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Epistemic Uncertainty in the Calculation of Margins 

Laura P. Swiler*, Thomas L. Paez†, Randall L. Mayes‡, and Michael S. Eldred§ 
Sandia National Laboratories**, Albuquerque NM 87185 

Epistemic uncertainty, characterizing lack-of-knowledge, is often prevalent in 
engineering applications.  However, the methods we have for analyzing and propagating 
epistemic uncertainty are not as nearly widely used or well-understood as methods to 
propagate aleatory uncertainty (e.g. inherent variability characterized by probability 
distributions).  In this paper, we examine three methods used in propagating epistemic 
uncertainties: interval analysis, Dempster-Shafer evidence theory, and second-order 
probability.  We demonstrate examples of their use on a problem in structural dynamics, 
specifically in the assessment of margins.  In terms of new approaches, we examine the use of 
surrogate methods in epistemic analysis, both surrogate-based optimization in interval 
analysis and use of polynomial chaos expansions to provide upper and lower bounding 
approximations.  Although there are pitfalls associated with surrogates, they can be 
powerful and efficient in the quantification of epistemic uncertainty.   

I. Introduction 
Most computer models for engineering applications are developed to help assess a design or regulatory 

requirement.  The capability to quantify the impact of uncertainty in the decision context is critical.  This paper will 
focus on situations with epistemic uncertainty, which represents a lack of knowledge about the appropriate value to 
use for a quantity.   Epistemic uncertainty is sometimes referred to as state of knowledge uncertainty, subjective 
uncertainty, or reducible uncertainty, meaning that the uncertainty can be reduced through increased understanding 
(research), or increased and more relevant data. [Helton et al.]  In contrast, uncertainty characterized by inherent 
randomness which cannot be reduced by further data is called aleatory uncertainty or variability.  Aleatory 
uncertainties are usually modeled with probability distributions, but epistemic uncertainty often is not modeled 
probabilistically.  Regulatory agencies, design teams, and weapon certification assessments are increasingly being 
asked to specifically characterize and quantify epistemic uncertainty and separate its effect from that of aleatory 
uncertainty [Diegert et al.] 

There are many ways of representing epistemic uncertainty, including fuzzy sets, possibility theory, and 
imprecise probability.  At Sandia we have chosen to focus on three approaches:  interval analysis, Dempster-Shafer 
evidence theory, and (for mixed aleatory/epistemic uncertainties) second-order probability.  The rest of this 
introductory section outlines these three approaches in more detail.  Section 2 discusses surrogate methods in the 
context of epistemic uncertainty quantification (UQ).  Section 3 presents an example, Section 4 provides results, 
Section 5 discusses margin calculations, and Section 6 summarizes the paper.  
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A. Interval analysis 
The simplest way to propagate epistemic uncertainty is by interval analysis.  In interval analysis, it is assumed 

that nothing is known about the uncertain input variables except that they lie within certain intervals.  The problem 
of uncertainty propagation then becomes an interval analysis problem:  given inputs that are defined within intervals, 
what is the corresponding interval on the outputs?   

Although interval analysis is conceptually simple, in practice it can be difficult to determine the optimal solution 
approach.  A direct approach is to use optimization to find the maximum and minimum values of the output measure 
of interest, which correspond to the upper and lower interval bounds on the output, respectively.  There are a number 
of optimization algorithms which solve bound constrained problems, such as bound-constrained Newton methods.  
In practice, it may require a prohibitively large number of function evaluations to determine these optima, especially 
if the simulation if very nonlinear with respect to the inputs, has a high number of inputs with interaction effects, 
exhibits discontinuities, etc.   Local optimization solvers will not guarantee finding global optima, and thus to solve 
this problem properly, one may have to resort to multi-start implementations of local optimization methods or global 
methods such as genetic algorithms, DIRECT, etc.  These approaches can be very expensive.  

Another approach to interval analysis is to sample from the uncertain interval inputs, and then take the maximum 
and minimum output values based on the sampling process as the estimate for the upper and lower output bounds.  
Usually a uniform distribution is assumed over the input intervals, although this is not necessary.  Although uniform 
distributions may be used to create samples, one cannot assign a probabilistic distribution to them or make a 
corresponding probabilistic interpretation of the output.  That is, one cannot make a CDF of the output:  all one can 
assume is that sample input values were generated, corresponding sample output values were created, and the 
minimum and maximum of the output are the estimated output interval bounds.  This sampling approach is easy to 
implement, but its accuracy is highly dependent on the number of samples.  Often, sampling will generate output 
bounds which underestimate the true output interval.  

Other approaches to interval analysis start with sampling, but then use the samples to create a surrogate model 
(e.g. a regression model, a neural net, an adaptive spline model, etc.)  The surrogate model can then be sampled very 
extensively (e.g. a million times) to obtain an upper and lower bound estimate.  Another approach is to use 
surrogate-based optimization methods to obtain the upper and lower bounds.   We examine the accuracy and 
feasibility of surrogate approaches in Section 4 below.  

B. Dempster-Shafer Theory of Evidence 
Dempster-Shafer evidence theory is an attractive approach to propagation of evidence theory when using 

computational simulations, in part because it is a generalization of classical probability theory which allows the 
simulation code to remain black-box (it is non-intrusive to the code) and because the Dempster-Shafer calculations 
use much of the probabilistic framework that exists in most places. [Helton et al.]  

Dempster-Shafer Theory of Evidence may be used to perform epistemic analysis.  In Dempster-Shafer evidence 
theory, the epistemic uncertain input variables are modeled as sets of intervals.  Note that each variable may be 
defined by one or more intervals.  The user assigns a basic probability assignment (BPA) to each interval, indicating 
how likely it is that the uncertain input falls within the interval.  The BPAs for a particular uncertain input variable 
must sum to one.  The intervals may be overlapping, contiguous, or have gaps.  Dempster-Shafer has two measures 
of uncertainty, belief and plausibility.  The intervals are propagated to calculate belief (a lower bound on a 
probability value that is consistent with the evidence) and plausibility (an upper bound on a probability value that is 
consistent with the evidence).  Together, belief and plausibility define an interval-valued probability distribution on 
the results, not a single probability distribution.  An example of cumulative belief and plausibility distribution 
functions is shown in Figure 1.  Note that they encompass a cumulative distribution function (CDF) that would be 
obtained by propagation of probability distributions on inputs. 

The main method for calculating Dempster-Shafer intervals is computationally very expensive.  Many hundreds 
of thousands of samples are taken over the space.  Each combination of input variable intervals defines an input 
“cell.”  By interval combination, we mean the first interval of the first variable paired with the first interval for the 
second variable, etc.  Within each interval calculation, it is necessary to find the minimum and maximum function 
value for that interval “cell.”   These minimum and maximum values are aggregated to create the belief and 
plausibility curves.  The Dempster-Shafer method may use a surrogate model and/or optimization methods.  The 
accuracy of the Dempster-Shafer results is highly dependent on the number of samples and the number of interval 
combinations.  If one has many interval cells and few samples, the estimates for the minimum and maximum 
function evaluations are likely to be poor. Surrogate methods may also be used in Dempster-Shafer, either global 
surrogates or separate surrogates within each cell. 
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 Figure 1.  Example of Dempster-Shafer Calculations:  Cumulative Distributions for Belief and Plausbility 

C. Second-order probability 
This section discusses the case where we are trying to propagate both aleatory and epistemic uncertainty.  A 

common situation is where one may know the form of the probability distribution for an uncertain variable (for 
example, that it is distributed normally or lognormally), but one is not sure of the parameters governing the 
distribution.  In this case, the analysis is done with an outer loop and an inner loop.  In the outer loop, the epistemic 
variables are specified.  In this example, the epistemic variables are specified as intervals on parameter values such 
as means or standard deviations of uncertain variables.  A particular value is selected from within the specified 
intervals.  Then, this value is sent to the inner loop.  In the inner loop, the values of the distribution parameters are 
set by particular realizations of the epistemic variables, and the inner loop performs sampling on the aleatory 
variables in the usual way (e.g., a LHS sample is taken).   Figure 2 shows the sampling structure of a second-order 
probability analysis. 
 

epistemic
sampling

aleatory
sampling

simulation

 
 

Figure 2.  Second-order Probability 
 
Second-order probability may be expensive since it is often implemented with two sampling loops.  However, it has 
the advantage that it is easy to separate and identify the aleatory vs. epistemic uncertainty.   Each particular set of 
epistemic variable values generates an entire CDF for the response quantities based on the aleatory uncertainty.  So, 
for example, if one had 50 values or samples taken of the epistemic variables, one would have 50 CDFs, as seen in 
the example in Figure 3. When you plot the 50 CDFs, you get the upper and lower bound on the family of 
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distributions and on the percentiles, as shown by the black line depicting the range on the median in Figure 3.  Plots 
of ensembles or “families” of CDFs generated in second-order probability are sometimes called “horsetail” plots 
since the CDFs overlaid on each other can look like a horse’s tail.   Note also that in some situations, second-order 
probability results can look similar to a Dempster-Shafer analysis but the underlying assumptions are different.   
 We propose a new approach for performing second-order probability analysis.  In this approach, the “inner loop” 
CDFs will be calculated using a stochastic expansion method, and the outer loop bounds will be performed via 
interval optimization.  The advantages of this can be significant, due to several factors.  The first is that the 
stochastic expansion methods, as explained in more detail in the following section on surrogate models, can be much 
more efficient than sampling for calculation of a CDF.  The second advantage is that stochastic expansion methods 
allow analytic representation of the moments, so in some cases, the derivatives of the moments with respect to the 
epistemic variables in the outer loop can be written analytically, and these analytic derivatives can be used with 
optimization methods to find interval bounds on mean and variance, for example.  Finally, the optimization methods 
in the outer loop may also be more efficient than generating sufficient outer loop samples to get a good estimate of 
outer loop bounds.   

 
Figure 3. Example Results from Second-order Probability Analysis 

 

II. Surrogate methods in Epistemic UQ 
 Surrogate methods involve constructing response surface approximations of computationally expensive 
functions.  These surrogates (sometimes called meta-models) are often constructed by taking a set of samples from 
the function or simulation model of interest, then building a regression or non-parametric interpolation model based 
on the sample points.  However, other surrogate methods exist including multifidelity models (e.g. a low fidelity 
physics model can be used as a surrogate for a high fidelity one) and reduced order models such as proper 
orthogonal decomposition or spectral decomposition.  In this paper, we limit the discussion to data-fit surrogates, 
where the surrogate is built or fit to a particular set of sample points.   
 There is a large literature on the use of surrogate models in optimization.  Surrogate-based optimization has 
become a common approach for solving optimization problems that require the execution of a computationally 
expensive high-fidelity simulation in order to obtain objective function and constraint values.  The essence of such 
approaches entails constructing low-fidelity models by fitting response surfaces to high-fidelity function values or 
by reducing the numerical or physical fidelity of the simulation.  Optimization methods are then applied to these less 
expensive low-fidelity functions with periodic corrections from the high-fidelity simulation to ensure convergence to 
a local minimum of the high-fidelity function.  Alexandrov et al. provide the theoretical framework under which 
convergence for this class of algorithms can be proved.   Eldred and Dunlavy explore different constraint handling 
approaches in the context of that theoretical framework and investigate their effectiveness in practice. 
 While surrogates are especially beneficial in optimization due to the number of function evaluations that must be 
performed, surrogates have not been as widely used in uncertainty quantification although UQ also requires large 
numbers of function evaluations.  The main reason is that there is no comparable theory similar to the trust region 
for optimization.  In uncertainty quantification, we are not trying to assess the accuracy of a surrogate only within a 
trust region, but throughout the entire space if we are to use the surrogate to generate a cumulative distribution 
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function of the output (for example) or a probability of failure estimate.  The surrogate may be locally accurate in 
some places and inaccurate in other places.  There is no general approach for using information about the level of 
accuracy of the surrogate at specific points to extrapolate to the accuracy of estimates of statistical moments based 
on the surrogate or to bound various statistics that can be generated from extensively sampling the surrogate over the 
entire domain.  Giunta et al. [2006] investigated the use of response surface approximations for UQ.  They 
concluded that for small sample sizes, generating statistical estimates of moments from the sample points alone was 
often just as good as or better than using the samples to construct a surrogate, then using the surrogate to generate 
statistical estimates of moments.  This is because surrogates built on a small number of samples tended to be 
inaccurate and/or biased.  They also concluded that surrogates could be useful with larger numbers of samples, and 
in larger dimensional spaces.   Giunta et al. suggest exercising caution when using surrogates for UQ.  They suggest 
using multiple types of surrogate approximations along with generating statistics based purely on the samples (no 
surrogate approximation) to cross-check the surrogate-based UQ predictions.  
 The paper by Giunta et al. was focused on using surrogates for propagating aleatory uncertainty.  This paper 
focuses on epistemic uncertainty.  Surrogates have not been widely used to propagate and assess epistemic 
uncertainty.  One logical application of surrogates in epistemic uncertainty is in interval analysis:  optimization can 
be performed on a surrogate to determine the maximum and minimum of a function over bounded intervals on the 
inputs.  Many epistemic methods such as Dempster-Shafer evidence theory and possibility theory rely on finding the 
minimum and maximum of the function on bounded subregions of the space, and so surrogates would be a good fit 
for this need.  

There are many types of surrogates such as polynomial regression models, spline models, and neural networks. 
We do not present an exhaustive list here; there are a number of papers comparing the performance of surrogates 
including Wang et al., Swiler et al., and Meckesheimer et al.   We will focus on three surrogates for the purposes of 
propagating epistemic uncertainty for the purposes of demonstrating how surrogates can be used, especially in 
interval analysis.  The first surrogate considered is a quadratic polynomial.  The second is a Gaussian process (GP), 
or kriging model.  Gaussian processes are based on spatial statistics, and can be used to fit a wide variety of 
functional forms.  They also provide a direct estimate of the uncertainty associated with their predictions.  The basic 
idea of the GP model is that the response values Y are modeled as a group of multivariate normal random variables.   
A covariance function is then constructed as a function of the inputs x. The covariance function is based on the idea 
that when the inputs are close together, the correlation between the outputs will be high. Gaussian processes have 
recently become widely used as surrogates for computational experiments.  A seminal paper on GPs for modeling 
computer experiments is by Sacks et al.; recent investigations include Martin and Simpson, McFarland et al., and 
Viana et al.    

The third surrogate type that will be investigated for epistemic uncertainty calculations are polynomial chaos 
expansions (PCE).  In PCE, the output is considered a random process which is represented as the sum of orthogonal 
polynomial basis functions.  These basis functions are functions of the input random variables, and the Wiener-
Askey scheme provides a framework for choosing orthogonal polynomials specific to the input random variable 
distribution types (e. g. Hermite polynomials are used for modeling the effects of normals, Legendre polynomials 
are used for modeling the effects of uniforms, etc.) [Xiu, D. and Karniadakis].   A challenge in using PCE is 
determining the coefficients of the basis function in the expansion in an efficient way.  This may be done in a variety 
of ways:  Eldred et al. present a detailed comparison of sampling, quadrature, cubature, and point collocation 
methods to determine the expansion coefficients in non-intrusive PCE applications.  The interest in using PCE as 
surrogates for epistemic calculations is that the expansions can be very accurate, especially in the tails, for a given 
number of samples and thus the calculation of minimum and maximum values based on a PCE may be a feasible 
and efficient option in some cases.  
 

III. Structural Dynamics Example 
We present an example from structural dynamics, where the application of interest is the performance of the 

bonding material in an aeroshell.  In the example we present, the application has been simplified.  We have a fairly 
coarse, 3-D model of 3 discs.  The outer 2 discs represent rigid masses (in this case, they are steel) and the inner disc 
represents a layer of a filled rubber.  Figure 4 depicts the geometry of the configuration used in this example.  We 
are interested understanding frequencies of the axial and shear modes for this experimental configuration, shown in 
Figure 5.  There is significant epistemic uncertainty in this example associated with the material properties of the 
filled rubber.  Specifically, we have a wide variety of tests and expert opinion on potential values for the modulus of 
elasticity in tension and compression, E, and Poisson’s ratio, ν.  The filled rubber is a rubber material with particles 
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in it.  In this case the particles are glass balloons, which are used to get the density of the material down.  A filled 
rubber softens with increased strain (on other rubbers, we have seen as much as an order of magnitude difference in 
the modulus, depending on the strain level).  In vibration, the strain levels are usually very low, e.g. on the order of 
0.1% strain or less.  

The simulation code used is Salinas [Reese et al.], which is a finite-element analysis code for modal, vibration, 
static and shock analysis developed at Sandia National Laboratories for massively parallel implementations (for 
more information, see: http://jal.sandia.gov/Salinas/).   This simulation takes approximately 2 hours to run on a 
Linux workstation with two Dual-Core Intel®  Xeon®  5000 series 64-bit processors and 2Gigabytes of RAM.  

 
Figure 4.  3 disc model with filled rubber as the middle disc (in yellow) 

 
We have a variety of test data:  some dynamic tests, some static, and one ultrasonic.  Some of the tests are on the 

discs and some on the system-level aeroshells.  The test data has been taken by several organizations under different 
conditions and is not very consistent.  One of the static tests was taken at strain levels much higher than the small 
strain of the rubber in vibration, thus invalidating the data for our needs.  We don’t have much confidence in the 
ultrasonic test because the filled rubber layer was too thin in comparison to the other layers they had to send the 
ultrasonic signal through.  Also, some of the test data reported to us involves people using test results and calibrating 
their models to infer values of E and/or ν.  For the purposes of this paper, we are not trying to calibrate our finite-
element model; we are simply trying to use it to properly propagate epistemic uncertainty.  Finally, there is some 
correlation between of E and ν.   To start, based on our assessment of the test data available, we will assume that the 
value of E falls within the interval of [2000, 25000] psi and the value for ν falls within the interval of [0.45, 0.495]. 
 

            
Figure 5.  Axial Mode (left) and Shear Mode (right) for 3-disc model 
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IV. Structural Dynamics Model:  Epistemic Results 
This section presents the results of various approaches (pure interval analysis, Dempster-Shafer evidence theory, 

and second-order probability analysis) used to propagate epistemic uncertainty.  These results were generated using 
DAKOTA, a software framework that allows one to perform uncertainty quantification, optimization, and parameter 
studies (Eldred et al.,:  http://www.cs.sandia.gov/DAKOTA/).   

A.  Interval analysis 
For interval analysis, we present 3 approaches.  The first analysis is the simplest, based on sampling.  The second 

set of analyses uses samples to construct surrogates, and the surrogates are sampled extensively to determine output 
bounds.  The third set of analyses uses surrogates in conjunction with formal optimization methods to determine 
output bounds.  
1. Sampling-based interval analysis 

This section shows the results of applying the Latin Hypercube sampling methodology [17] to the epistemic 
interval propagation.  The input uncertainties in E and ν were defined by the intervals [2000, 25000] and [0.45, 
0.49], respectively.  Initially, to ensure the DAKOTA and Salinas codes were properly coupled and everything was 
working correctly, we performed a small, ten-sample study.  The results of this study are shown in Table 1 below 
and in the Figures 6 and 7. Note that based on this small run, the output interval for the shear mode frequency is 
[845.6, 2878.0] Hz, and the output interval for the axial mode frequency is [1088.1,3580.37] Hz. 

 

Sample 
E (Elastic 
Modulus) 

Nu (Poisson's 
ratio) 

Shear Mode 
Frequency 

Axial Mode 
Frequency 

1 6377.50 0.473 1452.47 1858.78 
2 24938.67 0.455 2877.98 3580.37 
3 9764.92 0.463 1799.41 2263.74 
4 20550.80 0.462 2610.35 3277.82 
5 14733.46 0.466 2209.13 2793.58 
6 19525.95 0.488 2539.35 3333.59 
7 12791.57 0.482 2055.63 2670.29 
8 16942.52 0.481 2365.74 3065.20 
9 7312.58 0.452 1559.74 1931.17 

10 2162.54 0.476 845.62 1088.09 
Table 1.  Initial Interval Sample 
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Figure 6.  Shear and Axial Mode Frequencies as a function of E for 10-sample case 
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Figure 7.  Shear and Axial Mode Frequencies as a function of ν for 10-sample case 

 
Figure 6 shows that both the axial and shear mode frequencies are almost perfectly linearly correlated with the 
elastic modulus, E.  However, Figure 7 shows no significant correlation between Poisson’s ratio and the shear and 
axial modes.  This was surprising to us at first glance (we expected some sensitivity between E and ν especially as ν 
nears the upper end of its interval range), and so we performed some additional analyses [Swiler et al., 2009].  Main 
effects analyses verified that there was little interaction between E and ν in this problem.  We also performed 
another 30 LHS samples.  The 30 sample interval analysis gave similar results to the ten sample study, but with 
slightly wider intervals:  [845.6, 2878.0] for the shear mode frequency and [1088.1, 3696.0] for the axial mode.  
Going from 10 to 30 samples did not change the output intervals significantly in this example problem since we had 
one input with a very linear relationship and one variable that was fairly uncorrelated with the output, but in other 
situations could improve the interval bounds on the output significantly. 
 
2.  Surrogate-based Epistemic UQ via Surrogate Sampling 

We used a full data set of 76 sample points taken from the initial LHS sampling outlined above as well as 
samples generated for main effects analysis.  Then, we constructed a few different surrogate models based on these 
points:  a quadratic regression model, a MARS model (multivariate adaptive splines), a neural network, and a 
Gaussian process model.  These surrogate models were then sampled with the same set of 1000 points to determine 
the upper and lower bounds according to the surrogate model.  These interval bounds on the output are shown in 
Table 2 below. Note that the upper and lower bounds are reasonably consistent across the surrogate methods 
although the underlying surrogates are based on very different models and assumptions.  Finally, for comparison 
purposes, we constructed a polynomial chaos expansion for the shear and axial mode frequencies as a function of E 
and ν.  For this preliminary investigation of PCE, we ran a second-order expansion, for a total of 9 points.  Table 2 
shows that the upper and lower bounds obtained by sampling the PCE have some error, but these are only based on 
9 points instead of the 76 points that the other data fit approximations used.  PCE is giving reasonable 
approximations of the bounds in this problem very efficiently. 
 

 SHEAR MODE FREQUENCY AXIAL MODE FREQUENCY 
Surrogate Type Lower Bound Upper Bound Lower Bound Upper Bound 
Quadratic 
Regression 871.13 2849.90 1099.85 3775.50 
Mars 816.03 2880.31 1028.04 3812.84 
Neural Net 814.49 2893.26 1007.02 3807.57 
Gaussian Process 814.10 2876.00 1043.13 3819.63 
Polynomial Chaos 925.83 2855.02 1151.12 3775.78 

Table 2.  Interval bounds according to sampling a surrogate model 
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3. Surrogate-based Epistemic UQ via Optimization 

The previous section discussed the case of creating a surrogate model, then sampling that surrogate model 
extensively to determine the upper and lower bounds, as indicated by the minimum and maximum of the 1000 
samples at which we evaluated the surrogate model.  This section discusses the use of a surrogate model, where we 
optimize the surrogate model instead of sample it to obtain the upper and lower bounds.  Note that one could 
perform optimization directly on the simulation model, but we are assuming that in most cases, the simulation model 
is computationally expensive and optimization will be more practical to perform on a surrogate.  Thus, this section 
focuses on surrogate-based optimization.  Also, note that the calculation of the bounds on the output requires 2 
separate optimization procedures:  one to find the minimum value of the output and one to find the maximum value 
of the output.  Both optimization procedures are bound-constrained, meaning that the interval bounds on the input 
variables must be honored.   
 

For the quadratic regression, neural network, and MARS models, the optimization method we used was DIRECT 
(Dividing Rectangles, see DAKOTA documentation), which is a global optimization method that balances local 
search in promising regions of the design space with global search in unexplored regions.  We used a global 
optimization method since we are not using a trust region optimization approach:  we are constructing one surrogate 
over the entire [E, ν] input space and optimizing the surrogate.  The results are shown in Table 3.  Again, we see that 
there are not huge differences in the interval bounds obtained for the shear and axial mode frequencies, although the 
neural net seems more inconsistent than the quadratic regression and Mars.  Also, the optimum point in input space 
is often the same, the bounds are different due to the differences in the surrogate estimate of the response at those 
locations.  Since this is a fairly linear problem, we see that the bounds on the shear or axial mode frequencies occur 
where E is at its minimum or maximum.  Due to the difficulty of estimating a significant influence of ν, we see that 
the optimum locations obtained for ν vary more than for E.   
 

With the Gaussian process surrogate, we used a different optimization approach based on a method called 
Efficient Global Optimization (EGO) developed in [Jones, Schonlau, and Welch].  EGO was developed to facilitate 
the unconstrained minimization of expensive implicit response functions. The idea in EGO is to use properties of the 
Gaussian process (specifically, the predicted variance in the estimate at potential points in the space) to balance 
“exploitation” of existing good solutions with “exploration” of parts of the domain which are sparsely populated and 
where a potential optimum could be located.  The method builds an initial Gaussian process model as a global 
surrogate for the response function, then adaptively selects additional samples to be included in the Gaussian process 
model in subsequent iterations. The new samples are selected based on how much they are expected to improve the 
current best solution to the optimization problem using a criteria coded into an “expected improvement function.”  
We have taken the EGO concept and implemented in DAKOTA.  For the purposes of interval optimization, we 
modified the existing algorithm so that we first build the GP for function minimization, then we take the existing 
points generated by that process, change the objective function and expected improvement function to perform 
function maximization, and warm-start the GP that is used to find the maximum response value.  We have found this 
approach to be very efficient, where the majority of “true” function evaluations of the simulation model are 
performed in finding the function minimum, and only a few additional samples are added to the GP to find the 
function maximum.   The performance of this EGO-based interval optimization will depend on the nonlinearity of 
the simulation model and the number of input dimensions.  For this structural dynamics problem, it took 16 function 
evaluations to find the minimum and maximum estimates of shear mode frequency, and 21 function evaluations to 
find the minimum and maximum estimates of axial mode frequency.  In contrast, optimization on the other 
surrogates (quadratic regression, MARS, and neural networks) using DIRECT involved 76 true function evaluations.  
For low-dimensional problems, we have seen the EGO-approach perform well using 30-40 function evaluations 
whereas optimization performed on a surrogated constructed on a fixed sample set may require a hundred samples or 
more.   
 

A final word of caution:  when using surrogate methods, one needs to know something about the appropriateness 
of the surrogate for a particular function, and be able to evaluate the accuracy of the meta-model.  It is possible to 
use metrics such as cross-validation metrics, root mean squared error, etc. to evaluate the goodness of fit of the 
surrogate, but these metrics mainly involve the goodness of the surrogate with respect to the training points upon 
which it was built.  The metrics don’t necessarily indicate how good the surrogate will be when evaluated at new 
sample points (for example, when sampling the surrogate extensively to calculate a mean, variance, or percentile).  
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Thus, while surrogates are a powerful tool, one must be careful of the accuracy of interpreting statistical measures 
based on surrogate builds [Guinta et al., 2006] 
  
 

 SHEAR MODE FREQUENCY AXIAL MODE FREQUENCY 
Surrogate Type Lower Bound Upper Bound Lower Bound Upper Bound 
Quadratic 
Regression 865.26 2852.54 1088.54 3791.74 
Mars 816.03 2882.92 1011.43 3829.90 
Neural Net 772.30 2906.90 993.58 3831.86 
Gaussian Process 
(using EGO optim.) 813.32 2884.02 1008.05 3831.89 

 

Corresponding 
Bounding 
inputs  [E,ν] 

Corresponding 
Bounding 
inputs  [E,ν] 

Corresponding  
Bounding 
inputs  [E,ν] 

Corresponding 
Bounding 
inputs  [E,ν] 

Quadratic 
Regression at 2000,0.494 at 25000,0.45 at 2000,0.45 at 25000,0.495 
Mars at 2000,0.468 at 25000,0.45 at 2000,0.45 at 25000,0.495 
Neural Net at 2000, 0.465 at 25000,0.465 at 2000,0.465 at 25000,0.495 
Gaussian Process at 2000, 0.494 at 25000, 0.45 at 2000,0.45 at 25000, 0.495 
 

Table 3.  Interval bounds obtained by optimizing a surrogate model 
 

B.   Dempster-Shafer Evidence Theory 
The previous section discussed interval optimization and some approaches to epistemic uncertainty based on 

interval calculations.  This section presents the same structural dynamics example, but using Dempster-Shafer 
evidence theory to characterize epistemic uncertainty.  In this example, we specified a belief structure on the elastic 
modulus as follows: BPA of 0.3 on the interval [3000, 6000], BPA of 0.6 on the interval [6000, 10000], and BPA of 
0.1 on the interval [10000,25000].  The belief structure on the intervals for ν are as follows:  BPA of 0.7 on the 
interval [0.45,0.475], BPA of 0.3 on the interval  [0.475,0.495].  Note that the intervals in this example are defined 
as contiguous intervals but there is no requirement that they be so:  they can be overlapping or disjoint.  These 
intervals are depicted graphically in Figure 8 below.  The resulting cumulative distribution functions of belief and 
plausibility for the shear mode frequency are shown in Figure 9 and for the axial mode frequency are shown in 
Figure 10.   Note that in the context of belief, the cumulative belief function (similar to a cumulative distribution 
function or CDF) is the cumulative belief that the uncertain quantity y* is less than a given value y:  Bel(y*≤ y).  
Similarly, the cumulative plausibility function is the cumulative plausibility that the uncertain quantity y* is less 
than a given value y:  Pl(y*≤ y).   For example, in Figure 9, the cumulative belief that the shear modulus is less than 
or equal to 1800 Hz is 0.3, while the cumulative plausibility that the shear modular is less than or equal to 1800 Hz 
is 0.9.  Another way of looking at this is the minimum amount of likelihood that could be associated with 1800 Hz is 
0.3, while the maximum amount of likelihood that could be associated with 1800 Hz is 0.9.  If we were to think in 
terms of probabilities and CDFs, the belief and plausibility provide an upper and lower bound on the CDF:  the 
cumulative probability that the shear frequency is less than or equal to 1800 Hz is between 0.3 and 0.9. Finally, the 
“stair-stepping” behavior of these cumulative curves is due to the discrete combinations of intervals on the input 
variables and the discrete levels of output at which we requested plausibility and belief to be accumulated.  It is 
difficult to represent, but at 1500 Hz, for example, the cumulative belief jumps from 0 to 0.3, and the cumulative 
plausibility jumps from 0.3 to 0.9.  The axial mode plot in Figure 10 is more representative of Dempster-Shafer 
analyses:  it is easy to imagine that the cumulative probability function may lie between the pink (plausibility) and 
blue (belief) lines in the figure. 
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BPA=0.3BPA=0.7
Poisson’s Ratio
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Figure 8.  Intervals and associated BPAs for Dempster-Shafer analysis 
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Figure 9.  Cumulative Belief and Plausibility Distributions for Shear Mode 
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Figure 10.  Cumulative Belief and Plausibility Distributions for Axial Mode 

 

C.   Second-order Probability 
Continuing with the structural dynamics example, we performed a second-order probability analysis where a 

value for the elastic modulus, E, was taken in the outer loop.  We assumed that Poisson’s ratio was an aleatory 
variable, in contrast with the previous analyses in this paper.  We performed second-order probability analysis using 
two approaches:  (1) sampling both in the inner and outer loop, and (2) interval optimization in the outer loop using 
a Gaussian process EGO-type optimization and stochastic expansion in the inner loop.  
 
4. Sampling Approach to Second-order Probability 

Conditioned on a particular value of E from the outer loop, 10 samples of ν were taken on the inner loop.  Over 
all outer loops, we then can calculate the minimum and maximum value of the 10th percentile on the inner loop, or 
the median, or the 90th percentile, etc.  Graphically, the results for the second-order probability analysis based on 
eight outer loops samples of E, with 10 inner loop samples of ν per outer loop sample (80 samples total), are shown 
in Figures 11 and 12.  The blue and pink lines show the minimum and maximum values of the 10th, 50th, and 90th 
percentiles over all the inner loop empirical distribution functions, respectively.  For example, the 10th percentile of 
the shear mode frequency could lie anywhere between 1137 and 2850 Hz in this example. Note that in a real 
analysis, one would want to take more samples on both inner and outer loops to obtain more accurate estimates of 
the minimum and maximum percentiles:  the few samples here are shown just for demonstration of the method.  In 
practice, one would want to take at least 30-50 outer loop samples and possibly hundreds of inner loop samples, 
depending on the inner loop statistic of interest. Also note that the empirical distribution function created for each 
outer loop based on sampling the inner loop is nearly vertical in Figures 11 and 12.  This will not usually be the 
case:  this is due to the fact that varying Poisson’s ratio has a very small effect on the mode frequencies relative to 
varying the elastic modulus, as discussed above. 
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Figure 11.  Second-order Probability Analysis for Shear Mode based on Nested Sampling 
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Figure 12.  Second-order Probability Analysis for Axial Mode based on Nested Sampling 

 
 



AIAA paper AIAA-2009-2249, SAND Report: 2008-5360A 

 
American Institute of Aeronautics and Astronautics 

 

14

V.  Margin Analysis 
 
Section IV presented a variety of approaches for propagating epistemic uncertainty, demonstrating how 

epistemic uncertainty structures on the input variables E and ν propagated to epistemic uncertainty structures on the 
output measures such as shear and axial mode frequency.  This section addresses the calculation of margin based on 
these epistemic output representations.   

Helton (2009) provides an excellent reference for various ways to analyze margin, depending on the treatment 
and characterization of epistemic and aleatory uncertainties.  He states: “a margin M is a measure of the difference 
between a requirement R placed on the performance of a system and the performance P of the system that will 
actually be realized, with M ≥ 0 indicating that the requirement is met and M < 0 indicating that the requirement is 
not met.”   Requirements and performance measures may be vector-valued but for the purposes of this discussion, 
we are considering a single requirement and single performance measure:  the frequency of the axial mode.  In the 
simple case that R and P are single numerical values, the margin M(R,P) = R–P if the performance is required to be 
less than R, or M(R,P) = P–R if the performance is required to be greater than R. When epistemic uncertainties are 
involved, the performance is then conditional on these epistemic uncertainties:  M(R,P|e), where e defines a vector 
of epistemic uncertain variables.   
 The important thing to remember when analyzing margins under uncertainty is that the margins are also 
uncertain and have an uncertainty structure that derives from the uncertainty structure assumed for the uncertain 
inputs.  We illustrate this below for the cases we presented in Section IV:  interval analysis, Dempster-Shafer theory, 
and second-order probability.  Note that uncertainty may also be incorporated in the specification of a requirement 
(for example, instead of a fixed requirement, the requirement may be bounded in an interval).  In the discussion 
below, we do not consider uncertainty on R, only on P.  The reader is encouraged to study the reference by Helton 
(2009) for more details about translating the input uncertainty structures to margins.  Although presenting the 
uncertainty on the margin may be helpful, Helton argues that it is also important to show the results in 
“performance” space, not margin space.  He states “margin summaries are less informative than performance 
summaries because they obscure the actual value of the performance measure and the relationship of this measure to 
its associated requirement.” (Helton, 2009)  Helton also strongly recommends against reducing margin and 
uncertainty information down to one number such as margin/uncertainty, where M and uncertainty (U) are reduced 
one number each: “Bluntly put, “margins/uncertainty” results do not contain enough information to provide a basis 
for appropriately informed decisions.”  

The first case of margin analysis we present is based on interval analysis. For the purposes of this illustration, the 
requirement is that the frequency of the axial mode be no more than 4000 Hz (R=4000).  In Section IV, we 
calculated several estimates of the margin on the axial mode frequency.  For this discussion, we take the interval to 
be that obtained by the Gaussian process surrogate/EGO optimization:  [1008 Hz, 3832Hz].  We have an interval on 
P, so that translates to an interval on M:   

M = [4000-3832, 4000-1008] = [168, 2992]. 
In this case, the interval on margin is very large:  from 168Hz to 2992 Hz.   Recall that the wide interval on the 
elastic modulus translated to a wide interval on axial mode frequency, which translates to a wide margin.  If R were 
within the interval, say R = 3000, the interval on margin would be [-832, 1992].  In this case, since the interval on 
margin includes negative values, we would say the margin is not met.  Note that we cannot put a probability 
distribution on margin in this case because we only have an interval structure on the axial mode frequency.  It is 
incorrect to say there is approximately a 1/3 chance of negative margin and 2/3 chance of positive margin in the 
interval [-832, 1992] Hz. 

In the second case, we have a Dempster-Shafer representation of uncertainty in the axial mode, as shown in 
Figure 13.  Given the requirement of 4000 Hz, this translates to a cumulative belief and cumulative plausibility 
function for the margin as shown in Figure 13.  At 4000Hz, both the cumulative belief and plausibility that the axial 
mode is less than or equal to 4000 is 1.   That is,  the measures of credence associated with the performance set P, 
where }4000~,~:~{4000 ≤∈= PPPPP  are given by the cumulative belief and plausibility:  

].0.1,0.1[)](),([ 40004000 =PPlPBel PP   The belief, BelP(P4000), provides a measure of information that supports 
the proposition that the appropriate value for the axial mode frequency is contained in P4000 and the plausibility 
PlP(P4000),  provides a measure of the amount of information that does not refute the proposition that the appropriate 
value for the axial mode frequency is contained in P4000.  In this case, the belief and plausibility indicate that margin 
would be satisfied.  However, if the requirement were at 3800Hz instead of 4000, we would have a statement like: 



AIAA paper AIAA-2009-2249, SAND Report: 2008-5360A 

 
American Institute of Aeronautics and Astronautics 

 

15

].0.1,9.0[)](),([ 38003800 =PPlPBel PP   In this case, there would be a small amount of evidence 

10.0)( 3800 =C
P PBel  that supports the proposition that the axial mode frequency is greater than 3800. 

 

Figure 13.  Margins in Dempster-Shafer Analysis. 
 
  
 The third case we present is based on second-order probability analysis.  In this case, we have an ensemble or 
family of CDFs, which provide a bounding interval.  There are a variety of ways to define margins.  In some cases, 
margins may be defined for moments or percentiles (e.g. the median response must be less than R), and in this 
situation, one would take the interval on the median defined by the “envelope” of CDFs, and proceed as in the case 
of interval analysis to generate an upper and lower bound on the margin for the median requirement.  In more 
complex situations, multiple requirement thresholds may be specified.  As an example, the Environmental Protection 
Agency (EPA) specified requirements on the maximum acceptable normalized radionuclide releases from Waste 
Isolation Pilot Plant (WIPP), a nuclear waste repository.  Performance assessment of this facility (Helton, 09), 
through modeling and simulation, demonstrated that the WIPP facility will meet the requirements of the maximum 
acceptable probabilities for exceeding normalized releases of 1 and 10 units (these requirements are given by 
RL1=0.1 and RL2 = 0.001).  Since the “family” or ensemble of CCDF curves shown in Figure 14 is all below the 
EPA limit, the facility was deemed to have adequate margin.  
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Figure 14.  Estimated Complementary Cumulative Distribution Functions for normalized 
release over 10,000 years generated from a Latin Hypercube sample of size 100 (outer loop) 

with aleatory samples of 10,000 (inner loop).  Taken from Helton, 2009. 
 
In the structural dynamics example, with a fixed requirement of 4000 Hz, margin is also met, as shown in Figure 15.   
If the margin requirement of 4000 Hz were specified for a particular percentile, such as the 70th percentile, we could 
calculate the margin at that percentile based on the interval defined by the pink and blue curves shown in Figure 15.  
For the 70th percentile, for example, the interval on margin is M = [4000-3650, 4000-1460] = [350,2540]Hz. 
 

 
Figure 15.  Margin based on 4000 Hz requirement.  Note that margin can be calculated relative to a particular 

percentile, such as the 70th percentile in this example 
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VI.  Summary 
This paper has presented several approaches used in characterizing and propagating epistemic uncertainty:  

interval analysis, Dempster-Shafer evidence theory, and second-order probability.  The use of surrogate models, 
both data-fit surrogate models such as quadratic regression models and Gaussian processes, and stochastic 
expansions such as polynomial chaos, were discussed and demonstrated.  The use of surrogate models was shown to 
be useful in the propagation of uncertainty.  In general, uncertainty quantification methods are computationally 
intensive.   Epistemic methods that require use of optimization (such as finding upper and lower bounds in interval 
analysis, finding bounds in Dempster-Shafer focal elements, and performing “looped” UQ in second-order 
probability analysis) all are more efficient when surrogates are able to be used.  The paper provided examples of the 
three types of epistemic uncertainty treatment on a problem in structural dynamics:  characterizing the uncertainty in 
the axial and shear mode frequencies given uncertainties in the material properties of elastic modulus and Poisson’s 
ratio.  The paper also demonstrated how the propagation of epistemic uncertainty translated to the assessment of 
margins.   
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