Scalability of Global UQ Methods

For production UQ analyses, we prefer fast converging global methods:

» local approximate methods (reliability methods, moment-based methods) exhibit
significant errors in presence of multimodal/nonsmooth/highly nonlinear responses

« MC/LHS are robust with dimension-independent convergence rates, but rates can
be unacceptably slow

Spectral methods (e.g., PCE) provide a more effective balance of robustness
and efficiency, especially when solution smoothness can be exploited

Exponential growth in expansion cardinality with n and p, and collocation
requirements are >= the number of terms

To mitigate the curse of dimensionality:

« A priori model reduction methods (e.g., POD, Karhunen-Loeve) or other surrogate
techniques (e.g., multifidelity)

« Goal-oriented adaptive refinement to reduce effective dimension
* Adjoint techniques [given n (random dimension) > m (response Qol)]
« Sparsity detection methods: compressive sensing, least interpolation

Primary focus is stochastic exp., but other adaptive sampling efforts are related
(and can be leveraged within an abstract refinement framework: EGRA, GPAIS, k-d darts, Morse-Smale)



Non-Intrusive Stochastic Expansions:
Polynomial Chaos and Stochastic Collocation

Polynomial chaos: spectral projection usmg orthogonal polynomial basis fns
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* Estimate ¢ using regression or numerical integration:

sampling, tensor quadrature, sparse grids, or cubature

Stochastic collocation: instead of estimating coefficients for
known basis functions, form interpolants for known coefficients

Lagrange (values) or Hermite (values+derivatives)
linear (values) or cubic (values+gradients) splines
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* Tailor expansion form:

— p-refinement: anisotropic tensor/sparse, generalized sparse
— h-refinement: local bases with dimension & local refinement

* Method selection: fault tolerance, decay, sparsity, error est.

Sparse interpolants formed using X of tensor in
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Core-Enabled UQ: Multiple Model Forms

Same physics: LCTW
 a clear hierarchy of fidelity (low to high) = multifidelity UQ MTd
High

» an ensemble of models that could all be credible (lacking a clear preference structure)
- model form uncertainty (inadequate data), model selection (rich data)

SA-RANS — KE-RANS-NBC — KE-RANS-DBC

Additional dimension(s) for multi-{physics,scale}
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- Multifidelity UQ using Stochastic Expansions

Multifidelity UQ through stochastic expansion of model discrepancy:
» Extension of multifidelity opt methods that converge to local HF optimum based on local corrections
« Converge to global HF statistics based on global corrections (0t/1st consistency @HF collocation pts)
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Multifidelity UQ with stochastic expansions

» A hierarchical approximation: resolve expansions for LF and > 1 levels of model discrepancy
» leverage information from less expensive low & medium-fidelity models

« Adaptive multifidelity algorithm - further generalization to generalized sparse grids
» target regions where predictive capability of LF model breaks down
» greedy selection of candidates that provide the greatest benefit to HF Qol per unit cost

Performance

* Ideal LF model for multifidelity UQ would result in discrepancy with the following properties:

« discrepancy has lower complexity than HF model (spectrum of coefficients of discrepancy
expansion decays more rapidly than HF expansion) = faster convergence rate (affects exponent)

« discrepancy has lower variance than HF model - reduction in initial error (affects leading constant)
« Examples with good LF models - short column R, elliptic PDE
« ~ 80% reduction in HF evals for comparable statistical accuracy
* In non-ideal cases, LF model is non-informative or omits/introduces high order information

» horn acoustics: multifidelity performance did not degrade significantly from single-fidelity
performance, as algorithm can fall back to reliance on resolving the original HF trends

« Additional directions:
« adaptively discarding models from the hierarchy that are not providing value (low selection rate)

» basis pursuit approaches (compressive sensing) that can directly target high-order discrepancy
while benefiting from LF capture of low order trends
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Current Focus: VAWT Performance Modeling

Vertical-axis Wind Turbine (VAWT)

Low fidelity

High fidelity: DG formulation for LES

BLOCK 4

Computed vortex filaments
in the wake of a VAWT

CACTUS: Code for Axial and

Crossflow TUrbine Simulation
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Model Form Uncertainty Propagation
Mixed Aleatory-Epistemic UQ with Discrete Epistemic Model Forms

Epistemic uncertainty (aka: subjective, reducible, lack of knowledge epistemic
uncertainty): insufficient info to specify objective probability distributions sampling
Traditional approach: nested sampllng
- Expensive sims > under-resolved a|eat9ry
sampling (especially @ outer loop) 075+ sampling

» Under-prediction of credible outcomes
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Algorithmic approaches response metric
- Interval-valued probability (IVP), aka probability bounds analysis (PBA) Increasing epistemic
« Dempster-Shafer theory of evidence (DSTE) structure (stronger
- Second-order probability (SOP), aka probability of frequency assumptions)
Address accuracy and efficiency R
* Inner loop: stochastic exp. that are epistemic-aware (aleatory, combined) subject to sp < s < s
» Quter loop: e M0
- VP, DSTE: opt-based interval estimation, global (EGO) or local (NLP) =) [subject to s = s < sv

« SOP: nested stochastic exp. (nested expectation is only post-processing in special cases)
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Mixed Aleatory-Epistemic UQ:
IVP, SOP, and DSTE based on Stochastic Expansions
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Mixed Aleatory-Epistemic UQ:

IVP, SOP, and DSTE based on Stochastic Expansions
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- accuracy and scaling

Impact: render mixed UQ studies
practical for large-scale applications
Current:

Global or local opt. for epistemic intervals
-> accuracy or scaling w/ epistemic dimension

Global or local UQ for aleatory statistics
-> accuracy or scaling w/ aleatory dimension

Future:
adaptive and adjoint-enhanced global methods




Addition of Discrete Epistemic Model Form

MINLP interval estimation approaches
 Latin hypercube sampling (LHS)
« Evolutionary algorithm (EA)

» Surrogate-based global optimization (SBGO)
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