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' " o= . .
>, ' Opportunities for Mixing

and Matching Methods

Strategies (general nesting, layering, sequencing and recasting
facilities) combine methods to enable advanced studies:

* opt within opt (multilevel opt & hierarchical MDO)

* UQ within UQ (second-order probability) _ :

- UQ within opt (OUU) and NLS (MCUU) Rl

« opt within UQ (uncertainty of optima) jmmmssmsss--oo- .

with and without surrogate model indirection

aleatory
sampling

» Surrogate-based: data fit, multifidelity, ROM

 Mixed integer nonlinear programming (MINLP): Uncertainty —  ______________ .
PEBBL (parallel branch and bound)

« Optimization under uncertainty
— TR-SBOUU, RBDO (Bi-level, Sequential)
— MCUU, PC-BDO, EGO/EGRA, Epistemic, ...

Optimization

« Second order probability
* Uncertainty of optima

* Hybrids (e.g., global/local) ont Nonlinear least squares

« Pareto set « Surrogate-based calibration
global local . .

* Multi-start optimization opt. * Model calibration under

» Multilevel methods ocal uncertainty @ Sandia
opt.
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| Need to think of relationships
} between DAKOTA input blocks Css
e Strategy

— Consists of a method or set of methods

—_—
* Method

— Operates on a model

There may be more

 Model has ==— than one of these in

— Variables/parameters a DAKOTA inputfile.

— Responses

— Interface

—
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'

/ ' Additionally, methods and s
} models may be “layered”
* Methods

— May need to specify a method to solve a sub-
problem

* Models

— Hierarchical surrogate allows user-specified
models of differing fidelity

— Data-fit surrogate constructs a response surface of
the user-supplied high-fidelity model

— Nested allows for “splitting” model parameters into
multiple sets for nested analyses
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Structure of surrogate-based
(or multi-fidelity) optimization

This loop constitutes the
“outer loop” method that
solves the optimization

problem.

Sanity check of surrogate against
simulation occurs here.

This step contains an
“inner loop” method
that solves a sub-
problem. Most
simulations are done
here, so replace with
less computationally

intensive surrogate.
|

——>Cpone
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National
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Trust Region

Surrogate-Based Minimization

2

LM /

) -1 0 1 2
Data fit surrogates

» Global: polynomials, splines, .
neural network, Kriging, RBFs

» Local: 1st/2nd-order Taylor

Data fits in SBO
« Smoothing: extract global trend
 DACE: limited # design vars

* Must balance local consistency
with global accuracy

\
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emerging
area

N7
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) -1 0 1 2
Multifidelity surrogates:

Coarser discretizations,
looser conv. tols., reduced
element order

Omitted physics: e.qg., Euler
CFD, panel methods

Multifidelity SBO

HF scale better w/ des. vars.
Requires smooth LF model
May require design mapping
Correction quality is crucial

2

ROM surrogates:
» Spectral decomposition
 POD/PCA w/ SVD

+ KL/PCE (random fields,
stochastic processes)

ROMs in SBO

+ Key issue: parametrize
(extended or spanning ROM)

2

* Otherwise like data fit case

&)
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any Types of Data-Fit Surrogates

Polynomials are accurate in small
regions and smooth noisy data.

linear ) n
f(x) =ep+ Z o
i=1
guadratic
}{jmfn—l-Zf € +sz”r €T
cubic i=1 j=i

. }{Jlmf[]+Zf T -I—ZZf”r X, -I—Z:zzf”“ il

i=1 724 =1 121 k>3

Splines can represent complex
multi-modal surfaces and smooth
noisy data.

M

f[}{} = Z “JFLBJFL[XJ

m=1 T

truncated power basis functions

Gaussian processes are good
predictors of mean and variance

but can suffer from ill conditioning.

flz) = gla)" B+r(@) " R(f - G3)

1 !

trend correlation

Correction terms can be applied to
surrogates for improved accuracy.

additive ’
fui, (%) = fro(x) + a(x)

multiplicative
..Ir.’:z',j [X-J' = ..IrfrJ [Xjﬁf[}{}
convex combination

-. = -' — .—' d.
Jri (%) = 3 fri (%) + (1 =) fhiy (x) @ ﬁg?iuﬁal
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ethod Iinput for surrogate-based
(or multi-fidelity) optimization

Need to identify relationships between blocks by using pointers and IDs.

strateqgy, . 1] ”
single method Strategy block points to the “outer loop
method pointer = 'SBLO' method.
method,
ld_methid N 'SELE" . This is the “outer loop” method. It
surrogate base oca . .
model pointer = 'SURROGATE' requires an “inner loop” .method_ and a
approx_method pointer = 'NLP' (surrogate) model on which the inner
?ax_itera@ons =50 loop will operate. It also has
rust region . .
iniEial_size - 0.10 conflguratlon parameters.
contraction factor = 0.5
expansion factor = 1.50
method, . . .
id method = 'NLP' This is the “inner loop” method.
conmin mfd
max iterations = 50
convergence tolerance = le-4

Method: surrogate-based optimization

—> method: optimizer for surrogate sub-problem

Sandia
. o National
—> model: data fit or multi-fidelity surrogate @ I.abg]rg?tlﬁes



Model input for data-fit
surrogate-based optimization

Need to identify relationships between blocks by using pointers and IDs.

“surrogate global” or “surrogate local”

model, specifies a data-fit surrogate. A
id model = 'SURROGATE' . .
responses pointer = 'SURROGATE RESP' sampling method is needed to collect
surrogate global data, and the type of response surface
dace method pointer = 'SAMPLING'

must be specified. This type of model
has no interface associated with it.

polynomial quadratic

method,
id method = 'SAMPLING' .. .
model pointer = 'TRUTH' This is the sampling method used to
dace lhs collect data for surrogate construction.
seed = 12345 It operates on the high-fidelity model.
samples = 10
model, .. . i ; )
id model - 'TRUTH" Thl_s is the high-fidelity model_, with
single variables, responses, and an interface.
interface_pointer = 'TRUE_FN' Variables, responses, and interface
responses_pointer = TIRUE_RESE blocks look the same as in DAKOTA 101.

Model: data-fit surrogate

|—> method: sampler for data collection
Same model structure applies National

Sandia
when doing surrogate-based UQ. |—> model: V,R,I for high-fidelity simulation @ Laboratories



Model input for
multi-fidelity optimization

Need to identify relationships between blocks by using pointers and IDs.

“surrogate hierarchical” specifies a
model, multi-fidelity optimization with user-
1d model = 'SURROGATE' . .
surrogate hierarchical provllded models. Both hlgh gnd low
low_fidelity model = 'LOFI' fidelity models must be identified. There
high fidelity model = THIFI' is no interface associated with this type
of model.
model, .. . ; .
id model = 'LOFT' This is the low-fidelity model, with
single variables, responses, and an interface.
interface pointer = 'LOFI FN'
model, This is the high-fidelity model, with
l@—mi’del - CHIFLY variables, responses, and an interface.
single . .
interface pointer = 'HIFI FN' Note that pointers to varlaples and
responses are not needed if both models
use the same ones. Variables,

responses, and interface blocks look the
Model: multi-fidelity surrogate same as in DAKOTA 101.

—> model: V,R,l for low-fidelity simulation

Sandia
: L : : National
—> model: V,R,l for high-fidelity simulation @ l:t}:?rg?oﬂes

Same model structure applies
when doing multi-fidelity UQ.
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'Structure of mixed (or nested)
uncertainty quantification
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'
~ ' Epistemic UQ:

ested (“Second-order” )Approaches

* Propagate over epistemic and aleatory uncertainty, e.g.,
UQ with bounds on the mean of a normal distribution (hyper-parameters)

« Typical in regulatory analyses (e.g., NRC. WIPP)

« Quter loop: epistemic (interval) variables, inner loop UQ over aleatory
(probability) variables; potentially costly, not conservative

 If treating epistemic as uniform, do not analyze probabilistically!

50 outer loop samples: 1.00
50 aleatory CDF traces
—— me [L,U ]

epistemic 075 —

sampling .
I E 050_
| aleatory : 3
0.25- g N
| U~ N(m, G) ¢ 47 bound probability
: | £4F# or bound response
: ! 0.00 ===

________________________ . response metric Sandia

“Envelope” of CDF traces represents response epistemic uncertainty Pt o




Interval Estimation Approach

'},7

(Probability Bounds Analysis)

* Propagate intervals through simulation code

local or global - Outer loop: determine interval on statistics, e.g.,
optimization mean, variance

. — global optimization problem: find max/min of
statistic of interest, given bound constrained
interval variables

— use EGO to solve 2 optimization problems with
essentially one Gaussian process surrogate

* Inner loop: Use sampling, PCE, etc., to determine
________________________ : the CDFs or moments with respect to the aleatory
variables

aleatory

min forar (Ug [Ug)| [MaX fore (U, )

E Ug

Ug<Uc <Uy U g SUg <Uy

UA~ F(uAqu) uA~ F(UA’UE) @Lﬁ%‘ﬁi?éﬁes




'Method and Model input for
nested uncertainty quantification

Need to identity relationships between blocks by using pointers and IDs.

Stra_‘tegiy' hod Strategy block points to the “outer loop” method,
single metho . . . .
method pointer = 'PSTUDY epistemic UQ in this case.
method,
idamitho‘_j . 'PfTEJE?M. The epistemic UQ method is the “outer loop” method
moge _polarer = TS and operates on the epistemic model parameters only.
centered parameter study
step vector =11
. fteps—per—"a“able =2 The nested model “splits” the parameter set. The
m , . . . . .
Oiz model = 'PS M subset specified here is varied by the epistemic UQ
nested - method. The rest are deferred to the aleatory study
variables pointer = 'PS V' specified by the sub_method_pointer. Variable
sub_method pointer = 'ALEATORY' mappings define context of the epistemic parameters
o — \J \J . - .
re?ponsesfp?lg‘ier = PSR 1t s in the aleatory study. Response mappings define
rimar varli m in = . . . . .
zecoidZEyavaiiaEIeaizpp?ng e e which aleatory statistics for each simulation response
primary response mapping = 1. 0. 0. 0. 0. 0. 0. 0. are of interest. There is no interface associated with
secondary response mapping = 0. 0. 0. 0. 1. 0. 0. O. this type of model.

0. 0. 0. 0. 0. 0. 0. 1.

method, The aleatory UQ method is the “inner loop” method
id method = 'ALEATORY' . .
model pointer — 'ALEAT M' and_operates on the epistemic model param_eters iny
sampling samples = 50 seed = 12347 but inserts values passed through by the epistemic
num response levels = 0 1 1 “outer loop”.

response levels = 10000. 10000.
compute reliabilities
complementary distribution

model, This is the high-fidelity model, with variables,
id model = 'ALEAT M' . .
singlMethod: epistemic uncertainty quantification| féSPonses, and an interface. Variables, responses,
variables pointer = 'ALEAT Vf and interface blocks look the same as in DAKOTA 101.
interface:pointer = 'ALEATiéL
responses pointer = 'ALEAT Model: nested Sandia
Same method and model structure applies > method: aleatory uncertainty quantification National

) ) ) Laboratories
when doing optimization under uncertaintv. B model: V.R.l for hiah-fidelity Slmuolra lon



Rather than design and then post-process to evaluate uncertainty...
actively design optimize while accounting for uncertainty/reliability metrics
s,(d), e.g., mean, variance, reliability, probability:

Opt | < min f(d) + Wsu(d)
{d}‘ S} st g <g(d) < gu
. 00 _ h(d) = Iy
{u}[ :|{Ru} dy < d < dy
Sim
a; < Ajsu(d) < ay
(nested paradigm) Ae su(d) = a;

Bistable switch problem formulation (Reliability-Based Design Optimization):

force
A switch

simultaneously reliable and robust designs

max E [Fin(d, x)] confact 13 design vars d: W, L;, g
s.t. 2 < Bccdf(d) 2 random variables x: AW, S,
50 < E [Fmaz(d,x)] <
E [EQ(da X)] < E; Es
E [Smaz(d,x)] <

displacem




Hybrid Optimization

strategy,
graphics 2
hybrid sequential .
method list = 'GA' 'PS' 'NLP' 1.5 . o s 07
[metnod, - .
id_method = 'GA' 1 . * i
model pointer = 'M1' . * .
coliny ea + .« * .
seed = 1234 05 . *
population size = 10 . it .
verbose output Q o L . .
method, - s —a
id_method = 'PS' 05 . .. . ‘
model pointer = 'M1' <
coliny pattern_search stochastic A ALY » A
seed = 1234 . .
initial delta = 0.1 s R .  rosenbrock| | . .
threshold delta = 1.e-4 - . .
solution_accuracy = 1l.e-10 | i * initial pop |,
exploratory moves basic pattern ?;_m“ - :i" : B‘ : ';" - _E
verbose output X1
method, . .
id_method = 'NLP' Evolutionary Algorithm:
model pointer = 'M2' . . .
SPtPP_newton Generates Multiple Starting Points
gradient tolerance = l.e-12

convergence_ tolerance = l.e-15 for Pattern SearCh

verbose output

, V.
“1

odel "ML

single

! r i
! ! !

it - e | e e | ke e
i pille .
P [ 47

responses pointer = 'R1'
model, . - . - -
id model = 'M2' —te s Ve V2 —ye s oK Y2 > Ao Ne
single v ]™ e 'f:%: v ]™ 'Y 'f:%: ¢ 7| e
variables_pointer = 'V1'
interface pointer = 'Il' .
reeponaee bointer - 'R2" Pattern Search Ensemble:
variables, H
A variapies - ryiv Generates Starting Point
continuous design = 2 I
initial point 0.6 0.7 for Newton Method to finish
upperibgunds 5.8 2.9
lower_bounds 0.5 -2.9
descriptors 'x1' 'x2"'
interface,
id_interface = 'I1' .
direct i —
analysis driver= 'text book' NeWton MethOd
responses,
id_responses = 'R1'
num_objective_functions = 1
no_gradients
no_hessians

FESpoONses H
idiresp('mses = 'R2' Sandla
num_objective_ functions = 1 National

analytic_gradients

analytic_hessians Laboratﬂries




Multi-Objective Optimization

f2(A) < f2(B)

f2
Image from http://en.wikipedia.org/wiki/Pareto_efficiency

May want tradeoffs between

multiple objectives.

strategy,
single method
tabular graphics data
method,
optpp g newton
output verbose
convergence tolerance = 1l.e-8
variables,
continuous design = 2
initial point 0
upper bounds 5.
lower bounds 0
descriptors !
interface,
system asynchronous
analysis driver= 'text book'
responses,

num objective functions = 3
multi objective weights .71 0.2
analytic gradients

no hessians

&)
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* Technique due to Jones,
Schonlau, Welch

* Build global Gaussian process
approximation to initial sample

- Balance global exploration (add
points with high predicted
variance) with local optimality
(promising minima) via an
“expected improvement
function”

0.06

107 GP surrogate ,--
8l et :
6
4_'
] True fn
21
D_ T T T T
o 2 4 6 8 10 12
121
] Expected

Improveme

70.05
-10.04
—40.03
10.02
10.01

2 4 6

8

10

=0
12

From Jones, Schonlau, Welch, 1998

&)
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AL
P | Efficient Global Reliability Analysis:

GP Surrogate + MMAIS (B.J. Bichon)

* Apply an EGO-like method to the equality-constrained optimization problem

* In EGRA, an expected feasibility function balances exploration with local
search near the failure boundary to refine the GP

» Cost competitive with best MPP search methods, yet better probability of
failure estimates; addresses nonlinear and multimodal challenges

Gaussian process model (level curves) of reliability limit state with
0 samples 28/5Qmples

Ve exploit

=1 explore

_ Sandia
il National
Laboratories




