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Learning Goals: 

Uncertainty Quantification 

• Understand why you need to consider uncertainties in 

modeling and simulation 

• Explain how UQ works, and what data and choices are 

required to perform it 

• Be able to enumerate uncertainties in your domain and 

ways uncertainty-endowed code predictions could help 

decision making 

• Create DAKOTA studies to perform UQ 

(sampling, reliability, stochastic expansions, epistemic) 

• Understand DAKOTA statistics outputs and margin 

assessment 

• How to choose from UQ options in DAKOTA for your 

problem 



• What? Determine variability, distributions, statistics of code 

outputs, given uncertainty in input factors 

• Why? Assess likelihood of typical or extreme outcomes.  Given 

input uncertainty… 

– Determine mean or median performance of a system 

– Assess variability in model response 

– Find probability of reaching failure/success criteria (reliability metrics) 

– Assess range/intervals of possible outcomes 

• Assess how close uncertainty-endowed code predictions are to 

– Experimental data  

(validation, is model sufficient for the intended application?) 

– Performance expectations or limits  

(quantification of margins and uncertainties; QMU) 

Why Perform  

Uncertainty Quantification? 



• physics/science parameters 

• statistical variation,  

inherent randomness 

• model form / accuracy 

• material properties 

• manufacturing quality 

• operating environment,  

interference 

• initial, boundary conditions; forcing 

• geometry / structure / connectivity 

• experimental error (measurement error, measurement bias) 

• numerical accuracy (mesh, solvers); approximation error 

• human reliability, subjective judgment, linguistic imprecision 
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Uncertainties in  

Simulation and Validation 

A few uncertainties affecting computational model output/results: 

The effect of these on model outputs should be integral to an 
analyst’s deliverable: best estimate PLUS uncertainty! 
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Categories of Uncertainty 

• Aleatory (think probability density function; sufficient data) 

– Inherent variability (e.g., in a population), type-A, stochastic 

– Irreducible: further knowledge won’t help 

– Ideally simulation would incorporate this variability 

 

• Epistemic (e.g., bounded intervals or unknown distro parm) 

– Subjective, type-B, state of knowledge uncertainty 

– Reducible:  more data or information, would  

make uncertainty estimation more precise 

– Fixed value in simulation, e.g., elastic 

modulus, but not well known 

 

• See Rich Hills’ course on aleatory vs. epistemic uncertainty 

 

Needed for characterizing uncertainty and selecting algorithms 



Mechanics of (Parametric) 

Uncertainty Quantification 

Input Variables u 
(physics parameters,  
geometry,  initial and  
boundary conditions) 

Computational 
Model 

Variable  
Performance 
Measures f(u) 

• Identify and characterize uncertain variables (may not be normal, uniform) 

• Forward propagate: quantify the effect that (potentially correlated) 
uncertain (nondeterministic) input variables have on model output: 

Uncertainties on outputs 

• Means, standard deviations 

• Probabilities 

• Reliabilities 

• PDF, CDF 

• Intervals 

• Belief, plausibility 

Uncertainties on inputs 

• Parameterized distributions: 
normal, uniform, gumbel, etc. 

• Means, standard deviations 

• PDF, CDF from data 

• Intervals 

• Belief structures 
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Why the Recent UQ Buzz? 

DOE in general, ASC V&V perspective in particular, however evident  

across sectors 

• Shift from test-based to M&S-based design and certification  

• Supporting risk-informed decision-making requires credible M&S: 

– Predictive simulations: verified, validated for application domain 

of interest 

– Quantified uncertainties: random variability effect is understood 

• DOE Quantification of Margins and Uncertainties (QMU) demands 

best estimate + uncertainty in the decision-making context 

• UQ is a especially critical when we cannot test, e.g., nuclear 

weapon stockpile stewardship, climate science, genetics 



Example: 

Thermal Uncertainty Quantification 

• Device subject to heating (experiment or 
computational simulation) 

• Uncertainty in composition/ 
environment (thermal conductivity, 
density, boundary), parameterized by  
u1, …, uN 

• Response temperature f(u)=T(u1, …, uN)  
calculated by heat transfer code 

Given distributions of u1,…,uN, 
UQ methods calculate 
statistical info on outputs: 

• Mean(T), StdDev(T),  
Probability(T ≥ Tcritical) 

• Probability distribution of 
temperatures 

• Correlations (trends) and 
sensitivity of temperature 
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Group Discussion: 

Uncertainty in Your Domain 

• What sources of uncertainty should you consider 

in your analysis-based decision making? 

• How do you account for their effect today? 

• Which of these directly affect the simulations in 

your analysis process? 

• Do you consider the uncertainties aleatory or 

epistemic? 

• What data are available to characterize the 

uncertain factors? 

 

 



Three Contrasting  

DAKOTA UQ Methods 

• Sampling (Monte Carlo, Latin hypercube):  

robust, easy to understand, slow to converge / resolve statistics 

• Reliability: good at calculating probability of a particular behavior 

or failure / tail statistics; efficient, some methods are only local 

• Stochastic Expansions (PCE/SC global approximations): efficient 

tailored surrogates, statistics often derived analytically, far more 

efficient than sampling for reasonably smooth functions 

 

 

• Recent DAKOTA research largely focuses on advanced UQ 

methods transcending traditional Monte Carlo methods, including 

reliability, stochastic expansions, and evidence/interval to make 

these practical for a range of model costs and characterizations of 

uncertainty 

 



Prevalent UQ Method:  

Random Sampling 

• Assume distributions on each of the n uncertain input variables 

• Sample from each distribution and pair into N samples 

• Run the simulation model for each of the N samples 

• Use results ensemble to build up a distribution for each of the 
m outputs 

 

N realizations of Y 

Simulation  

Model 

 

Output  

Distributions N samples of X 

Output 1 

Output 2 

Input   

Distributions 

• sample mean 

 

 

• sample variance 

 

 

 

• full PDF(probabilities) 
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Calculating (Potentially Small)  

Probability of Failure 

• Given uncertainty in materials, geometry, and 

environment, how to determine likelihood of failure: 

Probability(T  ≥ Tcritical)? 

• Perform 10,000 LHS samples and count how many 

exceed threshold;  

(better) perform adaptive importance sampling 

 

 

 

 

 

 

 

 

Mean value: make a linearity 
(and possibly normality) 
assumption and project; 
great for many parameters with 
efficient derivatives! 

 

Reliability: directly determine 
input variables which give rise to 
failure behaviors by solving an 
optimization problem for a most 
probable point  (MPP) of failure 

T 

All the usual nonlinear optimization 
tricks apply…  
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• One approximated, calculate statistics (and sensitivities) analytical, or 

sample the cheaper surrogate. 

• Wiener-Askey Generalized PCE: optimal polynomial basis leads to 

exponential convergence of statistics (Normal/Hermite, Uniform/Legendre) 

• For empirical data: numerically generate basis orthogonal to histogram 

• Many variants for integration, adaptivity 

Approximate response with Galerkin projection using global multivariate 
orthogonal polynomial basis functions defined over standard 
random variables 

Generalized Polynomial  

Chaos Expansions (PCE) 

R(ξ) ≈ f(u) 
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Group Discussion / Exercise 

• Locate in the reference manual: 

– method options for sampling, reliability, and polynomial chaos 

– uncertain variable specifications 

• Assume the following uncertain variable characterizations for 

the cantilever beam 

– Yield stress  R ~ Normal(40000, 2000) 

– Young’s modulus E ~ Normal(2.9e7, 1.45e6) 

– Horizontal load  X ~ Normal(500, 100) 

– Vertical load  Y ~ Normal(1000, 100) 

– width w and thickness t both fixed at 2.5 

• What are some uncertainty quantification questions you might 

ask about the outputs of cantilever analysis? 

• Use JAGUAR (or discuss how) to create a DAKOTA input to 

perform a UQ sampling study for cantilever. 



Class Exercise: Cantilever Beam  

UQ with Sampling 

• Perform UQ with LHS method on mod_cantilever  (create or see 

extraexamples/dakota_uq_cantilever_lhs.in) 

• Determine mean system response, variability, margin to failure given 

(see variables section of reference manual) 
– Yield stress   R ~ Normal(40000, 2000) 

– Young’s modulus E ~ Normal(2.9e7, 1.45e6) 

– Horizontal load  X ~ Normal(500, 100) 

– Vertical load   Y ~ Normal(1000, 100) 

• Hold width and thickness at 2.5 

• Use probability_levels or response_levels in method 

– What is the probability(stress < 20000)? 

• Extra exercises (time permitting) 

– What happens to confidence intervals on the mean and standard 

deviation as number of samples varies? 

– Instead of normal, try uniform distribution for each random 

variable.  What do you expect would happen? 



method,  

      sampling  

        sample_type lhs  

        samples = 10000  seed = 12347 

        num_probability_levels = 0 17 17      

        probability_levels = 

        .001 .01 .05 .1 .15 .2 .3 .4 .5 .6 .7 .8 .85 .9 .95 .99 .999 

         .001 .01 .05 .1 .15 .2 .3 .4 .5 .6 .7 .8 .85 .9 .95 .99 .999 

        cumulative distribution  

 

variables,  

      continuous_design = 2  

         initial_point 2.5 2.5  

         upper_bounds 10.0 10.0  

         lower_bounds 1.0 1.0  

         descriptors 'beam_width' 'beam_thickness'  

      normal_uncertain = 4  

         means = 40000. 29.E+6 500. 1000.  

         std_deviations = 2000. 1.45E+6 100. 100.  

         descriptors = 'R' 'E' 'X' 'Y'  

 

responses,  

      num_response_functions = 3  

      no_gradients  

      no_hessians  

Example Input/Output: Sampling 
extraexamples/dakota_uq_cantilever_lhs.in 

 

Input (extra_examples/dakota_uq_cantilever_lhs.in) Output 



Typical UQ Output 

• Moments and confidence intervals 

 

 

 

 

 

 

 

• CDF (and PDF) data  

 Level mappings for each response function: 

Cumulative Distribution Function (CDF) for g_stress: 

     Response Level  Probability Level  Reliability Index  General Rel Index 

     --------------  -----------------  -----------------  ----------------- 

   2.4921421856e+02   1.0000000000e-03 

   4.1489075797e+03   1.0000000000e-02 

   7.9708753041e+03   5.0000000000e-02 

   1.0090342657e+04   1.0000000000e-01 

   1.1589780322e+04   1.5000000000e-01 

   1.2731567123e+04   2.0000000000e-01 

   1.4564078343e+04   3.0000000000e-01 

   ... 

Statistics based on 10000 samples: 

 

Moment-based statistics for each response function: 

                            Mean           Std Dev          Skewness          Kurtosis 

          area  6.2500000000e+00  0.0000000000e+00              -nan              -nan 

      g_stress  1.7599759864e+04  5.7886440706e+03 -2.2153567379e-02 -4.9234550018e-02 

       g_displ  1.7201261575e+00  4.0670385498e-01  1.7796424852e-01  8.0009704624e-02 

 

95% confidence intervals for each response function: 

                    LowerCI_Mean      UpperCI_Mean    LowerCI_StdDev    UpperCI_StdDev 

          area  6.2500000000e+00  6.2500000000e+00  0.0000000000e+00  0.0000000000e+00 

      g_stress  1.7486290789e+04  1.7713228938e+04  5.7095204696e+03  5.8700072185e+03 

       g_displ  1.7121539434e+00  1.7280983716e+00  4.0114471657e-01  4.1242034152e-01 



Adapt the Study 

• What needs to change in the input to perform a 

polynomial chaos study? 

• A local reliability analysis? 

• What changes in the output? 

 



method, 

     local_reliability 

       mpp_search no_approx 

       num_probability_levels = 0 17 17 

     

       probability_levels = 

       .001 .01 .05 .1 .15 .2 .3 .4 .5 .6 .7 .8 

.85 .9 .95 .99 .999 

       .001 .01 .05 .1 .15 .2 .3 .4 .5 .6 .7 .8 

.85 .9 .95 .99 .999 

       cumulative distribution 

 

responses, 

     descriptors = 'area' 'g_stress' 'g_displ' 

     num_response_functions = 3 

     analytic_gradients 

     no_hessians 

Changes for Reliability, PCE 

Reliability Input (examples/methods/dakota_uq_reliability.in) 

method, 

     polynomial_chaos 

       sparse_grid_level = 2 #non_nested 

       sample_type lhs seed = 12347  

       samples = 10000 

       num_probability_levels = 0 17 17 

     

       probability_levels = 

       .001 .01 .05 .1 .15 .2 .3 .4 .5 .6 .7 .8 

.85 .9 .95 .99 .999 

       .001 .01 .05 .1 .15 .2 .3 .4 .5 .6 .7 .8 

.85 .9 .95 .99 .999 

       cumulative distribution 



Aleatory/Epistemic UQ:  

Nested (“Second-order” )Approaches 

• Propagate over epistemic and aleatory uncertainty, e.g.,  

UQ with bounds on the mean of a normal distribution (hyper-parameters) 

• Typical in regulatory analyses (e.g., NRC, WIPP) 

• Outer loop: epistemic (interval) variables, inner loop UQ over aleatory 

(probability) variables; potentially costly, not conservative 

• If treating epistemic as uniform, do not analyze probabilistically! 
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DAKOTA UQ Summary and 

Relevant Methods 

• What? Understand code output uncertainty / variability 

• Why? Risk-informed decisions with variability, possible outcomes 

• How? What DAKOTA methods are relevant? 

 

 

 

 

 

 

 

 

 

 

 

 

• See DAKOTA Usage Guidelines in User’s Manual 

• Analyze tabular output with third-party statistics package 

character method class problem character variants 

aleatory probabilistic sampling nonsmooth, multimodal, 

modest cost, # variables 

Monte Carlo, LHS, 

importance 

local reliability smooth, unimodal, more 

variables, failure modes 

mean value and MPP, 

FORM/SORM,  

global reliability nonsmooth, multimodal, 

low dimensional 

EGRA 

stochastic expansions nonsmooth, multimodal, 

low dimension 

polynomial chaos, 

stochastic collocation 

epistemic interval estimation simple intervals global/local optim, sampling 

evidence theory belief structures global/local evidence 

both nested UQ mixed aleatory / epistemic nested 
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• DAKOTA User’s Manual: Uncertainty Quantification Capabilities 

• DAKOTA Theory Manual 

• Corresponding Reference Manual sections 



Learning Goals Revisited: 

Uncertainty Quantification 

• Understand why you need to consider uncertainties in modeling 

and simulation 

• Explain how UQ works, and what data and choices are required 

to perform it 

• Be able to enumerate uncertainties in your domain and ways 

uncertainty-endowed code predictions could help decision 

making 

• Create DAKOTA studies to perform UQ 

(sampling, reliability, stochastic expansions, epistemic) 

• Understand DAKOTA statistics outputs and margin assessment 

• How to choose from UQ options in DAKOTA for your problem 

 

• Reassess UQ relevance in your application domain 

• What methods, results would most help for your UQ problems? 

 


