
combined with non-nested data through use of the “optional interface” component within nested models.

Several examples of nested model usage are provided in the following section.

11.6 Advanced Examples

The surrogate and nested model constructs admit a wide variety of multi-iterator, multi-model solution ap-
proaches. For example, optimization within optimization (for hierarchical multidisciplinary optimization), uncer-
tainty quantification within uncertainty quantification (for second-order probability), uncertainty quantification
within optimization (for optimization under uncertainty), and optimization within uncertainty quantification (for
uncertainty of optima) are all supported, with and without surrogate model indirection. Three important exam-
ples are highlighted: second-order probability, optimization under uncertainty, and surrogate-based uncertainty
quantification.

11.6.1 Second-order probability

Second-order probability approaches employ nested models to embed one uncertainty quantification (UQ) within
another. The outer level UQ is commonly linked to epistemic uncertainties (also known as reducible uncertainties)
resulting from a lack of knowledge, and the inner UQ is commonly linked to aleatory uncertainties (also known
as irreducible uncertainties) that are inherent in nature. The outer level generates sets of realizations, typically
from sampling within interval distributions. These realizations define values for distribution parameters used in
a probabilistic analysis for the inner level UQ. The term “second-order” derives from this use of distributions on
distributions and the generation of statistics on statistics. These approaches can be considered to be a special case
of imprecise probability theory.
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A sample input file is shown in Figure 11.2, in which the outer epistemic level variables are defined as intervals.
Samples will be generated from these intervals to select means for X and Y that are employed in an inner level
reliability analysis of the cantilever problem (see Section 22.9). Figure 11.3 shows excerpts from the resulting
output. In this particular example, the outer loop generates 50 possible realizations of epistemic variables, which
are then sent to the inner loop to calculate statistics such as the mean weight, and cumulative distribution function
for the stress and displacement reliability indices. Thus, the outer loop has 50 possible values for the mean weight
but there is no distribution structure on these 50 samples. So, only the minimum and maximum value are reported.
Similarly, the minimum and maximum values of the CCDF for the stress and displacement reliability indices are
reported.

When performing an epistemic analysis, response levels and probability levels should only be defined in the inner
loop. For example, if one wants to generate an interval around possible CDFs or CCDFS, we suggest defining
a number of probability levels in the inner loop (0.1, 0.2, 0.3, etc). For each epistemic instance, these will be
calculated during the inner loop and reported back to the outer loop. In this way, there will be an ensemble of
CDF percentiles (for example) and one will have interval bounds for each of these percentile levels defined.

Also note that it is possible to define the epistemic outer loop using uniform variables instead of interval variables.
The process of generating the epistemic values is essentially the same in both cases. However, if the outer loop
variables are defined to be uniform, the outer loop results will be reported as statistics (such as mean and standard
deviation) and not merely intervals. It is important to note that these outer level statistics are only meaningful
to the extent that the outer level probabilities are meaningful (which would not be the case for sampling from
epistemic intervals, since the actual probabilities would not be known to be uniform). Finally, although the
epistemic variables are often values defining distribution parameters for the inner loop, they are not required to
be: they can just be separate uncertain variables in the problem.

11.6.2 Optimization Under Uncertainty (OUU)

Optimization under uncertainty (OUU) approaches incorporate an uncertainty quantification method within the
optimization process. This is often needed in engineering design problems when one must include the effect of
input parameter uncertainties on the response functions of interest. A typical engineering example of OUU would
minimize the probability of failure of a structure for a set of applied loads, where there is uncertainty in the loads
and/or material properties of the structural components.

In OUU, a nondeterministic method is used to evaluate the effect of uncertain variable distributions on response
functions of interest (refer to Chapter 6 for additional information on nondeterministic analysis). Statistics on
these response functions are then included in the objective and constraint functions of an optimization process.
Different UQ methods can have very different features from an optimization perspective, leading to the tailoring
of optimization under uncertainty approaches to particular underlying UQ methodologies.

If the UQ method is sampling based, then three approaches are currently supported: nested OUU, surrogate-based
OUU, and trust-region surrogate-based OUU. Additional details and computational results are provided in [38].

Another class of OUU algorithms is called reliability-based design optimization (RBDO). RBDO methods are
used to perform design optimization accounting for reliability metrics. The reliability analysis capabilities de-
scribed in Section 6.3 provide a rich foundation for exploring a variety of RBDO formulations. [34] investigated
bi-level, fully-analytic bi-level, and first-order sequential RBDO approaches employing underlying first-order
reliability assessments. [35] investigated fully-analytic bi-level and second-order sequential RBDO approaches
employing underlying second-order reliability assessments.

When using stochastic expansions for UQ, analytic moments and analytic design sensitivities can be exploited
as described in [45]. Several approaches for obtaining design sensitivities of statistical metrics are discussed in
Section 11.6.2.6.
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strategy,
single_method
method_pointer = ’EPISTEMIC’

method,
id_method = ’EPISTEMIC’
model_pointer = ’EPIST_M’
nond_sampling
samples = 50 seed = 12347

model,
id_model = ’EPIST_M’
nested
variables_pointer = ’EPIST_V’
sub_method_pointer = ’ALEATORY’
responses_pointer = ’EPIST_R’
primary_variable_mapping = ’X’ ’Y’
secondary_variable_mapping = ’mean’ ’mean’
primary_response_mapping = 1. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 1. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 1.

variables,
id_variables = ’EPIST_V’
interval_uncertain =2
num_intervals = 1 1
interval_probs = 1.0 1.0
interval_bounds = 400. 600. 800. 1200.
descriptors ’X_mean’ ’Y_mean’

responses,
id_responses = ’EPIST_R’
num_response_functions = 3
response_descriptors = ’mean_wt’ ’ccdf_beta_s’ ’ccdf_beta_d’
no_gradients
no_hessians

method,
id_method = ’ALEATORY’
model_pointer = ’ALEAT_M’
nond_local_reliability
mpp_search no_approx
num_response_levels = 0 1 1
response_levels = 0.0 0.0
compute reliabilities
complementary distribution

model,
id_model = ’ALEAT_M’
single
variables_pointer = ’ALEAT_V’
interface_pointer = ’ALEAT_I’
responses_pointer = ’ALEAT_R’

variables,
id_variables = ’ALEAT_V’
continuous_design = 2
initial_point 2.4522 3.8826
descriptors ’beam_width’ ’beam_thickness’

normal_uncertain = 4
means = 40000. 29.E+6 500. 1000.
std_deviations = 2000. 1.45E+6 100. 100.
descriptors = ’R’ ’E’ ’X’ ’Y’

interface,
id_interface = ’ALEAT_I’
direct
analysis_driver = ’cantilever’
deactivate evaluation_cache restart_file

responses,
id_responses = ’ALEAT_R’
num_response_functions = 3
response_descriptors = ’weight’ ’stress’ ’displ’
analytic_gradients
no_hessians

Figure 11.2: DAKOTA input file for the second-order probability example.
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Statistics based on 50 samples:

Min and Max values for each response function:
mean_wt: Min = 9.5209117200e+00 Max = 9.5209117200e+00
ccdf_beta_s: Min = 1.7627715524e+00 Max = 4.2949468386e+00
ccdf_beta_d: Min = 2.0125192955e+00 Max = 3.9385559339e+00

Figure 11.3: Second-order statistics on reliability indices for cantilever problem.

Figure 11.4: Formulation 1: Nested OUU.

Finally, when employing epistemic methods for UQ, the set of statistics available for use within optimization are
interval-based. Robustness metrics typically involve the width of the intervals, and reliability metrics typically
involve the worst case upper or lower bound of the interval.

Each of these OUU methods is overviewed in the following sections.

11.6.2.1 Nested OUU

In the case of a nested approach, the optimization loop is the outer loop which seeks to optimize a nondeterministic
quantity (e.g., minimize probability of failure). The uncertainty quantification (UQ) inner loop evaluates this
nondeterministic quantity (e.g., computes the probability of failure) for each optimization function evaluation.
Figure 11.4 depicts the nested OUU iteration where d are the design variables, u are the uncertain variables
characterized by probability distributions, ru(d,u) are the response functions from the simulation, and su(d) are
the statistics generated from the uncertainty quantification on these response functions.

Figure 11.5 shows a DAKOTA input file for a nested OUU example problem that is based on the textbook test
problem. This input file is named dakota ouu1 tb.in in the Dakota/test directory. In this example,
the objective function contains two probability of failure estimates, and an inequality constraint contains another
probability of failure estimate. For this example, failure is defined to occur when one of the textbook response
functions exceeds its threshold value. The strategy keyword block at the top of the input file identifies this
as an OUU problem. The strategy keyword block is followed by the optimization specification, consisting of
the optimization method, the continuous design variables, and the response quantities that will be used by the
optimizer. The mapping matrices used for incorporating UQ statistics into the optimization response data are
described in the DAKOTA Reference Manual [3]. The uncertainty quantification specification includes the UQ
method, the uncertain variable probability distributions, the interface to the simulation code, and the UQ response
attributes. As with other complex DAKOTA input files, the identification tags given in each keyword block can
be used to follow the relationships among the different keyword blocks.
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strategy,
single_method
method_pointer = ’OPTIM’

method,
id_method = ’OPTIM’
model_pointer = ’OPTIM_M’
npsol_sqp
convergence_tolerance = 1.e-8

model,
id_model = ’OPTIM_M’
nested
variables_pointer = ’OPTIM_V’
sub_method_pointer = ’UQ’
responses_pointer = ’OPTIM_R’
primary_response_mapping = 0. 0. 1. 0. 0. 1. 0. 0. 0.
secondary_response_mapping = 0. 0. 0. 0. 0. 0. 0. 0. 1.

variables,
id_variables = ’OPTIM_V’
continuous_design = 2
initial_point 1.8 1.0
upper_bounds 2.164 4.0
lower_bounds 1.5 0.0
descriptors ’d1’ ’d2’

responses,
id_responses = ’OPTIM_R’
num_objective_functions = 1
num_nonlinear_inequality_constraints = 1
nonlinear_inequality_upper_bounds = .1
numerical_gradients
method_source dakota
interval_type central
fd_gradient_step_size = 1.e-1

no_hessians

method,
id_method = ’UQ’
model_pointer = ’UQ_M’
nond_sampling,
samples = 50 seed = 1 sample_type lhs
response_levels = 3.6e+11 1.2e+05 3.5e+05
complementary distribution

model,
id_model = ’UQ_M’
single
variables_pointer = ’UQ_V’
interface_pointer = ’UQ_I’
responses_pointer = ’UQ_R’

variables,
id_variables = ’UQ_V’
continuous_design = 2
normal_uncertain = 2
means = 248.89, 593.33
std_deviations = 12.4, 29.7
descriptors = ’nuv1’ ’nuv2’

uniform_uncertain = 2
lower_bounds = 199.3, 474.63
upper_bounds = 298.5, 712.
descriptors = ’uuv1’ ’uuv2’

weibull_uncertain = 2
alphas = 12., 30.
betas = 250., 590.
descriptors = ’wuv1’ ’wuv2’

interface,
id_interface = ’UQ_I’
system asynch evaluation_concurrency = 5
analysis_driver = ’text_book_ouu’

responses,
id_responses = ’UQ_R’
num_response_functions = 3
no_gradients
no_hessians

Figure 11.5: DAKOTA input file for the nested OUU example.
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Figure 11.6: Formulations 2, 3, and 4 for Surrogate-based OUU.

Latin hypercube sampling is used as the UQ method in this example problem. Thus, each evaluation of the
response functions by the optimizer entails 50 Latin hypercube samples. In general, nested OUU studies can
easily generate several thousand function evaluations and gradient-based optimizers may not perform well due
to noisy or insensitive statistics resulting from under-resolved sampling. These observations motivate the use of
surrogate-based approaches to OUU.

Other nested OUU examples in the Dakota/test directory include dakota ouu1 tbch.in, which adds an
additional interface for including deterministic data in the textbook OUU problem, and
dakota ouu1 cantilever.in, which solves the cantilever OUU problem (see Section 22.9) with a nested
approach. For each of these files, the “1” identifies formulation 1, which is short-hand for the nested approach.

11.6.2.2 Surrogate-Based OUU (SBOUU)

Surrogate-based optimization under uncertainty strategies can be effective in reducing the expense of OUU stud-
ies. Possible formulations include use of a surrogate model at the optimization level, at the uncertainty quantifica-
tion level, or at both levels. These surrogate models encompass both data fit surrogates (at the optimization or UQ
level) and model hierarchy surrogates (at the UQ level only). Figure 11.6 depicts the different surrogate-based for-
mulations where r̂u and ŝu are approximate response functions and approximate response statistics, respectively,
generated from the surrogate models.

SBOUU examples in the Dakota/test directory include dakota sbouu2 tbch.in,
dakota sbouu3 tbch.in, and dakota sbouu4 tbch.in, which solve the textbook OUU problem, and
dakota sbouu2 cantilever.in, dakota sbouu3 cantilever.in, and
dakota sbouu4 cantilever.in, which solve the cantilever OUU problem (see Section 22.9). For each
of these files, the “2,” “3,” and “4” identify formulations 2, 3, and 4, which are short-hand for the “layered
containing nested,” “nested containing layered,” and “layered containing nested containing layered” surrogate-
based formulations, respectively. In general, the use of surrogates greatly reduces the computational expense of
these OUU study. However, without restricting and verifying the steps in the approximate optimization cycles,
weaknesses in the data fits can be exploited and poor solutions may be obtained. The need to maintain accuracy
of results leads to the use of trust-region surrogate-based approaches.
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11.6.2.3 Trust-Region Surrogate-Based OUU (TR-SBOUU)

The TR-SBOUU approach applies the trust region logic of deterministic SBO (see Section 9.2) to SBOUU. Trust-
region verifications are applicable when surrogates are used at the optimization level, i.e., formulations 2 and 4.
As a result of periodic verifications and surrogate rebuilds, these techniques are more expensive than SBOUU;
however they are more reliable in that they maintain the accuracy of results. Relative to nested OUU (formulation
1), TR-SBOUU tends to be less expensive and less sensitive to initial seed and starting point.

TR-SBOUU examples in the Dakota/test directory include dakota trsbouu2 tbch.in and
dakota trsbouu4 tbch.in, which solve the textbook OUU problem, and
dakota trsbouu2 cantilever.in and dakota trsbouu4 cantilever.in, which solve the can-
tilever OUU problem (see Section 22.9).

Computational results for several example problems are available in [38].

11.6.2.4 Bi-level RBDO

The simplest and most direct RBDO approach is the bi-level approach in which a full reliability analysis is
performed for every optimization function evaluation. This involves a nesting of two distinct levels of optimization
within each other, one at the design level and one at the MPP search level.

Since an RBDO problem will typically specify both the z̄ level and the p̄/β̄ level, one can use either the RIA
or the PMA formulation for the UQ portion and then constrain the result in the design optimization portion. In
particular, RIA reliability analysis maps z̄ to p/β, so RIA RBDO constrains p/β:

minimize f

subject to β ≥ β̄

or p ≤ p̄ (11.25)

And PMA reliability analysis maps p̄/β̄ to z, so PMA RBDO constrains z:

minimize f

subject to z ≥ z̄ (11.26)

where z ≥ z̄ is used as the RBDO constraint for a cumulative failure probability (failure defined as z ≤ z̄)
but z ≤ z̄ would be used as the RBDO constraint for a complementary cumulative failure probability (failure
defined as z ≥ z̄). It is worth noting that DAKOTA is not limited to these types of inequality-constrained RBDO
formulations; rather, they are convenient examples. DAKOTA supports general optimization under uncertainty
mappings [38] which allow flexible use of statistics within multiple objectives, inequality constraints, and equality
constraints.

In Dakota/test, the dakota rbdo cantilever.in, dakota rbdo short column.in, and
dakota rbdo steel column.in input files solve the cantilever (see Section 22.9), short column (see Sec-
tion 22.8), and steel column (see Section 22.10) OUU problems using a bi-level RBDO approach employing
numerical design gradients.

An important performance enhancement for bi-level methods is the use of sensitivity analysis to analytically
compute the design gradients of probability, reliability, and response levels. When design variables are separate
from the uncertain variables (i.e., they are not distribution parameters), then the following first-order expressions
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may be used [80, 87, 6]:

∇dz = ∇dg (11.27)

∇dβcdf =
1

‖ ∇uG ‖
∇dg (11.28)

∇dpcdf = −φ(−βcdf )∇dβcdf (11.29)

where it is evident from Eqs. 6.12-6.13 that ∇dβccdf = −∇dβcdf and ∇dpccdf = −∇dpcdf . In the case of
second-order integrations, Eq. 11.29 must be expanded to include the curvature correction. For Breitung’s correc-
tion (Eq. 6.39),

∇dpcdf =

Φ(−βp)
n−1∑
i=1

 −κi
2(1 + βpκi)

3
2

n−1∏
j=1
j 6=i

1√
1 + βpκj

− φ(−βp)
n−1∏
i=1

1√
1 + βpκi

∇dβcdf (11.30)

where ∇dκi has been neglected and βp ≥ 0 (see Section 6.3.2.2). Other approaches assume the curvature
correction is nearly independent of the design variables [112], which is equivalent to neglecting the first term in
Eq. 11.30.

To capture second-order probability estimates within an RIA RBDO formulation using well-behaved β con-
straints, a generalized reliability index can be introduced where, similar to Eq. 6.10,

β∗cdf = −Φ−1(pcdf ) (11.31)

for second-order pcdf . This reliability index is no longer equivalent to the magnitude of u, but rather is a con-
venience metric for capturing the effect of more accurate probability estimates. The corresponding generalized
reliability index sensitivity, similar to Eq. 11.29, is

∇dβ
∗
cdf = − 1

φ(−β∗cdf )
∇dpcdf (11.32)

where∇dpcdf is defined from Eq. 11.30. Even when∇dg is estimated numerically, Eqs. 11.27-11.32 can be used
to avoid numerical differencing across full reliability analyses.

When the design variables are distribution parameters of the uncertain variables, ∇dg is expanded with the chain
rule and Eqs. 11.27 and 11.28 become

∇dz = ∇dx∇xg (11.33)

∇dβcdf =
1

‖ ∇uG ‖
∇dx∇xg (11.34)

where the design Jacobian of the transformation (∇dx) may be obtained analytically for uncorrelated x or semi-
analytically for correlated x (∇dL is evaluated numerically) by differentiating Eqs. 6.15 and 6.16 with respect
to the distribution parameters. Eqs. 11.29-11.32 remain the same as before. For this design variable case, all
required information for the sensitivities is available from the MPP search.

Since Eqs. 11.27-11.34 are derived using the Karush-Kuhn-Tucker optimality conditions for a converged MPP,
they are appropriate for RBDO using AMV+, AMV2+, TANA, FORM, and SORM, but not for RBDO using
MVFOSM, MVSOSM, AMV, or AMV2.

In Dakota/test, the dakota rbdo cantilever analytic.in and
dakota rbdo short column analytic.in input files solve the cantilever and short column OUU prob-
lems using a bi-level RBDO approach with analytic design gradients and first-order limit state approximations.
The dakota rbdo cantilever analytic2.in, dakota rbdo short column analytic2.in, and
dakota rbdo steel column analytic2.in input files also employ analytic design gradients, but are ex-
tended to employ second-order limit state approximations and integrations.
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11.6.2.5 Sequential/Surrogate-based RBDO

An alternative RBDO approach is the sequential approach, in which additional efficiency is sought through break-
ing the nested relationship of the MPP and design searches. The general concept is to iterate between optimization
and uncertainty quantification, updating the optimization goals based on the most recent probabilistic assessment
results. This update may be based on safety factors [149] or other approximations [30].

A particularly effective approach for updating the optimization goals is to use the p/β/z sensitivity analysis of
Eqs. 11.27-11.34 in combination with local surrogate models [157]. In [34] and [35], first-order and second-order
Taylor series approximations were employed within a trust-region model management framework [64] in order
to adaptively manage the extent of the approximations and ensure convergence of the RBDO process. Surrogate
models were used for both the objective function and the constraints, although the use of constraint surrogates
alone is sufficient to remove the nesting.

In particular, RIA trust-region surrogate-based RBDO employs surrogate models of f and p/β within a trust
region ∆k centered at dc. For first-order surrogates:

minimize f(dc) +∇df(dc)T (d− dc)
subject to β(dc) +∇dβ(dc)T (d− dc) ≥ β̄

or p(dc) +∇dp(dc)T (d− dc) ≤ p̄

‖ d− dc ‖∞ ≤ ∆k (11.35)

and for second-order surrogates:

minimize f(dc) +∇df(dc)T (d− dc) + 1
2 (d− dc)T∇2

df(dc)(d− dc)
subject to β(dc) +∇dβ(dc)T (d− dc) + 1

2 (d− dc)T∇2
dβ(dc)(d− dc) ≥ β̄

or p(dc) +∇dp(dc)T (d− dc) + 1
2 (d− dc)T∇2

dp(dc)(d− dc) ≤ p̄

‖ d− dc ‖∞ ≤ ∆k (11.36)

For PMA trust-region surrogate-based RBDO, surrogate models of f and z are employed within a trust region ∆k

centered at dc. For first-order surrogates:

minimize f(dc) +∇df(dc)T (d− dc)
subject to z(dc) +∇dz(dc)T (d− dc) ≥ z̄

‖ d− dc ‖∞ ≤ ∆k (11.37)

and for second-order surrogates:

minimize f(dc) +∇df(dc)T (d− dc) + 1
2 (d− dc)T∇2

df(dc)(d− dc)
subject to z(dc) +∇dz(dc)T (d− dc) + 1

2 (d− dc)T∇2
dz(dc)(d− dc) ≥ z̄

‖ d− dc ‖∞ ≤ ∆k (11.38)

where the sense of the z constraint may vary as described previously. The second-order information in Eqs. 11.36
and 11.38 will typically be approximated with quasi-Newton updates.

In Dakota/test, the dakota rbdo cantilever trsb.in and
dakota rbdo short column trsb.in input files solve the cantilever and short column OUU problems
using a first-order sequential RBDO approach with analytic design gradients and first-order limit state approx-
imations. The dakota rbdo cantilever trsb2.in, dakota rbdo short column trsb2.in, and
dakota rbdo steel column trsb2.in input files utilize second-order sequential RBDO approaches that
employ second-order limit state approximations and integrations (from analytic limit state Hessians with respect
to the uncertain variables) and quasi-Newton approximations to the reliability metric Hessians with respect to
design variables.
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11.6.2.6 Stochastic Expansion-Based Design Optimization

Section 6.4.10 describes sensitivity analysis of the polynomial chaos expansion with respect to the random vari-
ables. Here we extend this analysis to include sensitivity analysis with respect to design variables. With the
introduction of design variables s, a polynomial chaos expansion only over the random variables ξ has the func-
tional relationship:

R(ξ, s) ∼=
P∑
j=0

αj(s)Ψj(ξ) (11.39)

In this case, design sensitivities for the mean and variance in Eqs. 6.66 and 6.67 are as follows:

dµR
ds

=
dα0

ds
=

d

ds
〈R〉 = 〈dR

ds
〉 (11.40)

dσ2
R

ds
=

P∑
j=1

〈Ψ2
j 〉
dα2

j

ds
= 2

P∑
j=1

αj〈
dR

ds
,Ψj〉 (11.41)

since
dαj
ds

=
〈dRds ,Ψj〉
〈Ψ2

j 〉
(11.42)

The coefficients calculated in Eq. 11.42 may be interpreted as either the design sensitivities of the chaos coeffi-
cients for the response expansion or the chaos coefficients of an expansion for the response design sensitivities.
The evaluation of integrals involving dR

ds extends the data requirements for the PCE approach to include response
sensitivities at each of the sampling points for the quadrature, sparse grid, sampling, or point collocation coeffi-
cient estimation approaches. The resulting expansions are valid only for a particular set of design variables and
must be recalculated each time the design variables are modified.

Similarly for stochastic collocation,

R(ξ, s) ∼=
Np∑
j=1

rj(s)Lj(ξ) (11.43)

leads to

dµR
ds

=
d

ds
〈R〉 =

Np∑
j=1

drj
ds
〈Lj〉 =

Np∑
j=1

wj
drj
ds

(11.44)

dσ2
R

ds
=

Np∑
j=1

2wjrj
drj
ds

− 2µR
dµR
ds

=
Np∑
j=1

2wj(rj − µR)
drj
ds

(11.45)

based on differentiation of Eqs. 6.68-6.69.

Alternatively, a stochastic expansion can be formed over both ξ and s. Assuming a bounded design domain
sL ≤ s ≤ sU (with no implied probability content), a Legendre chaos basis would be appropriate for each of the
dimensions in s within a polynomial chaos expansion.

R(ξ, s) ∼=
P∑
j=0

αjΨj(ξ, s) (11.46)

In this case, design sensitivities for the mean and variance do not require response sensitivity data, but this comes
at the cost of forming the PCE over additional dimensions. For this combined variable expansion, the mean
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and variance are evaluated by evaluating the expectations over only the random variables, which eliminates the
polynomial dependence on ξ, leaving behind the desired polynomial dependence on s:

µR(s) =
P∑
j=0

αj〈Ψj(ξ, s)〉ξ (11.47)

σ2
R(s) =

P∑
j=0

P∑
k=0

αjαk〈Ψj(ξ, s)Ψk(ξ, s)〉ξ − µ2
R(s) (11.48)

The remaining polynomials may then be differentiated with respect to s. In this approach, the combined PCE
is valid for the full design variable range (sL ≤ s ≤ sU ) and does not need to be updated for each change in
design variables, although adaptive localization techniques (i.e., trust region model management approaches) can
be employed when improved local accuracy of the sensitivities is required.

Similarly for stochastic collocation,

R(ξ, s) ∼=
Np∑
j=1

rjLj(ξ, s) (11.49)

leads to

µR(s) =
Np∑
j=1

rj〈Lj(ξ, s)〉ξ (11.50)

σ2
R(s) =

Np∑
j=1

Np∑
k=1

rjrk〈Lj(ξ, s)Lk(ξ, s)〉ξ − µ2
R(s) (11.51)

where the remaining polynomials not eliminated by the expectation over ξ are again differentiated with respect to
s.

Given the capability to compute analytic statistics of the response along with design sensitivities of these statistics,
DAKOTA supports bi-level, sequential, and multifidelity approaches for optimization under uncertainty (OUU).
The latter two approaches apply surrogate modeling approaches (data fits and multifidelity modeling) to the un-
certainty analysis and then apply trust region model management to the optimization process.

The simplest and most direct approach is to employ these analytic statistics and their design derivatives directly
within an optimization loop. This approach is known as bi-level OUU, since there is an inner level uncertainty
analysis nested within an outer level optimization.

Consider the common reliability-based design example of a deterministic objective function with a reliability
constraint:

minimize f

subject to β ≥ β̄ (11.52)

where β is computed relative to a prescribed threshold response value z̄ and is constrained by a prescribed reliabil-
ity level β̄. Another common example is robust design in which the constraint enforcing a reliability lower-bound
has been replaced with a constraint enforcing a variance upper-bound:

minimize f

subject to σ2 ≤ σ̄2 (11.53)
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Solving these problems using a bi-level approach involves computing β(s) and dβ
ds for Eq. 11.52 or σ2 and dσ2

ds
for Eq. 11.53 for each set of design variables s passed from the optimizer. This approach is supported for both
Uncertain and Combined expansions using PCE and SC.

An alternative OUU approach is the sequential approach, in which additional efficiency is sought through breaking
the nested relationship of the UQ and optimization loops. The general concept is to iterate between optimization
and uncertainty quantification, updating the optimization goals based on the most recent uncertainty assessment
results. This approach is common with the reliability methods community, for which the updating strategy may
be based on safety factors [149] or other approximations [30].

A particularly effective approach for updating the optimization goals is to use data fit surrogate models, and
in particular, local Taylor series models allow direct insertion of stochastic sensitivity analysis capabilities. In
Ref. [34], first-order Taylor series approximations were explored, and in Ref. [35], second-order Taylor series
approximations are investigated. In both cases, a trust-region model management framework [36] is used to
adaptively manage the extent of the approximations and ensure convergence of the OUU process. Surrogate
models are used for both the objective and the constraint functions, although the use of surrogates is only required
for the functions containing statistical results; deterministic functions may remain explicit is desired.

In particular, trust-region surrogate-based optimization for reliability-based design employs surrogate models of
f and β within a trust region ∆k centered at sc:

minimize f(sc) +∇sf(sc)T (s− sc)
subject to β(sc) +∇sβ(sc)T (s− sc) ≥ β̄ (11.54)

‖ s− sc ‖∞ ≤ ∆k

and trust-region surrogate-based optimization for robust design employs surrogate models of f and σ2 within a
trust region ∆k centered at sc:

minimize f(sc) +∇sf(sc)T (s− sc)
subject to σ2(sc) +∇sσ

2(sc)T (s− sc) ≤ σ̄2 (11.55)
‖ s− sc ‖∞ ≤ ∆k

Second-order local surrogates may also be employed, where the Hessians are typically approximated with quasi-
Newton updates. The sequential approach is available for Uncertain expansions using PCE and SC.

The multifidelity OUU approach is another trust-region surrogate-based approach. Instead of the surrogate UQ
model being a simple data fit (in particular, first-/second-order Taylor series model) of the truth UQ model results,
we now employ distinct UQ models of differing fidelity. This differing UQ fidelity could stem from the fidelity of
the underlying simulation model, the fidelity of the UQ algorithm, or both. In this paper, we focus on the fidelity
of the UQ algorithm. For reliability methods, this could entail varying fidelity in approximating assumptions
(e.g., Mean Value for low fidelity, SORM for high fidelity), and for stochastic expansion methods, it could involve
differences in selected levels of p and k refinement.

Here, we define UQ fidelity as point-wise accuracy in the design space and take the low fidelity model, whose
validity over the design space will be adaptively controlled, to be the Combined expansion PCE/SC model, and
the high fidelity truth model to be the Uncertain expansion PCE/SC model, with validity only at a single design
point. This will allow us to take advantage of the design space spanning and lower cost of the Combined expan-
sion approach to the extent possible, with fallback to the greater accuracy and higher expense of the Uncertain
expansion approach when needed. The Combined expansion approach will span only the current trust region of
the design space and will need to be reconstructed for each new trust region. The design derivatives of each model
provide the necessary data to correct the low fidelity model to first-order consistency with the high fidelity model
at the center of each trust region.
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Multifidelity optimization for reliability-based design can be formulated as:

minimize f(s)

subject to β̂hi(s) ≥ β̄ (11.56)
‖ s− sc ‖∞ ≤ ∆k

and multifidelity optimization for robust design can be formulated as:

minimize f(s)
subject to σ̂hi

2(s) ≤ σ̄2 (11.57)
‖ s− sc ‖∞ ≤ ∆k

where the deterministic objective function is not approximated and β̂hi and σ̂hi2 are the approximated high-fidelity
UQ results resulting from correction of the low-fidelity UQ results. In the case of an additive correction function:

β̂hi(s) = βlo(s) + αβ(s) (11.58)
σ̂hi

2(s) = σ2
lo(s) + ασ2(s) (11.59)

where correction functions α(s) enforcing first-order consistency [37] are typically employed.

In Dakota/test, the dakota pcbdo cantilever.in, dakota pcbdo rosenbrock.in,
dakota pcbdo short column.in, and dakota pcbdo steel column.in input files solve cantilever
(see Section 22.9), Rosenbrock, short column (see Section 22.8), and steel column (see Section 22.10) OUU
problems using a bi-level polynomial chaos-based approach, where the statistical design metrics are reliability
indices based on moment projection (i.e., Eqs. 6.3-6.4). The test matrix in the former three input files evaluate
design gradients of these reliability indices using several different approaches: analytic design gradients based
on a PCE formed over only over the random variables (Eqs. 11.40-11.41), analytic design gradients based on a
PCE formed over all variables (differentiation of Eqs. 11.47-11.48), numerical design gradients based on a PCE
formed only over the random variables, and numerical design gradients based on a PCE formed over all variables.
In the cases where the expansion is formed over all variables, only a single PCE construction is required for the
complete PCBDO process, whereas the expansions only over the random variables must be recomputed for each
change in design variables. Sensitivities for “augmented” design variables (which are separate from and augment
the random variables) may be handled using either analytic approach; however, sensitivities for “inserted” design
variables (which define distribution parameters for the random variables) must be handled using Eqs. 11.40-11.41
where dR

ds is calculated as dR
dx

dx
ds . Additional test input files include:

• dakota scbdo cantilever.in, dakota scbdo rosenbrock.in,
dakota scbdo short column.in, and dakota scbdo steel column.in input files solve can-
tilever, Rosenbrock, short column, and steel column OUU problems using a bi-level stochastic collocation-
based approach.

• dakota pcbdo cantilever trsb.in, dakota pcbdo rosenbrock trsb.in,
dakota pcbdo short column trsb.in, dakota pcbdo steel column trsb.in,
dakota scbdo cantilever trsb.in, dakota scbdo rosenbrock trsb.in,
dakota scbdo short column trsb.in, and dakota scbdo steel column trsb.in input
files solve cantilever, Rosenbrock, short column, and steel column OUU problems using sequential polyno-
mial chaos-based and stochastic collocation-based approaches.

• dakota pcbdo cantilever mf.in, dakota pcbdo rosenbrock mf.in,
dakota pcbdo short column mf.in, dakota scbdo cantilever mf.in,
dakota scbdo rosenbrock mf.in, and dakota scbdo short column mf.in input files solve
cantilever, Rosenbrock, and short column OUU problems using multifidelity polynomial chaos-based and
stochastic collocation-based approaches.
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11.6.2.7 Epistemic OUU

An emerging capability is optimization under epistemic uncertainty. As described in the Nested Model section of
the Reference Manual [3], epistemic and mixed aleatory/epistemic uncertainty quantification methods generate
lower and upper interval bounds for all requested response, probability, reliability, and generalized reliability level
mappings. Design for robustness in the presence of epistemic uncertainty could simply involve minimizing the
range of these intervals (subtracting lower from upper using the nested model response mappings), and design for
reliability in the presence of epistemic uncertainty could involve controlling the worst case upper or lower bound
of the interval.

We now have the capability to perform epistemic analysis by using interval optimization on the “outer loop” to
calculate bounding statistics of the aleatory uncertainty on the “inner loop.” Preliminary studies [44] have shown
this approach is more efficient and accurate than nested sampling (which was described in Section 11.6.1. This
approach uses an efficient global optimization method for the outer loop and stochastic expansion methods (e.g.
polynomial chaos or stochastic collocation on the inner loop). The interval optimization is described in Sec-
tion 6.5.1. Example input files demonstrating the use of interval estimation for epistemic analysis, specifically in
epistemic-aleatory nesting, are: dakota uq cantilever sop exp.in, and dakota short column sop exp.in.

11.6.3 Surrogate-Based Uncertainty Quantification

Many uncertainty quantification (UQ) methods are computationally costly. For example, sampling often requires
many function evaluations to obtain accurate estimates of moments or percentile values of an output distribution.
One approach to overcome the computational cost of sampling is to evaluate the true function (e.g. run the analysis
driver) on a fixed, small set of samples, use these sample evaluations to create a response surface approximation
(e.g. a surrogate model or meta-model) of the underlying “true” function, then perform random sampling (using
thousands or millions of samples) on the approximation to obtain estimates of the mean, variance, and percentiles
of the response.

This approach, called “surrogate-based uncertainty quantification” is easy to do in DAKOTA, and one can set
up input files to compare the results using no approximation (e.g. determine the mean, variance, and per-
centiles of the output directly based on the initial sample values) with the results obtained by sampling a va-
riety of surrogate approximations. Example input files of a standard UQ analysis based on sampling alone
vs. sampling a surrogate are shown in the dakota uq sampling.in and dakota surr uq.in in the
Dakota/examples/methods directory.

Note that one must exercise some caution when using surrogate-based methods for uncertainty quantification.
In general, there is not a single, straightforward approach to incorporate the error of the surrogate fit into the
uncertainty estimates of the output produced by sampling the surrogate. Two references which discuss some of the
related issues are [65] and [130]. The first reference shows that statistics of a response based on a surrogate model
were less accurate, and sometimes biased, for surrogates constructed on very small sample sizes. In many cases,
however, [65] shows that surrogate-based UQ performs well and sometimes generates more accurate estimates
of statistical quantities on the output. The second reference goes into more detail about the interaction between
sample type and response surface type (e.g., are some response surfaces more accurate when constructed on a
particular sample type such as LHS vs. an orthogonal array?) In general, there is not a strong dependence of the
surrogate performance with respect to sample type, but some sample types perform better with respect to some
metrics and not others (for example, a Hammersley sample may do well at lowering root mean square error of the
surrogate fit but perform poorly at lowering the maximum absolute deviation of the error). Much of this work is
empirical and application dependent. If you choose to use surrogates in uncertainty quantification, we strongly
recommend trying a variety of surrogates and examining diagnostic goodness-of-fit metrics.
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Chapter 12

Variables

12.1 Overview

The variables specification in a DAKOTA input file specifies the parameter set to be iterated by a particular
method. In the case of an optimization study, these variables are adjusted in order to locate an optimal design; in
the case of parameter studies/sensitivity analysis/design of experiments, these parameters are perturbed to explore
the parameter space; and in the case of uncertainty analysis, the variables are associated with distribution/interval
characterizations which are used to compute corresponding distribution/interval characterizations for response
functions. To accommodate these and other types of studies, DAKOTA supports design, uncertain, and state
variable types for continuous and discrete variable domains, where uncertain types can be further categorized as
either aleatory or epistemic and discrete domains can be further categorized as discrete range, discrete integer set,
or discrete real set.

This chapter will present a brief overview of the types of variables and their uses, as well as cover some user
issues relating to file formats and the active set vector. For a detailed description of variables section syntax and
example specifications, refer to the Variables Commands chapter in the DAKOTA Reference Manual [3].

12.2 Design Variables

Design variables are those variables which are modified for the purposes of computing an optimal design. These
variables may be continuous (real-valued between bounds), discrete range (integer-valued between bounds), dis-
crete set of integers (integer-valued from finite set), and discrete set of reals (real-valued from finite set).

12.2.1 Continuous Design Variables

The most common type of design variables encountered in engineering applications are of the continuous type.
These variables may assume any real value (e.g., 12.34, -1.735e+07) within their bounds. All but a handful
of the optimization algorithms in DAKOTA support continuous design variables exclusively.
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12.2.2 Discrete Design Variables

Engineering design problems may contain discrete variables such as material types, feature counts, stock gauge
selections, etc. These variables may assume only a fixed number of values, as compared to a continuous variable
which has an uncountable number of possible values within its range. Discrete variables may involve a range of
consecutive integers (x can be any integer between 1 and 10), a set of integer values (x can be 101, 212, or
355), or a set of real values (e.g., x can be 4.2, 6.4, or 8.5).

Discrete variables may be classified as either “categorical” or “noncategorical.” In the latter noncategorical case,
the discrete requirement can be relaxed during the solution process since the model can still compute meaningful
response functions for values outside the allowed discrete range or set. For example, a discrete variable repre-
senting the thickness of a structure is generally a noncategorical variable since it can assume a continuous range
of values during the algorithm iterations, even if it is desired to have a stock gauge thickness in the end. In the
former categorical case, the discrete requirement cannot be relaxed since the model cannot obtain a solution for
values outside the range or set. For example, feature counts are generally categorical discrete variables, since
most computational models will not support a non-integer value for the number of instances of some feature (e.g.,
number of support brackets).

Gradient-based optimization methods cannot be directly applied to problems with discrete variables since deriva-
tives only exist for a variable continuum. For problems with noncategorical variables, branch and bound tech-
niques can be used to relax the discrete requirements and apply gradient-based methods to a series of generated
subproblems. For problems with categorical variables, nongradient-based methods (e.g., coliny ea) are com-
monly used. Branch and bound techniques are discussed in Section 10.5 and nongradient-based methods are
further described in Chapter 7.

In addition to engineering applications, many non-engineering applications in the fields of scheduling, logistics,
and resource allocation contain discrete design parameters. Within the Department of Energy, solution techniques
for these problems impact programs in stockpile evaluation and management, production planning, nonprolifer-
ation, transportation (routing, packing, logistics), infrastructure analysis and design, energy production, environ-
mental remediation, and tools for massively parallel computing such as domain decomposition and meshing.

12.2.2.1 Discrete Design Integer Variables

There are two types of discrete design integer variables supported by DAKOTA.

• The discrete design range specification supports a range of consecutive integers between specified
lower bounds and upper bounds.

• The discrete design set integer specification supports a set of enumerated integer values through
the set values specification. The set of values specified is stored internally as an STL set container,
which enforces an ordered, unique representation of the integer data. Underlying this set of ordered, unique
integers is a set of indices that run from 0 to one less than the number of set values. These indices are used
by some iterative algorithms (e.g., parameter studies, COLINY iterators) for simplicity in discrete value
enumeration when the actual corresponding set values are immaterial. In the case of parameter studies, this
index representation is exposed through certain step and partition control specifications (see Chapter 4).

12.2.2.2 Discrete Design Real Variables

There is one type of discrete design real variable supported by DAKOTA.
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• The discrete design set real specification specification supports a set of enumerated real val-
ues through the set values specification. As for the discrete integer set variables described in Sec-
tion 12.2.2.1, internal storage of the set values is ordered and unique and an underlying index representation
is exposed for the specification of some iterative algorithms.

12.3 Uncertain Variables

Deterministic variables (i.e., those with a single known value) do not capture the behavior of the input variables in
all situations. In many cases, the exact value of a model parameter is not precisely known. An example of such an
input variable is the thickness of a heat treatment coating on a structural steel I-beam used in building construction.
Due to variabilities and tolerances in the coating process, the thickness of the layer is known to follow a normal
distribution with a certain mean and standard deviation as determined from experimental data. The inclusion of
the uncertainty in the coating thickness is essential to accurately represent the resulting uncertainty in the response
of the building.

12.3.1 Aleatory Uncertain Variables

Aleatory uncertainties are irreducible variabilities inherent in nature. They are characterized by having a suffi-
ciently rich set of data as to allow modeling using probability distributions, and probabilistic methods are com-
monly used for propagating nput aleatory uncertainties described by probability distribution specifications. The
two following sections describe the continuous and discrete aleatory uncertain variables supported by DAKOTA.

For aleatory random variables, DAKOTA supports a user-supplied correlation matrix to provide correlations
among the input variables. By default, the correlation matrix is set to the identity matrix, i.e., no correlation
among the uncertain variables.

For additional information on random variable probability distributions, refer to [75] and [131]. Refer to the
DAKOTA Reference Manual [3] for more detail on the uncertain variable specifications and to Chapter 6 for a
description of methods available to quantify the uncertainty in the response.

12.3.1.1 Continuous Aleatory Uncertain Variables

• Normal: a probability distribution characterized by a mean and standard deviation. Also referred to as
Gaussian. Bounded normal is also supported by some methods with an additional specification of lower
and upper bounds.

• Lognormal: a probability distribution characterized by a mean and either a standard deviation or an error
factor. The natural logarithm of a lognormal variable has a normal distribution. Bounded lognormal is also
supported by some methods with an additional specification of lower and upper bounds.

• Uniform: a probability distribution characterized by a lower bound and an upper bound. Probability is
constant between the bounds.

• Loguniform: a probability distribution characterized by a lower bound and an upper bound. The natural
logarithm of a loguniform variable has a uniform distribution.

• Triangular: a probability distribution characterized by a mode, a lower bound, and an upper bound.

• Exponential: a probability distribution characterized by a beta parameter.
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• Beta: a flexible probability distribution characterized by a lower bound and an upper bound and alpha and
beta parameters. The uniform distribution is a special case.

• Gamma: a flexible probability distribution characterized by alpha and beta parameters. The exponential
distribution is a special case.

• Gumbel: the Type I Largest Extreme Value probability distribution. Characterized by alpha and beta pa-
rameters.

• Frechet: the Type II Largest Extreme Value probability distribution. Characterized by alpha and beta pa-
rameters.

• Weibull: the Type III Smallest Extreme Value probability distribution. Characterized by alpha and beta
parameters.

• Histogram Bin: an empirically-based probability distribution characterized by a set of (x, y) pairs that map
out histogram bins (a continuous interval with associated bin count).

12.3.1.2 Discrete Aleatory Uncertain Variables

The following types of discrete aleatory uncertain variables are available:

• Poisson: integer-valued distribution used to predict the number of discrete events that happen in a given
time interval.

• Binomial: integer-valued distribution used to predict the number of failures in a number of independent
tests or trials.

• Negative Binomial: integer-valued distribution used to predict the number of times to perform a test to have
a target number of successes.

• Geometric: integer-valued distribution used to model the number of successful trials that might occur before
a failure is observed.

• Hypergeometric: integer-valued distribution used to model the number of failures observed in a set of tests
that has a known proportion of failures.

• Histogram Point: an empirically-based probability distribution characterized by a set of real-valued (x, y)
pairs that map out histogram points (a discrete point value with associated count).

12.3.2 Epistemic Uncertain Variables

Epistemic uncertainties are reducible uncertainties resulting from a lack of knowledge. For epistemic uncertain-
ties, data is generally sparse, making the use of probability theory questionable and leading to nonprobabilistic
methods based on interval specifications DAKOTA currently supports one epistemic uncertain variable type.
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12.3.2.1 Continuous Epistemic Uncertain Variables

• Interval: an interval-based specification characterized by sets of lower and upper bounds and Basic Proba-
bility Assignments (BPAs) associated with each interval. The intervals may be overlapping, contiguous, or
disjoint, and a single interval (with probability = 1) per variable is an important special case. The interval
distribution is not a probability distribution, as the exact structure of the probabilities within each interval
is not known. It is commonly used with epistemic uncertainty methods.

12.4 State Variables

State variables consist of “other” variables which are to be mapped through the simulation interface, in that they
are not to be used for design and they are not modeled as being uncertain. State variables provide a conve-
nient mechanism for parameterizing additional model inputs which, in the case of a numerical simulator, might
include solver convergence tolerances, time step controls, or mesh fidelity parameters. For additional model pa-
rameterizations involving strings (e.g., “mesh1.exo”), refer to the analysis components specification described in
Section 12.6.1 and in the Interface Commands chapter of the DAKOTA Reference Manual [3]. Similar to the de-
sign variables discussed in Section 12.2, state variables can be a continuous range (real-valued between bounds),
a discrete range (integer-valued between bounds), a discrete integer-valued set, or a discrete real-valued set.

State variables, as with other types of variables, are viewed differently depending on the method in use. Since
these variables are neither design nor uncertain variables, algorithms for optimization, least squares, and uncer-
tainty quantification do not iterate on these variables; i.e., they are not active and are hidden from the algorithm.
However, DAKOTA still maps these variables through the user’s interface where they affect the computational
model in use. This allows optimization, least squares, and uncertainty quantification studies to be executed under
different simulation conditions (which will result, in general, in different results). Parameter studies and design of
experiments methods, on the other hand, are general-purpose iterative techniques which do not draw a distinction
between variable types. They include state variables in the set of variables to be iterated, which allows these
studies to explore the effect of state variable values on the response data of interest.

In the future, state variables might be used in direct coordination with an optimization, least squares, or uncertainty
quantification algorithm. For example, state variables could be used to enact model adaptivity through the use of
a coarse mesh or loose solver tolerances in the initial stages of an optimization with continuous model refinement
as the algorithm nears the optimal solution.

12.5 Mixed Variables

As alluded to in the previous section, the iterative method selected for use in DAKOTA determines what subset,
or view, of the variables data is active in the iteration. The general case of having a mixture of various different
types of variables is supported within all of the DAKOTA methods even though certain methods will only modify
certain types of variables (e.g., optimizers and least squares methods only modify design variables, and uncertainty
quantification methods, with the exception of all variables mode, only utilize uncertain variables). This
implies that variables which are not under the direct control of a particular iterator will be mapped through the
interface in an unmodified state. This allows for a variety of parameterizations within the model in addition to
those which are being used by a particular iterator, which can provide the convenience of consolidating the control
over various modeling parameters in a single file (the DAKOTA input file). An important related point is that the
variable set that is active with a particular iterator is the same variable set for which derivatives are typically
computed (see Section 14.3).
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<int> variables
<double> <label_cdvi> (i = 1 to ncdv)
<int> <label_ddivi> (i = 1 to nddiv)
<double> <label_ddrvi> (i = 1 to nddrv)
<double> <label_cauvi> (i = 1 to ncauv)
<int> <label_dauivi> (i = 1 to ndauiv)
<double> <label_daurvi> (i = 1 to ndaurv)
<double> <label_ceuvi> (i = 1 to nceuv)
<int> <label_deuivi> (i = 1 to ndeuiv)
<double> <label_deurvi> (i = 1 to ndeurv)
<double> <label_csvi> (i = 1 to ncsv)
<int> <label_dsivi> (i = 1 to ndsiv)
<double> <label_dsrvi> (i = 1 to ndsrv)
<int> functions
<int> ASV_i (i = 1 to m)
<int> derivative_variables
<int> DVV_i (i = 1 to p)
<int> analysis_components
<string> AC_i (i = 1 to q)

Figure 12.1: Parameters file data format - standard option.

12.6 DAKOTA Parameters File Data Format

Simulation interfaces which employ system calls and forks to create separate simulation processes must commu-
nicate with the simulation code through the file system. This is accomplished through the reading and writing of
parameters and results files. DAKOTA uses a particular format for this data input/output. Depending on the user’s
interface specification, DAKOTA will write the parameters file in either standard or APREPRO format (future
XML formats are planned). The former option uses a simple “value tag” format, whereas the latter option
uses a “{ tag = value }” format for compatibility with the APREPRO utility [126] (as well as DPrePro,
BPREPRO, and JPrePost variants).

12.6.1 Parameters file format (standard)

Prior to invoking a simulation, DAKOTA creates a parameters file which contains the current parameter values
and a set of function requests. The standard format for this parameters file is shown in Figure 12.1.

where “<int>” denotes an integer value, “<double>” denotes a double precision value, and “<string>”
denotes a string value. Each of the colored blocks (black for variables, blue for active set vector, red for derivative
variables vector, and green for analysis components) denotes an array which begins with an array length and a
descriptive tag. These array lengths are useful for dynamic memory allocation within a simulator or filter program.

The first array for variables begins with the total number of variables (n) with its identifier string “variables.”
The next n lines specify the current values and descriptors of all of the variables within the parameter set in
the following order: continuous design, discrete integer design (integer range, integer set), discrete real design
(real set), continuous aleatory uncertain (normal, lognormal, uniform, loguniform, triangular, exponential, beta,
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gamma, gumbel, frechet, weibull, histogram bin), discrete integer aleatory uncertain (poisson, binomial, negative
binomial, geometric, hypergeometric), discrete real aleatory uncertain (histogram point), continuous epistemic
uncertain (interval), discrete integer epistemic uncertain (none at this time), discrete real epistemic uncertain
(none at this time), continuous state, discrete integer state (integer range, integer set), and discrete real state
(real set) variables. This ordering is consistent with the lists in Sections 12.2.2.1, 12.3.1.1 and 12.3.1.2 and the
specification order in dakota.input.txt. The lengths of these vectors add to a total of n (that is, n = ncdv+nddiv+
nddrv +ncauv +ndauiv +ndaurv +nceuv +ndeuiv +ndeurv +ncsv +ndsiv +ndsrv). If any of the variable types
are not present in the problem, then its block is omitted entirely from the parameters file. The tags are the variable
descriptors specified in the user’s DAKOTA input file, or if no descriptors have been specified, default descriptors
are used.

The second array for the active set vector (ASV) begins with the total number of functions (m) and its identifier
string “functions.” The next m lines specify the request vector for each of the m functions in the response
data set followed by the tags “ASV i.” These integer codes indicate what data is required on the current function
evaluation and are described further in Section 12.7.

The third array for the derivative variables vector (DVV) begins with the number of derivative variables (p) and
its identifier string “derivative variables.” The next p lines specify integer variable identifiers followed
by the tags “DVV i.” These integer identifiers are used to identify the subset of variables that are active for the
calculation of derivatives (gradient vectors and Hessian matrices), and correspond to the list of variables in the
first array (e.g., an identifier of 2 indicates that the second variable in the list is active for derivatives).

The final array for the analysis components (AC) begins with the number of analysis components (q) and its
identifier string “analysis components.” The next q lines provide additional strings for use in specializing
a simulation interface followed by the tags “AC i.” These strings are specified in a user’s input file for a set of
analysis drivers using the analysis components specification. The subset of the analysis compo-
nents used for a particular analysis driver is the set passed in a particular parameters file.

Several standard-format parameters file examples are shown in Section 13.6.

12.6.2 Parameters file format (APREPRO)

For the APREPRO format option, the same data is present and the same ordering is used as in the standard
format. The only difference is that values are associated with their tags within “{ tag = value }” constructs
as shown in Figure 12.2. An APREPRO-format parameters file example is shown in Section 13.6.

The use of the APREPRO format option allows direct usage of these parameters files by the APREPRO util-
ity, which is a file pre-processor that can significantly simplify model parameterization. Similar pre-processors
include DPrePro, BPREPRO, and JPrePost. [Note: APREPRO is a Sandia-developed pre-processor that is not
currently distributed with DAKOTA. DPrePro is a Perl script distributed with DAKOTA that performs many of the
same functions as APREPRO, and is optimized for use with DAKOTA parameters files in either format. BPREPRO
and JPrePost are additional Perl and JAVA tools, respectively, in use at other sites.] When a parameters file in
APREPRO format is included within a template file (using an include directive), the APREPRO utility recog-
nizes these constructs as variable definitions which can then be used to populate targets throughout the template
file [126]. DPrePro, conversely, does not require the use of includes since it processes the DAKOTA parameters
file and template simulation file separately to create a simulation input file populated with the variables data.
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{ DAKOTA_VARS = <int> }
{ <label_cdvi> = <double> } (i = 1 to ncdv)
{ <label_ddivi> = <int> } (i = 1 to nddiv)
{ <label_ddrvi> = <double> } (i = 1 to nddrv)
{ <label_cauvi> = <double> } (i = 1 to ncauv)
{ <label_dauivi> = <int> } (i = 1 to ndauiv)
{ <label_daurvi> = <double> } (i = 1 to ndaurv)
{ <label_ceuvi> = <double> } (i = 1 to nceuv)
{ <label_deuivi> = <int> } (i = 1 to ndeuiv)
{ <label_deurvi> = <double> } (i = 1 to ndeurv)
{ <label_csvi> = <double> } (i = 1 to ncsv)
{ <label_dsivi> = <int> } (i = 1 to ndsiv)
{ <label_dsrvi> = <double> } (i = 1 to ndsrv)
{ DAKOTA_FNS = <int> }
{ ASV_i = <int> } (i = 1 to m)
{ DAKOTA_DER_VARS = <int> }
{ DVV_i = <int> } (i = 1 to p)
{ DAKOTA_AN_COMPS = <int> }
{ AC_i = <int> } (i = 1 to q)

Figure 12.2: Parameters file data format - APREPRO option.

12.7 The Active Set Vector

The active set vector contains a set of integer codes, one per response function, which describe the data needed
on a particular execution of an interface. Integer values of 0 through 7 denote a 3-bit binary representation of all
possible combinations of value, gradient, and Hessian requests for a particular function, with the most significant
bit denoting the Hessian, the middle bit denoting the gradient, and the least significant bit denoting the value. The
specific translations are shown in Table 12.1.

The active set vector in DAKOTA gets its name from managing the active set, i.e., the set of functions that are
active on a particular function evaluation. However, it also manages the type of data that is needed for functions
that are active, and in that sense, has an extended meaning beyond that typically used in the optimization literature.

Table 12.1: Active set vector integer codes.

Integer Code Binary representation Meaning
7 111 Get Hessian, gradient, and value
6 110 Get Hessian and gradient
5 101 Get Hessian and value
4 100 Get Hessian
3 011 Get gradient and value
2 010 Get gradient
1 001 Get value
0 000 No data required, function is inactive
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12.7.1 Active set vector control

Active set vector control may be turned off to allow the user to simplify the supplied interface by removing
the need to check the content of the active set vector on each evaluation. The Interface Commands chapter in the
DAKOTA Reference Manual [3] provides additional information on this option (deactivate active set vector).
Of course, this option trades some efficiency for simplicity and is most appropriate for those cases in which only
a relatively small penalty occurs when computing and returning more data than may be needed on a particular
function evaluation.
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Chapter 13

Interfaces

13.1 Overview

The interface specification in a DAKOTA input file controls details of function evaluations. The mechanisms
currently in place for function evaluations involve interfacing with one or more computational simulation codes,
computing algebraic mappings, or a combination of the two.

This chapter will describe algebraic mappings in Section 13.2, followed by discussion of a variety of mechanisms
for simulation code invocation in Section 13.3. This chapter also provides an overview of simulation interface
components, covers issues relating to file management and presents a number of example data mappings.

For a detailed description of interface specification syntax, refer to the interface commands chapter in the DAKOTA
Reference Manual [3].

13.2 Algebraic Mappings

If desired, one can define algebraic input-output mappings using the AMPL code [49] and save these mappings
in 3 files: stub.nl, stub.col, and stub.row, where stub is a particular root name describing a particular
problem. These files names can be communicated to DAKOTA using the algebraic mappings input.

DAKOTA will use stub.col and stub.row to obtain input and output identifier strings, respectively, and will
use the AMPL solver library [55] to evaluate expressions conveyed in stub.nl, and, if needed, their first and
second derivatives.

As a simple example (from Dakota/test/ampl/fma), consider algebraic mappings based on Newton’s law
F = ma. The following is an AMPL input file of variable and expression declarations and output commands:

var mass;
var a;
var v;
minimize force: mass*a;
minimize energy: 0.5 * mass * vˆ2;
option auxfiles rc; # request stub.row and stub.col
write gfma; # write stub.nl, stub.row, stub.col
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When processed by an AMPL processor, three files are created (as requested by the “option auxfiles” command).
The first is the fma.nl file containing problem statistics, expression graphs, bounds, etc.:

g3 0 1 0 # problem fma
3 0 2 0 0 # vars, constraints, objectives, ranges, eqns
0 2 # nonlinear constraints, objectives
0 0 # network constraints: nonlinear, linear
0 3 0 # nonlinear vars in constraints, objectives, both
0 0 0 1 # linear network variables; functions; arith, flags
0 0 0 0 0 # discrete variables: binary, integer, nonlinear (b,c,o)
0 4 # nonzeros in Jacobian, gradients
6 4 # max name lengths: constraints, variables
0 0 0 0 0 # common exprs: b,c,o,c1,o1
O0 0
o2
v0
v1
O1 0
o2
o2
n0.5
v0
o5
v2
n2
b
3
3
3
k2
0
0
G0 2
0 0
1 0
G1 2
0 0
2 0

Next, the fma.col file contains the set of variable descriptor strings:

mass
a
v

and the fma.row file contains the set of response descriptor strings:

force
energy

DAKOTA Version 5.0 User’s Manual generated on May 7, 2010



13.2. ALGEBRAIC MAPPINGS 215

The variable and objective function names declared within AMPL should be a subset of the variable descrip-
tors and response descriptors used by DAKOTA (see the DAKOTA Reference Manual [3] for information on
DAKOTA variable and response descriptors). Ordering of the inputs and outputs within the AMPL declara-
tion is not important, as DAKOTA will reorder data as needed. The following listing shows an excerpt from
Dakota/test/dakota ampl.in, which demonstrates a combined algebraic/simulation-based mapping in
which algebraic mappings from the fma definition are overlaid with simulation-based mappings from text book:

variables,
continuous_design = 5
descriptor ’x1’ ’mass’ ’a’ ’x4’ ’v’
initial_point 0.0 2.0 1.0 0.0 3.0
lower_bounds -3.0 0.0 -5.0 -3.0 -5.0
upper_bounds 3.0 10.0 5.0 3.0 5.0

interface,
algebraic_mappings = ’ampl/fma.nl’
system
analysis_driver = ’text_book’
parameters_file = ’tb.in’
results_file = ’tb.out’
file_tag

responses,
response_descriptors = ’force’ ’ineq1’ ’energy’
num_objective_functions = 1
num_nonlinear_inequality_constraints = 1
num_nonlinear_equality_constraints = 1
nonlinear_equality_targets = 20.0
analytic_gradients
no_hessians

Note that the algebraic inputs and outputs are a subset of the total inputs and outputs and that DAKOTA will track
the algebraic contributions to the total response set using the order of the descriptor strings. In the case where
both the algebraic and simulation-based components contribute to the same function, they are added together.

To solve text book algebraically (refer to Section 2.2 for definition), the following AMPL model file could be
used
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# Problem : Textbook problem used in DAKOTA testing
# Constrained quartic, 2 continuous variables
# Solution: x=(0.5, 0.5), obj = .125, c1 = 0, c2 = 0
#

# continuous variables
var x1 >= 0.5 <= 5.8 := 0.9;
var x2 >= -2.9 <= 2.9 := 1.1;

# objective function
minimize obj: (x1 - 1)ˆ4 + (x2 - 1)ˆ4;

# constraints (current required syntax for DAKOTA/AMPL interface)
minimize c1: x1ˆ2 - 0.5*x2;
minimize c2: x2ˆ2 - 0.5*x1;

# required for output of *.row and *.col files
option auxfiles rc;

Note that the nonlinear constraints should not currently be declared as constraints within AMPL. Since the
DAKOTA variable bounds and constraint bounds/targets currently take precedence over any AMPL specifica-
tion, the current approach is to declare all AMPL outputs as objective functions and then map them into the
appropriate response function type (objectives, least squares terms, nonlinear inequality/equality constraints, or
generic response functions) within the DAKOTA input specification.

13.3 Simulation Interfaces

The invocation of a simulation code is performed using either system calls, forks, or direct function invocations.
In the system call and fork cases, a separate process is created for the simulation and communication between
DAKOTA and the simulation occurs through parameter and response files. For system call and fork interfaces,
the interface section must specify the details of this data transfer. In the direct function case, a separate process is
not created and communication occurs directly through the function argument list. Sections 13.3.1 through 13.3.5
provide information on the simulation interfacing approaches.

13.3.1 The Direct Function Simulation Interface

The direct function interface may be used to invoke simulations that are linked into the DAKOTA executable. This
interface eliminates overhead from process creation and file I/O and can simplify operations on massively parallel
computers. These advantages are balanced with the practicality of converting an existing simulation code into a
library with a subroutine interface. Sandia codes for structural dynamics (Salinas), computational fluid dynamics
(Sage), and circuit simulation (Xyce) and external codes such as Phoenix Integration’s ModelCenter framework
and The Mathworks’ Matlab have been linked in this way, and a direct interface to Sandia’s SIERRA multiphysics
framework is under development. In the latter case, the additional effort is particularly justified since SIERRA
unifies an entire suite of physics codes. [Note: the “sandwich implementation” of combining a direct interface
plug-in with DAKOTA’s library mode is discussed in the DAKOTA Developers Manual [4]].

In addition to direct linking with simulation codes, the direct interface also provides access to internal polyno-
mial test functions that are used for algorithm performance and regression testing. The following test functions
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are available: cantilever, cyl head, log ratio, rosenbrock, short column, and text book (in-
cluding text book1, text book2, text book3, and text book ouu). While these functions are also
available as external programs in the Dakota/test directory, maintaining internally linked versions allows
more rapid testing. See Chapter 22 for additional information on several of these test problems. An example input
specification for a direct interface follows:

interface,
direct
analysis_driver = ’rosenbrock’

Additional specification examples are provided in Section 2.4 and additional information on asynchronous usage
of the direct function interface is provided in Section 18.2.1.1. Guidance for usage of some particular direct
simulation interfaces is in Section 17.3 and the details of adding a simulation code to the direct interface are
provided in Section 17.2.

13.3.2 The System Call Simulation Interface

The system call approach invokes a simulation code or simulation driver by using the system function from
the standard C library [88]. In this approach, the system call creates a new process that communicates with
DAKOTA through parameter and response files. The system call approach allows the simulation to be initiated
via its standard invocation procedure (as a “black box”) and then coordinated with a variety of tools for pre- and
post-processing. This approach has been widely used in previous studies [40, 42, 33]. The system call approach
involves more process creation and file I/O overhead than the direct function approach, but this extra overhead is
usually insignificant compared with the cost of a simulation. An example of a system call interface specification
follows:

interface,
system
analysis_driver = ’text_book’
parameters_file = ’text_book.in’
results_file = ’text_book.out’
file_tag file_save

More detailed examples of using the system call interface are provided in Section 2.4.4.1 and in Section 17.1, and
information on asynchronous usage of the system call interface is provided in Section 18.2.1.2.

13.3.3 The Fork Simulation Interface

The fork simulation interface uses the fork, exec, and wait families of functions to manage simulation
codes or simulation drivers. (In a native MS Windows version of DAKOTA, similar Win32 functions, such as
spawnvp(), are used instead.) Calls to fork or vfork create a copy of the DAKOTA process, execvp

replaces this copy with the simulation code or driver process, and then DAKOTA uses the wait or waitpid
functions to wait for completion of the new process. Transfer of variables and response data between DAKOTA
and the simulator code or driver occurs through the file system in exactly the same manner as for the system call
interface. An example of a fork interface specification follows:

interface,
fork
input_filter = ’test_3pc_if’
output_filter = ’test_3pc_of’
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analysis_driver = ’test_3pc_ac’
parameters_file = ’tb.in’
results_file = ’tb.out’
file_tag

Information on asynchronous usage of the fork interface is provided in Section 18.2.1.3.

13.3.4 Syntax for Filter and Driver Strings

With the fork interface, and on most systems, with the system interface as well, the string values supplied
for input filter, output filter, and analysis driver can involve simple Bourne-shell syntax for
specifying environment values that the filter or driver will see. For example,

analysis_driver = ’opfile=myspec outlev=2 mydriver’

would cause mydriver to be invoked with environment variables opfile and outlev having the values
“myspec” and “2”, respectively. If the driver is a shell script, it can access these values as $opfile and
$outlev; a compiled driver can obtain these values from a function; drivers written in C or C++ can use the
standard getenv function (e.g., invoking getenv("opfile")).

Both the values assigned to environment variables and name of the file invoked as filter or driver can contain
spaces, provided that the values in question are quoted. Within strings delimited by single quotes, you can use
double quotes for quoting, and vice versa. For instance,

analysis_driver = ’opfile="my spec" "my driver"’

and

analysis_driver = "opfile=’my spec’ ’my driver’"

both specify a driver named “my driver” and value “my spec” for $opfile.

13.3.5 Fork or System Call: Which to Use?

The primary operational difference between the fork and system call simulation interfaces is that, in the fork in-
terface, the fork/exec functions return a process identifier that the wait/waitpid functions can use to detect
the completion of a simulation for either synchronous or asynchronous operations. The system call simulation
interface, on the other hand, must use a response file detection scheme for this purpose in the asynchronous case.
Thus, an important advantage of the fork interface over the system call interface is that it avoids the potential of a
file race condition when employing asynchronous local parallelism (refer to Section 18.2.1). This condition can
occur when the responses file has been created but the writing of the response data set to this file has not been
completed (see Section 18.2.1.2). While significant care has been taken to manage this file race condition in the
system call case, the fork interface still has the potential to be more robust when performing function evaluations
asynchronously.

Another advantage of the fork interface is that it has additional asynchronous capabilities when a function eval-
uation involves multiple analyses. As shown in Table 18.1, the fork interface supports asynchronous local and
hybrid parallelism modes for managing concurrent analyses within function evaluations, whereas the system call
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interface does not. These additional capabilities again stem from the ability to track child processes by their
process identifiers.

The only disadvantage to the fork interface compared with the system interface is that the fork/exec/wait
functions are not part of the standard C library, whereas the system function is. As a result, support for imple-
mentations of the fork/exec/wait functions can vary from platform to platform. At one time, these commands
were not available on some of Sandia’s massively parallel computers. However, in the more mainstream UNIX
environments, availability of fork/exec/wait should not be an issue.

In summary, the system call interface has been a workhorse for many years and is well tested and proven, but
the fork interface supports additional capabilities and is recommended when managing asynchronous simulation
code executions. Having both interfaces available has proven to be useful on a number of occasions and they will
both continue to be supported for the foreseeable future.

13.4 Simulation Interface Components

Figure 13.1 is an extension of Figure 1.1 that adds details of the components that make up each of the simulation
interfaces (system call, fork, and direct). These components include an input filter (“IFilter”), one or more
analysis drivers (“Analysis Code/Driver”), and an output filter (“OFilter”). The input and output
filters provide optional facilities for managing simulation pre- and post-processing, respectively. More specifi-
cally, the input filter can be used to insert the DAKOTA parameters into the input files required by the simulator
program, and the output filter can be used to recover the raw data from the simulation results and compute the
desired response data set. If there is a single analysis code, it is often convenient to combine these pre- and post-
processing functions into a single simulation driver script, and the separate input and output filter facilities are
rarely used in this case. If there are multiple analysis drivers, however, the input and output filter facilities provide
a convenient means for managing non-repeated portions of the pre- and post-processing for multiple analyses.
That is, pre- and post-processing tasks that must be performed for each analysis can be performed within the
individual analysis drivers, and shared pre- and post-processing tasks that are only performed once for the set of
analyses can be performed within the input and output filters.

When spawning function evaluations using system calls or forks, DAKOTA must communicate parameter and
response data with the analysis drivers and filters through use of the file system. This is accomplished by passing
the names of the parameters and results files on the command line when executing an analysis driver or filter. The
input filter or analysis driver read data from the parameters file and the output filter or analysis driver write the
appropriate data to the responses file. While not essential when the file names are fixed, the file names must be
retrieved from the command line when DAKOTA is changing the file names from one function evaluation to the
next (i.e., using temporary files or root names tagged with numerical identifiers). In the case of a UNIX C-shell
script, the two command line arguments are retrieved using $argv[1] and $argv[2] (see [7]). Similarly,
Bourne shell scripts retrieve the two command line arguments using $1 and $2, and Perl scripts retrieve the two
command line arguments using @ARGV[0] and @ARGV[1]. In the case of a C or C++ program, command line
arguments are retrieved using argc (argument count) and argv (argument vector) [88], and for Fortran 77, the
iargc function returns the argument count and the getarg subroutine returns command line arguments.

13.4.1 Single analysis driver without filters

If a single analysis driver is selected in the interface specification and filters are not needed (as indicated
by omission of the input filter and output filter specifications), then only one process will appear in
the execution syntax of the simulation interface. An example of this syntax in the system call case is:
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Figure 13.1: Components of the simulation interface

driver params.in results.out

where “driver” is the user-specified analysis driver and “params.in” and “results.out” are the names
of the parameters and results files, respectively, passed on the command line. In this case, the user need not
retrieve the command line arguments since the same file names will be used each time.

For the same mapping, the fork simulation interface echoes the following syntax:

blocking fork: driver params.in results.out

for which only a single blocking fork is needed to perform the evaluation.

Executing the same mapping with the direct simulation interface results in an echo of the following syntax:

Direct function: invoking driver

where this analysis driver must be linked as a function within DAKOTA’s direct interface (see Section 17.2).
Note that no parameter or response files are involved, since such values are passed directly through the function
argument lists.

Both the system call and fork interfaces support asynchronous operations. The asynchronous system call execu-
tion syntax involves executing the system call in the background:

driver params.in.1 results.out.1 &

and the asynchronous fork execution syntax involves use of a nonblocking fork:

nonblocking fork: driver params.in.1 results.out.1

where file tagging (see Section 13.5.2) has been user-specified in both cases to prevent conflicts between con-
current analysis drivers. In these cases, the user must retrieve the command line arguments since the file names
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change on each evaluation. Execution of the direct interface must currently be performed synchronously since
multithreading is not yet supported (see Section 18.2.1.1).

13.4.2 Single analysis driver with filters

When filters are used, the syntax of the system call that DAKOTA performs is:

ifilter params.in results.out; driver params.in results.out;
ofilter params.in results.out

in which the input filter (“ifilter”), analysis driver (“driver”), and output filter (“ofilter”) processes
are combined into a single system call through the use of semi-colons (see [7]). All three portions are passed the
names of the parameters and results files on the command line.

For the same mapping, the fork simulation interface echoes the following syntax:

blocking fork: ifilter params.in results.out;
driver params.in results.out; ofilter params.in results.out

where a series of three blocking forks is used to perform the evaluation.

Executing the same mapping with the direct simulation interface results in an echo of the following syntax:

Direct function: invoking { ifilter driver ofilter }

where each of the three components must be linked as a function within DAKOTA’s direct interface. Since
asynchronous operations are not yet supported, execution simply involves invocation of each of the three linked
functions in succession. Again, no files are involved since parameter and response data are passed directly through
the function argument lists.

Asynchronous executions would appear as follows for the system call interface:

(ifilter params.in.1 results.out.1; driver params.in.1 results.out.1;
ofilter params.in.1 results.out.1) &

and, for the fork interface, as:

nonblocking fork: ifilter params.in.1 results.out.1;
driver params.in.1 results.out.1; ofilter params.in.1 results.out.1

where file tagging of evaluations has again been user-specified in both cases. For the system call simulation
interface, use of parentheses and semi-colons to bind the three processes into a single system call simplifies
asynchronous process management compared to an approach using separate system calls. The fork simulation
interface, on the other hand, does not rely on parentheses and accomplishes asynchronous operations by first
forking an intermediate process. This intermediate process is then reforked for the execution of the input filter,
analysis driver, and output filter. The intermediate process can be blocking or nonblocking (nonblocking in this
case), and the second level of forks can be blocking or nonblocking (blocking in this case). The fact that forks
can be reforked multiple times using either blocking or nonblocking approaches provides the enhanced flexibility
to support a variety of local parallelism approaches (see Chapter 18).
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13.4.3 Multiple analysis drivers without filters

If a list of analysis drivers is specified and filters are not needed (i.e., neither input filter nor
output filter appears), then the system call syntax would appear as:

driver1 params.in results.out.1; driver2 params.in results.out.2;
driver3 params.in results.out.3

where “driver1”, “driver2”, and “driver3” are the user-specified analysis drivers and “params.in”
and “results.out” are the user-selected names of the parameters and results files. Note that the results files
for the different analysis drivers have been automatically tagged to prevent overwriting. This automatic tagging of
analyses (see Section 13.5.4) is a separate operation from user-selected tagging of evaluations (see Section 13.5.2).

For the same mapping, the fork simulation interface echoes the following syntax:

blocking fork: driver1 params.in results.out.1;
driver2 params.in results.out.2; driver3 params.in results.out.3

for which a series of three blocking forks is needed (no reforking of an intermediate process is required).

Executing the same mapping with the direct simulation interface results in an echo of the following syntax:

Direct function: invoking { driver1 driver2 driver3 }

where, again, each of these components must be linked within DAKOTA’s direct interface and no files are involved
for parameter and response data transfer.

Both the system call and fork interfaces support asynchronous function evaluations. The asynchronous system
call execution syntax would be reported as

(driver1 params.in.1 results.out.1.1; driver2 params.in.1 results.out.1.2;
driver3 params.in.1 results.out.1.3) &

and the nonblocking fork execution syntax would be reported as

nonblocking fork: driver1 params.in.1 results.out.1.1;
driver2 params.in.1 results.out.1.2; driver3 params.in.1 results.out.1.3

where, in both cases, file tagging of evaluations has been user-specified to prevent conflicts between concurrent
analysis drivers and file tagging of the results files for multiple analyses is automatically used. In the fork interface
case, an intermediate process is forked to allow a non-blocking function evaluation, and this intermediate process
is then reforked for the execution of each of the analysis drivers.

13.4.4 Multiple analysis drivers with filters

Finally, when combining filters with multiple analysis drivers, the syntax of the system call that DAKOTA
performs is:

ifilter params.in.1 results.out.1;
driver1 params.in.1 results.out.1.1;
driver2 params.in.1 results.out.1.2;
driver3 params.in.1 results.out.1.3;
ofilter params.in.1 results.out.1
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in which all processes have again been combined into a single system call through the use of semi-colons and
parentheses. Note that the secondary file tagging for the results files is only used for the analysis drivers and
not for the filters. This is consistent with the filters’ defined purpose of managing the non-repeated portions of
analysis pre- and post-processing (e.g., overlay of response results from individual analyses; see Section 13.5.4
for additional information).

For the same mapping, the fork simulation interface echoes the following syntax:

blocking fork: ifilter params.in.1 results.out.1;
driver1 params.in.1 results.out.1.1;
driver2 params.in.1 results.out.1.2;
driver3 params.in.1 results.out.1.3;
ofilter params.in.1 results.out.1

for which a series of five blocking forks is used (no reforking of an intermediate process is required).

Executing the same mapping with the direct simulation interface results in an echo of the following syntax:

Direct function: invoking { ifilter driver1 driver2 driver3 ofilter }

where each of these components must be linked as a function within DAKOTA’s direct interface. Since asyn-
chronous operations are not supported, execution simply involves invocation of each of the five linked functions
in succession. Again, no files are involved for parameter and response data transfer since this data is passed
directly through the function argument lists.

Asynchronous executions would appear as follows for the system call interface:

(ifilter params.in.1 results.out.1;
driver1 params.in.1 results.out.1.1;
driver2 params.in.1 results.out.1.2;
driver3 params.in.1 results.out.1.3;
ofilter params.in.1 results.out.1) &

and for the fork interface:

nonblocking fork: ifilter params.in.1 results.out.1;
driver1 params.in.1 results.out.1.1;
driver2 params.in.1 results.out.1.2;
driver3 params.in.1 results.out.1.3;
ofilter params.in.1 results.out.1

where, again, user-selected file tagging of evaluations is combined with automatic file tagging of analyses. In
the fork interface case, an intermediate process is forked to allow a non-blocking function evaluation, and this
intermediate process is then reforked for the execution of the input filter, each of the analysis drivers, and the
output filter.

13.5 Simulation File Management

This section describes some management features used for files that transfer data between DAKOTA and simula-
tion codes (i.e., when the system call or fork interfaces are used). These features can generate unique filenames
when DAKOTA executes programs in parallel and can help one debug the interface between DAKOTA and a
simulation code.
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13.5.1 File Saving

The file save option in the interface specification allows the user to control whether parameters and results
files are retained or removed from the working directory. DAKOTA’s default behavior is to remove files once their
use is complete to reduce clutter. If the method output setting is verbose, a file remove notification will follow the
function evaluation echo, e.g.,

driver /usr/tmp/aaaa20305 /usr/tmp/baaa20305
Removing /usr/tmp/aaaa20305 and /usr/tmp/baaa20305

However, if file save appears in the interface specification, these files will not be removed. This latter behavior
is often useful for debugging communication between DAKOTA and simulator programs. An example of a
file save specification is shown in the file tagging example below.

13.5.2 File Tagging for Evaluations

When a user provides parameters file and results file specifications, the file tag option in the
interface specification causes DAKOTA to make the names of these files unique by appending the function eval-
uation number to the root file names. Default behavior is to not tag these files, which has the advantage of
allowing the user to ignore command line argument passing and always read to and write from the same file
names. However, it has the disadvantage that files may be overwritten from one function evaluation to the next.
When file tag appears in the interface specification, the file names are made unique by the appended eval-
uation number. This uniqueness requires the user’s interface to get the names of these files from the command
line. The file tagging feature is most often used when concurrent simulations are running in a common disk space,
since it can prevent conflicts between the simulations. An example specification of file tag and file save
is shown below:

interface,
system
analysis_driver = ’text_book’
parameters_file = ’text_book.in’
results_file = ’text_book.out’
file_tag file_save

Special case: When a user specifies names for the parameters and results files and file save is used without
file tag, untagged files are used in the function evaluation but are then moved to tagged files after the function
evaluation is complete, to prevent overwriting files for which a file save request has been given. If the output
control is set to verbose, then a notification similar to the following will follow the function evaluation echo:

driver params.in results.out
Files with non-unique names will be tagged to enable file_save:
Moving params.in to params.in.1
Moving results.out to results.out.1

13.5.3 Temporary Files

If parameters file and results file are not specified by the user, temporary files having generated
names are used. For example, a system call to a single analysis driver might appear as:

driver /usr/tmp/aaaa20305 /usr/tmp/baaa20305
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and a system call to an analysis driver with filter programs might appear as:

ifilter /usr/tmp/aaaa22490 usr/tmp/baaa22490;
driver /usr/tmp/aaaa22490 usr/tmp/baaa22490;
ofilter /usr/tmp/aaaa22490 /usr/tmp/baaa22490

These files have unique names created by the tmpnam utility from the C standard library [88]. This uniqueness
requires the user’s interface to get the names of these files from the command line. File tagging with evaluation
number is unnecessary with temporary files (since they are already unique); thus, file tag requests will be
ignored. A file save request will be honored, but it should be used with care since the temporary file directory
could easily become cluttered without the user noticing.

13.5.4 File Tagging for Analysis Drivers

When multiple analysis drivers are involved in performing a function evaluation with either the system call or
fork simulation interface, a secondary file tagging is automatically used to distinguish the results files used for
the individual analyses. This applies to both the case of user-specified names for the parameters and results files
and the default temporary file case. Examples for the former case were shown previously in Section 13.4.3 and
Section 13.4.4. The following examples demonstrate the latter temporary file case. Even though Unix temporary
files have unique names for a particular function evaluation, tagging is still needed to manage the individual
contributions of the different analysis drivers to the response results, since the same root results filename is used
for each component. For the system call interface, the syntax would be similar to the following:

ifilter /var/tmp/aaawkaOKZ /var/tmp/baaxkaOKZ;
driver1 /var/tmp/aaawkaOKZ /var/tmp/baaxkaOKZ.1;
driver2 /var/tmp/aaawkaOKZ /var/tmp/baaxkaOKZ.2;
driver3 /var/tmp/aaawkaOKZ /var/tmp/baaxkaOKZ.3;
ofilter /var/tmp/aaawkaOKZ /var/tmp/baaxkaOKZ

and, for the fork interface, similar to:

blocking fork:
ifilter /var/tmp/aaawkaOKZ /var/tmp/baaxkaOKZ;
driver1 /var/tmp/aaawkaOKZ /var/tmp/baaxkaOKZ.1;
driver2 /var/tmp/aaawkaOKZ /var/tmp/baaxkaOKZ.2;
driver3 /var/tmp/aaawkaOKZ /var/tmp/baaxkaOKZ.3;
ofilter /var/tmp/aaawkaOKZ /var/tmp/baaxkaOKZ

Tagging of results files with an analysis identifier is needed since each analysis driver must contribute a user-
defined subset of the total response results for the evaluation. If an output filter is not supplied, DAKOTA will
combine these portions through a simple overlaying of the individual contributions (i.e., summing the results in
/var/tmp/baaxkaOKZ.1, /var/tmp/baaxkaOKZ.2, and /var/tmp/baaxkaOKZ.3). If this simple
approach is inadequate, then an output filter should be supplied to perform the combination. This is the reason
why the results file for the output filter does not use analysis tagging; it is responsible for the results combination
(i.e., combining /var/tmp/baaxkaOKZ.1, /var/tmp/baaxkaOKZ.2, and /var/tmp/baaxkaOKZ.3
into /var/tmp/baaxkaOKZ). In this case, DAKOTA will read only the results file from the output filter (i.e.,
/var/tmp/baaxkaOKZ) and interpret it as the total response set for the evaluation.

Parameters files are not currently tagged with an analysis identifier. This reflects the fact that DAKOTA does not
attempt to subdivide the requests in the active set vector for different analysis portions. Rather, the total active set
vector is passed to each analysis driver and the appropriate subdivision of work must be defined by the user. This
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allows the division of labor to be very flexible. In some cases, this division might occur across response functions,
with different analysis drivers managing the data requests for different response functions. And in other cases, the
subdivision might occur within response functions, with different analysis drivers contributing portions to each of
the response functions. The only restriction is that each of the analysis drivers must follow the response format
dictated by the total active set vector. For response data for which an analysis driver has no contribution, 0’s must
be used as placeholders.

13.5.5 Work Directories

Sometimes it is convenient for simulators to run in a directory different from the one where DAKOTA is invoked.
A simulator script used as an analysis driver can of course change to a different directory if desired (while
still arranging to write a results file in the original directory), but DAKOTA 5.0 has new facilities that may simplify
the creation pf simulator scripts. If an interface specification includes the keyword

work_directory

then DAKOTA will arrange for the simulator to wake up in a temporary directory, with $PATH adjusted (if
necessary) so programs that could be invoked without a relative path to them (i.e., by a name not involving
any slashes) from DAKOTA’s directory can also be invoked from the simulator’s directory. On occasion, it is
convenient for the simulator to have various files, e.g., data files, available in the directory where it runs. If, say,
my/special/directory is such a directory (as seen from DAKOTA’s directory), the interface specification

work_directory named ’my/special/directory’

would cause DAKOTA to start the simulator in that directory. If the directory did not already exist, DAKOTA
would create it and would remove it after the simulator finished, unless instructed not to do so by the appear-
ance of directory save or its synonym dir save in the interface specification. If named ’...’ does
not appear, then directory save cannot appear either, and DAKOTA creates a temporary directory (using
the tmpnam function to determine its name) for use by the simulator. If you specify directory tag (or
dir tag), DAKOTA causes each invocation of the simulator to start in a a subdirectory of the work directory
with a name composed of the work directory’s name followed by a period and the invocation number (1, 2, ...);
this might be useful in debugging.

Sometimes it can be helpful for the simulator to start in a new directory populated with some files. Adding

template_directory ’my/template’

to the work directory specification would cause the contents of directory my/template to be linked recursively
into the work directory. Linking is good if files are large, but if they are to be modified by the simulator, it may
be better to have copies of the files; adding copy to the specification would cause the contents of the template
directory to be copied recursively to the work directory. The linking or copying does not replace existing files
unless replace also appears in the specification. Instead of template directory ..., you can specify
template files, followed by one or more quoted strings, as in

template_files ’zip’ ’zap’ ’foo/zot’

which would cause zip, zap, and foo/zot to be linked (or, with copy, copied) recursively to the work
directory.

Here is a summary of possibilities for a work directory specification, with [...] denoting that ... is optional:
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work_directory [ named ’...’ ]
[ directory_tag ] # or dir_tag
[ directory_save ] # or dir_save
[ template_directory ’...’ # or template_files ’...’ ’...’ ...

[ copy ]
[ replace ]
]

13.6 Parameter to Response Mappings

In this section, interface mapping examples are presented through the discussion of several parameters files and
their corresponding results files. A typical input file for 2 variables (n = 2) and 3 functions (m = 3) using the
standard parameters file format (see Section 12.6.1) is as follows:

2 variables
1.500000000000000e+00 cdv_1
1.500000000000000e+00 cdv_2

3 functions
1 ASV_1
1 ASV_2
1 ASV_3
2 derivative_variables
1 DVV_1
2 DVV_2
0 analysis_components

where numerical values are associated with their tags within “value tag” constructs. The number of design
variables (n) and the string “variables” are followed by the values of the design variables and their tags, the
number of functions (m) and the string “functions”, the active set vector (ASV) and its tags, the number of
derivative variables and the string “derivative variables”, the derivative variables vector (DVV) and its
tags, the number of analysis components and the string “analysis components”, and the analysis compo-
nents array and its tags. The descriptive tags for the variables are always present and they are either the descriptors
in the user’s variables specification, if given there, or are default descriptors. The length of the active set vector is
equal to the number of functions (m). In the case of an optimization data set with an objective function and two
nonlinear constraints (three response functions total), the first ASV value is associated with the objective function
and the remaining two are associated with the constraints (in whatever consistent constraint order has been defined
by the user). The DVV defines a subset of the variables used for computing derivatives. Its identifiers are 1-based
and correspond to the full set of variables listed in the first array. Finally, the analysis components pass additional
strings from the user’s analysis components specification in a DAKOTA input file through to the simulator.
They allow the development of simulation drivers that are more flexible, by allowing them to be passed additional
specifics at run time, e.g., the names of model files such as a particular mesh to use.

For the APREPRO format option (see Section 12.6.2), the same set of data appears as follows:

{ DAKOTA_VARS = 2 }
{ cdv_1 = 1.500000000000000e+00 }
{ cdv_2 = 1.500000000000000e+00 }
{ DAKOTA_FNS = 3 }
{ ASV_1 = 1 }
{ ASV_2 = 1 }
{ ASV_3 = 1 }
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{ DAKOTA_DER_VARS = 2 }
{ DVV_1 = 1 }
{ DVV_2 = 2 }
{ DAKOTA_AN_COMPS = 0 }

where the numerical values are associated with their tags within “{ tag = value }” constructs.

The user-supplied simulation interface, comprised of a simulator program or driver and (optionally) filter pro-
grams, is responsible for reading the parameters file and creating a results file that contains the response data
requested in the ASV. This response data is written in the format described in Section 14.2. Since the ASV con-
tains all ones in this case, the response file corresponding to the above input file would contain values for the three
functions:

1.250000000000000e-01 f
1.500000000000000e+00 c1
1.500000000000000e+00 c2

Since function tags are optional, the following would be equally acceptable:

1.250000000000000e-01
1.500000000000000e+00
1.500000000000000e+00

For the same parameters with different ASV components,

2 variables
1.500000000000000e+00 cdv_1
1.500000000000000e+00 cdv_2

3 functions
3 ASV_1
3 ASV_2
3 ASV_3
2 derivative_variables
1 DVV_1
2 DVV_2
0 analysis_components

the following response data is required:

1.250000000000000e-01 f
1.500000000000000e+00 c1
1.500000000000000e+00 c2
[ 5.000000000000000e-01 5.000000000000000e-01 ]
[ 3.000000000000000e+00 -5.000000000000000e-01 ]
[ -5.000000000000000e-01 3.000000000000000e+00 ]

Here, we need not only the function values, but also each of their gradients. The derivatives are computed with
respect to cdv 1 and cdv 2 as indicated by the DVV values. Another modification to the ASV components
yields the following parameters file:

2 variables
1.500000000000000e+00 cdv_1
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1.500000000000000e+00 cdv_2
3 functions
2 ASV_1
0 ASV_2
2 ASV_3
2 derivative_variables
1 DVV_1
2 DVV_2
0 analysis_components

for which the following results file is needed:

[ 5.000000000000000e-01 5.000000000000000e-01 ]
[ -5.000000000000000e-01 3.000000000000000e+00 ]

Here, we need gradients for functions f and c2, but not for c1, presumably since this constraint is inactive.

A full Newton optimizer might make the following request:

2 variables
1.500000000000000e+00 cdv_1
1.500000000000000e+00 cdv_2

1 functions
7 ASV_1
2 derivative_variables
1 DVV_1
2 DVV_2
0 analysis_components

for which the following results file,

1.250000000000000e-01 f
[ 5.000000000000000e-01 5.000000000000000e-01 ]
[[ 3.000000000000000e+00 0.000000000000000e+00

0.000000000000000e+00 3.000000000000000e+00 ]]

containing the objective function, its gradient vector, and its Hessian matrix, is needed. Again, the derivatives
(gradient vector and Hessian matrix) are computed with respect to cdv 1 and cdv 2 as indicated by the DVV
values.

Lastly, a more advanced example could have multiple types of variables present; in this example, 2 continuous
design and 3 discrete design range, 2 normal uncertain, and 3 continuous state and 2 discrete state range variables.
When a mixture of variable types is present, the content of the DVV (and therefore the required length of gradient
vectors and Hessian matrices) depends upon the type of study being performed (see Section 14.3). For a reliability
analysis problem, the uncertain variables are the active continuous variables and the following parameters file
would be typical:

12 variables
1.500000000000000e+00 cdv_1
1.500000000000000e+00 cdv_2

2 ddriv_1
2 ddriv_2
2 ddriv_3
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5.000000000000000e+00 nuv_1
5.000000000000000e+00 nuv_2
3.500000000000000e+00 csv_1
3.500000000000000e+00 csv_2
3.500000000000000e+00 csv_3

4 dsriv_1
4 dsriv_2
3 functions
3 ASV_1
3 ASV_2
3 ASV_3
2 derivative_variables
6 DVV_1
7 DVV_2
2 analysis_components

mesh1.exo AC_1
db1.xml AC_2

Gradients are requested with respect to variable entries 6 and 7, which correspond to normal uncertain variables
nuv 1 and nuv 2. The following response data would be appropriate:

7.943125000000000e+02 f
1.500000000000000e+00 c1
1.500000000000000e+00 c2
[ 2.560000000000000e+02 2.560000000000000e+02 ]
[ 0.000000000000000e+00 0.000000000000000e+00 ]
[ 0.000000000000000e+00 0.000000000000000e+00 ]

In a parameter study, however, no distinction is drawn between different types of continuous variables, and deriva-
tives would be needed with respect to all continuous variables (ndvv = 7 for the continuous design variables
cdv 1 and cdv 2, the normal uncertain variables nuv 1 and nuv 2, and the continuous state variables csv 1,
csv 2 and csv 3). The parameters file would appear as

12 variables
1.500000000000000e+00 cdv_1
1.500000000000000e+00 cdv_2

2 ddriv_1
2 ddriv_2
2 ddriv_3

5.000000000000000e+00 nuv_1
5.000000000000000e+00 nuv_2
3.500000000000000e+00 csv_1
3.500000000000000e+00 csv_2
3.500000000000000e+00 csv_3

4 dsriv_1
4 dsriv_2
3 functions
3 ASV_1
3 ASV_2
3 ASV_3
7 derivative_variables
1 DVV_1
2 DVV_2
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6 DVV_3
7 DVV_4
8 DVV_5
9 DVV_6
10 DVV_7
2 analysis_components

mesh1.exo AC_1
db1.xml AC_2

and the corresponding results would appear as

7.943125000000000e+02 f
1.500000000000000e+00 c1
1.500000000000000e+00 c2
[ 5.000000000000000e-01 5.000000000000000e-01 2.560000000000000e+02

2.560000000000000e+02 6.250000000000000e+01 6.250000000000000e+01
6.250000000000000e+01 ]

[ 3.000000000000000e+00 -5.000000000000000e-01 0.000000000000000e+00
0.000000000000000e+00 0.000000000000000e+00 0.000000000000000e+00
0.000000000000000e+00 ]

[ -5.000000000000000e-01 3.000000000000000e+00 0.000000000000000e+00
0.000000000000000e+00 0.000000000000000e+00 0.000000000000000e+00
0.000000000000000e+00 ]
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Chapter 14

Responses

14.1 Overview

The responses specification in a DAKOTA input file controls the types of data that can be returned from an
interface during DAKOTA’s execution. The specification includes the number and type of response functions
(objective functions, nonlinear constraints, least squares terms, etc.) as well as availability of first and second
derivatives (gradient vectors and Hessian matrices) for these response functions.

This chapter will present a brief overview of the response data sets and their uses, as well as cover some user
issues relating to file formats and derivative vector and matrix sizing. For a detailed description of responses
section syntax and example specifications, refer to the Responses Commands chapter in the DAKOTA Reference
Manual [3].

14.1.1 Response function types

The types of response functions listed in the responses specification should be consistent with the iterative tech-
nique called for in the method specification:

• an optimization data set comprised of num objective functions,
num nonlinear inequality constraints, and num nonlinear equality constraints.
This data set is appropriate for use with optimization methods (e.g., the methods in Section 3.5).

• a least squares data set comprised of num least squares terms,
num nonlinear inequality constraints, and num nonlinear equality constraints.
This data set is appropriate for use with nonlinear least squares algorithms (e.g., the methods in Section 3.7).

• a generic data set comprised of num response functions. This data set is appropriate for use with
uncertainty quantification methods (e.g., the methods in Section 3.4).

Certain general-purpose iterative techniques, such as parameter studies and design of experiments methods, can
be used with any of these data sets.
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14.1.2 Gradient availability

Gradient availability for these response functions may be described by:

• no gradients: gradients will not be used.

• numerical gradients: gradients are needed and will be approximated by finite differences.

• analytic gradients: gradients are needed and will be supplied by the simulation code (without any
finite differencing by DAKOTA).

• mixed gradients: the simulation will supply some gradient components and DAKOTA will approxi-
mate the others by finite differences.

The gradient specification also links back to the iterative method used. Gradients commonly are needed when
the iterative study involves gradient-based optimization, reliability analysis for uncertainty quantification, or local
sensitivity analysis.

14.1.3 Hessian availability

Hessian availability for the response functions is similar to the gradient availability specifications, with the addi-
tion of support for “quasi-Hessians”:

• no hessians: Hessians will not be used.

• numerical gradients: Hessians are needed and will be approximated by finite differences. These
finite differences may be involve first-order differences of gradients (if analytic gradients are available for
the response function of interest) or second-order differences of function values (in all other cases).

• quasi hessians: Hessians are needed and will be approximated by secant updates (BFGS or SR1) from
a series of gradient evaluations.

• analytic hessians: Hessians are needed and are available directly from the simulation code.

• mixed hessians: Hessians are needed and will be obtained from a mix of numerical, analytic, and
“quasi” sources.

The Hessian specification also links back to the iterative method in use; Hessians commonly would be used
in gradient-based optimization by full Newton methods or in reliability analysis with second-order limit state
approximations or second-order probability integrations.

14.2 DAKOTA Results File Data Format

Simulation interfaces using system calls and forks to create separate simulation processes must communicate
with the simulation through the file system. This is done by reading and writing files of parameters and results.
DAKOTA uses its own format for this data input/output. For the results file, only one format is supported (versus
the two parameter-file formats described in Section 12.6). Ordering of response functions is as listed in Sec-
tion 14.1.1 (e.g., objective functions or least squares terms are first, followed by nonlinear inequality constraints,
followed by nonlinear equality constraints).
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<double> <fn_tag1>
<double> <fn_tag2>
...
<double> <fn_tagm>
[ <double> <double> .. <double> ]
[ <double> <double> .. <double> ]
...
[ <double> <double> .. <double> ]
[[ <double> <double> .. <double> ]]
[[ <double> <double> .. <double> ]]
...
[[ <double> <double> .. <double> ]]

Figure 14.1: Results file data format.

After a simulation, DAKOTA expects to read a file containing responses reflecting the current parameters and
corresponding to the function requests in the active set vector. The response data must be in the format shown in
Figure 14.1.

The first block of data (shown in black) conveys the requested function values and is followed by a block of
requested gradients (shown in blue), followed by a block of requested Hessians (shown in red). If the amount of
data in the file does not match the function request vector, DAKOTA will abort execution with an error message.

Function values have no bracket delimiters and optionally one character-string tag per function can be supplied.
These tags are not used by DAKOTA and are only included as an optional field for consistency with the parameters
file format and for backwards compatibility. If tags are used, they must be separated from numeric function values
by white space (one or more blanks, tabs, or newline characters) and there must not be any white space embedded
within a character-string tag (e.g., use “variable1” or “variable 1,” but not “variable 1”).

Gradient vectors are surrounded by single brackets [. . .ndvv-vector of doubles. . . ]. Tags are not used and must
not be present. White space separating the brackets from the data is optional.

Hessian matrices are surrounded by double brackets [[. . .ndvv×ndvv matrix of doubles. . . ]]. Hessian components
(numeric values for second partial derivatives) are listed by rows and separated by white space; in particular, they
can be spread across multiple lines for readability. Tags are not used and must not be present. White space after
the initial double bracket and before the final one is optional, but none can appear within the double brackets.

The format of the numeric fields may be floating point or scientific notation. In the latter case, acceptable exponent
characters are “E” or “e.” A common problem when dealing with Fortran programs is that a C++ read of
a numeric field using “D” or “d” as the exponent (i.e., a double precision value from Fortran) may fail or be
truncated. In this case, the “D” exponent characters must be replaced either through modifications to the Fortran
source or compiler flags or through a separate post-processing step (e.g., using the UNIX sed utility).

14.3 Active Variables for Derivatives

An important question for proper management of both gradient and Hessian data is: if several different types of
variables are used, for which variables are response function derivatives needed? That is, how is ndvv deter-
mined? The short answer is that the derivative variables vector (DVV) specifies the set of variables to be used for
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Table 14.1: Variable views for different iterators.

Method Active view Derivative variables
branch and bound Merged Design ncdv + nddiv + nddrv

optimization, Mixed Design ncdv
nonlinear least squares

sampling (standard mode) Mixed Uncertain ncauv + nceuv
local reliability, Mixed Aleatory Uncertain ncauv

global reliability (standard mode),
stochastic expansion (standard mode)

interval estimation, Mixed Epistemic Uncertain nceuv
evidence

parameter studies, Mixed All ncdv + ncauv + nceuv + ncsv
design of experiments,

uncertainty quantification (all variables mode)

computing derivatives, and ndvv is the length of this vector. The long answer is that, in most cases, the DVV is
defined directly from the set of active continuous variables for the iterative method in use.

Since methods determine what subset, or view, of the variables is active in the iteration, it is this same set of vari-
ables for which derivatives are most commonly computed (see also Section 12.5). Derivatives are never needed
with respect to any discrete variables (since these derivatives do not in general exist) and the active continuous
variables depend on the type of study being performed. For optimization and least-squares problems, the active
continuous variables are the continuous design variables (ndvv = ncdv), since they are the variables the mini-
mizer manipulates. Similarly, for uncertainty quantification methods that use gradient and/or Hessian informa-
tion, the active continuous variables are the continuous uncertain variables (ndvv = ncauv for aleatory methods,
ndvv = nceuv for epistemic methods, ndvv = ncauv + nceuv for methods that handle both), with the exception
of all variables mode. And lastly, parameter study methods that are cataloging gradient and/or Hessian
information do not draw a distinction among continuous variables; therefore, the active continuous variables are
defined from all continuous variables that are specified (ndvv = ncdv + ncauv + nceuv + ncsv). Additional detail
on these variables views is provided in Table 14.1.

In a few cases, derivatives are needed with respect to the inactive continuous variables. This occurs for nested
iteration where a top-level iterator sets derivative requirements (with respect to its active continuous variables) on
the final solution of the lower-level iterator (for which the top-level active variables are inactive). For example, in
an uncertainty analysis within a nested design under uncertainty algorithm, derivatives of the lower-level response
functions may be needed with respect to the design variables, which are active continuous variables at the top
level but are inactive within the uncertainty quantification. These instances are the reason for the creation and
inclusion of the DVV vector — to clearly indicate the variables whose partial derivatives are needed.

In all cases, if the DVV is honored, then the correct derivative components are returned. In simple cases, such
as optimization and least squares studies that only specify design variables and for nondeterministic analyses that
only specify uncertain variables, derivative component subsets are not an issue and the exact content of the DVV
may be safely ignored.
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Inputs to DAKOTA

15.1 Overview of Inputs

The DAKOTA executable supports a number of command line inputs, as described in Section 2.1.5. Among these
are specifications for the DAKOTA input file and, optionally, a restart file. The syntax of the DAKOTA input file
is described in detail in the DAKOTA Reference Manual [3], and the restart file is described in Chapter 20.

The DAKOTA input file may be prepared manually (e.g., using a text editor such as xemacs or vi), or it may be
defined graphically using the JAGUAR graphical user interface, as described in Section 15.2. Once prepared, the
DAKOTA input file and/or command line may identify additional files for data import as described in Section 15.3.

15.2 JAGUAR 2.0

JAGUAR (JAva GUi for Applied Research) is a Java software tool for automatically rendering a graphical user
interface (GUI) from a structured input specification. The dynamically-generated interface enables users to create,
edit, and externally execute analysis application input files and then view the results. JAGUAR is built on top of
the Eclipse Framework [1] as an Eclipse Rich Client Product, providing it the look, feel, and features of Eclipse
Applications.

JAGUAR serves as a GUI for DAKOTA. It parses a DAKOTA NIDR input specification and presents the user with
linked graphical and plain text representations of problem set-up and option specification for DAKOTA studies.
After the data have been input by the user, JAGUAR generates one or more input files for DAKOTA; it can also
execute DAKOTA, capturing and (eventually) interpret the results.

JAGUAR 2.0 is available for Windows, Mac (Intel processors), and Linux 32- and 64-bit platforms. While
JAGUAR’s core source is BSD licensed, binary distributions of JAGUAR include Eclipse Workbench compo-
nents and are therefore subject to the terms of the Eclipse Public License. A short description of the steps for
downloading, installing, and executing JAGUAR is provided below.

15.2.1 Downloading and Installing JAGUAR

A short description of the steps for downloading and installing JAGUAR is provided here.



238 CHAPTER 15. INPUTS TO DAKOTA

Figure 15.1: The JAGUAR installation package.

• Install supporting JAVA software (if needed). JAGUAR requires a Java Runtime Environment (JRE)
version 5.0 or above. (Sun has revised its 1.X.X versioning system, and version 5.0 is the same as 1.5.0 in
the old numbering scheme.) If a Java Runtime Environment is not already installed on your machine, you
will need to download and install a 5.0 JRE from:

http://java.sun.com/j2se/1.5.0/download.jsp [click on “Java Runtime Environment (JRE)
5.0 ...”]

• Install JAGUAR. As per the DAKOTA download process described in Section 2.1.1, the JAGUAR distri-
bution is accessed by clicking on the download link available from: http://www.cs.sandia.gov/
dakota/software.html and filling out the short online registration form. Download the JAGUAR
install for your platform (Windows, Mac, or Linux 32/64-bit).

The JAGUAR package is provided as a zipped archive file. Windows and Mac users should be able to
double-click on the file’s icon from a file system browser to perform the extraction. Linux users can use the
unzip utility to unzip the archive from their command-line console. The JAGUAR installation package is
self-contained, so JAGUAR can be directly run immediately after extracting the archive. (See Figure 15.1.)
Take note of where you installed as you may want to create a shortcut or link to the installed Jaguar exe-
cutable.

15.2.2 Running JAGUAR for the First Time

When starting JAGUAR for the first time, you should see a “Welcome” screen. As can be seen in Figure 15.2, the
Welcome screen provides quick navigation to many JAGUAR features. This screen can be closed at anytime by
clicking on the “X” located on the Welcome tab and returned to at anytime via the JAGUAR help menu (Help →
Welcome).

• Start Jaguar. The “Start Jaguar” link allows users to directly proceed to an empty JAGUAR interface.

• Tours. The Tours section offers guides for beginning users. As JAGUAR is built on the Eclipse Workbench,
new users will benefit from the Eclipse Workbench Tour, a quick online reference for Eclipse framework
features like Views, Perspectives, etc. The next two links provides access to guided tours via JAGUAR
Cheat Sheets which are shown in Figure 15.3. JAGUAR Cheat Sheets are a useful mechanism for quickly
learning how to perform important JAGUAR operations such as opening and saving files. They utilize
an interactive step-by-step approach to guide new users through JAGUAR. The Welcome screen is also
accessible from Cheat Sheets. Cheat Sheets usually dock on the side of the application so as to not obstruct
user interactions, and can always be accessed from the JAGUAR help menu (Help → Cheat Sheets).
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Figure 15.2: The JAGUAR “Welcome” screen.
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Figure 15.3: A sample JAGUAR cheatsheet.

DAKOTA Version 5.0 User’s Manual generated on May 7, 2010



15.2. JAGUAR 2.0 241

Figure 15.4: The JAGUAR text editor.

• Create new input file. This link creates an empty DAKOTA input file. New input files can also be accessed
by selecting New → DAKOTA input file from the File menu. Users must enter a file name for newly-
created input files when attempting to save them for the first time.

• Create new input file from template. This links creates a new input file from existing DAKOTA templates.
Users must also enter a file name when saving these newly-created input files. This action can also be
accessed from the File menu by selecting New → DAKOTA input file from template.

The remaining two links are used for sending an email to the JAGUAR developers, and viewing existing JAGUAR
bugs.

15.2.3 Text Editors

Figure 15.4 shows an example DAKOTA input file in the JAGUAR text editor. The text editor interface is the first
of two primary interfaces that JAGUAR contains for creating and modifying DAKOTA input files. For text-based
editing, the “Source” tab toward the bottom of the JAGUAR window reveals the raw DAKOTA input file text
(likely only comfortable for experienced DAKOTA users).

This text editor supports simple syntax highlighting. Additional text editor features planned include syntax com-
pletion and context-sensitive, on-demand tooltip help.

15.2.4 Graphical Editors

JAGUAR’s graphical editors are the second primary interface for creating and modifying DAKOTA input files.
A unique feature of JAGUAR is that the graphical user interface of these editors is dynamically generated from
the NIDR input specification for DAKOTA. When your locally installed version of DAKOTA is updated, you can
point JAGUAR to the new version and it will re-render to match.
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Figure 15.5: The “Define Problem” portion of the JAGUAR graphical editor.

Graphical-based editing is conveniently separated into “Define Problem” and “Define Flow/Iteration” sections;
see the appropriate tabs toward the bottom of the JAGUAR window in Figure 15.5. “Define Problem” is where
the problem to iterate on is defined in terms of models, which map variables through interfaces to responses.
“Define Flow/Iteration” is where a method or methods and possibly a strategy are specified.

Each pane in the graphical view has two components. On the left is the tree hierarchy, which provides users
with easy navigation across the structured input file. The right side of the view is where content is displayed and
selections may be made. As an example, see Figure 15.6.

When a top-level element (i.e., Model, Variable Interface, Responses, Strategy, or Method), represented by a
multi-colored brick, is selected by a user, the right pane will display a top-level overview of the selection. From
this page, certain top-level elements will show instance restrictions for a valid input file, allow the user to create a
new instance, and to go directly to or delete an existing instance.

Within each top-level instance lie unique instances (represented by a gray brick). Each instance contains many
possible configurable settings, which are all organized according to their hierarchy as shown in Figure 15.7. We
call these “elements.”

When an instance is selected, its elements are displayed in the right content pane. (See Figure 15.8.) Note that
certain elements have nested elements, which are not immediately displayed in the content pane. To view these
child elements, select the element in the left hierarchy tree.

There are five basic types of elements in JAGUAR.

1. The first is an element without a value. In Figure 15.9, notice the checkbox to the left of the element; this
allows the user to enable and disable the element. Only enabled elements are represented in the input file,
which of course can be viewed in the “Source” representation (i.e., the JAGUAR text editors). Note that
some elements are required, and thus cannot be disabled.

2. The second element type allows users to set values of type Integer, Real, String, or a space-delimited list.
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Figure 15.6: Content selected from the left tree hierarchy is displayed on the right side of the view.

Figure 15.7: An organized hierarchy of possible configurable settings.

Figure 15.8: Display of elements from a selected instance.
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Figure 15.9: Different element types in JAGUAR.

3. Nested elements are supported in JAGUAR, and are indicated by a green bullet and the presence of a
hyperlink. Selecting a hyperlink is one way to view the nested element in the right-side content pane. The
up arrow allows quick return to a parent element in the problem specification.

4. Drop-down lists in JAGUAR are indicated by a choice icon. When the list is selected, it behaves like one of
the former three element types. In terms of drop-down lists’ contents, note that the first element functions
as a header text whose purpose is to aid the user’s selection of an appropriate element below. Asterisks are
also used to indicate the default element of the list.

5. The fifth and final element is a pointer element that allows the reference of other existing elements. Hy-
perlinks allow users to quickly view that instance in the content pane. In addition, when an unrecognized
instance name is manually entered in a pointer element, JAGUAR automatically creates that new instance.

Push-up elements allow sub-specifications to be displayed in the current pane instead of requiring a dive in the
tree to see them. Figures 15.10 and 15.11 show JAGUAR with push-up elements on (default) and off, respectively.
Control behavior of push-ups with the upward facing arrow on the top right of the editor or in preferences.

The JAGUAR toolbar, shown in Figure 15.12 offers (from left to right) quick access for running DAKOTA input
files, displaying pretty names instead of keywords, toggling help text, displaying comments, and toggling push-up
elements.

15.2.5 DAKOTA Execution

The “Execute Problem” tab contains several options for executing DAKOTA on the active input file, as shown in
Figure 15.13. The execute options all rely on a locally installed copy of DAKOTA, the path to which can be set
via Window >Preferences >Jaguar.

Currently four modes of DAKOTA execution are supported:

• Check: While JAGUAR includes considerable input validation, additional validation is managed solely by
DAKOTA’s input parser. To use DAKOTA to validate the active input file (via dakota -check), click
the Check button and view the console output on the Visualize tab. You should see a message indicating
that the check completed and should see no errors:
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Figure 15.10: JAGUAR with push-up elements enabled (default).
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Figure 15.11: JAGUAR with push-up elements disabled.

Figure 15.12: JAGUAR toolbar for running DAKOTA or toggling many options.
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Figure 15.13: The JAGUAR “Execute Problem” tab.

Input check completed: problem specification parsed and objects instantiated.

• Run: The run feature supports running DAKOTA on the local machine using the active input file. Clicking
Run will start DAKOTA in the same directory as the input file, so any necessary driver scripts or data files
must be present. View the output from DAKOTA in the console window:

<<<<< Iterator multidim_parameter_study completed.
<<<<< Function evaluation summary: 25 total (25 new, 0 duplicate)
<<<<< Best data metrics not defined for generic response functions
<<<<< Single Method Strategy completed.

• Pre Run: Pre-run is a component of the normal DAKOTA run process. For select analyzer methods only,
e.g., parameter studies and sampling methods, DAKOTA supports a pre-run mode (dakota -pre run),
which will generate the set of points at which DAKOTA will evaluate the model and optionally write them to
a tabular file. The optional checkbox permits saving this generated file. A successful pre-run will terminate
with a message:

Pre-run phase complete: variables written to tabular file my_vars.dat

• Post Run: Post-process user-supplied variables and function evaluation data, for example, to compute final
statistics in a screening study (the analysis counterpart complementing Pre Run). Pre-run and post-run are
central to the sensitivity analysis wizard.

Results from any execute option are displayed on the “Visualize Results” tab as shown in Figure 15.14.

Two additional modes will be supported in future JAGUAR versions:
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Figure 15.14: JAGUAR Visualize Results tab.
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Figure 15.15: The splash page for the JAGUAR Sensitivity Analysis Wizard.

• Core Run: Perform only the model evaluation (invoke analysis drivers) to map variables to re-
sponses. (dakota -run)

• Remote job submission: Submit DAKOTA job on a remote compute cluster and monitor job status.

15.2.6 Sensitivity Analysis Wizard

JAGUAR will ultimately provide wizards for creating customized DAKOTA input files for a variety of common
tasks such as optimization, parameter estimation, and uncertainty quantification. Presently, one such wizard exists
for creating a Latin hypercube sampling sensitivity analysis (screening) study, and is accessible from the Welcome
screen and the main File menu (New → Sensitivity Analysis Wizard).

Upon launching, select either the variables definition (pre-run) phase or analysis (post-run) phase (Figure 15.15)

Figure 15.16 shows the second page of the sensitivity analysis wizard. The number of samples, uncertain
(uniformly-distributed) variables, and responses must be specified. For each specified variable, lower and up-
per bounds are required; there are also optional fields for specifying descriptors for each variable. After these
fields have been complete, the user can generate the LHS samples in the form of a run matrix using the “Generate
samples” option, and/or save the input file for the LHS study using the “Save input file” option and specifying a
location for the input file. (Selecting “Save input file” will end the wizard.)

Figure 15.17 shows an example of the final page of the wizard containing the generated run matrix if the “Generate
samples” option is selected. Note that this option actually executes the locally-installed version of DAKOTA (in
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Figure 15.16: The second page of the JAGUAR Sensitivity Analysis Wizard, pre-run phase.
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Figure 15.17: The final page of the Sensitivity Analysis Wizard, pre-run phase.

“pre-run” mode) to generate the run matrix. The page also provides options for saving both the input file and the
generated run matrix.

After creating a samples file (run matrix), a use may either add columns for response data to the file, or run
DAKOTA to perform variable to response mappings, then return to the wizard’s post-run mode. Figure 15.18
shows specification of the saved input deck from pre-run and the location of the data file containing the variables
and response data to analyze.

15.2.7 Generating Input Files from Templates

There exist many example input files for DAKOTA analysis and studies that users can build on, customizing their
own studies from these templates. JAGUAR provides easy access to these templates by allowing users to generate
new input files from a library of templates. These templates can be accessed from the Welcome screen, or from
the main File menu (New → DAKOTA input file from template).
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Figure 15.18: The second page of the JAGUAR Sensitivity Analysis Wizard, post-run phase.
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Figure 15.19: A list of DAKOTA input file templates in JAGUAR

As shown in Figure 15.19, JAGUAR contains a large library of pre-made input file templates that users can select
from. After selecting a template upon which to base a new input file, specify a location to save the new input file
(see Figure 15.20).

15.3 Data Imports

The DAKOTA input file and/or command line may identify additional files used to import data into DAKOTA.

Figure 15.20: Specifying a location for saving an input file generated from a template.
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15.3.1 AMPL algebraic mappings: stub.nl, stub.row, and stub.col

As described in Section 13.2, an AMPL specification of algebraic input-to-output relationships may be imported
into DAKOTA and used to define or augment the mappings of a particular interface.

15.3.2 Genetic algorithm population import

Genetic algorithms (GAs) from the JEGA and COLINY packages support a population import feature using
the keywords initialization type flat file = STRING. This is useful for warm starting GAs from
available data or previous runs. Refer to the Method Specification chapter in the DAKOTA Reference Manual [3]
for additional information on this specification.

15.3.3 Least squares data import

Least squares methods can read files of whitespace-separated experimental data to difference with model results,
with one experimental data point given per model response returned to DAKOTA. See 8.3 and the DAKOTA
Reference Manual for further details.

15.3.4 PCE coefficient import

Polynomial chaos expansion (PCE) methods compute coefficients for response expansions which employ a basis
of multivariate orthogonal polynomials. Normally, the nond polynomial chaos method calculates these co-
efficients based either on a spectral projection or a linear regression (see Section 6.4). However, DAKOTA also
supports the option of importing a set of response PCE coefficients based on the specification expansion import file
= STRING. This is useful for evaluating moments analytically or computing probabilities numerically from a
known response expansion. Refer to the Method Specification chapter in the DAKOTA Reference Manual [3] for
additional information on this specification.

15.3.5 Surrogate construction from data files

Global data fit surrogates may be constructed from a variety of data sources. One of these sources is an auxiliary
data file, as specified by the keywords reuse samples samples file = STRING. Refer to the Model
Specification chapter in the DAKOTA Reference Manual [3] for additional information on this specification.

15.3.6 Variables/responses import to post-run

The post-run mode (supported only for sampling, parameter study, and DACE methods) requires specification of
a file containing parameter and response data in columnar format. Columns for variables are followed by those for
responses, with an ignored header row of labels and then one row per evaluation. Typically this file would be gen-
erated by executing dakota -i dakota.in -pre run ::variables.dat and then adding columns
of response data to variables.dat to make varsresponses.dat. The file is specified as follows at the command line:

dakota -i dakota.in -post_run varsresponses.dat::

DAKOTA Version 5.0 User’s Manual generated on May 7, 2010



Chapter 16

Output from DAKOTA

16.1 Overview of Output Formats

Given an emphasis on complex numerical simulation codes that run on massively parallel supercomputers, DAKOTA’s
output has been designed to provide a succinct, text-based reporting of the progress of the iterations and function
evaluations performed by an algorithm. In addition, DAKOTA provides a tabular output format that is useful for
data visualization with external tools and a basic graphical output capability that is useful as a monitoring tool.
The JAGUAR graphical user interface described in Section 15.2 is also an emerging capability that will provide
more advanced visualization facilities in time.

16.2 Standard Output

DAKOTA outputs basic information to “standard out” (i.e., the screen) for each function evaluation, consisting
of an evaluation number, parameter values, execution syntax, the active set vector, and the response data set. To
describe the standard output of DAKOTA, optimization of the “container” problem (see Chapter 22 for problem
formulation) is used as an example. The input file for this example is shown in Figure 16.1. In this example,
there is one equality constraint, and DAKOTA’s finite difference algorithm is used to provide central difference
numerical gradients to the NPSOL optimizer.
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strategy,
single_method
graphics
tabular_graphics_data

method,
npsol_sqp

variables,
continuous_design = 2
descriptors’H’ ’D’
initial_point 4.5 4.5
lower_bounds 0.0 0.0

interface,
system
analysis_driver = ’container’
parameters_file = ’container.in’
results_file = ’container.out’
file_tag

responses,
num_objective_functions = 1
num_nonlinear_equality_constraints = 1
numerical_gradients
method_source dakota
interval_type central
fd_gradient_step_size = 0.001

no_hessians

Figure 16.1: DAKOTA input file for the “container” example problem.
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A partial listing of the DAKOTA output for the container optimization example follows:

Running MPI executable in serial mode.
DAKOTA version 5.0 released 12/21/2009.
Subversion revision 5635M built Dec 18 2009 17:19:56.
Constructing Single Method Strategy...
Writing new restart file dakota.rst
methodName = npsol_sqp
gradientType = numerical
Numerical gradients using central differences
to be calculated by the dakota finite difference routine.
hessianType = none

>>>>> Running Single Method Strategy.

>>>>> Running npsol_sqp iterator.

NPSOL --- Version 5.0-2 Sept 1995
========================================

------------------------------------------
Begin Dakota derivative estimation routine
------------------------------------------

>>>>> Initial map for analytic portion of response:

------------------------------
Begin Function Evaluation 1
------------------------------
Parameters for function evaluation 1:

4.5000000000e+00 H
4.5000000000e+00 D

container container.in.1 container.out.1

Active response data for function evaluation 1:
Active set vector = { 1 1 }

1.0713145108e+02 obj_fn
8.0444076396e+00 nln_eq_con_1

>>>>> Dakota finite difference gradient evaluation for x[1] + h:

------------------------------
Begin Function Evaluation 2
------------------------------
Parameters for function evaluation 2:

4.5045000000e+00 H
4.5000000000e+00 D
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container container.in.2 container.out.2

Active response data for function evaluation 2:
Active set vector = { 1 1 }

1.0719761302e+02 obj_fn
8.1159770472e+00 nln_eq_con_1

>>>>> Dakota finite difference gradient evaluation for x[1] - h:

------------------------------
Begin Function Evaluation 3
------------------------------
Parameters for function evaluation 3:

4.4955000000e+00 H
4.5000000000e+00 D

container container.in.3 container.out.3

Active response data for function evaluation 3:
Active set vector = { 1 1 }

1.0706528914e+02 obj_fn
7.9728382320e+00 nln_eq_con_1

>>>>> Dakota finite difference gradient evaluation for x[2] + h:

------------------------------
Begin Function Evaluation 4
------------------------------
Parameters for function evaluation 4:

4.5000000000e+00 H
4.5045000000e+00 D

container container.in.4 container.out.4

Active response data for function evaluation 4:
Active set vector = { 1 1 }

1.0727959301e+02 obj_fn
8.1876180243e+00 nln_eq_con_1

>>>>> Dakota finite difference gradient evaluation for x[2] - h:

------------------------------
Begin Function Evaluation 5
------------------------------
Parameters for function evaluation 5:

4.5000000000e+00 H
4.4955000000e+00 D

container container.in.5 container.out.5

Active response data for function evaluation 5:
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Active set vector = { 1 1 }
1.0698339109e+02 obj_fn
7.9013403937e+00 nln_eq_con_1

>>>>> Total response returned to iterator:

Active set vector = { 3 3 } Deriv vars vector = { 1 2 }
1.0713145108e+02 obj_fn
8.0444076396e+00 nln_eq_con_1

[ 1.4702653619e+01 3.2911324639e+01 ] obj_fn gradient
[ 1.5904312809e+01 3.1808625618e+01 ] nln_eq_con_1 gradient

Majr Minr Step Fun Merit function Norm gZ Violtn nZ Penalty Conv
0 1 0.0E+00 1 9.90366719E+01 1.6E+00 8.0E+00 1 0.0E+00 F FF

<SNIP>

>>>>> Dakota finite difference gradient evaluation for x[2] - h:

------------------------------
Begin Function Evaluation 40
------------------------------
Parameters for function evaluation 40:

4.9873894231e+00 H
4.0230575428e+00 D

container container.in.40 container.out.40

Active response data for function evaluation 40:
Active set vector = { 1 1 }

9.8301287596e+01 obj_fn
-1.2698647501e-01 nln_eq_con_1

>>>>> Total response returned to iterator:

Active set vector = { 3 3 } Deriv vars vector = { 1 2 }
9.8432498116e+01 obj_fn
-9.6918029158e-12 nln_eq_con_1

[ 1.3157517860e+01 3.2590159623e+01 ] obj_fn gradient
[ 1.2737124497e+01 3.1548877601e+01 ] nln_eq_con_1 gradient

7 1 1.0E+00 8 9.84324981E+01 4.8E-11 9.7E-12 1 1.7E+02 T TT

Exit NPSOL - Optimal solution found.

Final nonlinear objective value = 98.43250

NPSOL exits with INFORM code = 0 (see "Interpretation of output" section in NPSOL manual)
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NOTE: see Fortran device 9 file (fort.9 or ftn09)
for complete NPSOL iteration history.

<<<<< Function evaluation summary: 40 total (40 new, 0 duplicate)
<<<<< Best parameters =

4.9873894231e+00 H
4.0270846274e+00 D

<<<<< Best objective function =
9.8432498116e+01

<<<<< Best constraint values =
-9.6918029158e-12

<<<<< Best data captured at function evaluation 36

<<<<< Iterator npsol_sqp completed.
<<<<< Single Method Strategy completed.
DAKOTA execution time in seconds:
Total CPU = 0.09 [parent = 0.082988, child = 0.007012]
Total wall clock = 0.34364

Exit graphics window to terminate DAKOTA.

The first block of lines provide a report on the DAKOTA configuration and settings. The lines that follow, down
to the line “Exit NPSOL - Optimal solution found”, contain information about the function eval-
uations that have been requested by NPSOL and performed by DAKOTA. Evaluations 6 through 39 have been
omitted from the listing for brevity.

Following the line “Begin Function Evaluation 1”, the initial values of the design variables, the syntax
of the function evaluation, and the resulting objective and constraint function values are listed. The values of the
design variables are labeled with the tags H and D, respectively, according to the descriptors to these variables
given in the input file, Figure 16.1. The values of the objective function and volume constraint are labeled with
the tags obj fn and nln eq con 1, respectively. Note that the initial design parameters are infeasible since
the equality constraint is violated (6= 0). However, by the end of the run, the optimizer finds a design that is
both feasible and optimal for this example. Between the design variables and response values, the content of
the system call to the simulator is displayed as “(container container.in.1 container.out.1)”,
with container being the name of the simulator and container.in.1 and container.out.1 being the
names of the parameters and results files, respectively.

Just preceding the output of the objective and constraint function values is the line “Active set vector =
{1 1}”. The active set vector indicates the types of data that are required from the simulator for the objective and
constraint functions, and values of “1” indicate that the simulator must return values for these functions (gradient
and Hessian data are not required). For more information on the active set vector, see Section 12.7.

Since finite difference gradients have been specified, DAKOTA computes their values by making additional func-
tion evaluation requests to the simulator at perturbed parameter values. Examples of the gradient-related func-
tion evaluations have been included in the sample output, beginning with the line that reads “>>>>> Dakota
finite difference evaluation for x[1] + h:”. The resulting finite difference gradients are listed
after function evaluation 5 beginning with the line “>>>>> Total response returned to iterator:”.
Here, another active set vector is displayed in the DAKOTA output file. The line “Active set vector =
{ 3 3 }” indicates that the total response resulting from the finite differencing contains function values and
gradients.

The final lines of the DAKOTA output, beginning with the line “<<<<< Function evaluation summary:”,
summarize the results of the optimization study. The best values of the optimization parameters, objective func-
tion, and volume constraint are presented along with the function evaluation number where they occurred, total
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%eval_id H D obj_fn nln_eq_con_1
1 4.5 4.5 107.1314511 8.04440764
2 5.801246882 3.596476363 94.33737399 -4.59103645
3 5.197920019 3.923577479 97.7797214 -0.6780884711
4 4.932877133 4.044776216 98.28930566 -0.1410680284
5 4.989328733 4.026133158 98.4270019 -0.005324671422
6 4.987494493 4.027041977 98.43249058 -7.307058453e-06
7 4.987391669 4.02708372 98.43249809 -2.032538049e-08
8 4.987389423 4.027084627 98.43249812 -9.691802916e-12

Figure 16.2: DAKOTA’s tabular output file showing the iteration history of the “container” optimization problem.

function evaluation counts, and a timing summary. In the end, the objective function has been minimized and the
equality constraint has been satisfied (driven to zero within the constraint tolerance).

The DAKOTA results are intermixed with iteration information from the NPSOL library. The lines with the
heading “Majr Minr Step Fun Merit function Norm gZ Violtn nZ Penalty Conv” come
from Fortran write statements within NPSOL. The output is mixed since both DAKOTA and NPSOL are writing
to the same standard output stream. The relative locations of these output contributions can vary depending on the
specifics of output buffering and flushing on a particular platform and depending on whether or not the standard
output is being redirected to a file. In some cases, output from the optimization library may appear on each
iteration (as in this example), and in other cases, it may appear at the end of the DAKOTA output. Finally, a more
detailed summary of the NPSOL iterations is written to the Fortran device 9 file (e.g., fort.9 or ftn09).

16.3 Tabular Output Data

DAKOTA has the capability to print the iteration history in tabular form to a file. The keyword
tabular graphics data needs to be included in the strategy specification (see Figure 16.1). The primary
intent of this capability is to facilitate the transfer of DAKOTA’s iteration history data to an external mathematical
analysis and/or graphics plotting package (e.g., MATLAB, TECplot, Excel, S-plus, Minitab). Any evaluations
from DAKOTA’s internal finite differencing are suppressed, which leads to better data visualizations. This sup-
pression of lower level data is consistent with the data that is sent to the graphics windows, as described in
Section 16.4. If this data suppression is undesirable, Section 20.2.3 describes an approach where every function
evaluation, even the ones from finite differencing, can be saved to a file in tabular format.

The default file name for the tabular output data is “dakota tabular.dat” and the output from the “con-
tainer” optimization problem is shown in Figure 16.2. This file contains the complete history of data requests
from NPSOL (8 requests map into a total of 40 function evaluations when including the central finite differenc-
ing). The first column is the data request number, the second and third columns are the design parameter values
(labeled in the example as “H” and “D”), the fourth column is the objective function (labeled “obj fn”), and the
fifth column is the nonlinear equality constraint (labeled “nln eq con 1”).

16.4 Graphics Output

Graphics capabilities are available for monitoring the progress of an iterative study. The graphics option is invoked
by adding the graphics flag in the strategy specification of the DAKOTA input file (see Figure 16.1). The

DAKOTA Version 5.0 User’s Manual generated on May 7, 2010



262 CHAPTER 16. OUTPUT FROM DAKOTA

Figure 16.3: DAKOTA 2D graphics for “container” problem showing history of an objective function, an equality
constraint, and two variables.

Figure 16.4: Options for DAKOTA 2D graphics.

graphics display the values of each response function (e.g., objective and constraint functions) and each parameter
for the function evaluations in the study. As for the tabular output described in Section 16.3, internal finite
difference evaluations are suppressed in order to omit this clutter from the graphics. Figure 16.3 shows the
optimization iteration history for the container example.

If DAKOTA is executed on a remote machine, the DISPLAY variable in the user’s UNIX environment [62] may
need to be set to the local machine in order to display the graphics window.

The scroll bars which are located on each graph below and to the right of each plot may be operated by dragging
on the bars or pressing the arrows, both of which result in expansion/contraction of the axis scale. Clicking on the
“Options” button results in the window shown in Figure 16.4, which allows the user to include min/max markers
on the vertical axis, vertical and horizontal axis labels, and a plot legend within the corresponding graphics plot.
In addition, the values of either or both axes may be plotted using a logarithmic scale (so long as all plot values
are greater than zero) and an encapsulated postscript (EPS) file, named dakota graphic i.eps where i is
the plot window number, can be created using the “Print” button.

In addition to these two-dimensional iteration history plots, three-dimensional surface plots can be generated
when using data fit surrogate models (see Section 11.4.1) in combination with the graphics keyword. This feature
is currently available only if there are two parameters in the problem (a mechanism for selecting a two parameter
subset of an n-dimensional problem is not currently available). When DAKOTA is executed, a 3-D surface plot
is automatically spawned (Figure 16.5 shows an example from optimization of the Rosenbrock problem). The
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creation of the 3-D surface plot pauses the advance of the iterative algorithm. To continue progress, click the right
mouse button or hit return while the mouse cursor is in the 3D graphics window.

The 3D graphics from the PLplot library have a dependency on external font files. If the 3D graphics fail with a
message similar to:

Cannot open library file: plstnd5.fnt
lib dir="<...some_path...>"

*** PLPLOT ERROR ***
Unable to open font file
Program aborted

then the solution is to locate the font files that came with your DAKOTA installation and set the $PLPLOT LIB
environment variable to point to them, e.g.:

setenv PLPLOT_LIB /home/<user_name>/Dakota/packages/plplot/data

16.5 Error Messages Output

A variety of error messages are printed by DAKOTA in the event that an error is detected in the input specification.
Some of the more common input errors, and the associated error messages, are described below. See also the
Common Specification Mistakes section in the DAKOTA Reference Manual [3].

Incorrectly spelled specifications, such as ‘‘numericl gradients’’, will result in error messages of the
form:

Parser detected syntax error: unrecognized identifier ’numericl_gradients’
within responses keyword.

Please refer to the dakota.input.txt distributed with this executable.

The input parser catches syntax errors, but not logic errors. The fact that certain input combinations are erroneous
must be detected after parsing, at object construction time. For example, if a no gradients specification for
a response data set is combined with selection of a gradient-based optimization method, then this error must be
detected during set-up of the optimizer (see last line of listing):

Running MPI executable in serial mode.
DAKOTA version 4.0 released 05/12/2006.
Writing new restart file dakota.rst
Constructing Single Method Strategy...
methodName = npsol_sqp
gradientType = none
hessianType = none

Error: gradient-based optimizers require a gradient specification.

Another common mistake involves a mismatch between the amount of data expected on a function evaluation and
the data returned by the user’s simulation code or driver. The available response data is specified in the responses
keyword block, and the subset of this data needed for a particular evaluation is managed by the active set vector.
For example, if DAKOTA expects function values and gradients to be returned (as indicated by an active set vector
containing 3’s), but the user’s simulation code only returns function values, then the following error message is
generated:
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Figure 16.5: An example of the 3-D surface plotting that is available for surrogate-based optimization with two
design parameters.
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At EOF: insufficient data for functionGradient 1

Unfortunately, descriptive error messages are not available for all possible failure modes of DAKOTA. If you
encounter core dumps, segmentation faults, or other failures, please request help preferrably from the dakota-
users@software.sandia.gov mailing list, or optionally from the DAKOTA developers, including the information
specified in the support FAQ.

16.6 Variables Output from Pre-run

The pre-run mode (supported only for select methods) permits specification of an output file containing parameter
data in columnar format, one column per variable. It contains a header row with variable labels and one row of
numerical values per evaluation / variables set. This file can be generated with sampling, parameter study, and
DACE methods by invoking

dakota -i dakota.in -pre_run ::variables.dat

for example, to output the variables (samples) in an LHS study.
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Chapter 17

Advanced Simulation Code Interfaces

17.1 Building an Interface to a Engineering Simulation Code

To interface an engineering simulation package to DAKOTA using one of the black-box interfaces (system call
or fork), pre- and post-processing functionality typically needs to be supplied (or developed) in order to transfer
the parameters from DAKOTA to the simulator input file and to extract the response values of interest from the
simulator’s output file for return to DAKOTA (see Figures 1.1 and 13.1). This is often managed through the use of
scripting languages, such as C-shell [7], Bourne shell [13], Perl [142], or Python [94]. While these are common
and convenient choices for simulation drivers/filters, it is important to recognize that any executable file can be
used. If the user prefers, the desired pre- and post-processing functionality may also be compiled or interpreted
from any number of programming languages (C, C++, F77, F95, JAVA, Basic, etc.).

In the Dakota/examples/script interfaces/generic directory, a simple example uses the Rosen-
brock test function as a mock engineering simulation code. Several scripts have been included to demonstrate
ways to accomplish the pre- and post-processing needs. Actual simulation codes will, of course, have different
pre- and post-processing requirements, and as such, this example serves only to demonstrate the issues associated
with interfacing a simulator. Modifications will almost surely be required for new applications.

17.1.1 Generic Script Interface Files

The generic directory contains four important files: dakota rosenbrock.in (the DAKOTA input file),
simulator script (the simulation driver script), dprepro (a pre-processing utility), and
templatedir/ros.template (a template simulation input file).

The dakota rosenbrock.in file specifies the study that DAKOTA will perform and, in the interface section,
describes the components to be used in performing function evaluations. In particular, it identifies
simulator script as its analysis driver, as shown in Figure 17.1.

The simulator script listed in Figure 17.2 is a short C-shell driver script that DAKOTA executes to perform
each function evaluation. The names of the parameters and results files are passed to the script on its command
line; they are referenced in the script by $argv[1] and $argv[2], respectively. The simulator script
is divided into three parts: pre-processing, analysis, and post-processing.

In the pre-processing portion, the simulator script uses dprepro, a parsing utility, to extract the current
variable values from a parameters file ($argv[1]) and combine them with the simulator template input file
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# DAKOTA INPUT FILE - dakota_rosenbrock.in
# This sample Dakota input file optimizes the Rosenbrock function.
# See p. 95 in Practical Optimization by Gill, Murray, and Wright.

method,
npsol_sqp

# if NPSOL is not available, comment the above and try the following instead:
## conmin_frcg

variables,
continuous_design = 2
cdv_initial_point -1.0 1.0
cdv_lower_bounds -2.0 -2.0
cdv_upper_bounds 2.0 2.0
cdv_descriptor ’x1’ ’x2’

interface,
system

# asynchronous
analysis_driver = ’simulator_script’
parameters_file = ’params.in’
results_file = ’results.out’
work_directory directory_tag
template_directory = ’templatedir’

# uncomment to leave params.in and results.out files in work_dir subdirectories
# named ’workdir’ file_save directory_save

aprepro
# when using conmin_frcg (above) with analytic_gradients (below),
# need to turn off the active set vector as rosenbrock_bb does not parse it.
## deactivate active_set_vector

responses,
num_objective_functions = 1
numerical_gradients
fd_gradient_step_size = .000001

# to instead use analytic gradients returned by the simulator comment the
# preceding two lines and uncomment the following:
## analytic_gradients

no_hessians

Figure 17.1: The dakota rosenbrock.in input file.
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#!/bin/csh -f
# Sample simulator to Dakota system call script
# See Advanced Simulation Code Interfaces chapter in Users Manual

# $argv[1] is params.in FROM Dakota
# $argv[2] is results.out returned to Dakota

# --------------
# PRE-PROCESSING
# --------------
# Incorporate the parameters from DAKOTA into the template, writing ros.in
# Use the following line if SNL’s APREPRO utility is used instead of DPrePro.
# ../aprepro -c ’*’ -q --nowarning ros.template ros.in

dprepro $argv[1] ros.template ros.in

# --------
# ANALYSIS
# --------

rosenbrock_bb

# ---------------
# POST-PROCESSING
# ---------------

# extract function value from the simulation output
grep ’Function value’ ros.out | cut -c 18- >! results.tmp
# extract gradients from the simulation output (in this case will be ignored
# by DAKOTA if not needed)
grep -i ’Function g’ ros.out | cut -c 21- >> results.tmp
mv results.tmp $argv[2]

Figure 17.2: The simulator script sample driver script.
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(ros.template) to create a new input file (ros.in) for the simulator. Internal to Sandia, the APREPRO
utility is often used for this purpose. For external sites where APREPRO is not available, the DPrePro utility
mentioned above is an alternative with many of the capabilities of APREPRO that is specifically tailored for use
with DAKOTA and is distributed with it (in
Dakota/examples/script interfaces/generic/dprepro, or Dakota/bin in a binary distribu-
tion). Additionally, the BPREPRO utility is another alternative to APREPRO (see [144]), and at Lockheed Martin
sites, the JPrePost utility is available as a JAVA pre- and post-processor [47]. The dprepro script partially listed
in Figure 17.3 will be used here for simplicity of discussion. It can use either DAKOTA’s aprepro parame-
ters file format (see Section 12.6.2) or DAKOTA’s standard format (see Section 12.6.1), so either option may be
selected in the interface section of the DAKOTA input file. The ros.template file listed in Figure 17.4 is a
template simulation input file which contains targets for the incoming variable values, identified by the strings
“{x1}” and “{x2}”. These identifiers match the variable descriptors specified in dakota rosenbrock.in.
The template input file is contrived as Rosenbrock has nothing to do with finite element analysis; it only mimics
a finite element code to demonstrate the simulator template process. The dprepro script will search the simu-
lator template input file for fields marked with curly brackets and then create a new file (ros.in) by replacing
these targets with the corresponding numerical values for the variables. As noted in the usage information for
dprepro and shown in simulator script, the names for the DAKOTA parameters file ($argv[1]), tem-
plate file (ros.template), and generated input file (ros.in) must be specified in the dprepro command
line arguments.

The second part of the script executes the rosenbrock bb simulator. The input and output file names, ros.in
and ros.out, respectively, are hard-coded into the FORTRAN 77 program rosenbrock bb.f. When the
rosenbrock bb simulator is executed, the values for x1 and x2 are read in from ros.in, the Rosenbrock
function is evaluated, and the function value is written out to ros.out.

The third part performs the post-processing and writes the response results to a file for DAKOTA to read. Using
the UNIX “grep” utility, the particular response values of interest are extracted from the raw simulator output
and saved to a temporary file (results.tmp). When complete, this file is renamed $argv[2], which in
this example is always “results.out”. Note that moving or renaming the completed results file avoids any
problems with read race conditions (see Section 18.2.1.2).

Because the DAKOTA input file dakota rosenbrock.in (Figure 17.1) specifies work directory and
directory tag in its interface section, each invocation of simulator script wakes up in its own tempo-
rary directory, which DAKOTA has populated with the contents of directory templatedir. Having a separate
directory for each invocation of simulator script simplifies the script when the DAKOTA input file speci-
fies asynchronous (so several instances of simulator script might run simultaneously), as fixed names
such as ros.in, ros.out, and results.tmp can be used for intermediate files. If neither asynchronous
nor file tag is specified, and if there is no need (e.g., for debugging) to retain intermediate files having fixed
names, then directory tag offers no benefit and can be omitted. An alternative to directory tag is to
proceed as earlier versions of this chapter — prior to DAKOTA 5.0’s introduction of work directory —
recommended: add two more steps to the simulator script, an initial one to create a temporary directory
explicitly and copy templatedir to it if needed, and a final step to remove the temporary directory and any
files in it.

When work directory is specified, DAKOTA adjusts the $PATH seen by simulator script so that
simple program names (i.e., names not containing a slash) that are visible in DAKOTA’s directory will also be
visible in the work directory. Relative path names — involving an intermediate slash but not an initial one,
such as ./rosenbrock bb or a/bc/rosenbrock bb — will only be visible in the work directory if a
template directory or template files specification (see §13.5.5) has made them visible there.

As an example of the data flow on a particular function evaluation, consider evaluation 60. The parameters file
for this evaluation consists of:
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#!/usr/bin/perl
#
# DPREPRO: A Perl pre-processor for manipulating input files with DAKOTA.
# ______________________________________________________________________
#
# Copyright (c) 2001, Sandia National Laboratories.
# This software is distributed with DAKOTA under the GNU GPL.
# For more information, see the README file in the top Dakota directory.
#
# Usage: dprepro parameters_file template_input_file new_input_file
#
# Reads the variable tags and values from the parameters_file and then
# replaces each appearance of "{tag}" in the template_input_file with
# its associated value in order to create the new_input_file. The
# parameters_file written by DAKOTA may either be in standard format
# (using "value tag" constructs) or in "aprepro" format (using
# "{ tag = value }" constructs), and the variable tags used inside
# template_input_file must match the variable descriptors specified in
# the DAKOTA input file. Supports assignments and numerical expressions
# in the template file, and the parameters file takes precedence in
# the case of duplicate assignments (so that template file assignments
# can be treated as defaults to be overridden).
# ______________________________________________________________________

# Check for correct number of command line arguments and store the filenames.
if( @ARGV != 3 ) {
print STDERR "Usage: dprepro parameters_file template_input_file ",
"new_input_file\n";

exit(-1);
}
$params_file = $ARGV[0]; # DAKOTA parameters file (aprepro or standard format)
$template_file = $ARGV[1]; # template simulation input file
$new_file = $ARGV[2]; # new simulation input file with insertions

# Regular expressions for numeric fields
$e = "-?(?:\\d+\\.?\\d*|\\.\\d+)[eEdD](?:\\+|-)?\\d+"; # exponential notation
$f = "-?\\d+\\.\\d*|-?\\.\\d+"; # floating point
$i = "-?\\d+"; # integer
$ui = "\\d+"; # unsigned integer
$n = "$e|$f|$i"; # numeric field

################################
# Process DAKOTA parameters file
################################

# Open parameters file for input.
open (DAKOTA_PARAMS, "<$params_file") || die "Can’t open $params_file: $!";

Figure 17.3: Partial listing of the dprepro script.

DAKOTA Version 5.0 User’s Manual generated on May 7, 2010



272 CHAPTER 17. ADVANCED SIMULATION CODE INTERFACES

Title of Model: Rosenbrock black box

***************************************************************************
* Description: This is an input file to the Rosenbrock black box

* Fortran simulator. This simulator is structured so

* as to resemble the input/output from an engineering

* simulation code, even though Rosenbrock’s function

* is a simple analytic function. The node, element,

* and material blocks are dummy inputs.

*
* Input: x1 and x2

* Output: objective function value

***************************************************************************
node 1 location 0.0 0.0
node 2 location 0.0 1.0
node 3 location 1.0 0.0
node 4 location 1.0 1.0
node 5 location 2.0 0.0
node 6 location 2.0 1.0
node 7 location 3.0 0.0
node 8 location 3.0 1.0
element 1 nodes 1 3 4 2
element 2 nodes 3 5 6 4
element 3 nodes 5 7 8 6
element 4 nodes 7 9 10 8
material 1 elements 1 2
material 2 elements 3 4
variable 1 {x1}
variable 2 {x2}
end

Figure 17.4: Listing of the ros.template file
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{ DAKOTA_VARS = 2 }
{ x1 = 1.638247697999295e-01 }
{ x2 = 2.197298209103481e-02 }
{ DAKOTA_FNS = 1 }
{ ASV_1 = 1 }
{ DAKOTA_DER_VARS = 2 }
{ DVV_1 = 1 }
{ DVV_2 = 2 }
{ DAKOTA_AN_COMPS = 0 }

This file is called workdir/workdir.60/params.in if the line

named ’workdir’ file_save directory_save

in Figure 17.1 is uncommented. The first portion of the file indicates that there are two variables, followed
by new values for variables x1 and x2, and one response function (an objective function), followed by an ac-
tive set vector (ASV) value of 1. The ASV indicates the need to return the value of the objective function
for these parameters (see Section 12.7). The dprepro script reads the variable values from this file, namely
1.638247697999295e-01 and 2.197298209103481e-02 for x1 and x2 respectively, and substitutes
them in the {x1} and {x2} fields of the ros.template file. The final three lines of the resulting input file
(ros.in) then appear as follows:

variable 1 1.638247697999295e-01
variable 2 2.197298209103481e-02
end

where all other lines are identical to the template file. The rosenbrock bb simulator accepts ros.in as its
input file and generates the following output to the file ros.out:

Beginning execution of model: Rosenbrock black box
Set up complete.
Reading nodes.
Reading elements.
Reading materials.
Checking connectivity...OK

*****************************************************

Input value for x1 = 0.1638247697999295E+00
Input value for x2 = 0.2197298209103481E-01

Computing solution...Done

*****************************************************
Function value = 0.7015563957680092E+00
Function gradient = [ -0.1353509902591768E+01 -0.9731146217930163E+00 ]

Next, the appropriate values are extracted from the raw simulator output and returned in the results file. This
post-processing is relatively trivial in this case, and the simulator script uses the grep and cut utilities
to extract the value from the “Function value” line of the ros.out output file and save it to $argv[2],
which is the results.out file for this evaluation. This single value provides the objective function value
requested by the ASV.

After 132 of these function evaluations, the following DAKOTA output shows the final solution using the
rosenbrock bb simulator:
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Exit NPSOL - Optimal solution found.

Final nonlinear objective value = 0.1165704E-06

NPSOL exits with INFORM code = 0 (see "Interpretation of output" section in NPSOL manual)

NOTE: see Fortran device 9 file (fort.9 or ftn09)
for complete NPSOL iteration history.

<<<<< Iterator npsol_sqp completed.
<<<<< Function evaluation summary: 132 total (132 new, 0 duplicate)
<<<<< Best parameters =

9.9965861667e-01 x1
9.9931682203e-01 x2

<<<<< Best objective function =
1.1657044253e-07

<<<<< Best data captured at function evaluation 130

<<<<< Iterator npsol_sqp completed.
<<<<< Single Method Strategy completed.
DAKOTA execution time in seconds:
Total CPU = 0.12 [parent = 0.116982, child = 0.003018]
Total wall clock = 1.47497

17.1.2 Adapting These Scripts to Another Simulation

To adapt this approach for use with another simulator, several steps need to be performed:

1. Create a template simulation input file by identifying the fields in an existing input file that correspond to
the variables of interest and then replacing them with {} identifiers (e.g. {cdv 1}, {cdv 2}, etc.) which
match the DAKOTA variable descriptors. Copy this template input file to a templatedir that will be used to
create working directories for the simulation.

2. Modify the dprepro arguments in simulator script to reflect names of the DAKOTA parameters
file (previously “$argv[1]”), template file name (previously “ros.template”) and generated input
file (previously “ros.in”). Alternatively, use APREPRO, BPREPRO, or JPrePost to perform this step
(and adapt the syntax accordingly).

3. Modify the analysis section of simulator script to replace the rosenbrock bb function call with
the new simulator name and command line syntax (typically including the input and output file names).

4. Change the post-processing section in simulator script to reflect the revised extraction process. At a
minimum, this would involve changing the grep command to reflect the name of the output file, the string
to search for, and the characters to cut out of the captured output line. For more involved post-processing
tasks, invocation of additional tools may have to be added to the script.

5. Modify the dakota rosenbrock.in input file to reflect, at a minimum, updated variables and re-
sponses specifications.

These nonintrusive interfacing approaches can be used to rapidly interface with simulation codes. While generally
custom for each new application, typical interface development time is on the order of an hour or two. Thus, this

DAKOTA Version 5.0 User’s Manual generated on May 7, 2010



17.2. DEVELOPING A DIRECT SIMULATION INTERFACE 275

approach is scalable when dealing with many different application codes. Weaknesses of this approach include
the potential for loss of data precision (if care is not taken to preserve precision in pre- and post-processing file
I/O), a lack of robustness in post-processing (if the data capture is too simplistic), and scripting overhead (only
noticeable if the simulation time is on the order of a second or less).

If the application scope at a particular site is more focused and only a small number of simulation codes are of
interest, then more sophisticated interfaces may be warranted. For example, the economy of scale afforded by a
common simulation framework justifies additional effort in the development of a high quality DAKOTA interface.
In these cases, more sophisticated interfacing approaches could involve a more thoroughly developed black box
interface with robust support of a variety of inputs and outputs, or it might involve intrusive interfaces such as the
direct simulation interface discussed below in Section 17.2 or the SAND interface described in Section 1.3.

17.1.3 Additional Examples

A variety of additional examples of black-box interfaces to simulation codes are maintained in the
Dakota/examples/script interfaces directory in the source code distribution.

17.2 Developing a Direct Simulation Interface

If a more efficient interface to a simulation is desired (e.g., to eliminate process creation and file I/O overhead) or
if a targeted computer architecture cannot accommodate separate optimization and simulation processes (e.g., due
to lightweight operating systems on compute nodes of large parallel computers), then linking a simulation code
directly with DAKOTA may be desirable. This is an advanced capability of DAKOTA, and it requires a user to
have access to (and knowledge of) the DAKOTA source code, as well as the source code of the simulation code.

Three approaches are outlined below for developing direct linking between DAKOTA and a simulation: extension,
derivation, and sandwich. For additional information, refer to “Interfacing with DAKOTA as a Library” in the
DAKOTA Developers Manual [4].

Once performed, DAKOTA can bind with the new direct simulation interface using the direct interface speci-
fication in combination with an analysis driver, input filter or output filter specification that
corresponds to the name of the new subroutine.

17.2.1 Extension

The first approach to using the direct function capability with a new simulation (or new internal test function)
involves extension of the existing DirectFnApplicInterface class to include new simulation member functions.
In this case, the following steps are performed:

1. The functions to be invoked (analysis programs, input and output filters, internal testers) must have their
main programs changed into callable functions/subroutines.

2. The resulting callable function can then be added directly to the private member functions in DirectFnAp-
plicInterface if this function will directly access the DAKOTA data structures (variables, active set, and
response attributes of the class). It is more common to add a wrapper function to DirectFnApplicInter-
face which manages the DAKOTA data structures, but allows the simulator subroutine to retain a level of
independence from DAKOTA (see Salinas, ModelCenter, and Matlab wrappers as examples).
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3. The if-else blocks in the derived map if(), derived map ac(), and derived map of() member functions
of the DirectFnApplicInterface class must be extended to include the new function names as options. If
the new functions are class member functions, then DAKOTA data access may be performed through the
existing class member attributes and data objects do not need to be passed through the function parameter
list. In this case, the following function prototype is appropriate:

int function_name();

If, however, the new function names are not members of the DirectFnApplicInterface class, then an
extern declaration may additionally be needed and the function prototype should include passing of
the Variables, ActiveSet, and Response data members:

int function_name(const Dakota::Variables& vars,
const Dakota::ActiveSet& set, Dakota::Response& response);

4. The DAKOTA system must be recompiled and linked with the new function object files or libraries.

Various header files may have to be included, particularly within the DirectFnApplicInterface class, in order to
recognize new external functions and compile successfully. Refer to the DAKOTA Developers Manual [4] for
additional information on the DirectFnApplicInterface class and the DAKOTA data types.

17.2.2 Derivation

As described in “Interfacing with DAKOTA as a Library” in the DAKOTA Developers Manual [4], a derivation ap-
proach can be employed to further increase the level of independence between DAKOTA and the host application.
In this case, rather than adding a new function to the existing DirectFnApplicInterface class, a new interface
class is derived from DirectFnApplicInterface which redefines the derived map if(), derived map ac(), and
derived map of() virtual functions.

In the approach of Section 17.2.3 below, the class derivation approach avoids the need to recompile the DAKOTA
library when the simulation or its direct interface class is modified.

17.2.3 Sandwich

In a “sandwich” implementation, a simulator provides both the “front end” and “back end” with DAKOTA sand-
wiched in the middle. To accomplish this approach, the simulation code is responsible for interacting with the user
(the front end), links DAKOTA in as a library (refer to “Interfacing with DAKOTA as a Library” in the DAKOTA
Developers Manual [4]), and plugs in a derived direct interface class to provide a closely-coupled mechanism for
performing function evaluations (the back end). This approach makes DAKOTA services available to other codes
and frameworks and is currently used by Sandia codes such as Xyce (electrical simulation), Sage (CFD), and
SIERRA (multiphysics).

17.3 Existing Direct Interfaces to External Simulators

In addition to built-in polynomial test functions described in Section 13.3.1, DAKOTA includes direct interfaces
to Sandia’s Salinas code for structural dynamics, Phoenix Integration’s ModelCenter framework, and The Math-
works’ Matlab scientific computing environment.
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17.3.1 Matlab

DAKOTA’s direct function interface includes the capability to invoke Matlab for function evaluations, using the
Matlab engine API. When using this close-coupling, the Matlab engine is started once when DAKOTA initializes,
and then during analysis function evaluations are performed exchanging parameters and results through the Matlab
C API. This eliminates the need to use the file system and the expense of initializing the Matlab engine for each
function evaluation.

To use the DAKOTA/Matlab interface, DAKOTA must be configured and compiled with the Matlab feature en-
abled; see the INSTALL file included with the DAKOTA distribution for more information. The DAKOTA/Matlab
interface has been built and tested on 32-bit Linux with Matlab 7.0 (R14) and on 64-bit Linux with Matlab 7.1
(R14SP3). Configuration support for Solaris is included, but is untested. Builds on other platforms or with other
versions of Matlab may require modifications to the DAKOTA build system as described in INSTALL.

Since the Matlab libraries are linked dynamically, they must be accessible at run time. Before running a DAKOTA
binary that includes Matlab support, make sure the path to the Matlab shared object libraries is included in your
LD LIBRARY PATH environment variable. For example to accomplish this in BASH on 32-bit Linux, one might
type

export LD_LIBRARY_PATH=/usr/local/matlab/bin/glnx86:$LD_LIBRARY_PATH

or add such a command to the .bashrc file.

Example files corresponding to the following tutorial are available in
Dakota/examples/linked interfaces/Matlab.

17.3.1.1 DAKOTA/Matlab input file specification

The use of the Matlab direct interface is specified through the combination of the direct and analysis driver
keywords in an interface specification. The Matlab m-file which performs the analysis is specified through the
analysis components keyword. Here is a sample DAKOTA interface specification:

interface,
direct
analysis_driver = ’matlab’
analysis_components = ’myanalysis.m’

Multiple Matlab analysis drivers are supported and may be specified in combination with other direct analysis
drivers. Multiple analysis components are supported as for other interfaces as described in Section 13.4. The
.m extension in the analysis component specification is optional; in fact any characters following the first
period in the analysis component specification will be stripped off by the interface, so myanalysis,
myanalysis.m, and myanalysis.fun.m will all cause the interface to attempt to execute a Matlab script
called myanalysis.m for the function evaluation.

17.3.1.2 Matlab .m file specification

The Matlab analysis file myanalysis.m must define a Matlab function that accepts a Matlab structure as its
sole argument and returns the same structure in a variable called Dakota. A manual execution of the call to the
analysis in Matlab should therefore look like:

>> Dakota = myanalysis(Dakota)
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Dakota.
numFns number of functions (responses, constraints)
numVars total number of variables
numACV number active continuous variables
numADV number active discrete variables
numDerivVars number of derivative variables specified in directFnDVV
xC continuous variable values ([1 x numACV])
xD discrete variable values ([1 x numADV])
xCLabels continuous variable labels (cell array of numACV strings)
xDLabels discrete variable labels (cell array of numADV strings)
directFnASV active set vector ([1 x numFns])
directFnASM active set matrix ([3 x numFns]) -- see below
directFnDVV derivative variables vector ([1 x numDerivVars])
directFnDVV_bool boolean DVV ([1 x numVars]) -- see below
fnFlag nonzero if function values requested
gradFlag nonzero if gradients requested
hessFlag nonzero if hessians requested

Figure 17.5: DAKOTA/Matlab parameter data structure.

Note that the structure named Dakota will be pushed into the Matlab workspace before the analysis function is
called. The structure passed from DAKOTA to the analysis m-function contains essentially the same information
that would be passed to a DAKOTA direct function included in DirectFnApplicInterface.C, with fields
shown in Figure 17.5.

The directFnASM field is a boolean matrix version of the active set vector, designed to make it easier for
the Matlab user to determine which responses Dakota requires. Its rows 1, 2, and 3 correspond to functions,
gradients, and Hessians, respectively, and its columns to each function (response, constraint) from 1–numFns.
A directFnASM matrix entry contains a 1 if the response is needed for that function and a 0 otherwise. For
example, for the fictitious

directFnASV = [ 1, 2, 3, 4, 5, 6, 7 ],

the corresponding

directFnASM = [ 1, 0, 1, 0, 1, 0, 1 (functions)
0, 1, 1, 0, 0, 1, 1 (gradients)
0, 0 ,0 ,1, 1, 1, 1 ] (hessians).

The directFnDVV bool field is a similar boolean structure for the directFnDVV. It is a [1 x numVars]
vector with entry 1 if a derivative with respect to that variable is requested and a 0 otherwise. So for an example
with 6 functions if

directFnDVV = [ 1, 3, 4, 6 ],

the corresponding

directFnDVV_bool = [ 1, 0, 1, 1, 0, 1 ].

The structure Dakota returned from the analysis must contain a subset of the fields shown in Figure 17.6. It
may contain additional fields and in fact is permitted to be the structure passed in, augmented with any required
outputs.
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Dakota.
fnVals ([1 x numFns], required if function values requested)
fnGrads ([numFns x numDerivVars], required if gradients requested)
fnHessians ([numFns x numDerivVars x numDerivVars],

required if hessians requested)
fnLabels (cell array of numFns strings, optional)
failure (optional: zero indicates success, nonzero failure

Figure 17.6: DAKOTA/Matlab response data structure.

An example Matlab analysis driver rosenbrock.m for the Rosenbrock function is shown in Figure 17.7.
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function Dakota = rosenbrock(Dakota)

Dakota.failure = 0;

if ( Dakota.numVars ˜= 2 | Dakota.numADV | ...
( ˜isempty( find(Dakota.directFnASM(2,:)) | ...
find(Dakota.directFnASM(3,:)) ) & Dakota.numDerivVars ˜= 2 ) )

sprintf(’Error: Bad number of variables in rosenbrock.m fn.\n’);
Dakota.failure = 1;

elseif (Dakota.numFns > 2)

% 1 fn -> opt, 2 fns -> least sq
sprintf(’Error: Bad number of functions in rosenbrock.m fn.\n’);
Dakota.failure = 1;

else

if Dakota.numFns > 1
least_sq_flag = true;

else
least_sq_flag = false;

end

f0 = Dakota.xC(2)-Dakota.xC(1)*Dakota.xC(1);
f1 = 1.-Dakota.xC(1);

% **** f:
if (least_sq_flag)
if Dakota.directFnASM(1,1)
Dakota.fnVals(1) = 10*f0;

end
if Dakota.directFnASM(1,2)
Dakota.fnVals(2) = f1;

end
else
if Dakota.directFnASM(1,1)
Dakota.fnVals(1) = 100.*f0*f0+f1*f1;

end
end

% **** df/dx:
if (least_sq_flag)
if Dakota.directFnASM(2,1)
Dakota.fnGrads(1,1) = -20.*Dakota.xC(1);
Dakota.fnGrads(1,2) = 10.;

end
if Dakota.directFnASM(2,2)
Dakota.fnGrads(2,1) = -1.;
Dakota.fnGrads(2,2) = 0.;

end

else

if Dakota.directFnASM(2,1)
Dakota.fnGrads(1,1) = -400.*f0*Dakota.xC(1) - 2.*f1;
Dakota.fnGrads(1,2) = 200.*f0;

end

end

% **** dˆ2f/dxˆ2:
if (least_sq_flag)

if Dakota.directFnASM(3,1)
Dakota.fnHessians(1,1,1) = -20.;
Dakota.fnHessians(1,1,2) = 0.;
Dakota.fnHessians(1,2,1) = 0.;
Dakota.fnHessians(1,2,2) = 0.;

end
if Dakota.directFnASM(3,2)
Dakota.fnHessians(2,1:2,1:2) = 0.;

end

else

if Dakota.directFnASM(3,1)
fx = Dakota.xC(2) - 3.*Dakota.xC(1)*Dakota.xC(1);
Dakota.fnHessians(1,1,1) = -400.*fx + 2.0;
Dakota.fnHessians(1,1,2) = -400.*Dakota.xC(1);
Dakota.fnHessians(1,2,1) = -400.*Dakota.xC(1);
Dakota.fnHessians(1,2,2) = 200.;

end

end

Dakota.fnLabels = {’f1’};

end

Figure 17.7: Sample Matlab implementation of the Rosenbrock test function for the DAKOTA/Matlab interface.
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Chapter 18

Parallel Computing

18.1 Overview

This chapter describes the various parallel computing capabilities provided by DAKOTA. The range of capabilities
is extensive and can be daunting at first; therefore, this chapter takes an incremental approach in first describing
the simplest single-level parallel computing models (Section 18.2) using asynchronous local, message passing,
and hybrid approaches. More advanced uses of DAKOTA can build on this foundation to exploit multiple levels
of parallelism, as described in Section 18.3. The chapter concludes with a discussion of using DAKOTA with
applications that run as independent MPI processes (parallel application tiling, for example on a large compute
cluster). This last section is a good quick start for interfacing DAKOTA to your parallel (or serial) application on
a cluster.

18.1.1 Categorization of parallelism

To understand the parallel computing possibilities, it is instructive to first categorize the opportunities for exploit-
ing parallelism into four main areas [39], consisting of coarse-grained and fine-grained parallelism opportunities
within algorithms and their function evaluations:

1. Algorithmic coarse-grained parallelism: This parallelism involves the concurrent execution of independent
function evaluations, where a “function evaluation” is defined as a data request from an algorithm (which
may involve value, gradient, and Hessian data from multiple objective and constraint functions). This con-
cept can also be extended to the concurrent execution of multiple “iterators” within a “strategy.” Examples
of algorithms containing coarse-grained parallelism include:

• Gradient-based algorithms: finite difference gradient evaluations, speculative optimization, parallel
line search.

• Nongradient-based algorithms: genetic algorithms (GAs), pattern search (PS), Monte Carlo sampling.

• Approximate methods: design of computer experiments for building surrogate models.

• Concurrent-iterator strategies: optimization under uncertainty, branch and bound, multi-start local
search, Pareto set optimization, island-model GAs.
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2. Algorithmic fine-grained parallelism: This involves computing the basic computational steps of an opti-
mization algorithm (i.e., the internal linear algebra) in parallel. This is primarily of interest in large-scale
optimization problems and simultaneous analysis and design (SAND).

3. Function evaluation coarse-grained parallelism: This involves concurrent computation of separable parts
of a single function evaluation. This parallelism can be exploited when the evaluation of the response data
set requires multiple independent simulations (e.g. multiple loading cases or operational environments) or
multiple dependent analyses where the coupling is applied at the optimizer level (e.g., multiple disciplines
in the individual discipline feasible formulation [25]).

4. Function evaluation fine-grained parallelism: This involves parallelization of the solution steps within a
single analysis code. The DOE laboratories have developed parallel analysis codes in the areas of nonlinear
mechanics, structural dynamics, heat transfer, computational fluid dynamics, shock physics, and many
others.

By definition, coarse-grained parallelism requires very little inter-processor communication and is therefore “em-
barrassingly parallel,” meaning that there is little loss in parallel efficiency due to communication as the number
of processors increases. However, it is often the case that there are not enough separable computations on each
algorithm cycle to utilize the thousands of processors available on MP machines. For example, a thermal safety
application [40] demonstrated this limitation with a pattern search optimization in which the maximum speedup
exploiting only coarse-grained algorithmic parallelism was shown to be limited by the size of the design problem
(coordinate pattern search has at most 2n independent evaluations per cycle for n design variables).

Fine-grained parallelism, on the other hand, involves much more communication among processors and care must
be taken to avoid the case of inefficient machine utilization in which the communication demands among proces-
sors outstrip the amount of actual computational work to be performed. For example, a chemically-reacting flow
application [39] illustrated this limitation for a simulation of fixed size in which it was shown that, while simu-
lation run time did monotonically decrease with increasing number of processors, the relative parallel efficiency
Ê of the computation for fixed model size decreased rapidly (from Ê ≈ 0.8 at 64 processors to Ê ≈ 0.4 at 512
processors). This was due to the fact that the total amount of computation was approximately fixed, whereas the
communication demands were increasing rapidly with increasing numbers of processors. Therefore, there is a
practical limit on the number of processors that can be employed for fine-grained parallel simulation of a partic-
ular model size, and only for extreme model sizes can thousands of processors be efficiently utilized in studies
exploiting fine-grained parallelism alone.

These limitations point us to the exploitation of multiple levels of parallelism, in particular the combination
of coarse-grained and fine-grained approaches. This will allow us to execute fine-grained parallel simulations
on sets of processors where they are most efficient and then replicate this efficiency with many coarse-grained
instances. From a software perspective, coarse-grained parallelism by itself (many instances of a single-processor
simulation) and fine-grained parallelism by itself (a single instance of a large multiprocessor simulation) can be
considered to cover two ends of a spectrum, and we are interested in also supporting anywhere in between (any
number of instances of any size simulation). Single-level parallelism approaches are described in Section 18.2,
and multilevel parallelism approaches are discussed in Section 18.3.

The available concurrency in function evaluation parallelism is determined by the aspects of a particular systems
analysis application, and is therefore highly application-dependent. Algorithmic parallelism, on the other hand,
is largely determined by the selection and configuration of a particular algorithm. These selection possibilities
within DAKOTA are outlined in the following section.
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18.1.2 Parallel DAKOTA algorithms

In DAKOTA Version 4.2, the following parallel algorithms, comprised of iterators and strategies, provide sup-
port for coarse-grained algorithmic parallelism. Note that, even if a particular algorithm is serial in terms of its
data request concurrency, other concurrency sources (e.g., function evaluation coarse-grained and fine-grained
parallelism) may still be available.

18.1.2.1 Parallel iterators

• Gradient-based optimizers: CONMIN, DOT, NLPQL, NPSOL, and OPT++ can all exploit parallelism
through the use of DAKOTA’s native finite differencing routine (selected with method source dakota
in the responses specification), which will perform concurrent evaluations for each of the parameter offsets.
For n variables, forward differences result in an n+1 concurrency and central differences result in a 2n+1
concurrency. In addition, CONMIN, DOT, and OPT++ can use speculative gradient techniques [17] to
obtain better parallel load balancing. By speculating that the gradient information associated with a given
line search point will be used later and computing the gradient information in parallel at the same time as
the function values, the concurrency during the gradient evaluation and line search phases can be balanced.
NPSOL does not use speculative gradients since this approach is superseded by NPSOL’s gradient-based
line search in user-supplied derivative mode. NLPQL also supports a distributed line search capability for
generating concurrency [122].

• Nongradient-based optimizers: APPSPACK, JEGA methods, and most COLINY methods support paral-
lelism. APPSPACK and COLINY methods exploit parallelism through the use of DAKOTA’s concurrent
function evaluations; however, there are some limitations on the levels of concurrency and asynchrony that
can be exploited. These are detailed in the DAKOTA Reference Manual. Serial COLINY methods include
Solis-Wets (coliny solis wets) and certain exploratory moves options (adaptive pattern
and multi step) in pattern search (coliny pattern search). OPT++ PDS (optpp pds) and
NCSU DIRECT (ncsu direct) are also currently serial due to incompatibilities in DAKOTA and OPT++/NCSU
parallelism models. Finally, coliny pattern search and asynch pattern search support dy-
namic job queues managed with nonblocking synchronization.

• Least squares methods: in an identical manner to the gradient-based optimizers, NL2SOL, NLSSOL, and
Gauss-Newton can exploit parallelism through the use of DAKOTA’s native finite differencing routine. In
addition, NL2SOL and Gauss-Newton can use speculative gradient techniques to obtain better parallel load
balancing. NLSSOL does not use speculative gradients since this approach is superseded by NLSSOL’s
gradient-based line search in user-supplied derivative mode.

• Surrogate-based minimizers: surrogate based local, surrogate based global, and efficient global
all support parallelism in the initial surrogate construction, but subsequent concurrency varies. In the case
of efficient global, only a single point is generated for evaluation for each subsequent cycle and
there is no derivatove concurrency for this point. In the case of surrogate based local, only a sin-
gle point is generated per subsequent cycle, but derivative concurrency for numerical gradient or Hessian
evaluations may be available. And in the case of surrogate based global, multiple points may be
generated on each subsequent cycle, depending on the multipoint return capability of specific minimizers.

• Parameter studies: all parameter study methods (vector, list, centered, and multidim) support
parallelism. These methods avoid internal synchronization points, so all evaluations are available for con-
current execution.

• Design of experiments: all dace (grid, random, oas, lhs, oa lhs, box behnken, and central composite),
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fsu quasi mc (halton and hammersley), fsu cvt, and psuade moat methods support paral-
lelism.

• Uncertainty quantification: all nondeterministic methods (nond sampling, nond local reliability,
nond global reliability, nond polynomial chaos, nond stoch collocation,nond local interval est,
nond global interval est,nond local evidence and nond global evidence) support par-
allelism. In the case of nond local reliability, gradient-based optimization is involved and par-
allelism can be exploited through the use of DAKOTA’s native finite differencing routine. In the case of
nond global reliability, EGRA methods support parallelism in the initial surrogate construction,
but subsequently only generate a single point for evaluation per cycle.

18.1.2.2 Parallel strategies

Certain strategies support concurrency in multiple iterator executions. Currently, the strategies which can exploit
this level of parallelism are:

• Hybrid minimization: when the sequential hybrid transfers multiple solution points between methods,
single-point minimizers will be executed concurrently using each of the transferred solution points.

• Branch and bound: optimization strategy for mixed-integer nonlinear programming with noncategorical
discrete variables.

• Pareto-set optimization: multiobjective optimization strategy for computing sets of points on the Pareto
front of nondominated solutions.

• Multi-start iteration: strategy for executing multiple instances of an iterator from different starting points.

In the branch and bound case, the available iterator concurrency grows as the tree develops more branches, so some
of the iterator servers may be idle in the initial phases. Similarly, hybrid minimization will display varying levels
of iterator concurrency based on differing support of multipoint solution input/output between iterators; however,
the use of multiple parallel configurations among the iterator sequence should prevent parallel inefficiencies.
Finally, pareto-set and multi-start have a fixed set of jobs to perform and should exhibit good load balancing.

18.1.2.3 Parallel models

Parallelism support in model classes (see Chapter 11) is an important issue for variable scaling (see Section 7.3.2)
and advanced model recursions such as surrogate-based minimization, optimization under uncertainty, and second-
order probability (see Chapter 9 and Section 11.6). Support is as follows:

• Single model: parallelism is managed by the singe interface instance.

• Recast model: most parallelism is forwarded on to the sub-model. An exception to this is finite differencing
in the presence of variable scaling. Since it is desirable to perform offsets in the scaled space (and avoid
minimum step size tolerances), this parallelism is not forwarded to the sub-model, instead being enacted at
the recast level.

• Data fit surrogate model: parallelism is supported in the construction of global surrogate models via the
concurrent evaluation of points generated by design of experiments methods. Local and multipoint ap-
proximations evaluate only a single point at a time, so concurrency is available only from any numerical
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differencing required for gradient and Hessian data. Since the top-level iterator is interfaced only with the
(inexpensive) surrogate, no parallelism is exploited here. Load balancing can be an important issue when
performing evaluations for update of existing surrogate models.

• Hierarchical surrogate model: parallelism is supported for both the low and high fidelity models. Since the
top-level iterator is interfaced only with the low-fidelity model, and the high-fidelity model is used only for
verifications and correction updating, the algorithmic coarse-grained parallelism supported by the iterator
is enacted on the low fidelity model and the only parallelism available for high fidelity executions arises
from any numerical differencing required for high-fidelity gradient and Hessian data.

• Nested model: Currently, nested models only support concurrency in the sub-iterator execution on the
sub-model. This means that the top-level iterator interfaced with the nested model is serialized. In future
releases, concurrency will be supported at this top level, allowing techniques such as optimization under
uncertainty and second-order probability (see Section 11.5) to support concurrent iterator parallelism.

18.2 Single-level parallelism

DAKOTA’s parallel facilities support a broad range of computing hardware, from custom massively parallel su-
percomputers on the high end, to clusters and networks of workstations (NOWs) in the middle range, to desktop
multiprocessors on the low end. Given the reduced scale in the middle to low ranges, it is more common to ex-
ploit only one of the levels of parallelism; however, this can still be quite effective in reducing the time to obtain
a solution. Three single-level parallelism models will be discussed, and are depicted in Figure 18.1:

• asynchronous local: DAKOTA executes on a single processor, but launches multiple jobs concurrently
using asynchronous job launching techniques.

• message passing: DAKOTA executes in parallel using message passing to communicate between proces-
sors. A single job is launched per processor using synchronous job launching techniques.

• hybrid: a combination of message passing and asynchronous local. DAKOTA executes in parallel across
multiple processors and launches concurrent jobs on each processor.

Figure 18.1: External, internal, and hybrid
job management.

In each of these cases, jobs are executing concurrently and must be
collected in some manner for return to an algorithm. Blocking and
nonblocking approaches are provided for this, where the blocking
approach is used in most cases:

• blocking synchronization: all jobs in the queue are completed
before exiting the scheduler and returning the set of results
to the algorithm. The job queue fills and then empties com-
pletely, which provides a synchronization point for the algo-
rithm.

• nonblocking synchronization: the job queue is dynamic,
with jobs entering and leaving continuously. There
are no defined synchronization points for the algo-
rithm, which requires specialized algorithm logic (only
currently supported by coliny pattern search and
asynch pattern search, which are sometimes referred
to as “fully asynchronous” algorithms).
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Given these job management capabilities, it is worth noting that the
popular term “asynchronous” can be ambiguous when used in isola-
tion. In particular, it can be important to qualify whether one is re-
ferring to “asynchronous job launch” (synonymous with any of the
three concurrent job launch approaches described above) or “asyn-
chronous job recovery” (synonymous with the latter nonblocking job
synchronization approach).

18.2.1 Asynchronous Local Parallelism

This section describes software components which manage simulation invocations local to a processor. These
invocations may be either synchronous (i.e., blocking) or asynchronous (i.e., nonblocking). Synchronous evalu-
ations proceed one at a time with the evaluation running to completion before control is returned to DAKOTA.
Asynchronous evaluations are initiated such that control is returned to DAKOTA immediately, prior to evaluation
completion, thereby allowing the initiation of additional evaluations which will execute concurrently.

The synchronous local invocation capabilities are used in two contexts: (1) by themselves to provide serial ex-
ecution on a single processor, and (2) in combination with DAKOTA’s message-passing schedulers to provide
function evaluations local to each processor. Similarly, the asynchronous local invocation capabilities are used
in two contexts: (1) by themselves to launch concurrent jobs from a single processor that rely on external means
(e.g., operating system, job queues) for assignment to other processors, and (2) in combination with DAKOTA’s
message-passing schedulers to provide a hybrid parallelism (see Section 18.2.3). Thus, DAKOTA supports any of
the four combinations of synchronous or asynchronous local combined with message passing or without.

Asynchronous local schedulers may be used for managing concurrent function evaluations requested by an iterator
or for managing concurrent analyses within each function evaluation. The former iterator/evaluation concurrency
supports either blocking (all jobs in the queue must be completed by the scheduler) or nonblocking (dynamic
job queue may shrink or expand) synchronization, where blocking synchronization is used by most iterators and
nonblocking synchronization is used by fully asynchronous algorithms such as asynch pattern search and
coliny pattern search. The latter evaluation/analysis concurrency is restricted to blocking synchroniza-
tion. The “Asynchronous Local” column in Table 18.1 summarizes these capabilities.

DAKOTA supports three local simulation invocation approaches based on the direct function, system call, and
fork simulation interfaces. For each of these cases, an input filter, one or more analysis drivers, and an output
filter make up the interface, as described in Section 13.4.

18.2.1.1 Direct function synchronization

The direct function capability may be used synchronously. Synchronous operation of the direct function simu-
lation interface involves a standard procedure call to the input filter, if present, followed by calls to one or more
simulations, followed by a call to the output filter, if present (refer to Sections 13.3-13.4 for additional details and
examples). Each of these components must be linked as functions within DAKOTA. Control does not return to
the calling code until the evaluation is completed and the response object has been populated.

Asynchronous operation will be supported in the future and will involve the use of multithreading (e.g., POSIX
threads) to accomplish multiple simultaneous simulations. When spawning a thread (e.g., using pthread create),
control returns to the calling code after the simulation is initiated. In this way, multiple threads can be created
simultaneously. An array of responses corresponding to the multiple threads of execution would then be recovered
in a synchronize operation (e.g., using pthread join).

DAKOTA Version 5.0 User’s Manual generated on May 7, 2010



18.2. SINGLE-LEVEL PARALLELISM 287

18.2.1.2 System call synchronization

The system call capability may be used synchronously or asynchronously. In both cases, the system utility from
the standard C library is used. Synchronous operation of the system call simulation interface involves spawning
the system call (containing the filters and analysis drivers bound together with parentheses and semi-colons) in
the foreground. Control does not return to the calling code until the simulation is completed and the response file
has been written. In this case, the possibility of a race condition (see below) does not exist and any errors during
response recovery will cause an immediate abort of the DAKOTA process (note: detection of the string “fail” is
not a response recovery error; see Chapter 21).

Asynchronous operation involves spawning the system call in the background, continuing with other tasks (e.g.,
spawning other system calls), periodically checking for process completion, and finally retrieving the results. An
array of responses corresponding to the multiple system calls is recovered in a synchronize operation.

In this synchronize operation, completion of a function evaluation is detected by testing for the existence of the
evaluation’s results file using the stat utility [88]. Care must be taken when using asynchronous system calls
since they are prone to the race condition in which the results file passes the existence test but the recording of the
function evaluation results in the file is incomplete. In this case, the read operation performed by DAKOTA will
result in an error due to an incomplete data set. In order to address this problem, DAKOTA contains exception
handling which allows for a fixed number of response read failures per asynchronous system call evaluation.
The number of allowed failures must have a limit, so that an actual response format error (unrelated to the race
condition) will eventually abort the system. Therefore, to reduce the possibility of exceeding the limit on allowable
read failures, the user’s interface should minimize the amount of time an incomplete results file exists in the
directory where its status is being tested. This can be accomplished through two approaches: (1) delay the
creation of the results file until the simulation computations are complete and all of the response data is ready to
be written to the results file, or (2) perform the simulation computations in a subdirectory, and as a last step, move
the completed results file into the main working directory where its existence is being queried.

If concurrent simulations are executing in a shared disk space, then care must be taken to maintain independence
of the simulations. In particular, the parameters and results files used to communicate between DAKOTA and the
simulation, as well as any other files used by this simulation, must be protected from other files of the same name
used by the other concurrent simulations. With respect to the parameters and results files, these files may be made
unique through the use of the file tag option (e.g., params.in.1, results.out.1, etc.) or the default
UNIX temporary file option (e.g., /var/tmp/aaa0b2Mfv, etc.). However, if additional simulation files must
be protected (e.g., model.i, model.o, model.g, model.e, etc.), then an effective approach is to create a
tagged working subdirectory for each simulation instance. Section 17.1 provides an example system call interface
that demonstrates both the use of tagged working directories and the relocation of completed results files to avoid
the race condition.

18.2.1.3 Fork synchronization

The fork capability is quite similar to the system call; however, it has the advantage that asynchronous fork invoca-
tions can avoid the results file race condition that may occur with asynchronous system calls (see Section 13.3.5).
The fork interface invokes the filters and analysis drivers using the fork and exec family of functions, and
completion of these processes is detected using the wait family of functions. Since wait is based on a process
id handle rather than a file existence test, an incomplete results file is not an issue.

Depending on the platform, the fork simulation interface executes either a vfork or a fork call. These calls
generate a new child process with its own UNIX process identification number, which functions as a copy of the
parent process (dakota). The execvp function is then called by the child process, causing it to be replaced by
the analysis driver or filter. For synchronous operation, the parent dakota process then awaits completion of the
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forked child process through a blocking call to waitpid. On most platforms, the fork/exec procedure is
efficient since it operates in a copy-on-write mode, and no copy of the parent is actually created. Instead, the
parents address space is borrowed until the exec function is called.

The fork/exec behavior for asynchronous operation is similar to that for synchronous operation, the only
difference being that dakota invokes multiple simulations through the fork/exec procedure prior to recovering
response results for these jobs using the wait function. The combined use of fork/exec and wait functions
in asynchronous mode allows the scheduling of a specified number of concurrent function evaluations and/or
concurrent analyses.

18.2.1.4 Asynchronous Local Example

The test file Dakota/test/dakota dace.in computes 49 orthogonal array samples, which may be evalu-
ated concurrently using parallel computing. When executing DAKOTA with this input file on a single processor,
the following execution syntax may be used:

dakota -i dakota_dace.in

For serial execution (the default), the interface specification within dakota dace.in would appear similar to

interface,
system
analysis_driver = ’text_book’

which results in function evaluation output similar to the following (for output set to quiet mode):

>>>>> Running dace iterator.

------------------------------
Begin Function Evaluation 1
------------------------------
(text_book /tmp/fileG32LEp /tmp/fileP8uYDC)

------------------------------
Begin Function Evaluation 2
------------------------------
(text_book /tmp/fileiqIEEP /tmp/fileBEFlF2)

<snip>

------------------------------
Begin Function Evaluation 49
------------------------------
(text_book /tmp/file4Xyp2p /tmp/filezCohcE)

<<<<< Iterator dace completed.

where it is evident that each function evaluation is being performed sequentially.

For parallel execution using asynchronous local approaches, the DAKOTA execution syntax is unchanged as
DAKOTA is still launched on a single processor. However, the interface specification is augmented to include
the asynchronous keyword with optional concurrency limiter to indicate that multiple analysis driver
instances will be executed concurrently:
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interface,
system asynchronous evaluation_concurrency = 4
analysis_driver = ’text_book’

which results in output excerpts similar to the following:

>>>>> Running dace iterator.

------------------------------
Begin Function Evaluation 1
------------------------------
(Asynchronous job 1 added to queue)

------------------------------
Begin Function Evaluation 2
------------------------------
(Asynchronous job 2 added to queue)

<snip>

------------------------------
Begin Function Evaluation 49
------------------------------
(Asynchronous job 49 added to queue)

Blocking synchronize of 49 asynchronous evaluations
First pass: initiating 4 asynchronous jobs
Initiating function evaluation 1
(text_book /tmp/fileG2uzVX /tmp/fileSqceY8) &
Initiating function evaluation 2
(text_book /tmp/filegFLu5j /tmp/fileeycMcv) &
Initiating function evaluation 3
(text_book /tmp/file8EI3kG /tmp/fileuY2ltR) &
Initiating function evaluation 4
(text_book /tmp/fileEZpDC2 /tmp/fileeMDVLd) &
Second pass: self-scheduling 45 remaining jobs
Waiting on completed jobs
Function evaluation 1 has completed
Initiating function evaluation 5
(text_book /tmp/file8SWrXo /tmp/filem00Y8z) &
Function evaluation 2 has completed
Initiating function evaluation 6
(text_book /tmp/file6PQ5kL /tmp/filegRydxW) &
Function evaluation 3 has completed
Initiating function evaluation 7
(text_book /tmp/filesjB8J7 /tmp/fileUpr4Wi) &
Function evaluation 4 has completed
Initiating function evaluation 8
(text_book /tmp/fileCI6Bbu /tmp/fileWSBaqF) &

<snip>

Function evaluation 49 has completed

DAKOTA Version 5.0 User’s Manual generated on May 7, 2010



290 CHAPTER 18. PARALLEL COMPUTING

<<<<< Iterator dace completed.

where it is evident that each of the 49 jobs is first queued and then a blocking synchronization is performed. This
synchronization uses a simple scheduler that initiates 4 jobs and then replaces completing jobs with new ones
until all 49 are complete.

The default job concurrency for asynchronous local parallelism is all that is available from the algorithm (49 in
this case), which could be too many for the computational resources or their usage policies. The concurrency
level specification (4 in this case) instructs the scheduler to keep 4 jobs running concurrently, which would be
appropriate for, e.g., a dual-processor dual-core workstation. In this case, it is the operating system’s responsibility
to assign the concurrent text book jobs to available processors/cores. Specifying greater concurrency than that
supported by the hardware will result in additional context switching within a multitasking operating system
and will generally degrade performance. Note however that, in this example, there are a total of 5 processes
running, one for DAKOTA and four for the concurrent function evaluations. Since the DAKOTA process checks
periodically for job completion and sleeps in between checks, it is relatively lightweight and does not require a
dedicated processor.

18.2.1.5 Local evaluation scheduling options

The default behavior for asynchronous local parallelism is for DAKOTA to dispatch the next evaluation the local
queue when one completes (and can optionally be specified by local evaluation self scheduling.
In some cases, the simulation code interface benefits from knowing which job number will replace a com-
pleted job. This includes some modes of application tiling with certain MPI implementations, where send-
ing a job to the correct subset of available processors is done with relative node scheduling. The keyword
local evaluation static scheduling forces this behavior, so a completed evaluation will be replaced
with one congruent module the evaluation concurrency. For example, with 7 concurrent jobs, eval number 2 will
be replaced with eval number 9. Examples of this usage can be seen in Dakota/examples/parallelism.

18.2.2 Message Passing Parallelism

DAKOTA uses a “single program-multiple data” (SPMD) parallel programming model. It uses message-passing
routines from the Message Passing Interface (MPI) standard [73], [128] to communicate data between processors.
The SPMD designation simply denotes that the same DAKOTA executable is loaded on all processors during the
parallel invocation. This differs from the MPMD model (“multiple program-multiple data”) which would have
the DAKOTA executable on one or more processors communicating directly with simulator executables on other
processors. The MPMD model has some advantages, but heterogeneous executable loads are not supported by
all parallel environments. Moreover, the MPMD model requires simulation code intrusion on the same order
as conversion to a subroutine, so subroutine conversion (see Section 17.2) in a direct-linked SPMD model is
preferred.

18.2.2.1 Partitioning

Figure 18.2: Communicator partitioning models.

A level of message passing parallelism can use either of two
processor partitioning models:

• Dedicated master: a single processor is dedicated to
scheduling operations and the remaining processors
are split into server partitions.
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• Peer partition: all processors are allocated to server
partitions and the loss of a processor to scheduling is
avoided.

These models are depicted in Figure 18.2. The peer partition
is desirable since it utilizes all processors for computation;
however, it requires either the use of sophisticated mecha-
nisms for distributed scheduling or a problem for which static
scheduling of concurrent work performs well (see Scheduling
below). If neither of these characteristics is present, then use
of the dedicated master partition supports a dynamic schedul-
ing which assures that server idleness is minimized.

18.2.2.2 Scheduling

The following scheduling approaches are available within a level of message passing parallelism:

• Self-scheduling: in the dedicated master model, the master processor manages a single processing queue
and maintains a prescribed number of jobs (usually one) active on each slave. Once a slave server has
completed a job and returned its results, the master assigns the next job to this slave. Thus, the slaves
themselves determine the schedule through their job completion speed. This provides a simple dynamic
scheduler in that heterogeneous processor speeds and/or job durations are naturally handled, provided there
are sufficient instances scheduled through the servers to balance the variation.

• Static scheduling: if scheduling is statically determined at start-up, then no master processor is needed
to direct traffic and a peer partitioning approach is applicable. If the static schedule is a good one (ideal
conditions), then this approach will have superior performance. However, heterogeneity, when not known
a priori, can very quickly degrade performance since there is no mechanism to adapt.

In addition, the following scheduling approach is provided by PICO for the scheduling of concurrent optimizations
within the branch and bound strategy:

• Distributed scheduling: in this approach, a peer partition is used and each peer maintains a separate queue of
pending jobs. When one peer’s queue is smaller than the other queues, it requests work from its peers (prior
to idleness). In this way, it can adapt to heterogeneous conditions, provided there are sufficient instances
to balance the variation. Each partition performs communication between computations, and no processors
are dedicated to scheduling. Furthermore, it distributes scheduling load beyond a single processor, which
can be important for large numbers of concurrent jobs (whose scheduling might overload a single master) or
for fault tolerance (avoiding a single point of failure). However, it involves relatively complicated logic and
additional communication for queue status and job migration, and its performance is not always superior
since a partition can become work-starved if its peers are locked in computation (Note: this logic can be
somewhat simplified if a separate thread can be created for communication and migration of jobs).

Message passing schedulers may be used for managing concurrent iterator executions within a strategy, concurrent
evaluations within an iterator, or concurrent analyses within an evaluation. In each of these cases, the message
passing scheduler is currently restricted to blocking synchronization, in that all jobs in the queue are completed
before exiting the scheduler and returning the set of results to the algorithm. Nonblocking message-passing sched-
ulers are under development for the iterator/evaluation concurrency level in support of fully asynchronous algo-
rithms which do not contain synchronization points (e.g., asynch pattern search and coliny pattern search).
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Message passing is also used within a fine-grained parallel analysis code, although this does not involve the use of
DAKOTA schedulers (DAKOTA may, at most, pass a communicator partition to the simulation). The “Message
Passing” column in Table 18.1 summarizes these capabilities.

18.2.2.3 Message Passing Example

Revisiting the test file dakota dace.in, DAKOTA will now compute the 49 orthogonal array samples using
a message passing approach. In this case, a parallel launch utility is used to execute DAKOTA across multiple
processors using syntax similar to the following:

mpirun -np 5 -machinefile machines dakota -i dakota_dace.in

Since the asynchronous local parallelism will not be used, the interface specification does not include the asynchronous
keyword and would appear similar to:

interface,
system
analysis_driver = ’text_book’

The relevant excerpts from the DAKOTA output for a dedicated master partition and self-schedule, the default
when the maximum concurrency (49) exceeds the available capacity (5), would appear similar to the following:

Running MPI executable in parallel on 5 processors.

-----------------------------------------------------------------------------
DAKOTA parallel configuration:

Level num_servers procs_per_server partition/schedule
----- ----------- ---------------- ------------------
concurrent iterators 1 5 peer/static
concurrent evaluations 4 1 ded. master/self
concurrent analyses 1 1 peer/static
multiprocessor analysis 1 N/A N/A

Total parallelism levels = 1
-----------------------------------------------------------------------------

>>>>> Running dace iterator.

------------------------------
Begin Function Evaluation 1
------------------------------
(Asynchronous job 1 added to queue)

------------------------------
Begin Function Evaluation 2
------------------------------
(Asynchronous job 2 added to queue)

<snip>

------------------------------
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Begin Function Evaluation 49
------------------------------
(Asynchronous job 49 added to queue)

Blocking synchronize of 49 asynchronous evaluations
First pass: assigning 4 jobs among 4 servers
Master assigning function evaluation 1 to server 1
Master assigning function evaluation 2 to server 2
Master assigning function evaluation 3 to server 3
Master assigning function evaluation 4 to server 4
Second pass: self-scheduling 45 remaining jobs
Waiting on completed jobs
job 1 has returned from slave server 1
Master assigning function evaluation 5 to server 1
job 2 has returned from slave server 2
Master assigning function evaluation 6 to server 2
Waiting on completed jobs
job 3 has returned from slave server 3
Master assigning function evaluation 7 to server 3
job 4 has returned from slave server 4
Master assigning function evaluation 8 to server 4

<snip>

job 49 has returned from slave server 2

<<<<< Iterator dace completed.

where it is evident that each of the 49 jobs is first queued and then a blocking synchronization is performed. This
synchronization uses a dynamic scheduler that initiates four jobs by sending a message from the master to each
of the four servers and then replaces completing jobs with new ones until all 49 are complete. It is important to
note that job execution local to each of the four servers is synchronous.

18.2.3 Hybrid Parallelism

The asynchronous local approaches described in Section 18.2.1 can be considered to rely on external scheduling
mechanisms, since it is generally the operating system or some external queue/load sharing software that allocates
jobs to processors. Conversely, the message-passing approaches described in Section 18.2.2 rely on internal
scheduling mechanisms to distribute work among processors. These two approaches provide building blocks
which can be combined in a variety of ways to manage parallelism at multiple levels. At one extreme, DAKOTA
can execute on a single processor and rely completely on external means to map all jobs to processors (i.e., using
asynchronous local approaches). At the other extreme, DAKOTA can execute on many processors and manage all
levels of parallelism, including the parallel simulations, using completely internal approaches (i.e., using message
passing at all levels as in Figure 18.4). While all-internal or all-external approaches are common cases, many
additional approaches exist between the two extremes in which some parallelism is managed internally and some
is managed externally.

These combined approaches are referred to as hybrid parallelism, since the internal distribution of work based on
message-passing is being combined with external allocation using asynchronous local approaches1. Figure 18.1

1The term “hybrid parallelism” is often used to describe the combination of MPI message passing and OpenMP shared memory parallelism
models. This can be considered to be a special case of the meaning here, as OpenMP is based on threads, which is analagous to asynchronous
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depicts the asynchronous local, message-passing, and hybrid approaches for a dedicated-master partition. Ap-
proaches (b) and (c) both use MPI message-passing to distribute work from the master to the slaves, and ap-
proaches (a) and (c) both manage asynchronous jobs local to a processor. The hybrid approach (c) can be seen to
be a combination of (a) and (b) since jobs are being internally distributed to slave servers through message-passing
and each slave server is managing multiple concurrent jobs using an asynchronous local approach. From a dif-
ferent perspective, one could consider (a) and (b) to be special cases within the range of configurations supported
by (c). The hybrid approach is useful for supercomputers that maintain a service/compute node distinction and
for supercomputers or networks of workstations that involve clusters of symmetric multiprocessors (SMPs). In
the service/compute node case, concurrent multiprocessor simulations are launched into the compute nodes from
the service node partition. While an asynchronous local approach from a single service node would be sufficient,
spreading the application load by running DAKOTA in parallel across multiple service nodes results in better
performance [41]. If the number of concurrent jobs to be managed in the compute partition exceeds the number
of available service nodes, then hybrid parallelism is the preferred approach. In the case of a cluster of SMPs
(or network of multiprocessor workstations), message-passing can be used to communicate between SMPs, and
asynchronous local approaches can be used within an SMP. Hybrid parallelism can again result in improved per-
formance, since the total number of DAKOTA MPI processes is reduced in comparison to a pure message-passing
approach over all processors.

Hybrid schedulers may be used for managing concurrent evaluations within an iterator or concurrent analyses
within an evaluation. In both of these cases, the scheduler is currently restricted to blocking synchronization,
although as for message-passing schedulers described in Section 18.2.2.2, nonblocking schedulers are under de-
velopment for the iterator/evaluation concurrency level. The “Hybrid” column in Table 18.1 summarizes these
capabilities.

18.2.3.1 Hybrid Example

Revisiting the test file dakota dace.in, DAKOTA will now compute the 49 orthogonal array samples using
a hybrid approach. As for the message passing case, a parallel launch utility is used to execute DAKOTA across
multiple processors:

mpirun -np 5 -machinefile machines dakota -i dakota_dace.in

Since the asynchronous local parallelism will also be used, the interface specification includes the asynchronous
keyword and appears similar to

interface,
system asynchronous evaluation_concurrency = 2
analysis_driver = ’text_book’

In the hybrid case, the specification of the desired concurrency level must be included, since the default is no
longer all available (as it is for asynchronous local parallelism). Rather the default is to employ message passing
parallelism, and hybrid parallelism is only available through the specification of asynchronous concurrency greater
than one.

The relevant excerpts of the DAKOTA output for a dedicated master partition and self schedule, the default
when the maximum concurrency (49) exceeds the maximum available capacity (10), would appear similar to the
following:

Running MPI executable in parallel on 5 processors.

local usage of the direct simulation interface.
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-----------------------------------------------------------------------------
DAKOTA parallel configuration:

Level num_servers procs_per_server partition/schedule
----- ----------- ---------------- ------------------
concurrent iterators 1 5 peer/static
concurrent evaluations 4 1 ded. master/self
concurrent analyses 1 1 peer/static
multiprocessor analysis 1 N/A N/A

Total parallelism levels = 1
-----------------------------------------------------------------------------

>>>>> Running dace iterator.

------------------------------
Begin Function Evaluation 1
------------------------------
(Asynchronous job 1 added to queue)

------------------------------
Begin Function Evaluation 2
------------------------------
(Asynchronous job 2 added to queue)

<snip>

------------------------------
Begin Function Evaluation 49
------------------------------
(Asynchronous job 49 added to queue)

Blocking synchronize of 49 asynchronous evaluations
First pass: assigning 8 jobs among 4 servers
Master assigning function evaluation 1 to server 1
Master assigning function evaluation 2 to server 2
Master assigning function evaluation 3 to server 3
Master assigning function evaluation 4 to server 4
Master assigning function evaluation 5 to server 1
Master assigning function evaluation 6 to server 2
Master assigning function evaluation 7 to server 3
Master assigning function evaluation 8 to server 4
Second pass: self-scheduling 41 remaining jobs
Waiting on completed jobs

<snip>

job 49 has returned from slave server 4

<<<<< Iterator dace completed.

where it is evident that each of the 49 jobs is first queued and then a blocking synchronization is performed. This
synchronization uses a dynamic scheduler that initiates eight jobs by sending two messages to each of the four
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servers and then replaces completing jobs with new ones until all 49 are complete. It is important to note that
job execution local to each of the four servers is asynchronous. If the available capacity was increased to meet
or exceed the maximum concurrency (e.g., mpirun on 10 processors with evaluation concurrency = 5),
then a peer partition with static schedule would be selected by default.

18.3 Multilevel parallelism

Parallel computers within the Department of Energy national laboratories have exceeded a hundred trillion floating
point operations per second (100 TeraFLOPS) in Linpack benchmarks and are expected to achieve PetaFLOPS
speeds in the near future. This performance is achieved through the use of massively parallel (MP) processing
usingO[103−104] processors. In order to harness the power of these machines for performing design, uncertainty
quantification, and other systems analyses, parallel algorithms are needed which are scalable to thousands of
processors.

DAKOTA supports a total of three tiers of scheduling and four levels of parallelism which, in combination, can
minimize efficiency losses and achieve near linear scaling on MP computers. The four levels are:

1. concurrent iterators within a strategy (scheduling performed by DAKOTA)

2. concurrent function evaluations within each iterator (scheduling performed by DAKOTA)

3. concurrent analyses within each function evaluation (scheduling performed by DAKOTA)

4. multiprocessor analyses (work distributed by a parallel analysis code)

for which the first two are classified as algorithmic coarse-grained parallelism, the third is function evaluation
coarse-grained parallelism, and the fourth is function evaluation fine-grained parallelism (see Section 18.1.1).
Algorithmic fine-grained parallelism is not currently supported, although the development of large-scale parallel
SAND techniques is a current research direction [11].

A particular application may support one or more of these parallelism types, and DAKOTA provides for conve-
nient selection and combination of each of the supported levels. If multiple types of parallelism can be exploited,
then the question may arise as to how the amount of parallelism at each level should be selected so as to maximize
the overall parallel efficiency of the study. For performance analysis of multilevel parallelism formulations and
detailed discussion of these issues, refer to [41]. In many cases, the user may simply employ DAKOTA’s automatic
parallelism configuration facilities, which implement the recommendations from the aforementioned paper.

Figure 18.3 shows typical fixed-size scaling performance using a modified version of the extended text book
problem (see Section 22.1). Three levels of parallelism (concurrent evaluations within an iterator, concurrent anal-
yses within each evaluation, and multiprocessor analyses) are exercised. Despite the use of a fixed problem size
and the presence of some idleness within the scheduling at multiple levels, the efficiency is still reasonably high2.
Greater efficiencies are obtainable for scaled speedup studies (or for larger problems in fixed-size studies) and
for problems optimized for minimal scheduler idleness (by, e.g., managing all concurrency in as few scheduling
levels as possible). Note that speedup and efficiency are measured relative to the case of a single instance of a mul-
tiprocessor analysis, since it was desired to investigate the effectiveness of the DAKOTA schedulers independent
from the efficiency of the parallel analysis.

2Note that overhead is reduced in these scaling studies by deactivating the evaluation cache and restart file logging.
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(a) Relative speedup. (b) Relative efficiency.

Figure 18.3: Fixed-size scaling results for three levels of parallelism.

18.3.1 Asynchronous Local Parallelism

In most cases, the use of asynchronous local parallelism is the termination point for multilevel parallelism, in
that any level of parallelism lower than an asynchronous local level will be serialized. The exception to this rule
is reforking of forked processes for concurrent analyses within forked evaluations. In this case, a new process is
created using fork for one of several concurrent evaluations; however, the new process is not replaced immediately
using exec. Rather, the new process is reforked to create additional child processes for executing concurrent
analyses within each concurrent evaluation process. This capability is not supported by system calls and provides
one of the key advantages to using fork over system (see Section 13.3.5).

18.3.2 Message Passing Parallelism

18.3.2.1 Partitioning of levels

DAKOTA uses MPI communicators to identify groups of processors. The global MPI COMM WORLD communi-
cator provides the total set of processors allocated to the DAKOTA run. MPI COMM WORLD can be partitioned
into new intra-communicators which each define a set of processors to be used for a multiprocessor server. Each
of these servers may be further partitioned to nest one level of parallelism within the next. At the lowest paral-
lelism level, these intra-communicators can be passed into a simulation for use as the simulation’s computational
context, provided that the simulation has been designed, or can be modified, to be modular on a communi-
cator (i.e., it does not assume ownership of MPI COMM WORLD). New intra-communicators are created with
the MPI Comm split routine, and in order to send messages between these intra-communicators, new inter-
communicators are created with calls to MPI Intercomm create. To minimize overhead, DAKOTA creates
new intra- and inter-communicators only when the parent communicator provides insufficient context for the
scheduling at a particular level. In addition, multiple parallel configurations (containing a set of communicator
partitions) can be allocated for use in studies with multiple iterators and models (e.g., 16 servers of 64 proces-
sors each could be used for iteration on a lower fidelity model, followed by two servers of 512 processors each
for subsequent iteration on a higher fidelity model). Each of the parallel configurations are allocated at object
construction time and are reported at the beginning of the DAKOTA output.
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Each tier within DAKOTA’s nested parallelism hierarchy can use the dedicated master and peer partition ap-
proaches described in Section 18.2.2.1. To recursively partition the subcommunicators of Figure 18.2, COMM1/2/3
in the dedicated master or peer partition case would be further subdivided using the appropriate partitioning model
for the next lower level of parallelism.

18.3.2.2 Scheduling within levels

Figure 18.4: Recursive partitioning for
nested parallelism.

DAKOTA is designed to allow the freedom to configure each
parallelism level with either the dedicated master partition/self-
scheduling combination or the peer partition/static scheduling com-
bination. In addition, certain external libraries may provide addi-
tional options (e.g., PICO supports distributed scheduling in peer
partitions). As an example, Figure 18.4 shows a case in which
a branch and bound strategy employs peer partition/distributed
scheduling at level 1, each optimizer partition employs concurrent
function evaluations in a dedicated master partition/self-scheduling
model at level 2, and each function evaluation partition employs con-
current multiprocessor analyses in a peer partition/static scheduling
model at level 3. In this case, MPI COMM WORLD is subdivided
into optCOMM1/2/3/.../τ1, each optCOMM is further subdi-
vided into evalCOMM0 (master) and evalCOMM1/2/3/.../τ2
(slaves), and each slave evalCOMM is further subdivided into
analCOMM1/2/3/.../τ3. Logic for selection of τi is discussed
in [41].

18.3.3 Hybrid Parallelism

Hybrid parallelism approaches can take several forms when used in the multilevel parallel context. A concep-
tual boundary can be considered to exist for which all parallelism above the boundary is managed internally
using message-passing and all parallelism below the boundary is managed externally using asynchronous local
approaches. Hybrid parallelism approaches can then be categorized based on whether this boundary between
internal and external management occurs within a parallelism level (intra-level) or between two parallelism levels
(inter-level). In the intra-level case, the jobs for the parallelism level containing the boundary are scheduled using
a hybrid scheduler, in which a capacity multiplier is used for the number of jobs to assign to each server. Each
server is then responsible for concurrently executing its capacity of jobs using an asynchronous local approach. In
the inter-level case, one level of parallelism manages its parallelism internally using a message-passing approach
and the next lower level of parallelism manages its parallelism externally using an asynchronous local approach.
That is, the jobs for the higher level of parallelism are scheduled using a standard message-passing scheduler,
in which a single job is assigned to each server. However, each of these jobs has multiple components, as man-
aged by the next lower level of parallelism, and each server is responsible for executing these sub-components
concurrently using an asynchronous local approach.

For example, consider a multiprocessor DAKOTA run which involves an iterator scheduling a set of concurrent
function evaluations across a cluster of SMPs. A hybrid parallelism approach will be applied in which message-
passing parallelism is used between SMPs and asynchronous local parallelism is used within each SMP. In the
hybrid intra-level case, multiple function evaluations would be scheduled to each SMP, as dictated by the capacity
of the SMPs, and each SMP would manage its own set of concurrent function evaluations using an asynchronous
local approach. Any lower levels of parallelism would be serialized. In the hybrid inter-level case, the function
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Table 18.1: Support of job management approaches within parallelism levels. Shown in parentheses are supported
simulation interfaces and supported synchronization approaches.

Parallelism Level Asynchronous Local Message Passing Hybrid
concurrent iterators X

within a strategy (blocking only)
concurrent function evaluations X X X

within an iterator (system, fork) (system, fork, direct) (system, fork)
(blocking, nonblocking) (blocking only) (blocking only)

concurrent analyses X X X
within a function evaluation (fork only) (system, fork, direct) (fork only)

(blocking only) (blocking only) (blocking only)
fine-grained parallel analysis X

evaluations would be scheduled one per SMP, and the analysis components within each of these evaluations
would be executed concurrently using asynchronous local approaches within the SMP. Thus, the distinction can
be viewed as whether the concurrent jobs on each server in Figure 18.1c reflect the same level of parallelism
as that being scheduled by the master (intra-level) or one level of parallelism below that being scheduled by the
master (inter-level).

18.4 Capability Summary

Table 18.1 shows a matrix of the supported job management approaches for each of the parallelism levels, with
supported simulation interfaces and synchronization approaches shown in parentheses. The concurrent iterator
and multiprocessor analysis parallelism levels can only be managed with message-passing approaches. In the for-
mer case, this is due to the fact that a separate process or thread for an iterator is not currently supported. The latter
case reflects a finer point on the definition of external parallelism management. While a multiprocessor analysis
can most certainly be launched (e.g., using mpirun/yod) from one of DAKOTA’s analysis drivers, resulting in a
parallel analysis external to DAKOTA (which is consistent with asynchronous local and hybrid approaches), this
parallelism is not visible to DAKOTA and therefore does not qualify as parallelism that DAKOTA manages (and
therefore is not included in Table 18.1). The concurrent evaluation and analysis levels can be managed either with
message-passing, asynchronous local, or hybrid techniques, with the exceptions that the direct interface does not
support asynchronous operations (asynchronous local or hybrid) at either of these levels and the system call in-
terface does not support asynchronous operations (asynchronous local or hybrid) at the concurrent analysis level.
The direct interface restrictions are present since multithreading in not yet supported and the system call inter-
face restrictions result from the inability to manage concurrent analyses within a nonblocking function evaluation
system call. Finally, nonblocking synchronization is only currently supported for asynchronous local parallelism
at the concurrent function evaluation level. In time, message passing and hybrid parallelism approaches will also
support nonblocking synchronization at this level.

18.5 Running a Parallel DAKOTA Job

Section 18.2 provides a few examples of serial and parallel execution of DAKOTA using asynchronous local,
message passing, and hybrid approaches to single-level parallelism. The following sections provides a more
complete discussion of the parallel execution syntax and available specification controls.
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18.5.1 Single-processor execution

The command for running DAKOTA on a single-processor and exploiting asynchronous local parallelism is the
same as for running DAKOTA on a single-processor for a serial study, e.g.:

dakota -i dakota.in > dakota.out

See Section 2.1.5 for additional information on single-processor command syntax.

18.5.2 Multiprocessor execution

Running a DAKOTA job on multiple processors requires the use of an executable loading facility such as mpirun,
mpiexec, poe, or yod. On a network of workstations, the mpirun script is commonly used to initiate a parallel
DAKOTA job, e.g.:

mpirun -np 12 dakota -i dakota.in > dakota.out
mpirun -machinefile machines -np 12 dakota -i dakota.in > dakota.out

where both examples specify the use of 12 processors, the former selecting them from a default system resources
file and the latter specifying particular machines in a machine file (see [72] for details).

On a massively parallel computer such as ASCI Red, similar facilities are available from the Cougar operating
system via the yod executable loading facility:

yod -sz 512 dakota -i dakota.in > dakota.out

In each of these cases, MPI command line arguments are used by MPI (extracted first in the call to MPI Init)
and DAKOTA command line arguments are used by DAKOTA (extracted second by DAKOTA’s command line
handler). An issue that can arise with these command line arguments is that the mpirun script distributed with
MPICH has been observed to have problems with certain file path specifications (e.g., a relative path such as
“../some file”). These path problems are most easily resolved by using local linkage (all referenced files or
soft links to these files appear in the same directory).

Finally, when running on computer resources that employ NQS/PBS batch schedulers, the single-processor
dakota command syntax or the multiprocessor mpirun command syntax might be contained within an ex-
ecutable script file which is submitted to the batch queue. For example, on Cplant, the command

qsub -l size=512 run_dakota

could be submitted to the PBS queue for execution. On ASCI Red, the NQS syntax is similar:

qsub -q snl -lP 512 -lT 6:00:00 run_dakota

These commands allocate 512 compute nodes for the study, and execute the run dakota script on a service
node. If this script contains a single-processor dakota command, then DAKOTA will execute on a single service
node from which it can launch parallel simulations into the compute nodes using analysis drivers that contain yod
commands (any yod executions occurring at any level underneath the run dakota script are mapped to the 512
compute node allocation). If the script submitted to qsub contains a multiprocessor mpirun command, then
DAKOTA will execute across multiple service nodes so that it can spread the application load in either a message-
passing or hybrid parallelism approach. Again, analysis drivers containing yod commands would be responsible
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for utilizing the 512 compute nodes. And, finally, if the script submitted to qsub contains a yod of the dakota
executable, then DAKOTA will execute directly on the compute nodes and manage all of the parallelism internally
(note that a yod of this type without a qsub would be mapped to the interactive partition, rather than to the batch
partition).

Not all supercomputers employ the same model for service/compute partitions or provide the same support for
tiling of concurrent multiprocessor simulations within a single NQS/PBS allocation. For this reason, templates
for parallel job configuration are being catalogued within Dakota/examples/script interfaces and
Dakota/examples/parallelism (in the software distributions) that are intended to provide guidance for
individual machine idiosyncrasies.

18.6 Specifying Parallelism

Given an allotment of processors, DAKOTA contains logic based on the theoretical work in [41] to automati-
cally determine an efficient parallel configuration, consisting of partitioning and scheduling selections for each
of the parallelism levels. This logic accounts for problem size, the concurrency supported by particular iterative
algorithms, and any user inputs or overrides. The following points are important components of the automatic
configuration logic which can be helpful in estimating the total number of processors to allocate and in selecting
configuration overrides:

• If the capacity of the servers in a peer configuration is sufficient to schedule all jobs in one pass, then
a peer partition and static schedule will be selected. If this capacity is not sufficient, then a dedicated-
master partition and dynamic schedule will be used. These selections can be overridden with self/static
scheduling request specifications for the concurrent iterator, evaluation, and analysis parallelism levels. For
example, if it is known that processor speeds and job durations have little variability, then overriding the
automatic configuration with a static schedule request could eliminate the unnecessary loss of a processor
to scheduling.

• With the exception of the concurrent-iterator parallelism level (iterator executions tend to have high vari-
ability in duration), concurrency is pushed up. That is, available processors will be assigned to concurrency
at the higher parallelism levels first. If more processors are available than needed for concurrency at a level,
then the server size is increased to support concurrency in the next lower level of parallelism. This process
is continued until all available processors have been assigned. These assignments can be overridden with a
servers specification for the concurrent iterator, evaluation, and analysis parallelism levels and with a pro-
cessors per analysis specification for the multiprocessor analysis parallelism level. For example, if it is de-
sired to parallelize concurrent analyses within each function evaluation, then an evaluation servers
= 1 override would serialize the concurrent function evaluations level and assure processor availability for
concurrent analyses.

In the following sections, the user inputs and overrides are described, followed by specification examples for
single and multi-processor DAKOTA executions.

18.6.1 The interface specification

Specifying parallelism within an interface can involve the use of the asynchronous, evaluation concurrency,
and analysis concurrency keywords to specify concurrency local to a processor (i.e., asynchronous local
parallelism). This asynchronous specification has dual uses:
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• When running DAKOTA on a single-processor, the asynchronous keyword specifies the use of asyn-
chronous invocations local to the processor (these jobs then rely on external means to be allocated to other
processors). The default behavior is to simultaneously launch all function evaluations available from the
iterator as well as all available analyses within each function evaluation. In some cases, the default behavior
can overload a machine or violate a usage policy, resulting in the need to limit the number of concurrent
jobs using the evaluation concurrency and analysis concurrency specifications.

• When executing DAKOTA across multiple processors and managing jobs with a message-passing scheduler,
the asynchronous keyword specifies the use of asynchronous invocations local to each server processor,
resulting in a hybrid parallelism approach (see Section 18.2.3). In this case, the default behavior is one
job per server, which must be overridden with an evaluation concurrency specification and/or an
analysis concurrency specification. When a hybrid parallelism approach is specified, the capacity
of the servers (used in the automatic configuration logic) is defined as the number of servers times the
number of asynchronous jobs per server.

In addition, evaluation servers, evaluation self scheduling, and evaluation static scheduling
keywords can be used to override the automatic parallelism configuration for concurrent function evaluations;
analysis servers, analysis self scheduling, and analysis static scheduling keywords
can be used to override the automatic parallelism configuration for concurrent analyses; and the processors per analysis
keyword can be used to override the automatic parallelism configuration for the size of multiprocessor analyses
used in a direct function simulation interface. Each of these keywords appears as part of the interface commands
specification in the DAKOTA Reference Manual [3].

18.6.2 The strategy specification

To specify concurrency in iterator executions, the iterator servers, iterator self scheduling,
and iterator static scheduling keywords are used to override the automatic parallelism configuration.
See the strategy commands specification in the DAKOTA Reference Manual [3] for additional information.

18.6.3 Single-processor DAKOTA specification

Specifying a single-processor DAKOTA job that exploits parallelism through asynchronous local approaches (see
Figure 18.1a) requires inclusion of the asynchronous keyword in the interface specification. Once the input
file is defined, single-processor DAKOTA jobs are executed using the command syntax described previously in
Section 18.5.1.

18.6.3.1 Example 1

For example, the following specification runs an NPSOL optimization which will perform asynchronous finite
differencing:

method,
npsol_sqp

variables,
continuous_design = 5
initial_point 0.2 0.05 0.08 0.2 0.2
lower_bounds 0.15 0.02 0.05 0.1 0.1
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upper_bounds 2.0 2.0 2.0 2.0 2.0

interface,
system,
asynchronous
analysis_drivers = ’text_book’

responses,
num_objective_functions = 1
num_nonlinear_inequality_constraints = 2
numerical_gradients
interval_type central
method_source dakota
fd_gradient_step_size = 1.e-4

no_hessians

Note that method source dakota selects DAKOTA’s internal finite differencing routine so that the concur-
rency in finite difference offsets can be exploited. In this case, central differencing has been selected and 11
function evaluations (one at the current point plus two offsets in each of five variables) can be performed simul-
taneously for each NPSOL response request. These 11 evaluations will be launched with system calls in the
background and presumably assigned to additional processors through the operating system of a multiprocessor
compute server or other comparable method. The concurrency specification may be included if it is necessary to
limit the maximum number of simultaneous evaluations. For example, if a maximum of six compute processors
were available, the command

evaluation_concurrency = 6

could be added to the asynchronous specification within the interface keyword from the preceding ex-
ample.

18.6.3.2 Example 2

If, in addition, multiple analyses can be executed concurrently within a function evaluation (e.g., from multi-
ple load cases or disciplinary analyses that must be evaluated to compute the response data set), then an input
specification similar to the following could be used:

method,
npsol_sqp

variables,
continuous_design = 5
initial_point 0.2 0.05 0.08 0.2 0.2
lower_bounds 0.15 0.02 0.05 0.1 0.1
upper_bounds 2.0 2.0 2.0 2.0 2.0

interface,
fork
asynchronous
evaluation_concurrency = 6
analysis_concurrency = 3

analysis_drivers = ’text_book1’ ’text_book2’ ’text_book3’
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responses,
num_objective_functions = 1
num_nonlinear_inequality_constraints = 2
numerical_gradients
method_source dakota
interval_type central
fd_gradient_step_size = 1.e-4

no_hessians

In this case, the default concurrency with just an asynchronous specification would be all 11 function evalua-
tions and all 3 analyses, which can be limited by the evaluation concurrency and analysis concurrency
specifications. The input file above limits the function evaluation concurrency, but not the analysis concurrency (a
specification of 3 is the default in this case and could be omitted). Changing the input to evaluation concurrency
= 1would serialize the function evaluations, and changing the input to analysis concurrency = 1would
serialize the analyses.

18.6.4 Multiprocessor DAKOTA specification

In multiprocessor executions, server evaluations are synchronous (Figure 18.1b) by default and the asynchronous
keyword is only used if a hybrid parallelism approach (Figure 18.1c) is desired. Multiprocessor DAKOTA jobs
are executed using the command syntax described previously in Section 18.5.2.

18.6.4.1 Example 3

To run Example 1 using a message-passing approach, the asynchronous keyword would be removed (since
the servers will execute their evaluations synchronously), resulting in the following interface specification:

interface,
system,
analysis_drivers = ’text_book’

Running DAKOTA on 4 processors (syntax: mpirun -np 4 dakota -i dakota.in) would result in the
following parallel configuration report from the DAKOTA output:

-----------------------------------------------------------------------------
DAKOTA parallel configuration:

Level num_servers procs_per_server partition/schedule
----- ----------- ---------------- ------------------
concurrent iterators 1 4 peer/static
concurrent evaluations 3 1 ded. master/self
concurrent analyses 1 1 peer/static
multiprocessor analysis 1 N/A N/A

Total parallelism levels = 1
-----------------------------------------------------------------------------

The dedicated master partition and self-scheduling algorithm are automatically selected for the concurrent eval-
uations parallelism level since the number of function evaluations (11) is greater than the maximum capacity of
the servers (4). Since one of the processors is dedicated to being the master, only 3 processors are available for
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computation and the 11 evaluations can be completed in approximately 4 passes through the servers. If it is known
that there is little variability in evaluation duration, then this logic could be overridden to use a static schedule
through use of the evaluation static scheduling specification:

interface,
system,
evaluation_static_scheduling
analysis_drivers = ’text_book’

Running DAKOTA again on 4 processors (syntax: mpirun -np 4 dakota -i dakota.in) would now
result in this parallel configuration report:

-----------------------------------------------------------------------------
DAKOTA parallel configuration:

Level num_servers procs_per_server partition/schedule
----- ----------- ---------------- ------------------
concurrent iterators 1 4 peer/static
concurrent evaluations 4 1 peer/static
concurrent analyses 1 1 peer/static
multiprocessor analysis 1 N/A N/A

Total parallelism levels = 1
-----------------------------------------------------------------------------

Now the 11 jobs will be statically distributed among 4 peer servers, since the processor previously dedicated to
scheduling has been converted to a compute server. This could be more efficient if the evaluation durations are
sufficiently similar, but there is no mechanism to adapt to heterogeneity in processor speeds or simulation expense.

As a related example, consider the case where each of the workstations used in the parallel execution has multiple
processors. In this case, a hybrid parallelism approach which combines message-passing parallelism with asyn-
chronous local parallelism (see Figure 18.1c) would be a good choice. To specify hybrid parallelism, one uses the
same asynchronous specification as was used for the single-processor examples, e.g.:

interface,
system
asynchronous evaluation_concurrency = 3
analysis_drivers = ‘text_book’

With 3 function evaluations concurrent on each server, the capacity of a 4 processor DAKOTA execution (syntax:
mpirun -np 4 dakota -i dakota.in) has increased to 12 evaluations. Since all 11 jobs can now be
scheduled in a single pass, a static schedule is automatically selected (without any override request):

-----------------------------------------------------------------------------
DAKOTA parallel configuration:

Level num_servers procs_per_server partition/schedule
----- ----------- ---------------- ------------------
concurrent iterators 1 4 peer/static
concurrent evaluations 4 1 peer/static
concurrent analyses 1 1 peer/static
multiprocessor analysis 1 N/A N/A

Total parallelism levels = 1
-----------------------------------------------------------------------------
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18.6.4.2 Example 4

To run Example 2 using a message-passing approach, the asynchronous specification is again removed:

interface,
fork
analysis_drivers = ‘text_book1’ ‘text_book2’ ‘text_book3’

Running this example on 6 processors (syntax: mpirun -np 6 dakota -i dakota.in) would result in
the following parallel configuration report:

-----------------------------------------------------------------------------
DAKOTA parallel configuration:

Level num_servers procs_per_server partition/schedule
----- ----------- ---------------- ------------------
concurrent iterators 1 6 peer/static
concurrent evaluations 5 1 ded. master/self
concurrent analyses 1 1 peer/static
multiprocessor analysis 1 N/A N/A

Total parallelism levels = 1
-----------------------------------------------------------------------------

in which all of the processors have been assigned to support evaluation concurrency due to the “push up” automatic
configuration logic. Note that the default configuration could be a poor choice in this case, since 11 jobs scheduled
through 5 servers will likely have significant idleness towards the end of the scheduling. To assign some of the
available processors to the concurrent analysis level, the following input could be used:

interface,
fork
analysis_drivers = ‘text_book1’ ‘text_book2’ ‘text_book3’
evaluation_static_scheduling
evaluation_servers = 2

which results in the following 2-level parallel configuration:

-----------------------------------------------------------------------------
DAKOTA parallel configuration:

Level num_servers procs_per_server partition/schedule
----- ----------- ---------------- ------------------
concurrent iterators 1 6 peer/static
concurrent evaluations 2 3 peer/static
concurrent analyses 3 1 peer/static
multiprocessor analysis 1 N/A N/A

Total parallelism levels = 2
-----------------------------------------------------------------------------

The six processors available have been split into two evaluation servers of three processors each, where the three
processors in each evaluation server manage the three analyses, one per processor.
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Next, consider the following 3-level parallel case, in which text book1, text book2, and text book3
from the previous examples now execute on two processors each. In this case, the processors per analysis
keyword is added and the fork interface is changed to a direct interface since the fine-grained parallelism of
the three simulations is managed internally:

interface,
direct
analysis_drivers = ‘text_book1’ ‘text_book2’ ‘text_book3’
evaluation_static_scheduling
evaluation_servers = 2
processors_per_analysis = 2

This results in the following parallel configuration for a 12 processor DAKOTA run
(syntax: mpirun -np 12 dakota -i dakota.in):

-----------------------------------------------------------------------------
DAKOTA parallel configuration:

Level num_servers procs_per_server partition/schedule
----- ----------- ---------------- ------------------
concurrent iterators 1 12 peer/static
concurrent evaluations 2 6 peer/static
concurrent analyses 3 2 peer/static
multiprocessor analysis 2 N/A N/A

Total parallelism levels = 3
-----------------------------------------------------------------------------

An important point to recognize is that, since each of the parallel configuration inputs has been tied to the inter-
face specification up to this point, these parallel configurations can be reallocated for each interface in a multi-
iterator/multi-model strategy. For example, a DAKOTA execution on 40 processors might involve the following
two interface specifications:

interface,
direct,
id_interface = ’COARSE’
analysis_driver = ’sim1’
processors_per_analysis = 5

interface,
direct,
id_interface = ’FINE’
analysis_driver = ’sim2’
processors_per_analysis = 10

for which the coarse model would employ 8 servers of 5 processors each and the fine model would employ 4
servers of 10 processors each.

Next, consider the following 4-level parallel case that employs the Pareto set optimization strategy. In this case,
iterator servers and iterator static scheduling requests are included in the strategy specifica-
tion:

strategy,
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pareto_set
iterator_servers = 2
iterator_static_scheduling
opt_method_pointer = ’NLP’
random_weight_sets = 4

Adding this strategy specification to the input file from the previous 12 processor example results in the following
parallel configuration for a 24 processor DAKOTA run
(syntax: mpirun -np 24 dakota -i dakota.in):

-----------------------------------------------------------------------------
DAKOTA parallel configuration:

Level num_servers procs_per_server partition/schedule
----- ----------- ---------------- ------------------
concurrent iterators 2 12 peer/static
concurrent evaluations 2 6 peer/static
concurrent analyses 3 2 peer/static
multiprocessor analysis 2 N/A N/A

Total parallelism levels = 4
-----------------------------------------------------------------------------

18.6.4.3 Example 5

As a final example, consider a multi-start optimization conducted on 384 processors of ASCI Red. A job of this
size must be submitted to the batch queue, using syntax similar to:

qsub -q snl -lP 384 -lT 6:00:00 run_dakota

where the run dakota script appears as

#!/bin/sh
cd /scratch/<some_workdir>
yod -sz 384 dakota -i dakota.in > dakota.out

and the strategy and interface specifications from the dakota.in input file appear as

strategy,
multi_start
method_pointer = ’CPS’
iterator_servers = 8
random_starts = 8

interface,
direct,
analysis_drivers = ’text_book1’ ’text_book2’ ’text_book3’
evaluation_servers = 8
evaluation_static_scheduling
processors_per_analysis = 2

The resulting parallel configuration is reported as
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-----------------------------------------------------------------------------
DAKOTA parallel configuration:

Level num_servers procs_per_server partition/schedule
----- ----------- ---------------- ------------------
concurrent iterators 8 48 peer/static
concurrent evaluations 8 6 peer/static
concurrent analyses 3 2 peer/static
multiprocessor analysis 2 N/A N/A

Total parallelism levels = 4
-----------------------------------------------------------------------------

Since the concurrency at each of the nested levels has a multiplicative effect on the number of processors that can
be utilized, it is easy to see how large numbers of processors can be put to effective use in reducing the time to
reach a solution, even when, as in this example, the concurrency per level is relatively low.

18.7 Application Parallelism Use Cases

This section describes several common use cases for running DAKOTA on parallel computing clusters with var-
ious combinations of DAKOTA and application parallelism. In three of the four cases addressed, the application
launched by DAKOTA is assumed MPI-enabled and run as an independent parallel process. For demonstration
purposes, the following characteristics are shared among the usage examples:

• DAKOTA performs a vector parameter study requiring 20 model evaluations (application runs).

• For each evaluation, DAKOTA uses a fork simulation interface to call a shell script text book par driver
or text book driver to launch the application. This script is a stand-in for a typical DAKOTA-
application black box interface (as described in Chapter 17.1), and includes mock application input prepa-
ration, execution, and postprocessing to return necessary metrics to DAKOTA.

• The application executed is a modified version of the text book example driver, text book simple par,
capable of parallel execution, or the standard text book driver for serial demonstration.

The combinations of DAKOTA and application parallelism are summarized in Table 18.2. In each case,M denotes
the total number of processors allocated and N denotes the number of processors used by a single application
analysis. For most scenarios, Cases 1–3, where DAKOTA and the application jobs run within a single cluster
processor allocation (queued job), are preferred. However for particularly long-running or large jobs, or platforms
that not supporting the first scheduling modes, Case 4 may be most appropriate.

Relevant example files for each case are included in directories Dakota/examples/parallelism/Case*
with the DAKOTA distribution. These typically include a PBS or SLURM job submission script to launch the
DAKOTA study, a DAKOTA input file, and a driver script.

18.7.1 Case 1: Multiple serial analysis jobs

In this case, DAKOTA will launch multiple simultaneous single processor application runs (massively serial
analysis code execution, an embarrassingly parallel model). DAKOTA is run in parallel, making this example
an elaboration of the message-passing single-level parallel mode described in Section 18.2. Specifically in this
example, DAKOTA is run in parallel with M = 6 processors (pbs submission):
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Table 18.2: Cases for DAKOTA and application-level parallelism with M available processors and each applica-
tion job requiring N processors. Cases 1–3 assume that DAKOTA and any application runs will execute wholly
within a single scheduled job, whereas Case 4 is relevant when analysis jobs must be individually submitted to a
scheduler.

Case DAKOTA Application Notes
1 parallel serial M − 1 (or M ) simultaneous application instances each N = 1 processor
2 serial parallel 1 simultaneous application instance on N processors
3 serial parallel ≈ (M − 1)/N or ≈M/N simultaneous N processor jobs
4 serial parallel submit expensive N processor application jobs to a scheduler (e.g., qsub)

mpiexec -n 6 dakota dakota_pstudy.in

and its default master-slave schedule will launch M − 1 simultaneous analysis jobs, and as each job completes,
another will be launched, until all jobs are complete. Several options are possible in this case:

• If the possible DAKOTA application concurrency equals M , DAKOTA will use a peer-to-peer scheduler,
and run the M jobs concurrently. When the possible concurrency is greater than M , DAKOTA will by
default launch M − 1 jobs with a master-slave model. Specifying static schedule in the DAKOTA
input, will override the default master-slave scheduler and DAKOTA will launch M jobs, but jobs will be
launched blocking, so all M will complete, then another M will be scheduled.

• If the analysis is extremely inexpensive, performance may be improved by launching multiple evaluation
jobs local to each DAKOTA MPI process, specifying

asynchronous evaluation_concurrency = [2 or more]

• It is also possible to launch only one DAKOTA process per node, and then use either asynchronous lo-
cal as above, or launch the application in parallel using only the local processors (shared-memory MPI
parallelism):

mpiexec -pernode -n 3 dakota dakota_pstudy.in

Caveat: This example assumes the application is capable of serial execution (does not call MPI Init), which on
some platforms or MPI implementations is not equivalent to mpiexec -n 1. Some MPI/scheduler combina-
tions will not permit another MPI process to run on a resource assigned to the DAKOTA processes.

18.7.2 Case 2: One simultaneous parallel analysis job

This case is relevant for multi-processor analysis jobs, typically where the analysis is expensive (i.e., is long-
running or sufficient processors are not available to run more than one simultaneous analysis). Note that for
extremely long-running parallel jobs, Case 4 below may be more appropriate.

In this case, DAKOTA runs in serial

dakota dakota_pstudy.in

and the driver script launches the application with mpiexec -n K, where K ≤ M , to launch the application
code within the processor allocation:

mpiexec -n 6 text_book_par application.in application.out
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18.7.3 Case 3: Multiple simultaneous parallel analysis jobs

In this “job tiling” case, a single scheduled processor allocation is partitioned to run ≈ (M − 1)/N or ≈ M/N
parallel application jobs, each requiring N processors. We describe two current ways to accomplish this (though
other solutions exist): use option (a) if the application will work correctly in an MPICH/MVAPICH environment
and option (b) otherwise.

18.7.3.1 Mpiexec server mode

Mpiexec (http://www.osc.edu/ pw/mpiexec/) works in concert with MPICH implementations, extending mpirun
to run jobs in a PBS environment with additional features. It offers a background server option which can be used
to tile multiple MPI jobs within a single parallel resource allocation. (Note that with MPICH, there is a difference
between mpirun and mpiexec, unlike with OpenMPI, where both are typically aliases for orterun.) See the
example in Case3 MPICH.

In this case, an mpiexec server process is started and backgrounded to service application requests for proces-
sors; DAKOTA runs in serial (pbs submission):

mpiexec -server &

dakota dakota_pstudy.in

and asynchronously launches M/N = 3 evaluations (dakota pstudy.in):

interface, application fork, asynchronous evaluation_concurrency = 3
analysis_driver = ’text_book_par_driver’

The simulator script calls mpiexec -n 2 to run the analysis in parallel and the mpiexec server assigns a subset
of the available processors to the particular MPI task (text book par):

mpiexec -n 2 text_book_simple_par application.in application.out

An error will result if more application tasks are launched than the processor allocation permits. An error may
result if the application does not exit cleanly. At present similar capability is not supported by OpenMPI, although
a daemon mode similar to Mpiexec has been proposed.

18.7.3.2 Relative node scheduling

This Case 3 variant uses OpenMPI 1.3.3 or newer or SLURM srun relative node scheduling capability. It leverages
DAKOTA’s local evaluation static scheduling option together with integer arithmetic to schedule
each evaluation on the right subset of the processor allocation. For examples, see Case3 MPICH (srun variant)
and Case3 OpenMPI.

18.7.3.3 Machinefile management

This Case 3 variant applies when the application must be compiled with OpenMPI or another MPI implemen-
tation that does not support a server mode for job tiling, but does support the use of machine files specifying
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the resources on which to run the application job. A set of scripts are used to manage the partitioning of the
M processor allocation among N analysis jobs, each with a machines file consisting of a unique subset of the
assigned resources. Note that this will not work with early OpenMPI versions with some resource managers (e.g.,
OpenMPI 1.2 with Torque), where machinefiles, even if a proper subset of $PBS NODEFILE, are ignored. This
will however work with OpenMPI 1.3 and newer. See the example in Case3 MachinefileMgmt.

In this case the pbs submission script defines variables specifying how to create a separate node file for each
job and sets up a set of nodefiles for use by each evaluation. Similarly to Case 3a, DAKOTA runs in serial and uses
asynchronous evaluation concurrency to launch the jobs. The text book par driver now contains logic to
lock a node file for the application run and return it when complete. As each job completes, the next is scheduled.

18.7.4 Case 4: Parallel analysis jobs submitted to a queue

This case describes running DAKOTA to submit parallel jobs to a batch queue. This option is likely only useful
when the cost of an individual analysis evaluation is high (such that the job requires far too many processors or
hours to run all the evaluations) and there is no feedback to DAKOTA required to generate subsequent evalua-
tion points. So this scenario is likely more relevant for sensitivity analysis and uncertainty quantification than
optimization.

In the first pass, DAKOTA runs (likely interactively) in serial on a login node or other node capable of job
submission:

dakota dakota_pstudy.in

For each evaluation, the simulator script (text book par driver) will generate a pbs submission script
and submit it to the scheduler. Dummy results are returned to DAKOTA which will exit when all jobs have been
scheduled.

In the second pass, when analysis is complete, the analysis driver is changed to post process and DAKOTA
is executed on a login node to collect the results of the study.
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DAKOTA Usage Guidelines

19.1 Problem Exploration

The first objective in an analysis is to characterize the problem so that appropriate algorithms can be chosen. In
the case of optimization, typical questions that should be addressed include: Are the design variables continuous,
discrete, or mixed? Is the problem constrained or unconstrained? How expensive are the response functions to
evaluate? Will the response functions behave smoothly as the design variables change or will there be nonsmooth-
ness and/or discontinuities? Are the response functions likely to be multimodal, such that global optimization may
be warranted? Is analytic gradient data available, and if not, can I calculate gradients accurately and cheaply? Ad-
ditional questions that are pertinent for characterization of uncertainty quantification problems include: Can I
accurately model the probabilistic distributions of my uncertain variables? Are the response functions relatively
linear? Am I interested in a full random process characterization of the response functions, or just statistical
results?

If there is not sufficient information from the problem description to answer these questions, then additional prob-
lem characterization activities may be warranted. One particularly useful characterization activity that DAKOTA
enables is parameter space exploration through the use of parameter studies and design of experiments methods.
The parameter space can be systematically interrogated to create sufficient information to evaluate the trends in
the response functions and to determine if these trends are noisy or smooth, unimodal or multimodal, relatively
linear or highly nonlinear, etc. In addition, the parameter studies may reveal that one or more of the parameters
do not significantly affect the results and can be removed from the problem formulation. This can yield a poten-
tially large savings in computational expense for the subsequent studies. Refer to Chapters 4 and 5 for additional
information on parameter studies and design of experiments methods.

19.2 Optimization Method Selection

In selecting an optimization method, important considerations include the type of variables in the problem (contin-
uous, discrete, mixed), whether a global search is needed or a local search is sufficient, and the required constraint
support (unconstrained, bound constrained, or generally constrained). Less obvious, but equally important, con-
siderations include the efficiency of convergence to an optimum (i.e., convergence rate) and the robustness of the
method in the presence of challenging design space features (e.g., nonsmoothness).

Gradient-based optimization methods are highly efficient, with the best convergence rates of all of the optimization
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methods. If analytic gradient and Hessian information can be provided by an application code, a full Newton
method will provide quadratic convergence rates near the solution. More commonly, only gradient information
is available and a quasi-Newton method is chosen in which the Hessian information is approximated from an
accumulation of gradient data. In this case, superlinear convergence rates can be obtained. These characteristics
make gradient-based optimization methods the methods of choice when the problem is smooth, unimodal, and
well-behaved. However, when the problem exhibits nonsmooth, discontinuous, or multimodal behavior, these
methods can also be the least robust since inaccurate gradients will lead to bad search directions, failed line
searches, and early termination, and the presence of multiple minima will be missed.

Thus, for gradient-based optimization, a critical factor is the gradient accuracy. Analytic gradients are ideal,
but are often unavailable. For many engineering applications, a finite difference method will be used by the
optimization algorithm to estimate gradient values. DAKOTA allows the user to select the step size for these
calculations, as well as choose between forward-difference and central-difference algorithms. The finite difference
step size should be selected as small as possible, to allow for local accuracy and convergence, but not so small that
the steps are “in the noise.” This requires an assessment of the local smoothness of the response functions using,
for example, a parameter study method. Central differencing, in general, will produce more reliable gradients
than forward differencing, but at roughly twice the expense.

Nongradient-based methods exhibit much slower convergence rates for finding an optimum, and as a result, tend
to be much more computationally demanding than gradient-based methods. Nongradient local optimization meth-
ods, such as pattern search algorithms, often require from several hundred to a thousand or more function eval-
uations, depending on the number of variables, and nongradient global optimization methods such as genetic
algorithms may require from thousands to tens-of-thousands of function evaluations. Clearly, for nongradient op-
timization studies, the computational cost of the function evaluation must be relatively small in order to obtain an
optimal solution in a reasonable amount of time. In addition, nonlinear constraint support in nongradient methods
is an open area of research and, while supported by many nongradient methods in DAKOTA, is not as refined
as constraint support in gradient-based methods. However, nongradient methods can be more robust and more
inherently parallel than gradient-based approaches. They can be applied in situations were gradient calculations
are too expensive or unreliable. In addition, some nongradient-based methods can be used for global optimization
which gradient-based techniques, by themselves, cannot. For these reasons, nongradient-based methods deserve
consideration when the problem may be nonsmooth, multimodal, or poorly behaved.

Approaches that seek to improve the effectiveness or efficiency of optimizers and least squares methods through
the use of surrogate models include the surrogate-based local, surrogate-based global, and efficient global meth-
ods. Chapter 9 provides further information on these approaches. The surrogate-based local approach (see Sec-
tion 9.2) brings the efficiency of gradient-based optimization/least squares methods to nonsmooth or poorly be-
haved problems by smoothing noisy or discontinuous response results with a data fit surrogate model (e.g., a
quadratic polynomial) and then minimizing on the smooth surrogate using efficient gradient-based techniques.
The surrogate-based global approach (see Section 9.3) similarly employs optimizers/least squares methods with
surrogate models, but rather than localizing through the use of trust regions, seeks global solutions using global
methods. And the efficient global approach (see Section 9.4) uses the specific combination of Gaussian process
surrogate models in combination with the DIRECT global optimizer. Similar to these surrogate-based approaches,
the hybrid and multistart optimization strategies seek to bring the efficiency of gradient-based optimization meth-
ods to global optimization problems. In the former case, a global optimization method can be used for a few
cycles to locate promising regions and then local gradient-based optimization is used to efficiently converge on
one or more optima. In the latter case, a stratification technique is used to disperse a series of local gradient-based
optimization runs through parameter space. Without surrogate data smoothing, however, these strategies are best
for smooth multimodal problems. Section 10.2 and Section 10.3 provide more information on these approaches.

Table 19.1 provides a convenient reference for choosing an optimization method or strategy to match the charac-
teristics of the user’s problem, where blank fields inherit the value from above. With respect to constraint support,
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it should be understood that the methods with more advanced constraint support are also applicable to the lower
constraint support levels; they are listed only at their highest level of constraint support for brevity.

19.3 UQ Method Selection

The need for computationally efficient methods is further amplified in the case of the quantification of uncertainty
in computational simulations. Sampling-based methods are the most robust uncertainty techniques available,
are applicable to almost all simulations, and possess rigorous error bounds; consequently, they should be used
whenever the function is relatively inexpensive to compute. However, in the case of terascale computational sim-
ulations, the number of function evaluations required by traditional techniques such as Monte Carlo and Latin hy-
percube sampling (LHS) quickly becomes prohibitive, especially if tail statistics are needed. Additional sampling
options include quasi-Monte Carlo (QMC) sampling and importance sampling (IS), and incremental sampling
may also be used to incrementally add samples to an existing sample set.

Alternatively, one can apply the traditional sampling techniques to a surrogate function approximating the ex-
pensive computational simulation (see Section 11.6.3). However, if this approach is selected, the user should be
aware that it is very difficult to assess the accuracy of the results obtained. Unlike the case of surrogate-based
local minimization (see Section 9.2), there is no simple pointwise calculation to verify the accuracy of the approx-
imate results. This is due to the functional nature of uncertainty quantification, i.e. the accuracy of the surrogate
over the entire parameter space needs to be considered, not just around a candidate optimum as in the case of
surrogate-based local. This issue especially manifests itself when trying to estimate low probability events such
as the catastrophic failure of a system.

Another class of UQ methods known as local reliability methods (e.g., MV, AMV/AMV2, AMV+/AMV2+,
TANA, and FORM/SORM) are more computationally efficient in general than the sampling methods and are
effective when applied to reasonably well-behaved response functions; i.e., functions that are smooth, unimodal,
and linear or mildly nonlinear. They can be used to provide qualitative sensitivity information concerning which
uncertain variables are important (with relatively few function evaluations), or compute full cumulative or com-
plementary cumulative response functions (with additional computational effort). Since they rely on gradient
calculations to compute local optima (most probable points of failure), they scale well for increasing numbers
of random variables, but issues with nonsmooth, discontinuous, and multimodal response functions are relevant
concerns. In addition, even if there is a single MPP and it is calculated accurately, first-order and second-order
integrations may fail to accurately capture the shape of the failure domain. In these cases, adaptive importance
sampling around the MPP can be helpful. Overall, local reliability methods should be used with some care and
their accuracy should be verified whenever possible.

An effective alternative to local reliability analysis when confronted with nonsmooth, multimodal, and/or highly
nonlinear response functions is efficient global reliability analysis (EGRA). This technique employs Gaussian
process global surrogate models to accurately resolve the failure domain and then employs multimodal adaptive
importance sampling to resolve the probabilities. For relatively low dimensional problems (i.e, on the order
of 10 variables), this method displays the efficiency of local reliability analysis with the accuracy of exhaustive
sampling. While extremely promising, this method is still relatively new and is the subject of ongoing refinements
as we deploy it to additional applications.

The next class of UQ methods available in DAKOTA is comprised of stochastic expansion methods (polynomial
chaos and stochastic collocation), which are general purpose techniques provided that the response functions pos-
sess finite second order moments. Further, these methods approximate the full random process/field and capture
the underlying functional relationship between a key response metric and its random variables, rather than just ap-
proximating statistics such as mean and standard deviation. This class of methods parallels traditional variational
methods in mechanics; in that vein, efforts are underway to compute rigorous error bounds of the approximations
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Table 19.1: Guidelines for optimization and nonlinear least squares method selection.

Variable Function Solution Constraints Applicable Methods
Type Surface Type

continuous smooth local opt none optpp cg
bounds dot bfgs, dot frcg, conmin frcg
general npsol sqp, nlpql sqp, dot mmfd, dot slp,

dot sqp, conmin mfd, optpp newton,
optpp q newton, optpp fd newton

local least sq bounds nl2sol
general nlssol sqp, optpp g newton

local multiobjective general weighted sums (one soln),
pareto set strategy (multiple solns)

global opt general hybrid strategy, multi start strategy
global least sq general hybrid strategy, multi start strategy

nonsmooth local opt bounds optpp pds
general asynch pattern search, coliny cobyla,

coliny pattern search, coliny solis wets
local/global opt general surrogate based local

local/global least sq general surrogate based local
global opt bounds ncsu direct

general coliny ea, coliny direct, efficient global,
soga, surrogate based global

global least sq general efficient global, surrogate based global
global multiobjective general moga (multiple solns)

discrete n/a global opt general soga, coliny ea
categorical

global multiobjective general moga (multiple solns)
discrete n/a local opt general branch and bound strategy

noncategorical
mixed nonsmooth global opt general soga, coliny ea

categorical
global multiobjective general moga (multiple solns)

mixed smooth local opt general branch and bound strategy
noncategorical
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Table 19.2: Guidelines for UQ method selection.

Method Desired Problem Applicable Methods
Classification Characteristics

Sampling nonsmooth, multimodal response functions; nond sampling (Monte Carlo or LHS)
response evaluations are relatively inexpensive

Local smooth, unimodal response functions; nond local reliability (MV, AMV/AMV2,
reliability larger sets of random variables AMV+/AMV2+, TANA, FORM/SORM)

Global nonsmooth, multimodal response functions; nond global reliability
reliability low dimensional
Stochastic nonsmooth, multimodal response functions; nond polynomial chaos,
expansions low dimensional; capture of functional nond stoch collocation

form useful for subsequent analyses
Epistemic uncertainties are poorly characterized interval: nond local interval est,

nond global interval est, nond sampling;
BPA: nond local evidence,

nond global evidence
Mixed UQ some uncertainties are poorly characterized nested UQ (second-order probability,

mixed evidence) with epistemic outer loop
and aleatory inner loop, nond sampling

produced by the methods. Another strength of these methods is their potential use in a multiphysics environment
as a means to propagate the uncertainty through a series of simulations while retaining as much information as
possible at each stage of the analysis. The current challenge in the development of these methods, as for other
global surrogate-based methods, is effective scaling for large numbers of random variables. Recent advances in
adaptive sparse grid methods address some of the scaling issues for stochastic expansion.

The final class of UQ methods available in DAKOTA are focused on epistemic uncertainties, or uncertainties
resulting from a lack of knowledge. In these problems, the assignment of input probability distributions when
data is sparse can be somewhat suspect. One approach to handling epistemic uncertainties is Dempster-Shafer
theory of evidence (DAKOTA methods nond local evidence and nond global evidence). Another
method is pure interval analysis (nond local interval est and nond global interval est), where
intervals on inputs are mapped to intervals on outputs using optimization methods

For problems with a mixture of epistemic and aleatoric uncertainties, it is desirable to segregate the two uncertainty
types within a nested analysis, allowing stronger probabilistic inferences for the portion of the problem where
they are appropriate. In this nested approach, an outer epistemic level selects realizations of epistemic parameters
(augmented variables) and/or realizations of random variable distribution parameters (inserted variables) from in-
tervals. These realizations define the probability distributions for an inner aleatoric level performing probabilistic
analyses. In the case where the outer loop is an interval propagation approach (nond local interval est
or nond global interval est), the nested approach is known as second-order probability (see also Sec-
tion 11.5) and the study generates a family of CDF/CCDF respresentations known as a “horse tail” plot. In the case
where the outer loop is an evidence-based approach (nond local evidence or nond global evidence),
the approach generates epistemic belief and plausibility bounds on aleatory statistics.

The recommendations for UQ methods are summarized in Table 19.2.
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Table 19.3: Guidelines for selection of parameter study, DOE, DACE, and sampling methods.

Method Applications Applicable Methods
Classification

parameter study sensitivity analysis, centered parameter study,
directed parameter space list parameter study,

investigations multidim parameter study,
vector parameter study

classical design physical experiments dace (box behnken,
of experiments (parameters are central composite)

uniformly distributed)

design of computer variance analysis, dace (grid, random, oas, lhs, oa lhs),
experiments space filling designs fsu quasi mc (halton, hammersley),

(parameters are fsu cvt, psuade moat
uniformly distributed)

sampling space filling designs nond sampling (Monte Carlo or LHS)
(parameters have general with all variables flag
probability distributions)

19.4 Parameter Study/DOE/DACE/Sampling Method Selection

Parameter studies, classical design of experiments (DOE), design/analysis of computer experiments (DACE),
and sampling methods share the purpose of exploring the parameter space. If directed studies with a defined
structure are desired, then parameter study methods (see Chapter 4) are recommended. For example, a quick
assessment of the smoothness of a response function is best addressed with a vector or centered parameter study.
Also, performing local sensitivity analysis is best addressed with these methods. If, however, a global space-
filling set of samples is desired, then the DOE, DACE, and sampling methods are recommended (see Chapter 5).
These techniques are useful for scatter plot and variance analysis as well as surrogate model construction. The
distinction between DOE and DACE methods is that the former are intended for physical experiments containing
an element of nonrepeatability (and therefore tend to place samples at the extreme parameter vertices), whereas
the latter are intended for repeatable computer experiments and are more space-filling in nature. The distinction
between DOE/DACE and sampling is drawn based on the distributions of the parameters. DOE/DACE methods
typically assume uniform distributions, whereas the sampling approaches in DAKOTA support a broad range of
probability distributions. To use nond sampling in a design of experiments mode (as opposed to an uncertainty
quantification mode), the all variables flag should be included in the method specification of the DAKOTA
input file.

These method selection recommendations are summarized in Table 19.3.
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Chapter 20

Restart Capabilities and Utilities

20.1 Restart Management

DAKOTA was developed for solving problems that require multiple calls to computationally expensive simulation
codes. In some cases you may want to conduct the same optimization, but to a tighter final convergence tolerance.
This would be costly if the entire optimization analysis had to be repeated. Interruptions imposed by computer
usage policies, power outages, and system failures could also result in costly delays. However, DAKOTA auto-
matically records the variable and response data from all function evaluations so that new executions of DAKOTA
can pick up where previous executions left off.

The DAKOTA restart file (e.g., dakota.rst) is written in a portable binary format. The portability derives
from use of the XDR standard. As shown in Section 2.1.5, the primary restart commands for DAKOTA are
-read restart, -write restart, and -stop restart.

To write a restart file using a particular name, the -write restart command line input (may be abbreviated
as -w) is used:

dakota -i dakota.in -write_restart my_restart_file

If no -write restart specification is used, then DAKOTA will still write a restart file, but using the de-
fault name dakota.rst instead of a user-specified name. To turn restart recording off, the user may select
deactivate restart file in the interface specification (refer to the Interface Commands chapter in
the DAKOTA Reference Manual [3] for additional information). This can increase execution speed and reduce
disk storage requirements, but at the expense of a loss in the ability to recover and continue a run that terminates
prematurely. Obviously, this option is not recommended when function evaluations are costly or prone to failure.

To restart DAKOTA from a restart file, the -read restart command line input (may be abbreviated as -r) is
used:

dakota -i dakota.in -read_restart my_restart_file

If no -read restart specification is used, then DAKOTA will not read restart information from any file (i.e.,
the default is no restart processing).

If the -write restart and -read restart specifications identify the same file (including the case where
-write restart is not specified and -read restart identifies dakota.rst), then new evaluations will
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be appended to the existing restart file. If the -write restart and -read restart specifications identify
different files, then the evaluations read from the file identified by -read restart are first written to the
-write restart file. Any new evaluations are then appended to the -write restart file. In this way,
restart operations can be chained together indefinitely with the assurance that all of the relevant evaluations are
present in the latest restart file.

To read in only a portion of a restart file, the -stop restart control (may be abbreviated as -s) is used
to specify the number of entries to be read from the database. Note that this integer value corresponds to the
restart record processing counter (as can be seen when using the print utility; see Section 20.2.1 below), which
may differ from the evaluation numbers used in the previous run if, for example, any duplicates were detected
(since these duplicates are not recorded in the restart file). In the case of a -stop restart specification, it is
usually desirable to specify a new restart file using -write restart so as to remove the records of erroneous
or corrupted function evaluations. For example, to read in the first 50 evaluations from dakota.rst:

dakota -i dakota.in -r dakota.rst -s 50 -w dakota_new.rst

The dakota new.rst file will contain the 50 processed evaluations from dakota.rst as well as any new
evaluations. All evaluations following the 50th in dakota.rst have been removed from the latest restart record.

DAKOTA’s restart algorithm relies on its duplicate detection capabilities. Processing a restart file populates the
list of function evaluations that have been performed. Then, when the study is restarted, it is started from the
beginning (not a “warm” start) and many of the function evaluations requested by the iterator are intercepted
by the duplicate detection code. This approach has the primary advantage of restoring the complete state of
the iteration (including the ability to correctly detect subsequent duplicates) for all iterators and multi-iterator
strategies without the need for iterator-specific restart code. However, the possibility exists for numerical round-
off error to cause a divergence between the evaluations performed in the previous and restarted studies. This has
been extremely rare to date.

20.2 The DAKOTA Restart Utility

The DAKOTA restart utility program provides a variety of facilities for managing restart files from DAKOTA
executions. The executable program name is dakota restart util and it has the following options, as
shown by the usage message returned when executing the utility without any options:

Usage: "dakota_restart_util print <restart_file>"
"dakota_restart_util to_neutral <restart_file> <neutral_file>"
"dakota_restart_util from_neutral <neutral_file> <restart_file>"
"dakota_restart_util to_pdb <restart_file> <pdb_file>"
"dakota_restart_util to_tabular <restart_file> <text_file>"
"dakota_restart_util remove <double> <old_restart_file>

<new_restart_file>"
"dakota_restart_util remove_ids <int_1> ... <int_n> <old_restart_file>

<new_restart_file>"
"dakota_restart_util cat <restart_file_1> ... <restart_file_n>

<new_restart_file>"

Several of these functions involve format conversions. In particular, the binary format used for restart files can
be converted to ASCII text and printed to the screen, converted to and from a neutral file format, converted to a
PDB format for use at Lawrence Livermore National Laboratory, or converted to a tabular format for importing
into 3rd-party graphics programs. In addition, a restart file with corrupted data can be repaired by value or id, and
multiple restart files can be combined to create a master database.
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20.2.1 Print

The print option is quite useful for interrogating the contents of a particular restart file, since the binary format
is not convenient for direct inspection. The restart data is printed in full precision, so that exact matching of points
is possible for restarted runs or corrupted data removals. For example, the following command

dakota_restart_util print dakota.rst

results in output similar to the following (from the Dakota/test/dakota cyl head.in example problem):

------------------------------------------
Restart record 1 (evaluation id 1):
------------------------------------------
Parameters:

1.8000000000000000e+00 intake_dia
1.0000000000000000e+00 flatness

Active response data:
Active set vector = { 3 3 3 3 }

-2.4355973813420619e+00 obj_fn
-4.7428486677140930e-01 nln_ineq_con_1
-4.5000000000000001e-01 nln_ineq_con_2
1.3971143170299741e-01 nln_ineq_con_3

[ -4.3644298963447897e-01 1.4999999999999999e-01 ] obj_fn gradient
[ 1.3855136437818300e-01 0.0000000000000000e+00 ] nln_ineq_con_1 gradient
[ 0.0000000000000000e+00 1.4999999999999999e-01 ] nln_ineq_con_2 gradient
[ 0.0000000000000000e+00 -1.9485571585149869e-01 ] nln_ineq_con_3 gradient

------------------------------------------
Restart record 2 (evaluation id 2):
------------------------------------------
Parameters:

2.1640000000000001e+00 intake_dia
1.7169994018008317e+00 flatness

Active response data:
Active set vector = { 3 3 3 3 }

-2.4869127192988878e+00 obj_fn
6.9256958799989843e-01 nln_ineq_con_1
-3.4245008972987528e-01 nln_ineq_con_2
8.7142207937157910e-03 nln_ineq_con_3

[ -4.3644298963447897e-01 1.4999999999999999e-01 ] obj_fn gradient
[ 2.9814239699997572e+01 0.0000000000000000e+00 ] nln_ineq_con_1 gradient
[ 0.0000000000000000e+00 1.4999999999999999e-01 ] nln_ineq_con_2 gradient
[ 0.0000000000000000e+00 -1.6998301774282701e-01 ] nln_ineq_con_3 gradient

...<snip>...

Restart file processing completed: 11 evaluations retrieved.

20.2.2 To/From Neutral File Format

A DAKOTA restart file can be converted to a neutral file format using a command like the following:
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dakota_restart_util to_neutral dakota.rst dakota.neu

which results in a report similar to the following:

Writing neutral file dakota.neu
Restart file processing completed: 11 evaluations retrieved.

Similarly, a neutral file can be returned to binary format using a command like the following:

dakota_restart_util from_neutral dakota.neu dakota.rst

which results in a report similar to the following:

Reading neutral file dakota.neu
Writing new restart file dakota.rst
Neutral file processing completed: 11 evaluations retrieved.

The contents of the generated neutral file are similar to the following (from the first two records for the
Dakota/test/dakota cyl head.in example problem):

6 7 2 1.8000000000000000e+00 intake_dia 1.0000000000000000e+00 flatness 0 0 0 0
NULL 4 2 1 0 3 3 3 3 1 2 obj_fn nln_ineq_con_1 nln_ineq_con_2 nln_ineq_con_3
-2.4355973813420619e+00 -4.7428486677140930e-01 -4.5000000000000001e-01
1.3971143170299741e-01 -4.3644298963447897e-01 1.4999999999999999e-01
1.3855136437818300e-01 0.0000000000000000e+00 0.0000000000000000e+00
1.4999999999999999e-01 0.0000000000000000e+00 -1.9485571585149869e-01 1

6 7 2 2.1640000000000001e+00 intake_dia 1.7169994018008317e+00 flatness 0 0 0 0
NULL 4 2 1 0 3 3 3 3 1 2 obj_fn nln_ineq_con_1 nln_ineq_con_2 nln_ineq_con_3
-2.4869127192988878e+00 6.9256958799989843e-01 -3.4245008972987528e-01
8.7142207937157910e-03 -4.3644298963447897e-01 1.4999999999999999e-01
2.9814239699997572e+01 0.0000000000000000e+00 0.0000000000000000e+00
1.4999999999999999e-01 0.0000000000000000e+00 -1.6998301774282701e-01 2

This format is not intended for direct viewing (print should be used for this purpose). Rather, the neutral file
capability has been used in the past for managing portability of restart data across platforms (recent use of the
XDR standard for portable binary formats has eliminated this need) or for advanced repair of restart records (in
cases where the techniques of Section 20.2.5 were insufficient).

20.2.3 To Tabular Format

Conversion of a binary restart file to a tabular format enables convenient import of this data into 3rd-party post-
processing tools such as Matlab, TECplot, Excel, etc. This facility is nearly identical to the tabular graphics data
option in the DAKOTA input file specification (described in Section 16.3), but with two important differences:

1. No function evaluations are suppressed as they are with tabular graphics data (i.e., any internal
finite difference evaluations are included).

2. The conversion can be performed posthumously, i.e., for DAKOTA runs executed previously.

An example command for converting a restart file to tabular format is:
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dakota_restart_util to_tabular dakota.rst dakota.m

which results in a report similar to the following:

Writing tabular text file dakota.m
Restart file processing completed: 10 evaluations tabulated.

The contents of the generated tabular file are similar to the following (from the
Dakota/test/dakota textbook.in example problem). Note that, while evaluations resulting from nu-
merical derivative offsets would be reported (as described above), derivatives returned as part of the evaluations
are not reported (since they do not readily fit within a compact tabular format):

%eval_id x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 0.9 1.1 0.0002 0.26 0.76
2 0.6433962264 0.6962264151 0.0246865569 0.06584549662 0.1630331079
3 0.5310576935 0.5388046558 0.09360081618 0.01261994597 0.02478161031
4 0.612538853 0.6529854907 0.03703861037 0.04871110113 0.1201206246
5 0.5209215947 0.5259311717 0.1031862798 0.00839372202 0.01614279999
6 0.5661606434 0.5886684401 0.06405197568 0.02620365411 0.06345021064
7 0.5083873357 0.510239856 0.1159458957 0.003337755086 0.006151042802
8 0.5001577143 0.5001800249 0.1248312163 6.772666885e-05 0.0001012002012
9 0.5000000547 0.5000000598 0.1249999428 2.485652461e-08 3.238746073e-08
10 0.5 0.5 0.125 2.942091015e-15 3.60822483e-15

20.2.4 Concatenation of Multiple Restart Files

In some instances, it is useful to combine restart files into a single master function evaluation database. For
example, when constructing a data fit surrogate model, data from previous studies can be pulled in and reused to
create a combined data set for the surrogate fit. An example command for concatenating multiple restart files is:

dakota_restart_util cat dakota.rst.1 dakota.rst.2 dakota.rst.3 dakota.rst.all

which results in a report similar to the following:

Writing new restart file dakota.rst.all
dakota.rst.1 processing completed: 10 evaluations retrieved.
dakota.rst.2 processing completed: 110 evaluations retrieved.
dakota.rst.3 processing completed: 65 evaluations retrieved.

The dakota.rst.all database now contains 185 evaluations and can be read in for use in a subsequent
DAKOTA study using the -read restart option to the dakota executable (see Section 20.1).

20.2.5 Removal of Corrupted Data

On occasion, a simulation or computer system failure may cause a corruption of the DAKOTA restart file. For
example, a simulation crash may result in failure of a post-processor to retrieve meaningful data. If 0’s (or other
erroneous data) are returned from the user’s analysis driver, then this bad data will get recorded in the
restart file. If there is a clear demarcation of where corruption initiated (typical in a process with feedback, such
as gradient-based optimization), then use of the -stop restart option for the dakota executable can be
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effective in continuing the study from the point immediately prior to the introduction of bad data. If, however,
there are interspersed corruptions throughout the restart database (typical in a process without feedback, such as
sampling), then the remove and remove ids options of dakota restart util can be useful.

An example of the command syntax for the remove option is:

dakota_restart_util remove 2.e-04 dakota.rst dakota.rst.repaired

which results in a report similar to the following:

Writing new restart file dakota.rst.repaired
Restart repair completed: 65 evaluations retrieved, 2 removed, 63 saved.

where any evaluations in dakota.rst having an active response function value that matches 2.e-04 within
machine precision are discarded when creating dakota.rst.repaired.

An example of the command syntax for the remove ids option is:

dakota_restart_util remove_ids 12 15 23 44 57 dakota.rst dakota.rst.repaired

which results in a report similar to the following:

Writing new restart file dakota.rst.repaired
Restart repair completed: 65 evaluations retrieved, 5 removed, 60 saved.

where evaluation ids 12, 15, 23, 44, and 57 have been discarded when creating dakota.rst.repaired.
An important detail is that, unlike the -stop restart option which operates on restart record numbers (see
Section 20.1)), the remove ids option operates on evaluation ids. Thus, removal is not necessarily based on the
order of appearance in the restart file. This distinction is important when removing restart records for a run that
contained either asynchronous or duplicate evaluations, since the restart insertion order and evaluation ids may not
correspond in these cases (asynchronous evaluations have ids assigned in the order of job creation but are inserted
in the restart file in the order of job completion, and duplicate evaluations are not recorded which introduces offsets
between evaluation id and record number). This can also be important if removing records from a concatenated
restart file, since the same evaluation id could appear more than once. In this case, all evaluation records with ids
matching the remove ids list will be removed.

If neither of these removal options is sufficient to handle a particular restart repair need, then the fallback position
is to resort to direct editing of a neutral file (refer to Section 20.2.2) to perform the necessary modifications.
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Simulation Failure Capturing

DAKOTA provides the capability to manage failures in simulation codes within its system call, fork, and direct
simulation interfaces (see Section 13.3 for simulation interface descriptions). Failure capturing consists of three
operations: failure detection, failure communication, and failure mitigation.

21.1 Failure detection

Since the symptoms of a simulation failure are highly code and application dependent, it is the user’s responsi-
bility to detect failures within their analysis driver, input filter, or output filter. One popular
example of simulation monitoring is to rely on a simulation’s internal detection of errors. In this case, the UNIX
grep utility can be used within a user’s driver/filter script to detect strings in output files which indicate analysis
failure. For example, the following simple C shell script excerpt

grep ERROR analysis.out > /dev/null
if ( $status == 0 )

echo "FAIL" > results.out
endif

will pass the if test and communicate simulation failure to DAKOTA if the grep command finds the string
ERROR anywhere in the analysis.out file. The /dev/null device file is called the “bit bucket” and the
grep command output is discarded by redirecting it to this destination. The $status shell variable contains
the exit status of the last command executed [7], which is the exit status of grep in this case (0 if successful
in finding the error string, nonzero otherwise). For Bourne shells [13], the $? shell variable serves the same
purpose as $status for C shells. In a related approach, if the return code from a simulation can be used directly
for failure detection purposes, then $status or $? could be queried immediately following the simulation
execution using an if test like that shown above.

If the simulation code is not returning error codes or providing direct error diagnostic information, then failure
detection may require monitoring of simulation results for sanity (e.g., is the mesh distorting excessively?) or
potentially monitoring for continued process existence to detect a simulation segmentation fault or core dump.
While this can get complicated, the flexibility of DAKOTA’s interfaces allows for a wide variety of user-defined
monitoring approaches.
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21.2 Failure communication

Once a failure is detected, it must be communicated so that DAKOTA can take the appropriate corrective action.
The form of this communication depends on the type of simulation interface in use.

In the system call and fork simulation interfaces, a detected simulation failure is communicated to DAKOTA
through the results file. Instead of returning the standard results file data, the string “fail” should appear at the
beginning of the results file. Any data appearing after the fail string will be ignored. Also, DAKOTA’s detection
of this string is case insensitive, so “FAIL”, “Fail”, etc., are equally valid.

In the direct simulation interface case, a detected simulation failure is communicated to DAKOTA through the
return code provided by the user’s analysis driver, input filter, or output filter. As shown in
Section 17.2.1, the prototype for simulations linked within the direct interface includes an integer return code.
This code has the following meanings: zero (false) indicates that all is normal and nonzero (true) indicates an
exception (i.e., a simulation failure).

21.3 Failure mitigation

Once the analysis failure has been communicated, DAKOTA will attempt to recover from the failure using one of
the following four mechanisms, as governed by the interface specification in the user’s input file (see the Interface
Commands chapter in the DAKOTA Reference Manual [3] for additional information).

21.3.1 Abort (default)

If the abort option is active (the default), then DAKOTA will terminate upon detecting a failure. Note that if
the problem causing the failure can be corrected, DAKOTA’s restart capability (see Chapter 20) can be used to
continue the study.

21.3.2 Retry

If the retry option is specified, then DAKOTA will re-invoke the failed simulation up to the specified number
of retries. If the simulation continues to fail on each of these retries, DAKOTA will terminate. The retry option is
appropriate for those cases in which simulation failures may be resulting from transient computing environment
issues, such as shared disk space, software license access, or networking problems.

21.3.3 Recover

If the recover option is specified, then DAKOTA will not attempt the failed simulation again. Rather, it will
return a “dummy” set of function values as the results of the function evaluation. The dummy function values to
be returned are specified by the user. Any gradient or Hessian data requested in the active set vector will be zero.
This option is appropriate for those cases in which a failed simulation may indicate a region of the design space
to be avoided and the dummy values can be used to return a large objective function or constraint violation which
will discourage an optimizer from further investigating the region.
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21.3.4 Continuation

If the continuation option is specified, then DAKOTA will attempt to step towards the failing “target” simula-
tion from a nearby “source” simulation through the use of a continuation algorithm. This option is appropriate for
those cases in which a failed simulation may be caused by an inadequate initial guess. If the “distance” between
the source and target can be divided into smaller steps in which information from one step provides an adequate
initial guess for the next step, then the continuation method can step towards the target in increments sufficiently
small to allow for convergence of the simulations.

When the failure occurs, the interval between the last successful evaluation (the source point) and the current
target point is halved and the evaluation is retried. This halving is repeated until a successful evaluation occurs.
The algorithm then marches towards the target point using the last interval as a step size. If a failure occurs while
marching forward, the interval will be halved again. Each invocation of the continuation algorithm is allowed
a total of ten failures (ten halvings result in up to 1024 evaluations from source to target) prior to aborting the
DAKOTA process.

While DAKOTA manages the interval halving and function evaluation invocations, the user is responsible for
managing the initial guess for the simulation program. For example, in a GOMA input file [123], the user spec-
ifies the files to be used for reading initial guess data and writing solution data. When using the last successful
evaluation in the continuation algorithm, the translation of initial guess data can be accomplished by simply copy-
ing the solution data file leftover from the last evaluation to the initial guess file for the current evaluation (and
in fact this is useful for all evaluations, not just continuation). However, a more general approach would use the
closest successful evaluation (rather than the last successful evaluation) as the source point in the continuation
algorithm. This will be especially important for nonlocal methods (e.g., genetic algorithms) in which the last
successful evaluation may not necessarily be in the vicinity of the current evaluation. This approach will require
the user to save and manipulate previous solutions (likely tagged with evaluation number) so that the results from
a particular simulation (specified by DAKOTA after internal identification of the closest point) can be used as the
current simulation’s initial guess. This more general approach is not yet supported in DAKOTA.

21.4 Special values

In IEEE arithmetic, “NaN” indicates “not a number” and ±“Inf” or ±“Infinity” indicates positive or negative
infinity. These special values may be returned directly in function evaluation results from a simulation interface
or they may be specified in a user’s input file within the recover specification described in Section 21.3.3. There
is a key difference between these two cases. In the former case of direct simulation return, failure mitigation can
be managed on a per response function basis. When using recover, however, the failure applies to the complete
set of simulation results.

In both of these cases, the handling of NaN or Inf is managed using iterator-specific approaches. Currently,
nondeterministic sampling methods (see Section 6.2) and the NL2SOL method for nonlinear least squares (see
§8.2.3) are the only methods with special numerical exception handling: the sampling methods simply omit any
samples that are not finite from the statistics generation, and NL2SOL treats NaN or Infinity in a residual vector
(i.e., values in a results file for a function evaluation) computed for a trial step as an indication that the trial step
was too long and violates an unstated constraint; NL2SOL responds by trying a shorter step.
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Chapter 22

Additional Examples

This chapter contains additional examples of DAKOTA methods and verification test problems. While the test
problems and binary analysis drivers are principally managed in Dakota/test, many extracted input files are
also included in Dakota/examples/tutorial and Dakota/examples/methods for user convenience.

22.1 Textbook Example

Equation 2.3 presents the 2-dimensional form of the textbook problem. An extended formulation is stated as

minimize f =
n∑
i=1

(xi − 1)4

subject to g1 = x2
1 −

x2

2
≤ 0 (22.1)

g2 = x2
2 −

x1

2
≤ 0

0.5 ≤ x1 ≤ 5.8
−2.9 ≤ x2 ≤ 2.9

where n is the number of design variables. The objective function is designed to accommodate an arbitrary
number of design variables in order to allow flexible testing of a variety of data sets. Contour plots for the n = 2
case have been shown previously in Figure 2.2.

This example problem may also be used to exercise least squares solution methods by modifying the problem
formulation to:

minimize (f)2 + (g1)2 + (g2)2 (22.2)

This modification is performed by simply changing the responses specification for the three functions from
num objective functions = 1 and num nonlinear inequality constraints = 2 to
num least squares terms = 3. Note that the two problem formulations are not equivalent and have dif-
ferent solutions.

Another way to exercise the least squares methods which would be equivalent to the optimization formulation
would be to select the residual functions to be (xi − 1)2. However, this formulation requires modification to
Dakota/test/text book.C and will not be presented here. Equation 22.2, on the other hand, can use the
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existing text book.C without modification. Refer to Section 22.2 for an example of minimizing the same
objective function using both optimization and least squares approaches.

22.1.1 Methods

The dakota textbook.in file provided in the Dakota/examples/tutorial directory selects a
conmin mfd optimizer to perform constrained minimization using the text book simulator. Additional gradient-
based methods that can be used include methods from DOT, NPSOL, NLPQL, and OPT++. In addition the un-
constrained least squares formulation of Equation 22.2 can be solved using OPT++ Gauss-Newton, NLSSOL, and
NL2SOL methods.

A hybrid optimization can also be demonstrated on the text book problem. The dakota hybrid.in file
provided in Dakota/examples/methods starts with a coliny ea solution which feeds its best point into a
coliny pattern search optimization which feeds its best point into optpp newton. While this approach
is overkill for such a simple problem, it is useful for demonstrating the coordination between multiple methods in
the hybrid strategy.

In addition, Dakota/test/dakota textbook 3pc.in demonstrates the use of a 3-piece interface to per-
form the parameter to response mapping, and Dakota/test/dakota textbook lhs.in demonstrates the
use of Latin hypercube Monte Carlo sampling for assessing probability of failure as measured by specified re-
sponse levels.

22.1.2 Optimization Results

For the optimization problem given in Equation 22.1, the unconstrained solution
(num nonlinear inequality constraints set to zero) for two design variables is:

x1 = 1.0
x2 = 1.0

with

f∗ = 0.0

The solution for the optimization problem constrained by g1
(num nonlinear inequality constraints set to one) is:

x1 = 0.763
x2 = 1.16

with

f∗ = 0.00388
g∗1 = 0.0 (active)

The solution for the optimization problem constrained by g1 and g2
(num nonlinear inequality constraints set to two) is:

x1 = 0.500
x2 = 0.500
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with

f∗ = 0.125
g∗1 = 0.0 (active)
g∗2 = 0.0 (active)

Note that as constraints are added, the design freedom is restricted (the additional constraints are active at the
solution) and an increase in the optimal objective function is observed.

22.1.3 Least Squares Results

The solution for the least squares problem given in Equation 22.2 is:

x1 = 0.566
x2 = 0.566

with the residual functions equal to

f∗ = 0.0713
g∗1 = 0.0371
g∗2 = 0.0371

and a minimal sum of the squares of 0.00783.

This study requires selection of num least squares terms = 3 in the responses specification and selection
of either optpp g newton, nlssol sqp, or nl2sol in the method specification.

22.2 Rosenbrock Example

The Rosenbrock function [60] is a well known benchmark problem for optimization algorithms. Its standard
two-dimensional formulation can be stated as

minimize f = 100(x2 − x2
1)

2 + (1− x1)2 (22.3)

Two n-dimensional formulations are present in the literature. First, [103] formulates an “extended Rosenbrock”
as:

f =
n/2∑
i=1

[
α(x2i − x2

2i−1)
2 + (1− x2i−1)2

]
(22.4)

Second, [121] formulates a “generalized Rosenbrock” as:

f =
n−1∑
i=1

[
100(xi+1 − x2

i )
2 + (1− xi)2

]
(22.5)

These formulations are not currently supported in DAKOTA’s system/fork/direct interfaces.

Surface and contour plots for this function have been shown previously in Figure 2.1. This example problem may
also be used to exercise least squares solution methods by recasting the problem formulation into:

minimize f = (f1)2 + (f2)2 (22.6)
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where

f1 = 10(x2 − x2
1) (22.7)

and

f2 = 1− x1 (22.8)

are residual terms. In this case (unlike the least squares modification in Section 22.1), the two problem formula-
tions are equivalent and have identical solutions.

22.2.1 Methods

In the Dakota/test directory, the rosenbrock executable (compiled from rosenbrock.C) checks the
number of response functions passed in the parameters file and returns either an objective function (as com-
puted from Equation 22.3) for use with optimization methods or two least squares terms (as computed from
Equations 22.7-22.8) for use with least squares methods. Both cases support analytic gradients of the func-
tion set with respect to the design variables. The dakota rosenbrock.in input file can be used to solve
both problems by toggling settings in the method and responses specifications. To run the optimization solu-
tion, select num objective functions = 1 in the responses specification, and select an optimizer (e.g.,
optpp q newton) in the method specification, e.g., as shown in
Dakota/examples/methods/dakota addtnl rosen opt.in:

method,
optpp_q_newton
convergence_tolerance = 1e-10

variables,
continuous_design = 2
initial_point -1.2 1.0
lower_bounds -2.0 -2.0
upper_bounds 2.0 2.0
descriptors ’x1’ ’x2’

interface,
system
analysis_driver = ’rosenbrock’

responses,
num_objective_functions = 1
analytic_gradients
no_hessians

To run the least squares solution, the responses specification is changed to num least squares terms =
2 and the method specification is changed to a least squares method, e.g., optpp g newton, as shown in
Dakota/examples/methods/dakota addtnl rosen ls.in:
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method,
optpp_g_newton
convergence_tolerance = 1e-10

variables,
continuous_design = 2
initial_point -1.2 1.0
lower_bounds -2.0 -2.0
upper_bounds 2.0 2.0
descriptors ’x1’ ’x2’

interface,
system
analysis_driver = ’rosenbrock’

responses,
num_least_squares_terms = 2
analytic_gradients
no_hessians

22.2.2 Results

The optimal solution, solved either as a least squares problem or an optimization problem, is:

x1 = 1.0
x2 = 1.0

with

f∗ = 0.0

In comparing the two approaches, one would expect the Gauss-Newton approach to be more efficient since
it exploits the special-structure of a least squares objective function and, in this problem, the Gauss-Newton
Hessian is a good approximation since the least squares residuals are zero at the solution. From a good initial
guess, this expected behavior is clearly demonstrated. Starting from cdv initial point = 0.8, 0.7, the
optpp g newton method converges in only 3 function and gradient evaluations while the optpp q newton
method requires 27 function and gradient evaluations to achieve similar accuracy. Starting from a poorer initial
guess (e.g., cdv initial point = -1.2, 1.0), the trend is less obvious since both methods spend several
evaluations finding the vicinity of the minimum (total function and gradient evaluations = 45 for optpp q newton
and 29 for optpp g newton). However, once the vicinity is located and the Hessian approximation becomes
accurate, convergence is much more rapid with the Gauss-Newton approach.

Shown below is the complete DAKOTA version 4.2 output for the optpp g newton method starting from
cdv initial point = 0.8, 0.7:

Running MPI executable in serial mode.
DAKOTA version 4.2 released 11/05/2008.
Constructing Single Method Strategy...
Writing new restart file dakota.rst
methodName = optpp_g_newton
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gradientType = analytic
hessianType = none

>>>>> Running Single Method Strategy.

>>>>> Running optpp_g_newton iterator.

------------------------------
Begin Function Evaluation 1
------------------------------
Parameters for function evaluation 1:

8.0000000000e-01 x1
7.0000000000e-01 x2

(rosenbrock /tmp/fileZZrtxQ /tmp/file2iKA3U)

Active response data for function evaluation 1:
Active set vector = { 3 3 } Deriv vars vector = { 1 2 }

6.0000000000e-01 least_sq_term_1
2.0000000000e-01 least_sq_term_2

[ -1.6000000000e+01 1.0000000000e+01 ] least_sq_term_1 gradient
[ -1.0000000000e+00 0.0000000000e+00 ] least_sq_term_2 gradient

------------------------------
Begin Function Evaluation 2
------------------------------
Parameters for function evaluation 2:

9.9999528206e-01 x1
9.5999243139e-01 x2

(rosenbrock /tmp/fileb3UDCZ /tmp/file6nnHb4)

Active response data for function evaluation 2:
Active set vector = { 3 3 } Deriv vars vector = { 1 2 }

-3.9998132761e-01 least_sq_term_1
4.7179363810e-06 least_sq_term_2

[ -1.9999905641e+01 1.0000000000e+01 ] least_sq_term_1 gradient
[ -1.0000000000e+00 0.0000000000e+00 ] least_sq_term_2 gradient

------------------------------
Begin Function Evaluation 3
------------------------------
Parameters for function evaluation 3:

9.9999904377e-01 x1
9.9999808276e-01 x2

(rosenbrock /tmp/file12UjN8 /tmp/fileWSJWod)
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Active response data for function evaluation 3:
Active set vector = { 3 3 } Deriv vars vector = { 1 2 }

-4.7950734494e-08 least_sq_term_1
9.5622502239e-07 least_sq_term_2

[ -1.9999980875e+01 1.0000000000e+01 ] least_sq_term_1 gradient
[ -1.0000000000e+00 0.0000000000e+00 ] least_sq_term_2 gradient

<<<<< Iterator optpp_g_newton completed.

------------------------------
Begin Function Evaluation 4
------------------------------
Parameters for function evaluation 4:

9.9999904377e-01 x1
9.9999808276e-01 x2

Duplication detected: analysis_drivers not invoked.

Active response data retrieved from database:
Active set vector = { 2 2 } Deriv vars vector = { 1 2 }
[ -1.9999980875e+01 1.0000000000e+01 ] least_sq_term_1 gradient
[ -1.0000000000e+00 0.0000000000e+00 ] least_sq_term_2 gradient

<<<<< Function evaluation summary: 4 total (3 new, 1 duplicate)
<<<<< Best parameters =

9.9999904377e-01 x1
9.9999808276e-01 x2

<<<<< Best residual norm = 9.5742653315e-07; 0.5 * normˆ2 = 4.5833278319e-13
<<<<< Best residual terms =

-4.7950734494e-08
9.5622502239e-07

<<<<< Best data captured at function evaluation 3
Confidence Interval for x1 is [ 9.9998687852e-01, 1.0000112090e+00 ]
Confidence Interval for x2 is [ 9.9997372187e-01, 1.0000224436e+00 ]
<<<<< Single Method Strategy completed.
DAKOTA execution time in seconds:
Total CPU = 0.01 [parent = 0.008999, child = 0.001001]
Total wall clock = 0.039669

DAKOTA Version 5.0 User’s Manual generated on May 7, 2010



336 CHAPTER 22. ADDITIONAL EXAMPLES

22.3 Cylinder Head Example

The cylinder head example problem is stated as:

minimize f = −1
(
horsepower

250
+

warranty

100000

)
subject to σmax ≤ 0.5σyield (22.9)

warranty ≥ 100000
timecycle ≤ 60
1.5 ≤ dintake ≤ 2.164
0.0 ≤ flatness ≤ 4.0

This formulation seeks to simultaneously maximize normalized engine horsepower and engine warranty over
variables of valve intake diameter (dintake) in inches and overall head flatness (flatness) in thousandths of an
inch subject to inequality constraints that the maximum stress cannot exceed half of yield, that warranty must
be at least 100000 miles, and that manufacturing cycle time must be less than 60 seconds. Since the constraints
involve different scales, they should be nondimensionalized (note: the nonlinear constraint scaling described in
Section 7.3.2 can now do this automatically). In addition, they can be converted to the standard 1-sided form
g(x) ≤ 0 as follows:

g1 =
2σmax
σyield

− 1 ≤ 0

g2 = 1− warranty

100000
≤ 0 (22.10)

g3 =
timecycle

60
− 1 ≤ 0

The objective function and constraints are related analytically to the design variables according to the following
simple expressions:

warranty = 100000 + 15000(4− flatness)
timecycle = 45 + 4.5(4− flatness)1.5

horsepower = 250 + 200
(
dintake
1.833

− 1
)

(22.11)

σmax = 750 +
1

(twall)2.5

twall = offsetintake − offsetexhaust −
(dintake − dexhaust)

2

where the constants in Equation 22.10 and Equation 22.11 assume the following values: σyield = 3000, offsetintake =
3.25, offsetexhaust = 1.34, and dexhaust = 1.556.

22.3.1 Methods

In the Dakota/test directory, the dakota cyl head.in input file is used to execute a variety of tests using
the cylinder head example. One of these tests is shown below and is available directly in
Dakota/examples/methods/dakota addtnl cylhead.in:
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method,
npsol_sqp
convergence_tolerance = 1.e-8

variables,
continuous_design = 2
initial_point 1.8 1.0
upper_bounds 2.164 4.0
lower_bounds 1.5 0.0
descriptors’intake_dia’ ’flatness’

interface,
fork asynchronous
analysis_driver = ’cyl_head’

responses,
num_objective_functions = 1
num_nonlinear_inequality_constraints = 3
numerical_gradients
method_source dakota
interval_type central
fd_gradient_step_size = 1.e-4

no_hessians

The interface keyword specifies use of the cyl head executable (compiled from Dakota/test/cyl head.C)
as the simulator. The variables and responses keywords specify the data sets to be used in the iteration by pro-
viding the initial point, descriptors, and upper and lower bounds for two continuous design variables and by
specifying the use of one objective function, three inequality constraints, and numerical gradients in the problem.
The method keyword specifies the use of the npsol sqp method to solve this constrained optimization problem.
No strategy keyword is specified, so the default single method strategy is used.

22.3.2 Optimization Results

The solution for the constrained optimization problem is:

intake dia = 2.122
flatness = 1.769

with

f∗ = −2.461
g∗1 = 0.0 (active)
g∗2 = −0.3347 (inactive)
g∗3 = 0.0 (active)
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Figure 22.1: Container wall-to-end-cap seal

which corresponds to the following optimal response quantities:

warranty = 133472
cycle time = 60

wall thickness = 0.0707906
horse power = 281.579
max stress = 1500

The final report from the DAKOTA output is as follows:

<<<<< Iterator npsol_sqp completed.
<<<<< Function evaluation summary: 55 total (55 new, 0 duplicate)
<<<<< Best parameters =

2.1224188322e+00 intake_dia
1.7685568331e+00 flatness

<<<<< Best objective function =
-2.4610312954e+00

<<<<< Best constraint values =
1.8407497748e-13
-3.3471647504e-01
0.0000000000e+00

<<<<< Best data captured at function evaluation 51
<<<<< Single Method Strategy completed.
DAKOTA execution time in seconds:
Total CPU = 0.04 [parent = 0.031995, child = 0.008005]
Total wall clock = 0.232134

22.4 Container Example

For this example, suppose that a high-volume manufacturer of light weight steel containers wants to minimize
the amount of raw sheet material that must be used to manufacture a 1.1 quart cylindrical-shaped can, including
waste material. Material for the container walls and end caps is stamped from stock sheet material of constant
thickness. The seal between the end caps and container wall is manufactured by a press forming operation on the
end caps. The end caps can then be attached to the container wall forming a seal through a crimping operation.

DAKOTA Version 5.0 User’s Manual generated on May 7, 2010



22.4. CONTAINER EXAMPLE 339

For preliminary design purposes, the extra material that would normally go into the container end cap seals is
approximated by increasing the cut dimensions of the end cap diameters by 12% and the height of the container
wall by 5%, and waste associated with stamping the end caps in a specialized pattern from sheet stock is estimated
as 15% of the cap area. The equation for the area of the container materials including waste is

A = 2×


end cap
waste

material
factor

×


end cap
seal

material
factor

×

 nominal
end cap
area

+


container
wall seal
material
factor

×

 nominal
container
wall area


or

A = 2(1.15)(1.12)π
D2

4
+ (1.05)πDH (22.12)

where D and H are the diameter and height of the finished product in units of inches, respectively. The volume
of the finished product is specified to be

V = π
D2H

4
= (1.1qt)(57.75in3/qt) (22.13)

The equation for area is the objective function for this problem; it is to be minimized. The equation for volume is
an equality constraint; it must be satisfied at the conclusion of the optimization problem. Any combination of D
and H that satisfies the volume constraint is a feasible solution (although not necessarily the optimal solution) to
the area minimization problem, and any combination that does not satisfy the volume constraint is an infeasible
solution. The area that is a minimum subject to the volume constraint is the optimal area, and the corresponding
values for the parameters D and H are the optimal parameter values.

It is important that the equations supplied to a numerical optimization code be limited to generating only phys-
ically realizable values, since an optimizer will not have the capability to differentiate between meaningful and
nonphysical parameter values. It is often up to the engineer to supply these limits, usually in the form of param-
eter bound constraints. For example, by observing the equations for the area objective function and the volume
constraint, it can be seen that by allowing the diameter, D, to become negative, it is algebraically possible to
generate relatively small values for the area that also satisfy the volume constraint. Negative values for D are of
course physically meaningless. Therefore, to ensure that the numerically-solved optimization problem remains
meaningful, a bound constraint of −D ≤ 0 must be included in the optimization problem statement. A positive
value for H is implied since the volume constraint could never be satisfied if H were negative. However, a bound
constraint of −H ≤ 0 can be added to the optimization problem if desired. The optimization problem can then
be stated in a standardized form as

minimize 2(1.15)(1.12)π
D2

4
+ (1.05)2πDH

subject to π
D2H

4
= (1.1qt)(57.75in3/qt) (22.14)

−D ≤ 0, −H ≤ 0

A graphical view of the container optimization problem appears in Figure 22.2. The 3-D surface defines the
area, A, as a function of diameter and height. The curved line that extends across the surface defines the areas
that satisfy the volume equality constraint, V . Graphically, the container optimization problem can be viewed as
one of finding the point along the constraint line with the smallest 3-D surface height in Figure 22.2. This point
corresponds to the optimal values for diameter and height of the final product.
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Figure 22.2: A graphical representation of the container optimization problem.
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The input file for this test problem is named dakota container.in in the directory
Dakota/examples/methods. The solution to this example problem is (H,D) = (4.99, 4.03), with a mini-
mum area of 98.43 in2 .

The final report from the DAKOTA output is as follows:

<<<<< Iterator npsol_sqp completed.
<<<<< Function evaluation summary: 40 total (40 new, 0 duplicate)
<<<<< Best parameters =

4.9873894231e+00 H
4.0270846274e+00 D

<<<<< Best objective function =
9.8432498116e+01

<<<<< Best constraint values =
-9.6301439045e-12

<<<<< Best data captured at function evaluation 36
<<<<< Single Method Strategy completed.
DAKOTA execution time in seconds:
Total CPU = 0.18 [parent = 0.18, child = 0]
Total wall clock = 0.809126

22.5 Log Ratio Example

This test problem, mentioned previously in Section 6.3.4, has a limit state function defined by the ratio of two
lognormally-distributed random variables.

g(x) =
x1

x2
(22.15)

The distributions for both x1 and x2 are Lognormal(1, 0.5) with a correlation coefficient between the two variables
of 0.3.

First-order and second-order reliability analysis are performed in the dakota logratio.in and
dakota logratio taylor2.in input files in Dakota/test, respectively. For RIA, 24 response levels
(.4, .5, .55, .6, .65, .7, .75, .8, .85, .9, 1, 1.05, 1.15, 1.2, 1.25, 1.3, 1.35, 1.4, 1.5, 1.55, 1.6, 1.65, 1.7, and 1.75)
are mapped into the corresponding cumulative probability levels. For PMA, these 24 probability levels (the fully
converged results from RIA FORM) are mapped back into the original response levels. Figure 22.3 overlays
the computed CDF values for a number of first-order reliability method variants as well as a Latin Hypercube
reference solution of 106 samples.

22.6 Steel Section Example

This test problem is used extensively in [75]. It involves a W16x31 steel section of A36 steel that must carry an
applied deterministic bending moment of 1140 kip-in. For DAKOTA, it has been used as a verification test for
second-order integrations in reliability methods. The limit state function is defined as:

g(x) = FyZ − 1140 (22.16)

where Fy is Lognormal(38., 3.8), Z is Normal(54., 2.7), and the variables are uncorrelated.

The Dakota/test/dakota steel section.in input file computes a first-order CDF probability of p(g ≤
0.) = 1.297e-07 and a second-order CDF probability of p(g ≤ 0.) = 1.375e-07. This second-order result differs
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(a) RIA methods (b) PMA methods

Figure 22.3: Lognormal ratio cumulative distribution function, RIA/PMA methods.

from that reported in [75], since DAKOTA uses the Nataf nonlinear transformation to u-space (see Equations 6.15-
6.16) and [75] uses a linearized transformation.

22.7 Portal Frame Example

This test problem is taken from [137, 82]. It involves a plastic collapse mechanism of a simple portal frame. It also
has been used as a verification test for second-order integrations in reliability methods. The limit state function is
defined as:

g(x) = x1 + 2x2 + 2x3 + x4 − 5x5 − 5x6 (22.17)

where x1 − x4 are Lognormal(120., 12.), x5 is Lognormal(50., 15.), x6 is Lognormal(40., 12.), and the variables
are uncorrelated.

While the limit state is linear in x-space, the nonlinear transformation of lognormals to u-space induces curvature.
The Dakota/test/dakota portal frame.in input file computes a first-order CDF probability of p(g ≤
0.) = 9.433e-03 and a second-order CDF probability of p(g ≤ 0.) = 1.201e-02. These results agree with the
published results from the literature.

22.8 Short Column Example

This test problem involves the plastic analysis and design of a short column with rectangular cross section (width b
and depth h) having uncertain material properties (yield stress Y ) and subject to uncertain loads (bending moment
M and axial force P ) [90]. The limit state function is defined as:

g(x) = 1− 4M
bh2Y

− P 2

b2h2Y 2
(22.18)
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(a) RIA methods (b) PMA methods

Figure 22.4: Short column cumulative distribution function, RIA/PMA methods.

The distributions for P , M , and Y are Normal(500, 100), Normal(2000, 400), and Lognormal(5, 0.5), respec-
tively, with a correlation coefficient of 0.5 between P and M (uncorrelated otherwise). The nominal values for b
and h are 5 and 15, respectively.

22.8.1 Uncertainty Quantification

First-order and second-order reliability analysis are performed in the dakota short column.in and
dakota short column taylor2.in input files in Dakota/test, respectively. For RIA, 43 response
levels (-9.0, -8.75, -8.5, -8.0, -7.75, -7.5, -7.25, -7.0, -6.5, -6.0, -5.5, -5.0, -4.5, -4.0, -3.5, -3.0, -2.5, -2.0, -1.9,
-1.8, -1.7, -1.6, -1.5, -1.4, -1.3, -1.2, -1.1, -1.0, -0.9, -0.8, -0.7, -0.6, -0.5, -0.4, -0.3, -0.2, -0.1, 0.0, 0.05, 0.1, 0.15,
0.2, 0.25) are mapped into the corresponding cumulative probability levels. For PMA, these 43 probability levels
(the fully converged results from RIA FORM) are mapped back into the original response levels. Figure 22.4
overlays the computed CDF values for several first-order reliability method variants as well as a Latin Hypercube
reference solution of 106 samples.

22.8.2 Reliability-Based Design Optimization

The short column example problem is also amenable to RBDO. An objective function of cross-sectional area
and a target reliability index of 2.5 (cumulative failure probability p(g ≤ 0) ≤ 0.00621) are used in the design
problem:

min bh

s.t. β ≥ 2.5
5.0 ≤ b ≤ 15.0
15.0 ≤ h ≤ 25.0 (22.19)
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Figure 22.5: Cantilever beam test problem.

As is evident from the UQ results shown in Figure 22.4, the initial design of (b, h) = (5, 15) is infeasible and the
optimization must add material to obtain the target reliability at the optimal design (b, h) = (8.68, 25.0). Simple
bi-level, fully analytic bi-level, and sequential RBDO methods are explored in Dakota/test inputs
dakota rbdo short column.in, dakota rbdo short column analytic.in, and
dakota rbdo short column trsb.in, with results as described in [34, 35].

22.9 Cantilever Example

This test problem is adapted from the reliability-based design optimization literature [129], [149] and involves a
simple uniform cantilever beam as shown in Figure 22.5.

The design problem is to minimize the weight (or, equivalently, the cross-sectional area) of the beam subject to a
displacement constraint and a stress constraint. Random variables in the problem include the yield stress R of the
beam material, the Young’s modulus E of the material, and the horizontal and vertical loads, X and Y , which are
modeled with normal distributions using N(40000, 2000), N(2.9E7, 1.45E6), N(500, 100), and N(1000, 100),
respectively. Problem constants include L = 100in and D0 = 2.2535in. The constraints have the following
analytic form:

stress =
600
wt2

Y +
600
w2t

X ≤ R (22.20)

displacement =
4L3

Ewt

√(
Y

t2

)2

+
(
X

w2

)2

≤ D0

or when scaled:

gS =
stress

R
− 1 ≤ 0 (22.21)

gD =
displacement

D0
− 1 ≤ 0

(22.22)

DAKOTA Version 5.0 User’s Manual generated on May 7, 2010



22.9. CANTILEVER EXAMPLE 345

22.9.1 Deterministic Optimization Results

If the random variables E, R, X , and Y are fixed at their means, the resulting deterministic design problem can
be formulated as

minimize f = wt

subject to gS ≤ 0 (22.23)
gD ≤ 0
1.0 ≤ w ≤ 4.0
1.0 ≤ t ≤ 4.0

and can be solved using the Dakota/test/dakota cantilever.in file. This input file manages a variety
of tests, of which a sample is shown below
(Dakota/examples/methods/dakota addtnl cantilever.in):

method,
npsol_sqp
convergence_tolerance = 1.e-8

variables,
continuous_design = 2
initial_point 4.0 4.0
upper_bounds 10.0 10.0
lower_bounds 1.0 1.0
descriptors’beam_width’ ’beam_thickness’

continuous_state = 4
initial_state 40000. 29.E+6 500. 1000.
descriptors ’R’ ’E’ ’X’ ’Y’

interface,
system
asynchronous evaluation_concurrency = 2
analysis_driver = ’cantilever’

responses,
num_objective_functions = 1
num_nonlinear_inequality_constraints = 2
numerical_gradients
method_source dakota
interval_type forward
fd_gradient_step_size = 1.e-4

no_hessians

The deterministic solution is (w, t) = (2.35, 3.33) with an objective function of 7.82. The final report from the
DAKOTA output is as follows:

<<<<< Iterator npsol_sqp completed.
<<<<< Function evaluation summary: 33 total (33 new, 0 duplicate)
<<<<< Best parameters =
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2.3520341271e+00 beam_width
3.3262784077e+00 beam_thickness
4.0000000000e+04 R
2.9000000000e+07 E
5.0000000000e+02 X
1.0000000000e+03 Y

<<<<< Best objective function =
7.8235203313e+00

<<<<< Best constraint values =
-1.6009000260e-02
-3.7083558446e-11

<<<<< Best data captured at function evaluation 31
<<<<< Single Method Strategy completed.
DAKOTA execution time in seconds:
Total CPU = 0.03 [parent = 0.027995, child = 0.002005]
Total wall clock = 0.281375

22.9.2 Stochastic Optimization Results

If the normal distributions for the random variables E, R, X , and Y are included, a stochastic design problem can
be formulated as

minimize f = wt

subject to βD ≥ 3 (22.24)
βS ≥ 3
1.0 ≤ w ≤ 4.0
1.0 ≤ t ≤ 4.0

where a 3-sigma reliability level (probability of failure = 0.00135 if responses are normally-distributed) is being
sought on the scaled constraints. Optimization under uncertainty solutions to the stochastic problem are described
in [38, 34, 35], for which the solution is (w, t) = (2.45, 3.88) with an objective function of 9.52. This demon-
strates that a more conservative design is needed to satisfy the probabilistic constraints.

22.10 Steel Column Example

This test problem involves the trade-off between cost and reliability for a steel column [90]. The cost is defined
as

Cost = bd+ 5h (22.25)

where b, d, and h are the means of the flange breadth, flange thickness, and profile height, respectively. Nine uncor-
related random variables are used in the problem to define the yield stress Fs (lognormal with µ/σ = 400/35 MPa),
dead weight load P1 (normal with µ/σ = 500000/50000 N), variable load P2 (gumbel with µ/σ = 600000/90000
N), variable load P3 (gumbel with µ/σ = 600000/90000 N), flange breadth B (lognormal with µ/σ = b/3 mm),
flange thickness D (lognormal with µ/σ = d/2 mm), profile height H (lognormal with µ/σ = h/5 mm), initial
deflection F0 (normal with µ/σ = 30/10 mm), and Young’s modulus E (Weibull with µ/σ = 21000/4200 MPa).
The limit state has the following analytic form:

g = Fs − P

(
1

2BD
+

F0

BDH

Eb
Eb − P

)
(22.26)
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where

P = P1 + P2 + P3 (22.27)

Eb =
π2EBDH2

2L2
(22.28)

and the column length L is 7500 mm.

This design problem (dakota rbdo steel column.in in Dakota/test) demonstrates design variable
insertion into random variable distribution parameters through the design of the mean flange breadth, flange
thickness, and profile height. The RBDO formulation maximizes the reliability subject to a cost constraint:

maximize β

subjectto Cost ≤ 4000.
200.0 ≤ b ≤ 400.0 (22.29)
10.0 ≤ d ≤ 30.0
100.0 ≤ h ≤ 500.0

which has the solution (b, d, h) = (200.0, 17.50, 100.0) with a maximal reliability of 3.132.

22.11 Multiobjective Examples

There are three examples in the test directory (Dakota/test/dakota mogatest.in) that are taken from a
multiobjective evolutionary algorithm (MOEA) test suite described by Van Veldhuizen et. al. in [21]. These three
problems are good examples to illustrate the different forms that the Pareto set may take. For each problem, we
describe the DAKOTA input and show a graph of the Pareto front. These problems are all solved with the moga
method. In Van Veldhuizen’s notation, the set of all Pareto optimal design configurations (design variable values
only) is denoted P∗ or Ptrue and is defined as:

P ∗ := {x ∈ Ω | ¬∃ x′ ∈ Ω f̄(x′) � f̄(x)}

The Pareto front, which is the set of objective function values associated with the Pareto optimal design configu-
rations, is denoted PF∗ or PFtrue and is defined as:

PF ∗ := {ū = f̄ = (f1(x), . . . , fk(x)) |x ∈ P ∗}

The values calculated for the Pareto set and the Pareto front using the moga method are close to but not always
exactly the true values, depending on the number of generations the moga is run, the various settings governing
the GA, and the complexity of the Pareto set.

22.11.1 Multiobjective Test Problem 1

The first test problem is a case where Ptrue is connected and PFtrue is concave. The problem is to simultaneously
optimize f1 and f2 given three input variables, x1, x2, and x3, where the inputs are bounded by −4 ≤ xi ≤ 4:
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f1(x) = 1− exp

(
−

3∑
i=1

(
xi −

1√
3

)2
)

f2(x) = 1− exp

(
−

3∑
i=1

(
xi +

1√
3

)2
)

The input file for this example is shown in Figure 22.6 and provided in
Dakota/examples/tutorial/dakota mogatest1.in. The interface keyword specifies the use of the
mogatest1 executable (compiled from Dakota/test/mogatest1.C) as the simulator. The Pareto front is
shown in Figure 22.7.

22.11.2 Multiobjective Test Problem 2

The second test problem is a case where both Ptrue and PFtrue are disconnected. PFtrue has four separate Pareto
curves. The problem is to simultaneously optimize f1 and f2 given two input variables, x1 and x2, where the
inputs are bounded by 0 ≤ xi ≤ 1, and:

f1(x) = x1

f2(x) = (1 + 10x2)×

[
1−

(
x1

1 + 10x2

)2

− x1

1 + 10x2
sin(8πx1)

]

The input file for this example is shown in Figure 22.8 and provided in
Dakota/examples/methods/dakota mogatest2.in . It differs from Figure 22.6 in the variables spec-
ification, in the use of the mogatest2 executable (compiled from Dakota/test/mogatest2.C) as the
simulator, and in the max function evaluations and crossover type MOGA controls. The Pareto
front is shown in Figure 22.9. Note the discontinuous nature of the front in this example.

22.11.3 Multiobjective Test Problem 3

The third test problem is a case where Ptrue is disconnected but PFtrue is connected. It is called the Srinivas
problem in the literature (cite). This problem also has two nonlinear constraints. The problem is to simultaneously
optimize f1 and f2 given two input variables, x1 and x2, where the inputs are bounded by −20 ≤ xi ≤ 20, and:

f1(x) = (x1 − 2)2 + (x2 − 1)2 + 2
f2(x) = 9x1 − (x2 − 1)2

The constraints are:

0 ≤ x2
1 + x2

2 − 225
0 ≤ x1 − 3x2 + 10

The input file for this example is shown in Figure 22.10 and provided in
Dakota/examples/methods/dakota mogatest3.in. It differs from Figure 22.8 in the variables and
responses specifications, in the use of the mogatest3 executable (compiled from Dakota/test/mogatest3.C)
as the simulator, and in the max function evaluations and mutation type MOGA controls. The
Pareto set is shown in Figure 22.11. Note the discontinuous nature of the Pareto set (in the design space) in this
example. The Pareto front is shown in Figure 22.12.
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## DAKOTA INPUT FILE - dakota_mogatest1.in

strategy,
single
graphics tabular_graphics_data

method,
moga
output silent
seed = 10983
max_function_evaluations = 2500
initialization_type unique_random
crossover_type shuffle_random
num_offspring = 2 num_parents = 2
crossover_rate = 0.8

mutation_type replace_uniform
mutation_rate = 0.1

fitness_type domination_count
replacement_type below_limit = 6
shrinkage_percentage = 0.9

convergence_type metric_tracker
percent_change = 0.05 num_generations = 40

variables,
continuous_design = 3
initial_point 0 0 0
upper_bounds 4 4 4
lower_bounds -4 -4 -4
descriptors ’x1’ ’x2’ ’x3’

interface,
system
analysis_driver = ’mogatest1’

responses,
num_objective_functions = 2
no_gradients
no_hessians

Figure 22.6: DAKOTA input file specifying the use of MOGA on mogatest1
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Figure 22.7: Pareto Front showing Tradeoffs between Function F1 and Function F2 for mogatest1
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strategy,
single
graphics tabular_graphics_data

method,
moga
output silent
seed = 10983
max_function_evaluations = 3000
initialization_type unique_random
crossover_type
multi_point_parameterized_binary = 2
crossover_rate = 0.8

mutation_type replace_uniform
mutation_rate = 0.1

fitness_type domination_count
replacement_type below_limit = 6
shrinkage_percentage = 0.9

convergence_type metric_tracker
percent_change = 0.05 num_generations = 10

variables,
continuous_design = 2
initial_point 0.5 0.5
upper_bounds 1 1
lower_bounds 0 0
descriptors ’x1’ ’x2’

interface,
system
analysis_driver = ’mogatest2’

responses,
num_objective_functions = 2
no_gradients
no_hessians

Figure 22.8: DAKOTA input file specifying the use of MOGA on mogatest2
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Figure 22.9: Pareto Front showing Tradeoffs between Function F1 and Function F2 for mogatest2
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strategy,
single
graphics tabular_graphics_data

method,
moga
output silent
seed = 10983
max_function_evaluations = 2000
initialization_type unique_random
crossover_type
multi_point_parameterized_binary = 2
crossover_rate = 0.8

mutation_type offset_normal
mutation_scale = 0.1

fitness_type domination_count
replacement_type below_limit = 6
shrinkage_percentage = 0.9

convergence_type metric_tracker
percent_change = 0.05 num_generations = 10

variables,
continuous_design = 2
descriptors ’x1’ ’x2’
initial_point 0 0
upper_bounds 20 20
lower_bounds -20 -20

interface,
system
analysis_driver = ’mogatest3’

responses,
num_objective_functions = 2
num_nonlinear_inequality_constraints = 2
nonlinear_inequality_upper_bounds = 0.0 0.0
no_gradients
no_hessians

Figure 22.10: DAKOTA input file specifying the use of MOGA on mogatest3
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Figure 22.11: Pareto Set of Design Variables corresponding to the Pareto front for mogatest3
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Figure 22.12: Pareto Front showing Tradeoffs between Function F1 and Function F2 for mogatest3
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22.12 Morris example

Morris [98] includes a screening design test problem with a single-output analytical test function. The output
depends on 20 inputs with first- through fourth-order interaction terms, some having large fixed coefficients and
others small random coefficients. Thus the function values generated depend on the random number generator
employed in the function evaluator. The computational model is:

y = β0 +
20∑
i=1

βiwi +
20∑
i<j

βi,jwiwj +
20∑

i<j<l

βi,j,lwiwjwl

+
20∑

i<j<l<s

βi,j,l,swiwjwlws,

where wi = 2(xi − 0.5) except for i = 3, 5, and 7, where wi = 2(1.1xi/(xi + 0.1) − 0.5). Large-valued
coefficients are assigned as

βi = +20 i = 1, . . . , 10; βi,j = −15 i, j = 1, . . . , 6;
βi,j,l = −10 i, j, l = 1, . . . , 5; βi,j,l,s = +5 i, j, l, s = 1, . . . , 4.

The remaining first- and second-order coefficients βi and βi,j , respectively, are independently generated from
a standard normal distribution (zero mean and unit standard deviation); the remaining third- and fourth-order
coefficients are set to zero.

Examination of the test function reveals that one should be able to conclude the following (stated and verified
computationally in [120]) for this test problem:

1. the first ten factors are important;

2. of these, the first seven have significant effects involving either interactions or curvatures; and

3. the other three are important mainly because of their first-order effect.

The dakota test input Dakota/test/dakota psuade.in exercises the MOAT algorithm described in Sec-
tion 5.5 on the Morris problem. The DAKOTA output obtained is shown in Figures 22.13 and 22.14. The MOAT
analysis output reveals that each of the desired observations can be made for the test problem. These are also
reflected in Figure 22.15. The modified mean (based on averaging absolute values of elementary effects) shows a
clear difference in inputs 1–10 as compared to inputs 11–20. The standard deviation of the (signed) elementary
effects indicates correctly that inputs 1–7 have substantial interaction-based or nonlinear effect on the output,
while the others have less. While some of inputs 11–20 have nontrivial values of σ, their relatively small modified
means µ∗ indicate they have little overall influence.
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Running MPI executable in serial mode.
DAKOTA version 4.2 released 11/05/2008.
Constructing Single Method Strategy...
Writing new restart file dakota.rst
methodName = psuade_moat
gradientType = none
hessianType = none

>>>>> Running Single Method Strategy.

>>>>> Running psuade_moat iterator.

PSUADE DACE method = psuade_moat Samples = 84 Seed (user-specified) = 5
Partitions = 3 (Levels = 4)

Figure 22.13: DAKOTA initialization output for the PSUADE MOAT method on the Morris test problem showing
the study parameters.

>>>>>> PSUADE MOAT output for function 0:

*************************************************************
*********************** MOAT Analysis ***********************
-------------------------------------------------------------
Input 1 (mod. mean & std) = 5.4366e+01 4.2009e+01
Input 2 (mod. mean & std) = 5.9188e+01 4.7141e+01
Input 3 (mod. mean & std) = 5.0663e+01 3.8542e+01
Input 4 (mod. mean & std) = 8.1390e+01 1.0680e+02
Input 5 (mod. mean & std) = 8.0589e+01 7.1954e+01
Input 6 (mod. mean & std) = 4.5300e+01 3.4398e+01
Input 7 (mod. mean & std) = 3.8168e+01 3.1680e+01
Input 8 (mod. mean & std) = 4.2193e+01 5.6885e+00
Input 9 (mod. mean & std) = 4.3802e+01 4.5875e+00
Input 10 (mod. mean & std) = 3.6465e+01 3.9676e+00
Input 11 (mod. mean & std) = 5.3103e+00 8.1196e+00
Input 12 (mod. mean & std) = 9.7212e+00 1.1345e+01
Input 13 (mod. mean & std) = 8.0135e+00 1.0811e+01
Input 14 (mod. mean & std) = 2.4124e+00 3.5811e+00
Input 15 (mod. mean & std) = 5.5727e+00 1.6122e+00
Input 16 (mod. mean & std) = 6.8377e+00 8.6817e+00
Input 17 (mod. mean & std) = 7.8375e+00 9.9676e+00
Input 18 (mod. mean & std) = 4.0741e+00 4.8117e+00
Input 19 (mod. mean & std) = 7.7200e+00 9.0583e+00
Input 20 (mod. mean & std) = 6.6671e+00 9.7375e+00

<<<<< Iterator psuade_moat completed.
<<<<< Function evaluation summary: 84 total (84 new, 0 duplicate)

Figure 22.14: DAKOTA analysis output for the PSUADE MOAT method on the Morris problem showing the
modified mean and standard deviation of the elementary effect corresponding to each input factor.
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Figure 22.15: Standard deviation of elementary effects plotted against modified mean for Morris for each of 20
inputs. Red circles 1–7 correspond to inputs having interactions or nonlinear effects, blue squares 8–10 indicate
those with mainly linear effects, and black Xs denote insignificant inputs.
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