
2010 AIAA SDM Student Symposium

Parameter Estimation via Gaussian Processes and

Maximum Likelihood Estimation

Nicholas West∗

Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, 94305

Laura Swiler†

Sandia National Laboratories, Albuquerque, NM, 87185, USA

Computer models usually have a variety of parameters that can (and need to) be tuned
so that the model better reflects reality. This problem is called calibration and is an
inverse problem. We assume that we have a set of observed responses to given inputs
in a physical system and a computer model that depends on parameters that models the
physical system being studied. It is often the case that many more simulations can be run
than experiments conducted, so we typically have many more simulation results (at various
parameter values) than experimental results (at the “true” parameter value). In this paper,
we use Maximum Likelihood Estimation (MLE) to calibrate model parameters. We assume
that the response data is vector-valued, e.g. a response is given as a function of time. We
approximate the underlying models with Gaussian Processes (GPs) and fit the parameters
of the GPs with MLE. Specifically, we propose a decomposition approach to identify the
basis vectors that allows for efficient calculation of the parameters. Experimental data is
then used to calibrate the model parameters. This approach is demonstrated on one test
problem.

I. Introduction

Computer models usually have a variety of parameters that can (and need to) be tuned so that the model
better reflects reality. This problem is called calibration and is an inverse problem. We assume that we have
a set of observed responses to given inputs in a physical system and a computer model that depends on
parameters and models the physical system being studied. It is often the case that many more simulations
can be run than experiments conducted, so we typically have many more simulation results (at various
parameter values) than experimental results (at the “true” parameter value). There is a large literature
surrounding the problem of model calibration, ranging from interval analysis, to least squares fitting, to fully
probabilistic Bayesian methods.

A typical calibration approach is least squares analysis. In a classical least squares analysis, the model
parameters are assumed unknown but fixed. They are estimated by identifying parameter values which
minimize an objective function called the “error sum of squares” which is the sum of the squared residual
terms measuring the difference between the model prediction and the experimental results. There is a vast
literature on linear regression [Draper and Smith1] and nonlinear regression methods [Seber and Wild2]
In addition, methods have been developed for generating confidence intervals around optimal parameter

∗Doctoral Candidate, Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, 94305,
USA

†Principal Member of Technical Staff, Optimization and Uncertainty Estimation Dept., P.O. Box 5800, Sandia National
Laboratories, MS 1318

1

51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference

18th
12 - 15 April 2010, Orlando, Florida

AIAA 2010-2851

Copyright © 2010 by the American Institute of Aeronautics and Astronautics, Inc.
The U.S. Government has a royalty-free license to exercise all rights under the copyright claimed herein for Governmental purposes.
All other rights are reserved by the copyright owner.

estimates. These methods usually attempt to incorporate uncertainty in the experimental data. It is common
to use linear approximations for nonlinear models in the calculation of confidence regions. In general, the
computation of confidence intervals on parameters estimated by least squares methods is computationally
expensive and can be inaccurate [Vugrin et al3]. Interval analysis is a less common approach used in
calibration. In interval analysis, one attempts to match intervals spanned by the simulation data with
intervals spanned by the experimental data by determining intervals on some of the input uncertainties
which lead to the condition of experimental result intervals approximately matching those of simulation
results [Romero 20074].

Note that regression methods usually incorporate some type of error associated with the observations
but generally do not incorporate other types of uncertainty such as model form uncertainty, model bias
or inadequacy, and uncertain model parameters. [Xiong et al.5] provides a nice overview of more recent
approaches for calibration (they refer to calibration as a form of model updating). Specifically, in Bayesian
calibration, the parameters are assumed unknown but fixed over the course of the experiment. The lack of
knowledge of the parameters is reflected in prior distributions which are assigned, and these prior distributions
are updated based on observed data through the Bayesian framework [Kennedy and O’Hagan6 and Higdon
et al7]. In contrast to Bayesian methods which determine a distribution for each of the input parameters,
Maximum Likelihood Estimation methods (MLE) attempt to find a particular set of parameter values which
result in a maximal value of a likelihood function, usually by using an optimization method. In this paper,
we use a MLE approach to determining the parameters governing the Gaussian process which is part of the
Bayesian calibration framework.

II. Model Formulation

To frame the calibration problem we suppose that we have a mathematical model of the process under
study (generally a computational model) that is tune-able with a set of parameters, θ. Additionally, it is
possible to conduct physical experiments for relatively few inputs; by their nature, these experiments are
conducted at a “true” value of the parameters. We therefore have a set of simulation model results {Y m

i =
f(Xm

i , tmi)} for i = 1, · · · , n and a set of experimental results {Y o
i = f(Xo

i)}a, where f(Xo
i) ≈ f(Xo

i , θ∗)+εi.
At this point one might jump to a least-squares formulation, however the computational model may be

prohibitively expensive for this approach to be feasible. We therefore seek an inexpensive surrogate for the
true model. Gaussian Processes (GPs) [see Cressie8 and Rasmussen and Williams9] have proved useful and
effective in this context [Higdon et al 2005,10 Kennedy and O’Hagan,6 McFarland11]. We employ a GP as a
surrogate for the model to capture the response to the inputs and parameters. A GP is a stochastic process,
which for any finite number of points {xi}, i = 1, · · · , n is jointly Gaussian, ie: (X(x1), X(x2), · · · , X(xn)) has
a multivariate Gaussian distribution. It is completely characterized by its mean function µ(x) and covariance
function c(x, x′). For this paper we will assume that the model has been de-trended (see McFarland11 for
a model with a trend term) so that µ(x) = 0; we further assume that the process is stationary so that
c(x, x′) = c(x − x′), i.e. the correlation / covariance is a function of the proximity of the inputs. We use a
Gaussian covariance function

c(r) = σ2e
−

P r2
i

λi

where σ2 is the variance and λi is the correlation length of the ith input variable.
In many settings it is convenient to think of each experiment or model run as returning a vector of values

(either a set of variables such as pressure, temperature and velocity or the responses at different times). If
one assumes that the process (now in an extended dimension) is still Gaussian, progress can be made in
approximating it efficiently. This will be discussed in a following section.

Following [Kennedy and O’Hagan,6 McFarland11 and Higdon et al 200510] we assume that the modeled
results and the observed results are samples from a GP with (unknown) parameters {σ2

i } and {λi
j}. We

aNote that the notation here, f(X), is used only to suggest that the experimental results take some functional relationship
of the inputs similar to, but not the same as, the computational model.

2

assume that
Y M

i ∼ η(Xm
i , tmi) + ei

where η is a GP and ei is a noise term (a nugget) used to account for discrepancies in the GP and the
underlying function. This nugget term also helps to stabilize the numerical computations. The experimental
observations are modeled by

Y o
i ∼ η(Xo

i , θ∗) + δ(Xo
i) + εi

where θ∗ represents the optimal parameter selection (when fit); δ(·) is a discrepancy term and is modeled as
a GP (assumed to be mean zero and stationary); and εi is an observational noise term. In many settings δ
is taken to be zero.

III. Modeling Vector-Valued Gaussian Processes

Suppose that X is a Gaussian vector; it is well known that solving the eigenvalue problem for its covariance
matrix gives a discrete expansion of the random vector in terms of basis vectors and uncorrelated random
variables. We are motivated by this expansion and suggest that we model X : Rd×Ω → Rp as an expansion
on a basis, weighted by uncorrelated GPs. Following [Higdon et al 200510], let {vi} be a set of basis vectors
that span Rp and let {wi(x)} be a set of uncorrelated (and thus independent) GPs, we use the approximation

X(x) ≈
p∑

i=1

viwi(x) = V W (x).

The types of vector-valued Gaussian processes that we would like to use this model on have the form that
the index variable is really no different than any of the other variables - it should have its own correlation
length. It is unclear what a correlation length between two different index values (eg pressure and velocity)
would mean. We explore the limitations of such a description below.

For the original process X(x) (which is a vector valued Gaussian process), under the interpretation that
the vector notation is convenient short hand, the covariance function between X(xi) and X(xj) is described
as

E[X(xi)X(xj)T] = {Ck`(xi − xj)}, k, ` = 1, · · · , d

where
Ck`(xi, xj) = E[X(xi, tk)X(xj , t`)] = σ2e−

P
q(xiq−xjq)2q/λqe−(tk−tl)

2/λt = σ2
k`C(xi, xj)

and C(xi, xj) is the standard Gaussian covariance function. Now, consider the approximation given above
for the process; call this X̂ to avoid confusion.

E[X̂(xi)X̂T (xi)] = E[V W (xi)WT (xj)V T] = V E[W (xi)WT (xj)] = {Ĉk`(xi − xj)}, k, ` = 1, · · · , d

where
Ĉk`(xi, xj) =

∑
q

vkqvq`Cq(xi, xj), Cq(xi, xj) = σ2
qe−

P
r(xir−xjr)2/λq

r .

Note that, if we take the basis vectors V to be fixed, then this model has a reduced number of parameters:
d+nx. This is in contrast to the d2 +nx +1 parameters in the original model. The main difference, however,
is that this model does not explicitly know about the variability in the last coordinate, being used as the
index in the vector. Selection of the basis vectors will be discussed below.

IV. Maximum Likelihood Estimation

The technique of Maximum Likelihood Estimation (MLE) is often considered the gold-standard for
statistical parameter estimation. There are two approaches to likelihood maximization for this problem:
[Kennedy and O’Hagan6] argues that, in general, there will be many more samples from the computational

3

model than there are observations, and thus fitting the parameters in η to only the computational output
looses very little. On the other hand [McFarland11] and [Higdon et al 200510] approach the problem (at
least theoretically) in a combined approach where all estimation is done at the same step for all terms. In
[McFarland11] estimation is of the GP parameters with the bias term included; in [Higdon et al 200510] the
estimation of all parameters is done in one step of the MCMC algorithm which treats variance and correlation
lengths slightly differently. Our approach follows [Kennedy and O’Hagan6] where our modifications have the
most improvement in efficiency; however, the techniques may also be applied to the problem of maximizing
the likelihood over all parameters.

The likelihood of observing the modeled output is conditionally (on the parameters) Gaussian. Write
Y = (Y m

1
T , · · · , Y m

n
T)T as the concatenation of all of the observed variables and define Σ̂ as the matrix with

n2 d× d blocks, the ith, jth block given by

Cij = E
[
Y (Xm

i , tmi)Y (Xm
j , tmj)T

]
,

the covariance between modeled responses i and j. When we have expanded η on a set of basis vectors {vi}
with GP weights, this becomes

Cij = V E
[
diag(w1(Xm

i , tmi)w1(Xm
j , tmj), · · · , wd(Xm

i , tmi)wd(Xm
j , tmj))

]
V T .

Define Σ = Σ̂ + σ2I as the covariance with the lack-of-fit / nugget parameter (σ2 is the variance of each
component of e). The likelihood of the data is

L =
1

(2π)
nd
2
|Σ|− 1

2 e−
1
2 Y T Σ−1Y .

It is more practical to minimize the negative-log-likelihood (− log L)

NLL =
nd

2
log 2π +

1
2

log |Σ|+ 1
2
Y T Σ−1Y.

For an arbitrary matrix Σ, the most efficient method of evaluating the NLL is by factorizing Σ, and as Σ
is symmetric and positive definite the Cholesky decomposition is the choice algorithm, yielding Σ = RT R
where R is an upper triangular matrix. This allows for efficient solution of the implied system solves in
Y T Σ−1Y and the determinant computation. The Cholesky decomposition is an order n3 algorithm and thus
requires O(nd)3 work. When implementing the evaluation of this function numerically, the determinant of Σ
can be computed as the product of the diagonals of R; these can be sufficiently close to zero that underflow
can occur leading to an unbounded objective function. To remedy this, we take the sum of the logs of the
diagonals (as we only need the log of the determinant).

For optimization purposes, we drop the constant and use the function

NLL = log |Σ|+ Y T Σ−1Y

for which we can analytically derive derivatives with respect to the GP parameters. Recall that for the fitting
process (of the GP to the model), Σ is a function of the correlation lengths, variances and nugget variance
which need to be optimized over. Let t be an arbitrary parameter, then the derivative of NLL with respect
to t is given by

∂NLL

∂t
= trace(Σ−1 ∂Σ

∂t
) + Y T Σ−1 ∂Σ

∂t
Σ−1Y

where the notation ∂Σ/∂t is the component-wise differentiation of the matrix.

V. Basis Vector Selection

The major improvement to this model comes from the selection of the basis vectors used to represent the
GPs and, after judicious selection, use of certain properties of these vectors. [Higdon et al 200510] uses the

4

principal components of the empirical covariance matrix for their basis without much comment. However
some insight can be gained from this choice. If we write

Y m = [Y m
1 , Y m

2 , · · ·Y m
n],

(the matrix whose columns are the model results) then empirical covariance matrix is given by

Σe =
1

n− 1
Y Y T = USUT

where U is the matrix of singular vectors and S is a diagonal matrix with the singular values. Another way to
view this decomposition is as a Karhunen-Loeve expansion, and we know that the singular values correspond
to the amount of variance each component contributes. This suggests a more rigorous / understandable
process to determine the number of basis vectors needed to approximate a GP: we select the first d′ vectors,
so that the first d′ singular values contribute at least (1−δ)×100% of the variance. Define the corresponding
set of singular vectors to be Û , the first d′ columns of U . As this incorporates a spatial average, this only
captures the most large scale features in the variance function and may cause large optimal correlation
lengths.

One could now use this set of vectors in the model as it has been described, however, there are further
refinements possible. With a particular set of vectors we are assuming that

Y m
i = Y m(Xm

i , tmi) D=
d′∑

i=1

uiwi(Xm
i , tmi) = ÛWm

i

which is Gaussian. We now take specific linear combinations of the components of Y m
i so that

uT
k Y m

i
D= uT

k

d′∑
j=1

ujwj(Xm
i , tmi) D= wk(Xm

i , tmi).

due to the orthogonality of the singular vectors. Define

Ŷ m
i = ÛT Y m

i

as the new “model response”. We note that the covariance between two of these new observations is simply
the diagonal matrix:

E[Ŷ m
i Ŷ mT

j] = diag(E[w1(Xm
i , tmi)w1(Xm

j , tmj)], · · · ,E[wd′(Xm
i , tmi)wd′(Xm

j , tmj)]).

Now the new data vector Ŷ m = (Y mT
1 , · · · , Y mT

n)T has a banded (and very sparse) covariance matrix. By
permuting the data vector so that all of the data corresponding to process w1 are first, w2 second, and so
forth, the covariance matrix becomes block diagonal with each block being the covariance matrix for one
GP.

The effects in computational savings are great when computing values of the negative-log-likelihood. By
using a truncated set of vectors to describe the random field we have reduced the work required to construct
the covariance matrix, however its dimension remains the same. However, when we work with the truncated
variables, there are large improvements. First, the size of the resulting covariance matrix is now nd′ × nd′

which is at most the size of the previous matrix. However, the greatest savings comes from the fact that it
is block diagonal, and each block is a positive definite covariance matrix. We need only factor each block to
obtain the Cholesky decomposition of the covariance matrix. This amounts to d′ O(n3) operations rather
than the one O((nd′)3) cost of factoring the larger matrix.

In terms of the optimization, there is no major savings, other than the reduction in time to evaluate
the objective function. If, however, the nugget term is removed, then the blocks are independent (they only
depend on their own parameters) and the likelihood function can be viewed as a product of likelihoods for

5

each GP. Rather than solving one large optimization problem, we can now solve d′ smaller optimization
problems. We are still investigating under what situations the nugget term can be removed and still have a
numerically stable algorithm.

The discrepancy process δ(·) is also modeled as a linear combination of “basis” functions, however, their
selection is more context specific [Higdon et al 200510]. Let {bi}, i = 1, · · · , nd be a set of linearly independent
vectors. The discrepancy term is modeled by

δ(x) =
nd∑
i=1

bivi(x) = BV (x)

where {vi}, i = 1, · · · , nd is a set of independent GPs. It is convenient to think of bij = bi(tj) where tj is the
index variable, and bi(·) is a discrepancy function. A common choice of bi(t) is a Gaussian bump centered
about a point ti, and thus the discrepancy term can be viewed as a weighting of Gaussian errors about
points ti. The number of discrepancy terms, nd, is selected so that there is sufficient resolution to capture
discrepancies between the model and reality.

VI. Model Parameter Selection

In order to select the model parameters we must incorporate the data from the experiments, conducted,
in theory, at the “true” value. Recall that our model takes each output as a linear combination of basis
vectors so that

Y m
i (Xm

i , tmi) =
d′∑

j=1

ujwj(Xm
i , tmi) = ÛWm

i

where Wm
i = (w1(Xm

i , tmi), w2(Xm
i , tmi), · · · , wd′(Xm

i , tmi))T so that the entire data vector Y m takes the
form 

V (1)

V (2)

. . .
V (n)




Wm
1

Wm
2
...

Wm
n

 = V Wm

where V (i) are identical copies of Û . Note that the columns of V are orthogonal so that V T V = I. Similarly,
one observation vector (from the experiment) can be written as

Y o
i (Xo

i , θ∗) =
d′∑

j=1

ujwj(Xo
i , θ∗) +

db∑
j=1

bjvj(Xo
i) = ÛW o

i (θ∗) + BV o
i

where W o
i (θ) = (w1(Xo

i , θ), w2(Xo
i , θ), · · · , wd′(Xo

i , θ))T and V o
i = (v1(Xo

i), v2(Xo
i), · · · , vdb

(Xo
i))T . In ex-

treme shorthand we can write(
Y m

Y 0

)
=

(
V 0 0
0 V̄ B

) Wm

W o(θ)
V 0

 =⇒

(
Ŷ m

Ŷ o

)
=

(
I 0 0
0 I V̄ T B

) Wm

W o(θ)
V 0

 .

Simple computation gives the covariance matrix of the above as

Σ(θ) =

(
EWmWmT EWmW oT (θ)

EW o(θ)WmT EW o(θ)W oT (θ) + V̄ T BEV oV oT DT V̄

)
.

Note that due to the nature of a Gaussian covariance function, the two-two block is actually independent of
θ.

6

In evaluating the likelihood of the data, conditional on some parameter selection, the two computation-
ally demanding tasks are computing yT Σ−1y and det(Σ). We make some comments here on the efficient
computation of these quantities. First, observe that the one-one block of Σ is the same (unpermuted) co-
variance matrix of the model considered above; therefore we know that by symmetric permutation it can
be transformed into a block diagonal matrix, call this transformation Π and let Q be an arbitrary (for the
moment) permutation matrix, then(

Π
Q

)
Σ

(
ΠT

QT

)
=

(
D C

CT F + G

)

where D is a block-diagonal matrix. By selecting Q in a similar manner to Π only for the observed projections
we have that Ĉ is block -diagonal as well (although not square) and that F is also block-diagonal; G remains
dense. Note that G is zero in the case of no discrepancy term.

To solve a system of the form (
D C

CT H

)(
s

r

)
=

(
a

b

)
we employ the Schur compliment. This gives us two systems:

Ds + Cr = a or s = D−1(a− Cr) and CT s + Hr = b ⇒ (H − CT D−1C)r = b− CT D−1a.

Such a solution relies on the assumption that D is easily invertible; in this case D is the same block-diagonal
matrix we’ve been discussing and is indeed easily “inverted.” In fact, the dense matrix H = F + G is an
nod

′ × nod
′ matrix, which is often very small. Additionally the determinant of Σ can be similarly expressed

in terms of these matrices:
det(Σ) = det(D) det(H − CT D−1D).

Once these matrices have been factored, computation of their determinants is straight forward.

VII. Confidence Interval Generation

In addition to estimating the true parameters, θ∗, it is often useful to produce a confidence interval
for these parameters. We employ the bootstrap method [Efron and Tibshirani12] to produce a confidence
interval. The idea of the bootstrap is the following: we use the observed data, yo to estimate the parameters
θ̂; conditional on θ = θ̂ we use our Gaussian Process model to sample the observed data at the same inputs,
call this yi

d; from this sampled data, we now re-estimate the parameters θ̂i. This produces a set of plausible
parameter values; from this set we can estimate empirical confidence intervals.

Specifically, in the Gaussian Process model, we see that the simulation data and the experimental data
are jointly Gaussian: (

ysim

yobs

)
∼ N

(
0,

(
A(λi, σ

2
i) B(λi, σ

2
i , θ̂)

BT (λi, σ
2
i , θ̂) C(λi, σ

2
i)

))
where λi and σ2

i have been fit to the simulation data and θ̂ has been fit to the experimental data. Observe
that

yobs|ysim ∼ N
(
BT A−1ysim, C −BT A−1B

)
which can be efficiently sampled. We sample this distribution M times, collecting M iid samples, yi

obs, of
the experimental data. For each sampled set of data, yi

obs, we repeat the parameter estimation problem,
described in the previous section, producing M parameter estimates θ̂i. In the event that θ is a vector-
valued quantity, this set can be used to compute correlations between the parameters, in addition to simple
confidence intervals for the individual parameters.

7

VIII. Example Problem and Results

We consider the model calibration problem of estimating the modulus of elasticity in a cantilever beam
(similar to [Swiler13] and [Romero 200814]) We assume that the deflection in a beam is given by:

d =
F`

εI

where F is a point force applied at one end of the beam, ` is the length of the beam, I is the beam’s moment
of inertia and ε is the modulus of elasticity, the parameter we are trying to estimate. To pose this problem
as a vector-valued data set, we specify given forces (F1, · · · , Fd) = FT , and take

~d(`, I, ε) = F · `

εI
.

We generate 10 different simulation sets (of 400 input/parameter pairs), by using Latin Hypercube sam-
pling of both the input space and the parameter space; for each simulation set, we use the same experimental
data, generated with a known value of ε = 0.95. For each set of simulated data, we apply both the ML
algorithm presented above, as well as the Bayesian Markov Chain Monte Carlo algorithm in.10 Table 1 shows
the results from the 10 different cases. We see that the Maximum Likelihood estimates are closer to the true

Sample 1 2 3 4 5 6

ML 0.9429 0.9496 0.9498 0.9630 0.9381 0.9502
MCMC - Median 0.9655 0.9609 0.9706 0.9627 0.9660 0.9648
MCMC - Mean 0.9668 0.9602 0.9705 0.9628 0.9664 0.9658
Boot-CI (0.9423, (0.9491, (0.9493, (0.9627, (0.9379, (0.9498,

0.9434) 0.9499) 0.9503) 0.9632) 0.9383) 0.9505)
MCMC-CI (0.9316, (0.9295, (0.9365, (0.9291, (0.9370, (0.9260,

1.0136) 0.9975) 1.0095) 1.0003) 0.9987) 1.0141)
Sample 7 8 9 10 Mean Variance

ML 0.9626 0.9518 0.9418 0.9628 0.9513 8.2× 10−5

MCMC - Median 0.9675 0.9716 0.9675 0.9710 0.9668 1.3× 10−5

MCMC - Mean 0.9686 0.9768 0.9674 0.9713 0.9677 2.1× 10−5

Boot-CI (0.9622, (0.9516, (0.9412, (0.9622, - -
0.9630) 0.9520) 0.9423), 0.9634)

MCMC-CI (0.9336, (0.9374, (0.9301, (0.9382, - -
1.0088) 1.0673) 1.0053) 1.0102)

Table 1. Parameter Estimation Results. ML: Maximum Likelihood Estimate; MCMC: Markov Chain Monte Carlo Me-
dian; Boot-CI: Parametric Bootstrap Confidence Interval; MCMC-CI: Markov Chain Monte Carlo Confidence Interval

value, and are not systematically biased (to be larger than the true value); the variance (with respect to the
points used to build the underlying GP) is large (compared to the MCMC results). The MCMC method
appears to produce a biased estimator (at least for this example) when either the mean or the median of
the sample distribution is used; this bias is about 1% in both cases. However, the variance is smaller. This
would suggest that the two methods implicitly choose to balance variance and bias in different ways.

The 95 % confidence intervals produced by the two methods are interesting to look at. The bootstrap
results are based on 100 different samples (and don’t change as the number of samples are increased). These
confidence intervals are extremely tight, however only two of them contains the true parameter which is
concerningb . The confidence intervals produced from the MCMC are based on 2000 samples generated by

bThis may be due to the lack of an observation noise term in the ML code used to generate these results. It is expected that
adding such a term will produce more variable samples, and thus larger confidence intervals.

8

the progression of the chain. These intervals are quite large, and in all cases contain the true parameter, but
are skewed in the direction of the bias as well.

Finally, we present some timing results. Comparison of these two methods in terms of timings is a
little difficult. For the Maximum Likelihood Estimation technique, the estimation of parameters and the
generation of confidence intervals are separate, allowing one to time each part separately. For the MCMC
method, the estimate is produced along with the confidence interval data. See Table 2 for timing results.
It turned out that in this problem only one basis vector was needed to capture a significant percentage of
the variance, and thus non of the efficiencies described were realized; however, as both the ML algorithm
and the MCMC algorithm require the evaluation of the likelihood function, they could both benefit from the
efficiencies described above. Another feature, and perhaps advantage, of the bootstrap method is that the
samples can be generated in parallel, where as the parallelization of MCMC can be difficult.

Mean Max Min

ML Estimate 263 352 220
MCMC Estimate 588 659 408
ML CI 49 51 47
MCMC CI 0.294 0.329 0.204

Table 2. Timing Results. Times are given in seconds. For confidence intervals, times reported are seconds per sample.

IX. Conclusion

We have presented an algorithm for parameter estimation from vector-valued data based on approxi-
mations of vector-valued Gaussian Processes by basis vectors weighted by independent Gaussian Processes.
The use of the eigenvectors of the simulation data’s covariance matrix for this basis enables us to efficiently
evaluate the likelihood function of a given model. These efficiencies can be applied to any algorithm requir-
ing evaluation of the likelihood function. Maximum Likelihood estimates have been compared to Markov
Chain Monte Carlo estimates and were found to be less biased and more efficient to compute. However, the
generation of confidence intervals using the ML model and parametric bootstrapping is orders of magnitude
more expensive than when using MCMC, however, these intervals are quite small.

X. Acknowledgments

This work was funded in part by the Department of Energy’s National Nuclear Security Administration’s
Predictive Science Academic Alliance Program (PSAAP).

References

1Draper, N. R. and Smith, H., Applied Regression Analysis, John Wiley, Hoboken, N. J., 1998.
2Seber, G. A. F. and Wild, C. J., Nonlinear Regression, John Wiley, Hoboken, N.J., 2003.
3Vugrin, K., Swiler, L. P., Roberts, R. M., Stuckey-Mack, N., and Sullivan, S., “Confidence Region Estimation Techniques

for Nonlinear Regression: Three Case Studies,” Water Resources Research, Vol. 43, 2007.
4Romero, V., “Validated Model? Not So Fast. The Need for Model Conditioning as an Essential Addendum to Model Vali-

dation,” AIAA-2007-1953, 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference,
Honolulu, Hawaii, April 2007, pp. 23–26.

5Xiong, Y., Chen, W., Tsui, K.-L., and Apley, D. W., “A better understanding of model updating strategies in validating
engineering models,” Comput. Methods Appl. Mech. Engrg., Vol. 198, 2009, pp. 1327–1337.

6Kennedy, M. and O’Hagan, A., “Bayesian calibration of computer models (with discussion),” J. R. Stat. Soc. Ser. B
Stat. Methodol., Vol. 68, 2001, pp. 425–464.

7Higdon, D., Kennedy, M., Cavendish, J., Cafeo, J., and Ryne, R., “Combining field observations and simulations for
calibration and prediction,” SIAM J. Sci.Comput., Vol. 26, 2004, pp. 448–466.

8Cressie, N. A. C., Statistics for Spatial Data, Wiley, 1993.

9

9Rasmussen, C. E. and Williams, C. K. I., Gaussian Processes for Machine Learning, The MIT Press, 2006.
10Higdon, D., Gattiker, J., Williams, B., and Rightly, M., “Computer Model Calibration Using High Dimensional Output,”

Tech. Rep. LA-UR-05-6410, Los Alamos National Laboratory, 2005.
11McFarland, J. M., Uncertainty Analysis for Computer Simulations Through Validation and Calibration, Ph.D. thesis,

Vanderbilt University, 2008.
12Efron, B. and Tibshirani, R. J., An Introduction to the Bootstrap, Chapman and Hall, 1993.
13Swiler, L. P., Adams, B. M., and Eldred, M. S., “Model Calibration under Uncertainty: Matching Distribution Informa-

tion,” AIAA Paper AIAA-2008-5944, 2008.
14Romero, V. J., “Type X and Y Errors and Data and Model Conditioning for Systematic Uncertainty in Model Calibration,

Validation and Extrapolation,” Tech. Rep. 2008-01-1368, Sandia National Laboratories, 2008.

10

