
DAKOTA 101

Optimization and CalibrationOptimization and Calibration
http://dakota.sandia.gov

Learning Goals: 
• Understand goals of optimization and solution approachesUnderstand goals of optimization and solution approaches
• Use DAKOTA methods to design the cantilever beam
• Survey problem categories/considerations for method 

selection
• Know why calibration / parameter estimation problems and 

solutions are specialized optimization
• Calibrate cantilever beam model to synthetic datay

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, 
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s 

National Nuclear Security Administration under contract DE-AC04-94AL85000.



Optimization

• GOAL: Vary parameters to extremize objectives, while satisfying 
t i t t fi d ( t ) th b t d i ti t b tconstraints to find (or tune) the best design, estimate best 

parameters, analyze worst-case surety, e.g., determine:
– delivery network maximizing profit / minimizing environ. impacty g p g p
– case geometry that minimizes drag and weight, yet is sufficiently 

strong and safe
– material atomic configuration of minimum energymaterial atomic configuration of minimum energy
– fuel re-loading pattern yielding the smoothest nuclear reactor power 

distribution while maximizing output
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global 
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Some applications: local 

local

pp
improvement suffices; 
others: must find global 
minimum at any cost
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Typical Challenges for 
Simulation-based OptimizationSimulation based Optimization

In science and engineering problems of 
interest we typically have:interest, we typically have:

• no explicit function for f(x1,x2)
– can’t leverage algebraic structure

Image credits: John Siirola • limited number of evaluations/samples
– expensive to evaluate f(x1,x2) 

(long runtime even on many 

Image credits: John Siirola

processors)
– simulation may fail (hidden constraints)

• noisy / non-smooth
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– can’t reliably estimate derivatives

• local extrema, non-convex
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– globally optimal solutions challenging

Considerable research has been done and 
i l t d i DAKOTA t iti t th
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implemented in DAKOTA to mitigate these 
issues.
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Sample Optimization Approaches

Gradient Descent
(“ d hill”)

Pattern Search 
(d i ti f l l)

Genetic Algorithm
(d i ti f l b l)(“go downhill”)

• efficient/scalable for 
smooth problems; descent 
direction from derivative

(derivative-free local)
• stencil expansion/ 

contraction-based 
d f i li bl

(derivative-free global)
• well-dispersed initial 

population
b l l b l l ldirection from derivative

• requires analytic or 
numerical derivatives

• local convergence

• good for noisy; unreliable 
or expensive derivatives

• converge to local 
minimum

• balance global vs. local 
search with genetic fitness 
principles

• typically costlylocal convergence minimum typically costly
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Problem Formulation:
Objectives and Constraints

Obj ti f ti ( )*

Objectives and Constraints
Application information with which to configure the solver:

Objective function(s)*

Nonlinear inequality constraints

Minimize: f(x1, ...,xN)

Subject to: g ≤ g(x) ≤ g Nonlinear inequality constraints
Nonlinear equality constraints
(Metrics above are typically implicit: computed 

by/extracted from a simulation code)

Subject to: gLB ≤ g(x) ≤ gUB

h(x) = hE

by/extracted from a simulation code)

(Algebraic metrics below are typically specified 
directly to an optimization solver)

A b Linear inequality constraints
Linear equality constraints

AIx ≤ bI

AEx = bE

Bound constraintsxLB ≤ x ≤ xUB

* I ti lti l f l i th bj ti f ti
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* In practice, multiple f-values can comprise the objective function 
(“multi-objective optimization”), and there can be multiple 
constraints of each type.



Deterministic Optimization
for Cantilever Beamfor Cantilever Beam
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• Create DAKOTA study to minimize area subject to constraints
1 0 ≤ b idth ≤ 4 0 1 0 ≤ b thi k ≤ 4 0

22  wtEwt

1.0 ≤ beam_width ≤ 4.0, 1.0 ≤ beam_thickness ≤ 4.0,
stress ≤ 0, displacement ≤ 0

• Use nominal (state variables): R=40000, E=2.9e7, X=500, Y=1000
• Use CONMIN MFD method (could modify or borrow from template 

Optimization Local Constrained GradientBased)
• Responses: 1 objective (area), 2 nonlinear inequality constraints
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p j ( ), q y
• Try analytic vs. numerical gradients
• Compare to Asynchronous Pattern Search, Coliny EA



Potential Solution:
Cantilever OptimizationCantilever Optimization

# extraexamples/cantilever_optimization.in
# Perform deterministic optimization with uncertainties at nominal# Perform deterministic optimization with uncertainties at nominal

method
conmin_mfd

variablesvariables
continuous_design = 2

upper_bounds 4.0 4.0
initial_point 2.5 2.5
lower_bounds 1.0 1.0
descriptors    'beam_width' 'beam_thickness'

# Fix at nominal
continuous_state = 4

initial_state 40000 2.9e7 500 1000
descriptors 'R' 'E' 'X' 'Y'descriptors R E X Y

interface
direct

analysis_driver = 'mod_cantilever'

responses
num_objective_functions = 1
num_nonlinear_inequality_constraints = 2

descriptors = 'area' 'stress' 'displacement'

Note: given uncertainty 
in R, this design might 

t ti f t i t
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analytic_gradients
no_hessians

not satisfy constraints.



Considerations: Choosing
an Optimization Methodan Optimization Method

Key considerations (see DAKOTA User’s Manual “Usage Guidelines”)
• Trend and smoothness (perform local and global sensitivity analysis)(p g y y )
• Simulation expense
• Constraint types present; single or multi-objective
• Goal: local optimization (improvement) or global optimization (best possible)
• Variable types present (real, integer, categorical)
• Any special structure, e.g., quadratic objective, highly linearly constrained

Unconstrained or bound constrained problemsUnconstrained or bound-constrained problems
• Smooth and cheap: nearly any method but gradient-based will be fastest
• Smooth and expensive: gradient-based methods
• Nonsmooth and cheap: non-gradient methods such as pattern search (local opt)Nonsmooth and cheap: non gradient methods such as pattern search (local opt), 

genetic algorithms (global opt), DIRECT (global opt), or surrogate-based 
optimization (quasi local/global opt)

• Nonsmooth and expensive: surrogate-based optimization (SBO)*

Nonlinearly-constrained problems
• Smooth and cheap: gradient-based methods, though direct search works too
• Smooth and expensive: gradient based methods
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• Smooth and expensive: gradient-based methods
• Nonsmooth and cheap: non-gradient methods w/ penalty functions, SBO
• Nonsmooth and expensive: SBO



Extra Examples: 
Optimization Problems and MethodsOptimization Problems and Methods

• Constrained
– Minimize an objective given constraints
– Exercise: See template Optimization Local Constrained GradientBased

• Multi-start local
– Provide multiple starting points to a local optimizer to find multiple local minimap g p p p
– Exercise: See template Optimization Local MultiStart

• Global
– Find the global extreme value
– Exercise: See template Optimization Global Evolutionary AlgorithmExercise:  See template Optimization Global Evolutionary Algorithm

• Multi-objective
– Optimize across multiple competing objectives
– Exercise:  See template Optimization Local MultiObjective (modify to use 

optpp q newton method)p pp_q_ )
• Surrogate-based/multifidelity

– Reduce the computational cost (i.e., number of function evaluations) of 
optimization

– Exercise:  See template Optimization Global Surrogatep p g
• Hybrid

– Use multiple optimization methods to solve a single problem
– Exercise:  See template Optimization Hybrid Textbook Example
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Special Optimization Case:
Calibration (Parameter Estimation)Calibration (Parameter Estimation)

• Calibration: Adjust model parameters x to maximize agreement with 
a set of experimental dataa set of experimental data.

• A.K.A. parameter estimation, parameter identification, systems 
identification, nonlinear least-squares, inverse problem.

Mi i iMinimize

simulation output that given datap
depends on x given data

tu
re simulation output s(x)

te
m

pe
ra

t simulation output s(x)

data d
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Why use calibration?

• Tune a model to experimental or trusted simulation data to• Tune a model to experimental or trusted simulation data to
– ensure sufficient simulation code predictive capability
– decrease the amount of info lost due to using a model instead 

of the “truth” (minimize discrepancy)
– gain understanding of design space
– find parameters yielding improved model robustnessp y g p

• Calibration is not validation! Separate data should be used 
t h th lib t d d l i lidto assess whether a calibrated model is valid.

• Calibration (inverse) problems often suffer from non-Calibration (inverse) problems often suffer from non
uniqueness or lack of identifiability of some parameters
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Nonlinear Least Squares

• Calibration problems are often formulated to minimize the two• Calibration problems are often formulated to minimize the two 
norm of the error between the model and data: minimize

     
n

TT dxsdxsdxsxrxrxf 2)(1)()(1)()(1)(

• Any optimizer can be applied to the sum of squared residuals f(x)
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• Variance-weighted and Bayesian calibration also popular
• A specialized class of local derivative-based optimization 

algorithms exploit least squares structure for efficient solutionalgorithms exploit least squares structure for efficient solution 
without second derivative information

• Example: osborne1 analytic test problem with i = 1 33:Example: osborne1 analytic test problem, with i  1,…,33:

   110;)( 54
321  itdexexxxr ii

xtxt
i

ii

d t
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model/simulation
data



Exercise: Calibrate 
Cantilever to Experimental DataCantilever to Experimental Data

• Calibrate design variables E w t to data
DATA clean with 

• Calibrate design variables E, w, t to data 
from all 3 responses

• X, Y, R fixed (state) at nominal values
U NL2SOL OPT G N t

error
area 7.5 7.772

stress 2667 2658
• Use NL2SOL or OPT++ Gauss-Newton
• Key DAKOTA specs:

– num_least_squares_terms = 3

displacement 0.309 0.320

cantilever_clean.dat
cantilever witherror.dat

– no constraints
– least_squares_datafile

• Possible template: Calib. Local Data File

_

• For least-squares methods, 
application normally mustp

• How do the calibrated parameter values 
differ with clean vs noisy data?

application normally must 
return residuals ri(x)= si(x)– di
to DAKOTA

• Here we return the usual areadiffer with clean vs. noisy data?
• How do the confidence intervals differ?
• Bonus: experiment with scaling 

i bl

• Here we return the usual area, 
stress, displacement and 
specify a datafile and DAKOTA 
computes the residuals
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variables, responses computes the residuals



Potential Solution: 
Cantilever Least-SquaresCantilever Least Squares

# Calibrate to area, stress, and displacement data generated with 
# E = 2.85e7, w = 2.5, t = 3.0

method
nl2sol

convergence_tolerance = 1.0e‐6

variables
continuous_design = 3

upper_bounds 3.1e7 10.0 10.0
initial_point 2.9e7 4.0  4.0
l b d 2 7 7 1 0 1 0lower_bounds 2.7e7 1.0  1.0
descriptors   'E' 'beam_width' 'beam_thickness'

# Fix at nominal
continuous_state = 3

initial_state 40000 500 1000

CIs without error:
E: [ 2.850e+07, 2.850e+07 ]
w: [ 2.500e+00, 2.500e+00 ]

descriptors 'R' 'X' 'Y'

interface
direct

analysis driver = 'mod cantilever' CIs with error:

[ ]
t: [ 3.000e+00, 3.000e+00 ]

analysis_driver   mod_cantilever

responses
num_least_squares_terms = 3

#    least_squares_data_file = 'cantilever_clean.dat'
least squares data file 'cantilever witherror dat'

CIs with error:
E: [ 1.992e+07, 4.190e+07 ]
w: [ 1.962e+00, 3.918e+00 ]
t: [ 1.954e+00, 3.309e+00 ]
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least_squares_data_file = 'cantilever_witherror.dat'
descriptors = 'area' 'stress' 'displacement'

analytic_gradients
no_hessians



Summary:
DAKOTA Optimization MethodsDAKOTA Optimization Methods

Gradient based methods Derivative-free methodsGradient-based methods
(DAKOTA will compute finite

difference gradients and 
FD/quasi-Hessians if necessary)

Derivative-free methods
• COLINY (PS, APPS, Solis-

Wets, COBYLA2, EAs, 
DIRECT NGSA II MILocal)FD/quasi Hessians if necessary)

• DOT (various constrained)
• CONMIN (FRCG, MFD)

DIRECT, NGSA-II, MILocal)
• JEGA (single/multi-obj GAs)
• EGO (efficient global opt via 

• NPSOL (SQP)
• NLPQL (SQP)

OPT++ (CG N t )

Gaussian Process models)
• DIRECT (Gablonsky)
• OPT++ (parallel direct • OPT++ (CG, Newton)

Calibration (least-squares)

O (pa a e d ect
search)

• TMF
Calibration (least squares)
• NL2SOL (GN + QH)
• NLSSOL (SQP)

Pareto, Hybrid, Multi-start, 
Surrogate-based local and 
global
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• OPT++ (Gauss-Newton) global


