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What is traditional calibration?
Calibration: Adjust model parameters (θ) to maximize agreement with a set of 

experimental data (AKA parameter estimation, parameter identification, 
nonlinear least-squares)
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Calibration:  Determine optimal parameter settings for 
parameters of computer models

Problem:  How to determine “optimal”? 
– Standard approach:  find the parameters that minimize the sum 

squared difference between the model-computed data and the 
actual experimental data.   

– This approach usually allows for some error in the experimental 
data through a Gaussian error term, e.g. N(0,σ2), but the error is 
assumed independently and identically distributed at each data 
point

– Instead:  Best distribution fit.  Match means, means and variances, 
or multiple percentile values from the distributions of model results 
and experimental data.

Calibration under Uncertainty

Calibration under Uncertainty: 
Best Pointwise Fit Best Distribution Fit
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Why do this?

• Often our experimental data is of poor quality, has very few data 
points, or may not be directly relevant to the particular simulation 
model under investigation all we want to do is match 
moments

• Frequently modelers want to get a ballpark estimate based on 
bounds matching:  I have had people say to me “if I can get my 
model upper and lower bound estimates to match an 
upper/lower bound on the data, I will be happy”

• Might have several sets of experiments and want to match the 
mean or moments of each

• Our model may have some uncertain variables (some of which 
may be “calibrated” (e.g. pick the mean) and others not) and we 
want to incorporate this uncertainty in the response

• The output of the simulation has variability due to uncertainty in 
some of the input parameters to the model
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Form of computational model

x

 

= model inputs (not calibrated:  scenario or case specific inputs)
y(x) = experimental outputs:  x

 

and y are observable but we assume u is not
θA

 

= parameters to be calibrated entering directly into the model
θI

 

= parameters to be calibrated which influence the characterization of U
uI

 

= stochastic inputs which depend on a calibrated parameter
uA

 

= stochastic inputs which do not depend on a calibrated parameter
f(xi

 

, θ, uj

 

) = a model result based on inputs xi, θ, and 
a realization uj

 

of the uncertain variables

θA

uI

uA

computational
model 

f(x,θA ,uA )
or

f(x,θA ,uA, θI ,uI (θI ))

x

θI
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Examples
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Examples (cont’d)
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Solution Approach

i

Statistics on functions of 
Moments, CDF values, etc.

OUTER LOOP:  Nonlinear Least
Squares Optimization

x,θ

INNER LOOP:  Calculate 
Uncertainty in Response(s): 

Given an (x,θ) value, 
evaluate uncertainty over U

SIMULATION

x,θ,uj Results
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Solution Approaches:  Inner Loop
• Uncertainty quantification can be calculated using:

– Sampling  
• We used Latin Hypercube sampling (LHS), a stratified sampling method 

which results in a good sample spread over the input domain.
– Reliability Methods

• Transform the UQ problem into an optimization problem, finding the most 
probable point (MPP). 

• Requires finite difference or analytic gradients of the output variable with 
respect to the uncertain variables.  Finding each point in a cumulative 
distribution function requires performing a separate optimization run.  
We used the mean value method or the advanced mean value (AMV) with 
first and second order Taylor series expansions.  

– Stochastic Expansions
• Polynomial Chaos:  Approximate a stochastic function in terms of finite- 

dimensional series expansions, often based on Hermite polynomials 
which are functions of the Gaussian random variable. 

• Stochastic collocation:  Lagrange polynomial interpolants are used 
instead of orthogonal polynomials. 

• Used 3rd order quadrature to sample the points upon which the 
expansion is based. 
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Solution Approaches:  Outer Loop
• The preceding formulations become nonlinear least 

squares (NLLS) optimization under uncertainty problems
• NLLS algorithms exploit the structure of the objective 

function.  By assuming that the residuals  are close to zero 
near the solution, the Hessian matrix of second derivatives 
of S(θ) can be approximated using only first derivatives of 
the residual terms.

• For the NLLS algorithm, we considered 3 approaches: 
– Gauss-Newton:  approximates the Hessian as JTJ, where J is 

the Jacobian matrix.
– NLSSOL:  uses a sequential quadratic programming 

formulation (SQP)
– NL2SOL uses a trust-region method (and thus can be viewed 

as a generalization of the Levenberg-Marquardt algorithm) 
• The approximation of gradients can be problematic:  these 

approaches rely on accurate results from finite differencing
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Case Studies

• Used problems in the reliability literature (cantilever beam, steel 
column)

• Used DAKOTA software for implementation
– Allows a nested approach, NLLS outer loop, UQ inner loop
– Use of 3 NLLS methods, 3 UQ methods
– Option to utilize analytic or generate finite difference gradients

• Derivatives may be needed for both optimization (w.r.t. 
calibration parameters), or UQ (w.r.t uncertain variables).

– Design variable insertion: the capability to calibrate parameters 
which specify or govern distributions (such as means, 
variances, and bounds). 

– In some cases, we have the ability to compute analytic 
derivatives of the statistics of interest with respect to the 
calibration parameters, without resorting to additional 
evaluations of the computational model.
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Cantilever Beam

• We are interested in obtaining calibrated estimates for the width and 
thickness of the beam (w and t) which result in the simulated displacement 
“matching” the experimental displacement in a variety of ways 

• Simulated 20 experimental data points by holding the design variables fixed 
at w*=2.5 in. and t* = 2.5 in., and sampling over the uncertain variables. The 
mean displacement of this particular sample is 3.993 inches. 
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Cantilever Beam

 Variable Description Nominal Value 
constant L length 100 inches 

w width 4 inches design 
θ t thickness 4 inches 

X horizontal load 500 lbs 
Y load 1000 lbs 
R  yield stress 40000 psi 

uncertain 
u 

E elastic modulus  2.9E7 psi 

• The displacement of the nominal beam given the properties in 
Table 1 above (with w = t = 4 inches) is 0.605 inches. 

• Thus, we expect the calibration to result in smaller values for 
w and t to match with the greater displacement observed in the 
simulated experiment.
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Cantilever Beam:  Matching Mean

• Several combinations of (t,w) achieve a mean displacement very close to 3.993
• Non-uniqueness or lack of identifiability of parameter values is a common issue in  

inverse problems Regularization approaches may be used to address this 
• Tradeoff between accuracy and efficiency:  Mean value methods use fewer function 

evaluations, not as accurate
• The NL2SOL algorithm consistently performs well.  The remaining results are presented 

using NL2SOL. 

NLLS Method 
(Outer Loop)

UQ Method (Inner 
Loop)

Residual 
Norm 
Value

LHS-
verified 

Res Norm

Num Fn 
Evaluations

NL2SOL sampling (20) 2.116 2.795 1.03E-10 4.52E-03 840
Gauss Newton sampling (20) 3.237 2.224 1.00E-06 4.76E-04 1700

NLSSOL sampling (20) 2.437 2.53 2.22E-15 2.78E-03 2120
NL2SOL mean value, 

numerical deriv.
2.11 2.791 7.33E-11 3.48E-02 42

Gauss Newton mean value, 
numerical deriv.

3.243 2.22 1.19E-06 1.51E-02 85

NLSSOL mean value, 
numerical deriv.

2.428 2.53 3.11E-15 2.77E-02 106

NL2SOL mean value, analytic 
deriv.

2.11 2.791 0 3.48E-02 20

NL2SOL PCE 2.117 2.795 4.44E-16 4.76E-06 270
NL2SOL stochastic 

collocation
2.117 2.795 4.44E-16 7.19E-07 270

t̂ ŵ
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Cantilever Beam:  Matching Mean and Std. Dev.

• Again, several combinations of (t,w) achieve a mean displacement very close 
to 3.993 and a standard deviation close to 0.414

• Matching mean and standard deviation requires more function evaluations 
than matching mean only

• How to weight the mean vs. standard deviation in a consistent way? 
– Use of reliability indices
– Weighted least squares

Residual Norm 
values

LHS-verified 
Residual Norm 

(mean, std.dev) (mean, std.dev)

3.86E-3,
5.30E-03

1.48E-8, 3.54E-2,
1.92E-10 8.38E-02
4.69E-12, 9.48E-6,
1.15E-12 2.95E-04
4.76E-12, 9.48E-6,
1.16E-12 2.88E-04
5.94E-5, 5.00E-5,

3.68E-05 3.31E-04
5.95E-5, 5.00E-5,

3.68E-05 3.25E-04

stochastic collocation 
specifying reliability indices

2.328 2.603 324

PCE specifying reliability 
indices

2.328 2.603 324

stochastic collocation 2.328 2.602 351

PCE 2.328 2.602 351

1640

mean value, numerical deriv. 2.02 2.91 49

sampling (20) 2.552 2.469 6.13E-03,        
5.24E-02

                                                
UQ Method (Inner Loop)

Num Fn 
Evaluationst̂ ŵ
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Reliability Indices for Implicit Weighting

• A reliability index can be thought of as the number of standard deviations 
a particular output value z* is from the mean.  

• Instead of explicitly matching the mean and standard deviation, we re- 
formulate the problem to match several reliability indices corresponding to 
experimental data.  

• For this particular problem, we took 5 experimental data points 
corresponding to the 5th, 25th, 50th, 75th, and 95th percentile values.  

• We then optimized so that the simulation reliability indices would 
approximately correspond to the experimental reliability indices.  

• Doing this implicitly matches the simulation mean and standard deviation 
to the experimental mean and standard deviation, because the simulation 
betas are calculated as:

• This approach may be more appropriate than arbitrarily choosing a 
weighting scheme such as 2:1 for mean: standard deviation. 
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Cantilever Beam:  Matching Percentiles
UQ Method (Inner 

Loop)
Residual Norm 

values (one row per 
0.05, 0.25, 0.5, 0.75, 
and 0.95 percentile)

LHS-verified 
residual norm 

values of 
percentiles

Num Fn Evaluations

5th:   0.1582 5th:  0.2298
25th:  0.1213 25th:0.0211

50th:  0.02687 50th:  0.0980
75th:  0.0832 75th:  0.0123
95th:  0.2452 95th: 0.1826

TOTAL:  0.3279 TOTAL:  0.3104
5th:   0.0889 5th:  0.0924
25th: 0.0489 25th: 0.0298
50th:  0.0712 50th:  0.0885
75th:  0.1333 75th: 0.1002
95th:  0.0886 95th: 0.0140

TOTAL:  0.2024 TOTAL:  0.1658
5th:   0.0799 5th:  0.1232
25th: 0.0658 25th: 0.0373
50th:  0.1231 50th:  0.1180
75th:  0.0760 75th: 0.0363
95th:  0.0315 95th: 0.0866

TOTAL:  0.1807 TOTAL: 0.1983
5th:   0.0799 5th:  0.1233
25th: 0.0659 25th:  0.0373
50th:  0.1231 50th:  0.1179
75th:  0.0760 75th:  0.0363
95th:  0.0315 95th:  0.0866

TOTAL:  0.1807 TOTAL: 0.1983
5th:   0.0903 5th:   0.0826
25th: 0.0046 25th:   0.0444
50th:  0.1063 50th:   0.1078
75th:  0.0769 75th:   0.0817
95th:  0.0077 95th:   0.0093

TOTAL:  0.1660 TOTAL:  0.1648
5th:   0.0895 5th:   0.0827
25th: 0.0475 25th:   0.0445
50th:  0.1065 50th:   0.1079
75th:  0.0776 75th:   0.0818
95th:  0.0071 95th:   0.0075

TOTAL:  0.1663 TOTAL: 0.1649

stochastic collocation, 
specifying percentiles

2.408 2.552 2349

PCE,  specifying 
percentiles

2.395 2.56 1809

MPP x-Taylor mpp 
(AMV+)

4.305 2.007 550

MPP x-Taylor mean 
(AMV)

4.3 2.008 385

sampling (100) 2.444 2.534 6200

sampling (20) 2 2.958 1440

t̂ ŵ
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Cantilever Beam:  Matching Percentiles

• Matching percentiles requires more function evaluations than 
matching first and second moments  

• Some parameter values result in better matches to the middle 
percentiles and are very inaccurate in the tail

• There is a tradeoff in matching the various percentiles: some 
can be matched closely at the expense of others. Could employ 
weighting to obtain better matches at the percentiles of interest. 

• UQ performed with 20 sample LHS suffered from problems 
resolving tail probabilities. 

• Increasing the sample size from 20 to 100 greatly increases the 
accuracy of the result, but at the cost of significantly more 
function evaluations. 

• Adding second order information to the reliability method does 
not improve the accuracy of the solution and requires more 
function evaluations. 

• The stochastic expansion methods perform well. 
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Steel Problem:  Design Variable Insertion
Variable symbol reference value unit 
mean of flange breadth b 200.00 mm 
mean of flange thickness d 17.50 mm 
mean of height of steel profile h 100.00 mm 

 

variable symb

 

ol
distributi

 

on
mean/standard deviation unit

yield stress Fs lognormal 400/35 MPa

dead weight load P1 normal 500000/50000 N

variable load P2 Gumbel 600000/90000 N

variable load P3 Gumbel 600000/90000 N

flange breadth B lognormal b/3 mm

flange thickness D lognormal d/2 mm

height of profile H lognormal h/5 mm

initial deflection F0 normal 30/10 mm

Young’s modulus E Weibull 21000/4200 MPa
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Steel Column Problem

• We cannot always precisely recover the optimal parameter b since the parameters B and D are somewhat  
confounded in the response function f, and there are only 5 percentiles on the CDF to match.

UQ 
algorithm

b * d * h * solver 
residual 

norm

LHS-
verified 
residual 

function 
evals

mean value 200 17.07 100 19.32 20.87 91

u-space 
AMV

228.7 14.42 220.4 24.07 28.77 145

u-space 
AMV+

200 17.03 100 18.63 21.45 399
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Summary

• Presented several formulations to estimate model parameters which result 
in the “best distribution fit” between experimental and simulation data

• Our results show reliability methods or stochastic expansion methods are 
more effective than sampling in the propagation of uncertainty in the inner 
loop, due in part to availability of analytic derivatives of statistics for these 
methods.

• NL2SOL generally was more efficient than NLSSOL or Gauss Newton on 
the problems in our case studies. 

• The optimal model parameters obtained when matching statistical metrics 
may be non-unique, a common situation in inverse problems.  

• Best distribution fit problems may require regularization approaches to 
address the lack of identifiability in parameter estimation. 

• Finding optimal parameters to match percentiles may result in some 
percentiles being closely matched and others (such as tail probabilities) 
not being as well matched. Weighting the residual terms of interest can 
help address this. 

• Future work:   
– Treat the uncertainty as epistemic instead of aleatory, and matching interval 

bounds. 
– Further investigate stochastic response approximation such as PCE for use 

in calibration problems
– Use on Sandia problems


	Model Calibration under Uncertainty:                             Matching Distribution Information����Laura P. Swiler, Brian M. Adams, and Michael S. Eldred�September 11, 2008��AIAA Multidisciplinary Analysis and Optimization Conference�Victoria, Canada
	What is traditional calibration?
	Calibration under Uncertainty
	Why do this?
	Form of computational model
	Examples
	Examples (cont’d)
	Solution Approach
	Solution Approaches:  Inner Loop
	Solution Approaches:  Outer Loop
	Case Studies
	Cantilever Beam
	Cantilever Beam
	Cantilever Beam:  Matching Mean
	Cantilever Beam:  Matching Mean and Std. Dev.
	Reliability Indices for Implicit Weighting
	Cantilever Beam:  Matching Percentiles
	Cantilever Beam:  Matching Percentiles
	Steel Problem:  Design Variable Insertion
	Steel Column Problem
	Summary

