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Abstract

The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit
provides a flexible and extensible interface between simulation codes and iterative analysis
methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based
methods; uncertainty quantification with sampling, analytic reliability, and stochastic finite
element methods; parameter estimation with nonlinear least squares methods; and sensitivity
analysiswith design of experiments and parameter study methods. These capabilities may be used
on their own or as components within advanced strategies such as surrogate-based optimization,
mixed integer nonlinear programming, or optimization under uncertainty. By employing object-
oriented design to implement abstractions of the key components required for iterative systems
analyses, the DAKOTA toolkit provides aflexible and extensible problem-solving environment
for design and performance analysis of computational models on high performance computers.

This report serves as a user's manual for the DAKOTA software and provides capability
overviews and procedures for software execution, as well as a variety of example studies.
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Preface

The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) project
started in 1994 as an internal research and development activity at Sandia National Laboratories
in Albuquerque, New Mexico. The original goal of this effort was to provide a common set of
optimization tools for a group of engineers who were solving structural analysis and design
problems. Prior to the start of the DAKOTA project, there was not a focused effort to archive the
optimization methods for reuse on other projects. Thus, for each new project the engineers found
themselves custom building new interfaces between the engineering analysis software and the
optimization software. This was a particular burden when attempts were made to use parallel
computing resources, where each project required the development of a unigue master program
that coordinated concurrent simulations on a network of workstations or a parallel computer. The
initial DAKOTA toolkit provided the engineering and analysis community at Sandia Labs with
access to avariety of different optimization methods and algorithms, with much of the
complexity of the optimization software interfaces hidden from the user. Thus, the engineers
were easily able to switch between optimization software packages simply by changing afew
linesin the DAKQOTA input file. In addition to applications in structural analysis, DAKOTA has
been applied to applications in computational fluid dynamics, nonlinear dynamics, shock
physics, heat transfer, and many others.

DAKOTA has grown significantly beyond its original focus as atoolkit of optimization methods.
In addition to having many state-of-the-art optimization methods, DAKOTA now includes
methods for sensitivity analysis, parameter estimation, design-of-experiments, uncertainty
guantification, and multidimensional surface mapping. Underlying all of these methodsis
support for parallel computation; ranging from the level of a desktop multiprocessor computer up
to massively parallel computers found at national laboratories and supercomputer centers.

The objective of the public release of the DAKOTA software is to facilitate collaborations
among the developers of DAKOTA at Sandia National Laboratories and other institutions,
including academic, governmental, and corporate entities. We are interested in devel oping
relationships with persons or groups who would like to assist us in extending the capabilities of
DAKOTA. Wefed that this goal is best pursued by making the source code of our software
freely available to others. In doing so, we expect that some of our errors will be found and
corrected, and that new capabilities will be added to future versions of DAKOTA. Currently,
DAKOTA islicensed for public release under a GNU General Public License. See
http://ww. gnu. org/licenses/gpl.htm for moreinformation on the GPL
software use agreement.

The core DAKOTA framework developers are Mike Eldred, Tony Giunta, Mario Alleva, Steve
Wojtkiewicz, Bart van Bloemen Waanders, and Roscoe Bartlett. In addition, Bill Hart and Pam
Williams develop and maintain DAKOTA'’ sinterfaces to the SGOPT/COLINY, PICO, UTILIB,
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OPT++, DDACE, and APPS libraries. Additional contributors to these libraries include Patty
Hough, Tammy Kolda, Monica Martinez-Canales, Cindy Phillips, and John Red-Horse from
Sandia, as well as Prof. Roger Ghanem from Johns Hopkins University, Prof. Jonathan Eckstein
from Rutgers University, and Prof. Virginia Torczon from the College of William and Mary.

Contact Information:

Michael Eldred, Principal Investigator - DAKOTA Project
Sandia National Laboratories

PO. Box 5800

Mail Stop 0847

Albuquerque, NM 87185-0847

email: dakota@sandia.gov
web: http://endo.sandia.gov/DAKOTA
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1.0 Introduction

1.1 Motivation for DAKOTA Development

Computational models are commonly used in engineering design activities for simulating
complex physical systemsin disciplines such as fluid mechanics, structural dynamics, heat
transfer, nonlinear structural mechanics, shock physics, and many others. These simulators can
be an enormous aid to engineers who want to develop an understanding and/or predictive
capability for the complex behaviors that are often observed in the respective physical systems.
Often, these ssimulators are employed as virtual prototypes, where a set of predefined system
parameters, such as size or location dimensions and material properties, are adjusted to improve
or optimize the performance of a particular system, as defined by one or more system
performance objectives. Optimization of the virtual prototype then requires execution of the
simulator, evaluation of the performance objective(s), and adjustment of the system parametersin
an iterative and directed way, such that an improved or optimal solution is obtained for the
simulation as measured by the performance objective(s). System performance objectives can be
formulated, for example, to minimize weight, cost, or defects; to limit a critical temperature,
stress, or vibration response; or to maximize performance, reliability, throughput, agility, or
design robustness.

One of the primary motivations for the devel opment of DAKOTA (Design Analysis Kit for
Optimization and Terascale Applications) has been to provide engineers with a systematic and
rapid means of obtaining improved or optimal designs using their simulator-based models.
Making this capability available to engineers generally leads to better designs and improved
system performance at earlier stages of the design phase, and eliminates some of the dependence
on real prototypes and testing, thereby shortening the design cycle and reducing overall product
development costs. In addition to providing this environment for answering systems performance
questions, the DAKOTA toolkit also provides an extensible platform for the research and rapid
prototyping of customized methods and strategies [23].

1.2 Capabilities of DAKOTA

The DAKOTA toolkit provides aflexible, extensible interface between your simulation code and
avariety of iterative methods and strategies. While DAKOTA was originally conceived as an
easy-to-use interface between simulation codes and optimization algorithms, recent versions
have been expanded to interface with other types of iterative analysis methods such as
uncertainty quantification with nondeterministic propagation methods, parameter estimation with
nonlinear least squares solution methods, and sensitivity analysis with general-purpose design of
experiments and parameter study capabilities. These capabilities may be used on their own or as
building blocks within more sophisticated strategies such as hybrid optimization, surrogate-based
optimization, mixed integer nonlinear programming, or optimization under uncertainty.
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Thus, one of the primary advantages that DAKOTA has to offer is that access to a very broad
range of iterative capabilities can be obtained through a single, relatively ssmple interface
between DAKOTA and your simulator. Should you want to try a different type of iterative
method or strategy with your simulator, it is only necessary to change afew commandsin the
DAKOTA input and start a new analysis. The need to learn a completely different style of
command syntax and the need to construct a new interface each time you want to use a new
algorithm are eliminated.

1.3 How Does DAKOTA Work?

Figure 1.1 depicts the loosely-coupled, or “black-box,” relationship between DAKOTA and the
simulation code(s). Thisloose coupling is the simplest approach and is the one that most
DAKOTA userswill employ. Data is exchanged between DAKOTA and the simulation code by
reading and writing short data files, and DAKOTA does not require access to the source code of
the user’s simulation software. DAKQOTA is executed using commands that the user suppliesin
an input file (not shown in Figure 1.1) which specify the type of analysis to be performed (e.g.,
parameter study, optimization, uncertainty estimation, etc.), along with the file names associated
with the user’s simulation code. During its operation, DAKOTA automatically executes the user’s
simulation code by creating a separate UNIX process that is external to DAKOTA.

The solid linesin Figure 1.1 denote file input/output (1/O) operations that are part of DAKOTA or
the user’s simulation code. The dotted lines indicate the passing of information that must be
handled by the user. As DAKQOTA isrunning, it writes out a parameters file that contains the
values of the current variables. DAKOTA then starts the user’s simulation code (or, often, a short
driver script), and when the simulation has completed, DAKOTA reads in the response data from

DAKOTA =
DAKQOTA DAKOTA
Parameters File Results File
| Data Data A
‘ Pre-processing Post-processing |
Simulation Simuiation
Input File Usar's Output File
Simulation )
Code

Figurell  Theloosely-coupled or “black-box” interface between DAKOTA
and a user-supplied simulation code.
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aresultsfile. Thisprocessis repeated until al of the simulation code runs required by the
iterative study have been completed.

In some cases it is advantageous to have a close coupling between DAKOTA and the user’s
simulation code. This close coupling is an advanced feature of DAKOTA and is accomplished
through either a direct interface or a SAND (simultaneous analysis and design) interface. For the
direct interface, the user’s simulation code is modified to behave as a function or subroutine
under DAKQOTA. Thisinterface can be considered to be “semi-intrusive” in that it requires
relatively minor modifications to the simulation code. Its major advantage is the elimination of
the overhead resulting from file 1/0 and UNIX process creation. It can also be a useful tool for
parallel processing, by encapsulating everything within a single executable. The SAND interface
approach is“fully intrusive” in that it requires further modifications to the simulation code so
that DAKQOTA has access to the internal vectors and matrices computed by the smulation code.
With the SAND approach, both the optimization method in DAKOTA and a nonlinear simulation
code are converged simultaneously. While this approach can greatly reduce the computational
expense of optimization, considerable software devel opment effort must be expended to achieve
this intrusive coupling between SAND optimization methods and the simulation code.

1.4 Background and Mathematical Formulations

This section provides a basic introduction to the mathematical formulation of optimization,
nonlinear least squares, sensitivity analysis, design of experiments, and uncertainty
guantification problems. The primary goal of this section isto introduce terms relating to these
topics, and is not intended to be a description of theory or numerical algorithms. There are
numerous sources of information on these topics ([3],[32],[40],[41],[55],[66]) and the interested
reader is advised to consult one or more of these texts.

1.4.1 Optimization

A general optimization problem is formulated as follows:
minimize: f (X)
xoo"
subject to: g, <g(X)<gy
h(x) = ht (1)
a <A Xxsay
AgX = a4

XLSX SXU
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where vector and matrix terms are marked in bold typeface. In this formulation,
X = [X[, Xy, ...,X,] isann-dimensional vector of real-valued design variables or design

parameters. The n-dimensional vectors, x, and X ;, are the lower and upper bounds,

respectively, on the design parameters. These bounds define the alowable values for the
elements of x , and the set of all alowable valuesistermed the design space or the parameter

space. A design point or asample point isa set of valuesfor x that fall within the parameter
space.

The optimization goal isto minimize the objective function, f (x), while satisfying the
constraints. Constraints can be categorized as either linear or nonlinear and as either inequality or
equality. The nonlinear inequality constraints, g(x), are“2-sided,” in that they have both lower

and upper bounds, g, and g, respectively. The nonlinear equality constraints, h(x), have

target values specified by h, . Thelinear inequality constraints create alinear system A; X,
where A; isthe coefficient matrix for the linear system. These constraints are also 2-sided as

they have a; and a; aslower and upper bounds, respectively. The linear equality constraints

create alinear system A.x, where A, is the coefficient matrix for the linear system and a, are

the target values. The constraints partition the parameter space into feasible and infeasible
regions. A design point is said to be feasible if and only if it satisfies all of the constraints.
Correspondingly, adesign point is said to be infeasible if it violates one or more of the
constraints.

Many different methods exist to solve the optimization problem given by Equation 1, all of
which iterate on x in some manner. That is, an initial value for each parameter in x is chosen,
the response quantities, f (x), g(x), h(x), are computed, and some algorithm is applied to
generate anew x that will either reduce the objective function, reduce the amount of
infeasibility, or both. To facilitate a general presentation of these methods, three criteriawill be

used in the following discussion to differentiate them: optimization problem type, search goal,
and search method.

The optimization problem type can be characterized both by the types of constraints present in
the problem and by the linearity or nonlinearity of the objective and constraint functions. For
constraint categorization, a hierarchy of complexity exists for optimization algorithms, ranging
from simple bound constraints, through linear constraints, to full nonlinear constraints. By the
nature of thisincreasing complexity, optimization problem categorizations are inclusive of all
constraint types up to a particular level of complexity. That is, an unconstrained problem has no
constraints, a bound-constrained problem has only lower and upper bounds on the design
parameters, a linearly-constrained problem has both linear and bound constraints, and a
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nonlinearly-constrained problem may contain the full range of nonlinear, linear, and bound
constraints. If al of the linear and nonlinear constraints are equality constraints, then thisis
referred to as an equality-constrained problem, and if all of the linear and nonlinear constraints
areinequality constraints, then thisis referred to as an inequality-constrained problem. Further
categorizations can be made based on the linearity of the objective and constraint functions. A
problem where the objective function and all constraints are linear is called alinear
programming (LP) problem. These types of problems commonly arise in scheduling, logistics,
and resource allocation applications. Likewise, a problem where at least some of the objective
and constraint functions are nonlinear is called a nonlinear programming (NLP) problem. These
NL P problems predominate in engineering applications and are the primary focus of DAKOTA.

The search goal refers to the ultimate objective of the optimization algorithm, i.e., either global
or local optimization. In global optimization, the goal is to find the design point that gives the
lowest feasible objective function value over the entire parameter space. In contrast, in local
optimization, the goal isto find a design point that is lowest relative to a*“ nearby” region of the
parameter space. In almost all cases, global optimization will be more computationally expensive
than local optimization. Thus, the user must choose an optimization algorithm with an
appropriate search scope that best fits the problem goals and the computational budget.

The search method refers to the approach taken in the optimization algorithm to locate a new
design point that has alower objective function or is more feasible than the current design point.
The search method can be classified as either gradient-based or nongradient-based. In a
gradient-based algorithm, gradients of the response functions are computed to find the direction
of improvement. Gradient-based optimization is the search method that underlies many efficient
local optimization methods. However, a drawback to this approach is that gradients can be
computationally expensive, inaccurate, or even nonexistent. In such situations, nongradient-
based search methods may be useful. There are numerous approaches to nongradient-based
optimization. Some of the more well known of these include pattern search methods
(nongradient-based local techniques) and genetic algorithms (nongradient-based global
techniques).

The overview of optimization methods presented above underscores that thereis no single
optimization method or algorithm that works best for all types of optimization problems. Chapter
17 provides some guidelines on choosing which DAKOTA optimization algorithm is best
matched to your specific optimization problem.

1.4.2 Nonlinear Least Squares for Parameter Estimation

Specialized least squares solution algorithms can exploit the structure of a sum of the squares
objective function for problems of the form:
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minimize: f (X) = i [T, (X)]2
=1

xoo"
subject to: g, <g(X)<gy

h(x) = h,

(2)

al_sAi xsaU
Aex = a
X SX X

where f (x) isthe objective function to be minimized and T; (x) isthe it |east squares term.

The bound, linear, and nonlinear constraints are the same as described previously for (1).
Specialized least squares algorithms are generally based on the Gauss-Newton approximation.

When differentiating f (x) twice, termsof T, (x)T; "(x) and [T, '(x)]2 result. By assuming
that the former term tends toward zero near the solution since T; (x) tendstoward zero, then the
Hessian matrix of second derivatives of f (x) can be approximated using only first derivatives of
T, (x) . Asaresult, Gauss-Newton algorithms exhibit quadratic convergence rates near the

solution for those cases when the Hessian approximation is accurate, i.e. the residuals tend
towards zero at the solution. Thus, by exploiting the structure of the problem, the second order
convergence characteristics of afull Newton algorithm can be obtained using only first order
information from the least squares terms.

A common example for T; (x) might be the difference between experimental data and model
predictions for aresponse quantity at a particular location and/or time step, i.e.

T, (x) = R (X)—ﬁ ©)

where R, (x) isthe response quantity predicted by the model and R_I is the corresponding

experimental data. In this case, x would have the meaning of model parameters which are not
precisely known and are being calibrated to match available data. This class of problem is known
by the terms parameter estimation, system identification, model calibration, test/analysis
reconciliation, etc.
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1.4.3 Senditivity Analysis and Parameter Studies

In many engineering design applications, sensitivity analysis techniques and parameter study
methods are useful in identifying which of the design parameters have the most influence on the
response quantities. Thisinformation is helpful prior to an optimization study asit can be used to
remove design parameters that do not strongly influence the responses. In addition, these
techniques can provide assessments as to the behavior of the response functions (smooth or
nonsmooth, unimodal or multimodal) which can be invaluable in algorithm selection for
optimization, uncertainty quantification, and related methods. In a post-optimization role,
sengitivity information is useful is determining whether or not the response functions are robust
with respect to small changes in the optimum design point.

In some instances, the term sensitivity analysisis used in alocal sense to denote the computation
of response derivatives at a point. These derivatives are then used in asimple analysis to make
design decisions. DAKQOTA supports this type of study through numerical finite-differencing or
retrieval of analytic gradients computed within the analysis code. The desired gradient datais
specified in the responses section of the DAKOTA input file and the collection of thisdata at a
single point is accomplished through a parameter study method with no steps. This approach to
sensitivity analysis should be distinguished from the activity of augmenting analysis codes to
internally compute derivatives using techniques such as direct or adjoint differentiation,
automatic differentiation (e.g., ADIFOR), or complex step modifications. These sensitivity
augmentation activities are completely separate from DAKOTA and are outside the scope of this
manual. However, once completed, DAKOTA can utilize these analytic gradients to perform
optimization, uncertainty quantification, and related studies more reliably and efficiently.

In other instances, the term sensitivity analysisis used in amore global sense to denote the
investigation of variability in the response functions. DAKOTA supports this type of study
through computation of response data sets (typically function values only, but all data sets are
supported) at a series of pointsin the parameter space. The series of pointsis defined using either
avector, list, centered, or multidimensional parameter study method. For example, a set of
closely-spaced points in avector parameter study could be used to assess the smoothness of the
response functions in order to select afinite difference step size, and a set of more widely-spaced
points in a centered or multidimensional parameter study could be used to determine whether the
response function variation is likely to be unimodal or multimodal. See Chapter 8 for additional
information on these methods. These more global approaches to sensitivity analysis can be used
to obtain trend data even in situations when gradients are unavailable or unreliable, and they are
conceptually similar to the design of experiments methods and sampling approaches to
uncertainty quantification described in the following sections.

1.4.4 Design of Experiments

Classical design of experiments (DoE) methods and the more modern design and analysis of

computer experiments (DACE) methods are both techniques which seek to extract as much trend
data from a parameter space as possible using alimited number of sample points. Classical DoE
techniques arose from technical disciplines that assumed some randomness and nonrepestability
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in field experiments (e.g., agricultural yield, experimental chemistry). DoE approaches such as
central composite design, Box-Behnken design, and full and fractional factorial design generally
put sample points at the extremes of the parameter space, since these designs offer more reliable
trend extraction in the presence of nonrepeatability. DACE methods are distinguished from DoE
methods in that the nonrepeatability component can be omitted since computer simulations are
involved. In these cases, space filling designs such as orthogonal array sampling and latin
hypercube sampling are more commonly employed in order to accurately extract trend
information.

DAKOTA supports both DoE and DACE techniques. In common usage, only parameter bounds
are used in selecting the samples within the parameter space. Thus, DoE and DACE can be
viewed as specia cases of the more general probabilistic sampling for uncertainty quantification
(seefollowing section), in which the DOE/DACE parameters are treated as having uniform
probability distributions. The DoE/DACE techniques are commonly used for investigation of
global response trends, identification of significant parameters (e.g., main effects), and as data
generation methods for building response surface approximations.

1.4.5 Uncertainty Quantification

Uncertainty quantification (UQ) is related to sensitivity analysisin that the common goal isto
gain an understanding of how variations in the parameters affect the response functions of the
engineering design problem. However, for uncertainty quantification, some or all of the

components of the parameter vector, X , are considered to be uncertain and not precisely known.
The uncertain parameter values are specified by a probability distribution (e.g., normal/Gaussian)
rather than a unique value.

The impact on the response functions due to the probabilistic nature of the parametersis often
estimated using a sampling-based approach such as Monte Carlo sampling or one of its variants
(latin hypercube, quasi-Monte Carlo, Markov-chain Monte Carlo, etc.). In these sampling
approaches, arandom number generator is used to select different values of the parameters with
probability specified by their probability distributions. Thisis the point that distinguishes UQ
sampling from DoE/DACE sampling, in that the former supports general probabilistic
descriptions of the parameter set and the latter generally supports only a bounded parameter
space description (i.e., uniform probabilities). A particular set of parameter values is often called
asample point, or simply a sample. After a user-selected number of sample points has been
generated, the response functions for each sample are evaluated. Then, a statistical analysisis
performed on the response function values to yield information on their characteristics. While
this approach is straightforward, and readily amenable to parallel computing, it can be
computationally expensive depending on the accuracy requirements of the statistical information
(which links directly to the number of sample points).

When sampling methods are too expensive to apply, various analytic and quasi-analytic
reliability methods can be applied to UQ problems. These include the Advanced Mean Value
(AMV) and AMV+ agorithms, along with the first-order reliability method (FORM) and the
second-order reliability method (SORM) [41]. These techniques all solve internal optimization
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problems in order to locate the most probable point (MPP) of failure. The MPP isthen used as
the point about which approximate probabilities are integrated.

In addition, stochastic finite element (SFE) approaches using polynomial chaos expansions are
also available for characterizing the response of systems whose governing equations involve
stochastic coefficients. The sampling, analytic reliability, and SFE approaches are described in
more detail in Chapter 10.

1.5 Using thisManual

The previous sections in this chapter have provided a brief overview of the capabilitiesin
DAKOTA, and have introduced some of the common terms that are used in the fields of
optimization, parameter estimation, sensitivity analysis, design of experiments, and uncertainty
quantification. The DAKOTA user that is new to these techniquesis advised to consult the
references cited earlier in this chapter to obtain more detailed descriptions of methods and
algorithmsin these disciplines.

Chapter 2 provides information on how to obtain, install, and use DAKQOTA. In addition,
example problems are presented in this chapter to demonstrate some of DAKOTA's capabilities
for parameter studies, optimization, and UQ. Chapter 3 provides a brief overview of all of the
different software packages and capabilitiesin DAKOTA. Chapter 4 through Chapter 6 provide
information on model components which are involved in parameter to response mappings and
Chapter 7 describes the output created by DAKOTA. Chapter 8 through Chapter 12 provide
details on the iterative algorithms supported in DAKOTA, and Chapter 13 describes DAKOTA's
advanced optimization strategies. Chapter 14 describes the approximation methods available in
DAKOTA, Chapter 15 covers DAKOTA's parallel computing capabilities, Chapter 16 provides
information on interfacing DAKOTA with engineering simulation codes, and Chapter 17
provides some usage guidelines for selecting DAKOTA algorithms. Finally, Chapter 18 through
Chapter 20 describe restart utilities, failure capturing facilities, and additional test problems,
respectively.
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2.0 Getting Started with DAKOTA

2.1 Installation Guide

DAKQOTA can be compiled for most common computer systems that run the UNIX and LINUX
operating systems. The computers and operating systems actively supported by the DAKOTA
project include:

* Sun Solaris 2.8
* SGI IRIX 6.5
» Compag/DEC OSF 5.1
* IBM AIX 5.1
* Intel PC Redhat LINUX versions 7.x
* ASCI Red
In addition, partial support is provided for Cplant, PC Windows (via Cygwin), Mac OSX, and

HP HPUX. Additional details are provided in thefile/ Dakot a/ READVE in the distribution
(see the following section for download instructions).

2.1.1 How to Obtain DAKOTA - External to Sandia Labs

If you are outside of Sandia National Laboratories, the DAKOTA binary executable files and
source code files are available through the following web site:
http://endo. sandi a. gov/ DAKOTA

To receive the binary or source code files, you are asked to fill out a short online registration
form. Thisinformation will be used by the DAKOTA devel opment team to collect software usage
metrics and, if desired, to register you for update announcements.

If you are anew DAKOTA user, we suggest that you download one of the binary executable
distributions rather than the source code distribution. The compilation process can be somewhat
involved, and it will be easier for you to first gain an understanding of DAKOTA by running the
example problems that are provided with one of DAKOTA’s binary distributions. For more
experienced users, DAKOTA can be customized with additional packages and ported to
additional computer platforms when building from the source code.

2.1.2 How to Obtain DAKOTA - Internal to Sandia Labs

DAKOTA hinary executable files have been compiled and distributed to SCICO LAN and
common compute servers at Sandia, Los Alamos, and Lawrence Livermore. Common locations
include/ usr /1 ocal / bi n/ dakot a and/ pr oj ect s/ dakot a/ bi n/ dakot a. To seeif
DAKOTA isavailable on your computer system and accessible in your UNIX environment path
settings, type the command whi ch dakot a at the UNIX prompt. If the DAKOTA executable
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fileisin your path, its location will be echoed to the terminal. If the DAKOTA executablefileis
available on your system but not in your path, then you will need to locate it and add its directory
to your path (the UNIX wher ei s and f i nd commands can be useful for locating the
executable).

If DAKQOTA isnot available on your system, the current preferred options are to either get an
account on one of the common compute servers where DAKOTA is maintained, or if thisis not
practical, contact one of the DAKOTA team members so that we can provide you with DAKOTA
executable files that are as complete as possible (i.e., that include Sandia-specific and site-
licensed software that is not yet publicly available). Alternatively, you can follow the instructions
given in the previous section to obtain the public version of the DAKOTA binary and/or source
codesfiles. In the future, a download facility on Sandia's internal restricted network may be
added to simplify internal distributions.

2.1.3 Installing DAKOTA - Binary Executable Files

Once you have downloaded a binary distribution from the web site listed above, you will have a
UNIX tar file that has aname similar to Dakot a_3_x. OSver si on. tar. gz.

[Note to Windows Users. Some users have found that the name of the tar file gets corrupted
when downloading the tar file to a PC running Windows. Before proceeding, verify that the name
of the downloaded tar file is the same as the name listed on the DAKOTA web site. If thefile
name has been corrupted, rename it before attempting the steps listed below.]

Usethe UNIX utility gunzi p to uncompressthe tar file and the UNIX t ar utility to extract the
files from the archive by executing the following commands:

gunzi p Dakota 3 x.(OSversion.tar.gz

tar -xvf Dakota 3 x.OSversion.tar
The tar utility will create a subdirectory named / Dakot a in which the DAKOTA executables
and example fileswill be stored. The executablesarein/ Dakot a/ bi n, and the example
problemsarein/ Dakot a/ Get ti ngSt art ed/ Exanpl es andin/ Dakot a/ t est .

2.1.4 Installing DAKOTA - Source Code Files

The installation process for the DAKOTA source code files is more involved than the installation
process for the binary files. Detailed instructions for installing DAKOTA are given in thefile
/ Dakot a/ | NSTALL.

2.1.5 Running DAKOTA

The DAKOTA executablefile is named dakot a. If this command is entered at the UNIX
prompt without any arguments, the following usage message is returned to the user:

usage: dakota [options and <args>]
-help (Print this sunmary)
-version (Print DAKOTA version nunber)
-input <$val > (REQUI RED DAKOTA input file $val)
-out put <$val > (Redirect DAKOTA standard output to file $val)
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-error <$val > (Redirect DAKOTA standard error to file $val)
-read_restart <$val > (Read an existing DAKOTA restart file $val)
-stop_restart <$val > (Stop restart file processing at eval uati on $val)
-write_restart <$val> (Wite a new DAKOTA restart file $val)

Of these available command line inputs, only the “- i nput ” option isrequired; al othersare
optional. The “- hel p” option prints the usage message above. The“- ver si on” option prints
the version number of the executable. The “- i nput ” option provides the name of the DAKOTA
input file. The“- out put ” and “- er r or ” options provide file names for redirection of the
DAKOTA standard output (stdout) and standard error (stderr), respectively. The
“-read_restart”and“-write_restart” command lineinputs provide the names of
restart databases to read from and write to, respectively. The“- st op_r est art” command line
input limits the number of function evaluations read from the restart database (the default is all
the evaluations) for those cases in which some evaluations were erroneous or corrupted. Restart
management is an important technigue for retaining data from expensive engineering
applications. Thisis an advanced topic that is discussed in detail in Chapter 17. Note that these
command line inputs can be abbreviated so long as the abbreviation is unique (the current set of
command line options do not have any possibility for abbreviation ambiguity). That is, “- h”,
oyt - =07, "-e”, -7 - 87, and “- W are commonly used in place of the longer forms
of the command line inputs.

To run DAKQOTA with a particular input file, the following syntax can be used:
dakota -i dakota.in

Thiswill echo the standard output (stdout) and standard error (stderr) messagesto the terminal.
To redirect stdout and stderr to separate files, the - 0 and - e command line options may be used:
dakota -i dakota.in -o dakota.out -e dakota.err

Alternatively, any of avariety of UNIX redirection variants can be used. The simplest of these
redirects stdout to another file:
dakota -i dakota.in > dakota. out

To append to afile rather than overwriteit, “>>" isused in place of “>". To redirect stderr as well
as stdout, a“&” is appended with no embedded space, i.e. “>&” or “>>&” isused. To override
the noclobber environment variable (if set) in order to allow overwriting of an existing output file
or appending of afilethat does not yet exist, a“!” is appended with no embedded space, i.e.
“SITUS&NT US> or “>>& 17 isused.

To run the dakota process in the background, append an ampersand symbol (&) to the command
with an embedded space, e.g.:
dakota -i dakota.in > dakota.out &

Refer to [1] for more information on UNIX redirection and background commands.
2.2 Rosenbrock and Textbook Test Problems

Many of the example problems in this chapter use the Rosenbrock function [32], which has the
form:
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_ 2,2 2
f (X, X,) = 100(x,=x,") +(1-=x,) 4

A three-dimensional plot of this function is shown in Figure 2.1, where both x; and x, rangein

value from -2 to 2. Figure 2.2 shows a contour plot for Rosenbrock’s function. An optimization
problem using Rosenbrock’s function is formulated as follows:

minimize: f (X, X,)

x 007
subject to: =2 <X <2

()

—2sx232

Note that there are no linear or nonlinear constraints in this formulation, so thisis a bound
constrained optimization problem. The unique solution to this problem lies at the point (X4, X5) =

(1,1) where the function value is zero.

Figure2.1 A 3-D plot of Rosenbrock’s function.
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Figure2.2  Contoursof Rosenbrock’s function with variable x; on the bottom
axis.

The two-variable version of the “textbook” example problem provides a nonlinearly constrained
optimization test case. It isformulated as:

mnimze
f = (x,=1)*+(x,-1)* (6)
subj ect to
X
g, =x]-5 <0 (7)
X
9, =%, -5 <0 (8)
0.5<x,<58 9
—2.9<x,<2.9 (10)

Contours of this example problem areillustrated in Figure 2.3, with a close-up view of the
feasible region given in Figure 2.4.
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Figure2.3  Contours of the textbook optimization problem showing
constraintsg, (solid) and g, (dashed). Thefeasibleregion liesat the
inter section of the two constraints.

1

0.5

_1pN
-1 -0.5 0 0.5 1

Figure2.4 A close-up view of thefeasibleregion for the textbook example
problem. The constrained optimum point isat (x4, X5) = (0.5, 0.5).
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For the textbook example problem, the unconstrained minimum occurs at (X4, Xo) = (1,1).
However, the inclusion of the constraints moves the minimum to (x4, X,) = (0.5, 0.5).

Several other example problems are available. See Chapter 20 for a description of these example
problems as well as further discussion of the Rosenbrock and textbook example problems.

2.3 DAKOTA Input File Format

All of the DAKOTA input files for the simple example problems presented here are included in
the distribution tar files within the directory / Dakot a/ Get ti ngSt ar t ed/ Exanpl es. A
simple DAKOTA input file for atwo-dimensional parameter study on Rosenbrock’s function is
shown in Figure 2.5 (filename: dakot a_r osenbr ock_2d. i n). Thisinput file will be used to
describe the basic format and syntax used in all DAKOTA inpuit files.

There are five specification blocks that may appear in DAKOTA input files. These are identified
in the input file using the following keywords: variables, interface, responses, method, and
strategy. These keyword blocks can appear in any order in aDAKOTA input file. At least one
variables, interface, responses, and method specification must appear, and no more than one
strategy specification should appear. In Figure 2.5, one of each of the keyword blocksis used.
Additional syntax features include the use of the backslash symbol (\) to escape the newline
character in order to split a keyword onto multiple lines for readability, use of the # symbol to
indicate a comment, use of single quotes for string inputs (e.g., ‘x1"), the use of commas and/or
white space for separation of specifications, and the use of “=" symbolsto optionally enhance the

# DAKOTA exanpl e problem 2-D paraneter study on
# Rosenbrock's function
vari abl es, \
conti nuous_design = 2 \
cdv_descri ptor ' x1' ' x2' \
cdv_| ower _bounds 2.0 -2.0 \
cdv_upper _bounds 2.0 2.0
interface, \
application direct, \
anal ysis_driver = 'rosenbrock’
responses, \
num obj ective_functions = 1 \
no_gradients \
no_hessi ans
nmet hod, \
nmul ti di m par anet er _st udy \
partitions = 8 8
strat egy, \
si ngl e_net hod \
# gr aphi cs \
t abul ar _graphi cs_data

Figure25 TheDAKOTA input filefor the 2-D parameter study
example problem.
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association of supplied data. See the DAKOTA Reference Manual [17] for additional details on
thisinput file syntax.

The variables section of the input file specifies the characteristics of the parameters that will be
used in the problem formulation. The variables can be continuous or discrete, and can be
classified as design variables, uncertain variables, or state variables. See Chapter 4 for more
information on the types of variables supported by DAKOTA. The variables section shown in
Figure 2.5 specifies that there are two continuous design variables. The sub-specifications for
continuous design variables use the abbreviation cdv in theinput file and include the descriptors
“x1” and “x2" aswell aslower and upper bounds for these variables. The information about the
variablesis organized in column format for readability. So, both variables x; and x, have alower

bound of -2.0 and an upper bound of 2.0.

The interface section of the input file specifies what approach will be used to map variablesinto
responses as well as details on how DAKOTA will pass datato and from a simulation code. In
this example, atest function internal to DAKOTA is used, but the data may also be obtained from
asimulation code that is external to DAKOTA. The keyword appl i cat i on indicates the use
of an interface to an application code (as opposed to an appr oxi mat i on interface) and the
keyword di r ect indicates the use of afunction linked directly into DAKOTA. The

anal ysi s_dri ver keyword indicates the name of the test function. Thisis all that is needed
since fileswill not be used to pass data between DAKOTA and the simulation code.

The responses section of the input file specifies the types of datathat the interface will return to
DAKQOTA. For the example shown in Figure 2.5, there is only one objective function, as
indicated by the keyword num obj ecti ve_functi ons = 1. Sincethereare no constraints
associated with Rosenbrock’s function, the keywords associated with constraint specifications are
omitted. The keywordsno_gr adi ent s and no_hessi ans indicate that gradient and
Hessian data are not needed.

The method section of the input file specifies the iterative technique that DAKOTA will employ,
such as a parameter study, optimization method, data sampling technique, etc. In Figure 2.5, the
keyword mul t i di m_par anet er _st udy specifies amultidimensional parameter study,
whilethe keyword par ti t i ons denotes the number of intervals per variable. In this case, there
will be eight intervals (nine data points) evaluated between the lower and upper bounds of both
variables (bounds provided previously in the variables section), for atotal of 81 response
function evaluations.

The final section of the input file shown in Figure 2.5 is the strategy section. This keyword
section is used to specify some of DAKOTA’s advanced meta-procedures such as multi-level
optimization, surrogate-based optimization, branch-and-bound optimization, and optimization
under uncertainty. See Chapter 13 for more information on these meta-procedures. The strategy
section also contains the settings for DAKOTA's graphical output (viathe gr aphi c¢s flag) and
the tabular data output (viathet abul ar _gr aphi cs_dat a keyword).
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2.4 Example Problems

2.4.1 Two-Dimensiona Parameter Study

The 2-D parameter study example problem listed in Figure 2.5 is executed by DAKOTA using
the following command:
dakota -i dakota_rosenbrock 2d.in > 2d. out

The output of the DAKQOTA run isdirected to the file named 2d. out . For comparison, thefile
2d. out . sav isincludedinthe/ Dakot a/ Get t i ngSt art ed/ Exanpl es directory. Asfor
many of the examples, DAKOTA provides areport on the best design point located during the
study at the end of these output files.

This 2-D parameter study produces the grid of data samples shown in Figure 2.6. Note that the
gr aphi cs flagin the strategy section of the input file has been commented out since, for this
example, the iteration history plots created by DAKQOTA are not particularly instructive. More
interesting visualizations can be created by importing DAKOTA’s tabular datainto an external
graphics/plotting package. Common graphics and plotting packages include Mathematica,
Matlab, Microsoft Excel, Origin, Tecplot, and many others (Sandia National Laboratories and the
DAKOTA developers do not endorse any of these commercia products).

_1 0 1

Figure2.6  Thedotsindicatethelocation of the design
points evaluated in the 2-D parameter study.
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2.4.2 VVector Parameter Study

In addition to the multidimensional parameter study, DAKOTA can perform a vector parameter
study, i.e., a parameter study between any two design points in an n-dimensional parameter
space.

Aninput file for the vector parameter study is shown in Figure 2.7. The primary differences
between thisinput file and the previous input file are found in the variables and method sections.
In the variables section, the keywords for the bounds are removed and replaced with the keyword
cdv_initial _point that specifiesthe starting point for the parameter study. In the method
section, thevect or _par anet er _st udy keywordisused. Thef i nal _poi nt keyword
indicates the stopping point for the parameter study, and num st eps specifies the number of
steps taken between the initial and final pointsin the parameter study.

# DAKOTA exanpl e problem vector paraneter
# study on Rosenbrock's function

vari abl es, \
conti nuous_design = 2 \
cdv_initial _point -0.3 0.2 \
cdv_descriptor ' x1' ''x2
i nterface, \
application direct, \
anal ysi s_driver = 'rosenbrock’
responses, \
num obj ective_functions = 1 \
no_gradi ents \
no_hessi ans
net hod, \
vect or _par amet er study \
final p0|nt =1.1 1.3 \
num steps = 10
strat egy, \
si ngl e_met hod \
tabul ar _graphi cs_data \
gr aphi cs

Figure2.7  The DAKOTA input filefor the vector parameter
study example problem.

The vector parameter study example problem is executed using the command
dakota -i dakota_rosenbrock vector.in > vector. out

Figure 2.8 shows the graphics output created by DAKOTA.. For this study, the simple DAKOTA
graphics are more useful for visualizing the results. Figure 2.9 shows the locations of the 11
sample points generated in this study. It is evident from these figures that the parameter study
starts within the banana-shaped valley, marches up the side of the hill, and then returns to the
valey. The output filevect or . out . sav isprovided inthe/ Dakot a/ Get ti ngSt art ed/
Exanpl es directory.

In addition to the vector and multidimensional examples shown, DAKOTA also supports list and
centered parameter study methods. Refer to Chapter 8 for additional information.
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Figure2.8 A screen capture of the DAKOTA graphicsthat are
generated from the vector parameter study

1 0

Figure2.9  Thedotsindicatethelocation of the design
pointsevaluated in the vector parameter study.

2.4.3 Gradient-based Unconstrained Optimization

A DAKOQOTA input file for a gradient-based optimization of Rosenbrock’s functionislisted in
Figure 2.10. The format of the input fileis similar to that used for the parameter studies, but there
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are some new keywords in the responses and method sections. First, in the responses section of
theinput file, the keyword block starting with nuner i cal _gr adi ent s specifiesthat afinite
difference method will be used to compute gradients for the optimization algorithm. Note that the
Rosenbrock function evaluation code inside DAKOTA has the capability to give analytical
gradient values. To switch from finite difference gradient estimates to analytic gradients,
uncomment theanal yti c_gr adi ent s keyword and comment out the four lines associated
with thenuner i cal _gr adi ent s specification. Next, in the method section of the input file,
several new keywords have been added. In this section, the keyword conm n_f r cg indicates
the use of the Fletcher-Reeves conjugate gradient algorithm in the CONMIN optimization
software package [65] for bound-constrained optimization. The keyword max_iterati ons is
used to indicate the computational budget for this optimization (in this case, asingle iteration
includes multiple evaluations of Rosenbrock’s function for the gradient computation steps and
the line search steps). The keyword conver gence_t ol er ance isused to specify one of
CONMIN'’s convergence criteria (here, CONMIN terminates if the objective function value
differs by less than the absolute value of the convergence tolerance for three successive
iterations). And, finally, the out put verbosity isset to qui et .

# DAKOTA exanpl e probl em gradient-based unconstrai ned
# optimzation study on Rosenbrock's function

vari abl es,
conti nuous_design = 2
cdv_descri ptor ' x1'
cdv_initial _point 1.2
cdv_| ower bounds -2.0 -
cdv_upper _bounds 2.0

————_

NNE
coonN

i nterface, \
appl i cation direct, \
anal ysis_driver = 'rosenbrock’

responses,
num obj ective_functions = 1
# anal ytic_gradients
numeri cal _gradients
nmet hod_sour ce dakot a
interval type forward
fd_step_size = .00001
no_hessi ans

——————__

met hod,
# dot _bfgs
conm n_frcg
convergence_tol erance = 1.0e-4
max_iterations = 100
out put qui et

———_

strategy, \
si ngl e_met hod \
t abul ar _graphi cs_data \

gr aphi cs

Figure2.10 TheDAKOTA input filefor the gradient-based
optimization example problem.

This DAKQOTA input file is executed using the following command:
dakota -i dakota_rosenbrock grad opt.in > grad_opt. out
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A sample output filenamed gr ad_opt . out . sav isincluded inthe/ Dakot a/
GettingStart ed/ Exanpl es directory. When this example problem is executed, DAKOTA
creates some iteration history graphics similar to the screen capture shown in Figure 2.11. These
plots show how the objective function and design parameters change in value during the
optimization steps. The scaling of the horizontal and vertical axes can be changed by moving the
scroll knobs on each plot. Also, the “Options’ button allows the user to plot the vertical axes
using alogarithmic scale. Note that log-scaling is only allowed if the values on the vertical axis
are strictly greater than zero.

Figure2.11 A screen capture of the DAKOTA output graphics showing the
iteration history for the gradient-based optimization example.

Figure 2.12 shows the iteration history of the optimization agorithm. The optimization starts at
the point (x4, X5) = (-1.2, 1.0) as given in the DAKOTA input file. Subsequent iterations follow
the banana-shaped valley that curves around toward the minimum point at (X4, x5) = (1.0, 1.0).
Note that the function evaluations associated with the line search phase of each CONMIN
iteration are not shown on the plot. At the end of the DAKOTA run, information is written to the
output file to provide data on the optimal design point. This data includes the optimum design
point parameter values, the optimum objective and constraint function values (if any), plusthe
number of function evaluations that occurred and the amount of time that elapsed during the
optimization study.
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Figure2.12 The sequence of design pointsevaluated during the gradient-based
optimization of Rosenbrock’s function (line search points omitted).

2.4.4 Gradient-based Constrained Optimization

This example demonstrates the use of a gradient-based optimization algorithm on a nonlinearly
constrained problem. The “textbook” example problem (see Section 2.2) is used for this purpose
and the DAKQOTA input file for this example problem is shown in Figure 2.13. Thisinput fileis
similar to the input file for the unconstrained gradient-based optimization example problem
involving the Rosenbrock function. Note the addition of commands in the responses section of
the input file that identify the number and type of constraints, along with the upper bounds on
these constraints. The commandsdi r ect andanal ysis_driver = 'text book’
specify that DAKOTA will execute itsinternal version of the textbook problem.

This example problem is executed by using the following command:
dakota -i dakota_textbook.in > textbook. out

For comparison purposes, thefilet ext book. out . sav isincluded in/ Dakot a/

Get ti ngSt art ed/ Exanpl es. Theresults of the optimization example problem are listed at
the end of thet ext book. out file. Thisinformation shows that the optimizer stopped at the
point (X1, X5) = (0.5, 0.5), where both constraints are satisfied, and where the objective function
valueis 0.125. This progress of the optimization algorithm is shown in Figure 2.14 where the
dots correspond to end point of each iteration in the algorithm. The starting point is (X4, Xp) =

(4.0, 0.0) where constraint g, is violated and constraint g, is satisfied. The optimizer takes a
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sequence of steps to minimize the objective function while reducing the infeasibility of g, and
retaining the feasibility of g,. The optimization graphics are aso shown in Figure 2.15.

# DAKOTA exanpl e probl em gradient-based constrai ned
# optim zation using the “textbook” exanple problem

strategy, \
si ngl e_net hod \
graphi cs tabul ar_graphi cs_data

met hod,
conmi n_nfd
mex_iterations = 50
convergence_tol erance = le-4

——_

vari abl es,
conti nuous_design = 2
cdv_initial _point 4.
cdv_upper _bounds 5.
cdv_| ower _bounds 0.
cdv_descri ptor £ X

RUIoO
'

NN O

N©©o
————_

interface, \
application direct \
anal ysi s_driver = 'text_book’

responses,
num obj ective_functions = 1
num nonl i near _i nequal ity_constraints = 2
nunerical _gradients
met hod_sour ce dakot a
interval _type centra
fd_step_size = .00001
no_hessi ans

Figure2.13 The DAKOTA input filefor the nonlinearly constrained
gradient-based optimization example problem.

! v X

——————__

=
0 1 2 3 4

Figure2.14 Iteration history of the textbook example problem
(iterations marked by solid dots).
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File Wiew

J0et IEEEHD |pt. | IEEEHD |Opt. | IEEA]| >

|Opt, | AIREEHD |pt. | IEEE]| >

Figure2.15 Theiteration history of thetextbook example problem shows how the objective
function was reduced during the search for a feasible design point.

2.4.5 Nonlinear Least Squares M ethods for Optimization

Both the Rosenbrock and textbook example problems can be formulated as |east squares
minimization problems (see Section 20.1 and Section 20.2). For example, the Rosenbrock
problem can be cast as:

mninize (f1)2 + (f,)?

wheref ; = 10( X5- x12) andf, = (1-x7).Whenusing aleast squares approach to
minimize a function, each of the least squarestermsfy, f,,... isdriven to zero. This formulation
permits the use of specialized algorithms that can be more efficient than general purpose
optimization algorithms. See Chapter 12 for more detail on the algorithms used for least squares
minimization, as well as a discussion on the types of engineering design problems (e.g.,
parameter estimation) that can make use of the least squares approach.

Figure 2.16 isalisting of the DAKOTA input filedakot a_r osenbr ock_I s. i n. Thisinput
file differs from the input file shown in Figure 2.10 in several key areas. The responses section of
the input file uses the keyword num | east _squares_terns = 2 instead of the
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num obj ecti ve_functions = 1. Thekeywordsin the interface section show that the
UNIX syst emcall method is used to run the C++ analysis code named r osenbr ock | s.
The method section of the input file shows that the Gauss-Newton agorithm from the OPT++
library [50] (opt pp_g_new on) isused in this example. For DAKOTA Version 3.1, the Gauss-
Newton and NLSSOL SQP algorithms are available for exploiting the specia mathematical
structure of |east squares minimization problems.

# DAKOTA exanpl e problem a |east squares
# approach to mnim ze Rosenbrock's function

strategy, \
si ngl e_met hod \
gr aphics

nmet hod,

opt pp_g_newt on,
max_lIterations = 50
convergence_tol erance = le-4

—_—

vari abl es,
conti nuous_design = 2
cdv_initial_point -1.
cdv_| ower _bounds -2
cdv_upper _bounds 2.
cdv_descri ptor ' X

]
NN
————_

RroonN
Nooo

i nterface,
application system
anal ysi s_driver = ' rosenbr ock’
anal ysi s_driver = 'rosenbrock_| s’

—_—

responses,

# num obj ective_functions
num | east _squares_terns
anal ytic_gradients
no_hessi ans

\
1 \
2 \
\

Figure2.16 DAKOTA input file for minimizing the Rosenbrock
function using a least squares for mulation.

Theinput filelisted in Figure 2.16 is executed using the command:
dakota -i dakota rosenbrock |s.in > | eastsquares. out

Thefilel east squar es. out . sav isincluded in the directory / Dakot a/

CGettingStart ed/ Exanpl es. The optimization results at the end of thisfile show that the
least squares minimization approach has found the same optimum design point, (X4, X,) = (1.0,
1.0), as was found using the conventional gradient-based optimization approach. The iteration
history of the least squares minimization is given in Figure 2.17, and shows that 90 function
evaluations were needed for convergence. In this example the least squares approach required
about the same number of function evaluations as did conventional gradient-based optimization.
However, in many cases the least squares algorithm will converge more rapidly in the vicinity of
the solution.
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Figure2.17 Theiteration history for least squarestermsf; and
f> when minimizing the Rosenbrock function.

2.4.6 Nongradient-based Optimization via Pattern Search

In addition to gradient-based optimization algorithms, DAKOTA also contains a variety of
nongradient-based algorithms. One particular nongradient-based algorithm for local optimization
is known as pattern search (see Chapter 1 for a discussion of local versus global optimization).
The DAKOTA input file shown in Figure 2.18 applies a pattern search method to minimize the
Rosenbrock function. While this provides for an interesting comparison to the previous example
problems in this chapter, the Rosenbrock function is not the best test case for a pattern search
method. That is, pattern search methods are better suited to problems where the gradients are too
expensive to evaluate, inaccurate, or nonexistent; situations common among many engineering
optimization problems. It also should be noted that nongradient-based algorithms generally are
applicable only to unconstrained or bound-constrained optimization problems, although the
inclusion of general linear and nonlinear constraints in nongradient-based algorithmsis an active
area of research in the optimization community. For most users who wish to use nongradient-
based algorithms on constrained optimization problems, the easiest route is to create a penalty
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function, i.e., acomposite function that contains the objective function and the constraints,
external to DAKOTA and then optimize on this penalty function. Most optimization textbooks
will provide guidance on selecting and using penalty functions.

This DAKQOTA input file shown in Figure 2.18 is similar to the input file for the gradient-based
optimization, except it has a different set of keywords in the method section of the input file and
the gradient specification in the responses section has been changed tono_gr adi ent s. The
pattern search optimization algorithm used is part of the SGOPT library [42]. See the DAKOTA
Reference Manual [17] for more information on the methods section commands that can be used
with SGOPT algorithms.

# DAKOTA exanpl e probl em nongradi ent-based pattern
# search optimzation

variabl es, _
conti nuous_design = 2

————_

cdv_initial _point 0.0 0.0

cdv_| ower _bounds -2.0 -2.0

cdv_upper _bounds 2.0 2.0

cdv_descri ptor "x1' ' x2'
interface, \
application direct, \

anal ysi s_driver = 'rosenbrock’
responses, \
num obj ective_functions = 1 \
no_gr adi ents \

no_hessi ans

nmet hods \
sgopt _pattern_search \
max_Iterations = 1000 \
max_functi on_eval uati ons = 2000 \
sol ution_accuracy = 1.0e-4 \
initial _delta = 0.05 \
threshold delta = 1.0e-8 \
expl oratory_noves best _all \
contraction_factor = 0.75

strategy, \
si ngl e_net hod \
t abul ar _graphi cs_dat a \

gr aphi cs

Figure2.18 A DAKOTA input file for a nongradient-based
optimization example.

This DAKQOTA input file is executed using the following command:

dakota -i dakota_rosenbrock ps _opt.in > ps_opt. out

Thefileps_opt . out. sav isincluded inthe/ Dakot a/ Getti ngSt art ed/ Exanpl es
directory. For this run, the optimizer was given an initial design point of (x4, X,) = (0.0, 0.0) and
was limited to 2000 function evaluations. In this case, the pattern search algorithm stopped short
of the optimum at (x4, X5) = (1.0, 1,0), although it was making progress in that direction when it
was terminated (eventually, it would have reached the minimum point).
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The iteration history is provided in Figure 2.19 which shows the locations of the function
evaluations used in the pattern search agorithm. Figure 2.20 provides a close-up view of the
pattern search function evaluations used at the start of the algorithm. The simplex patternis
clearly visible at the start of the iteration history, and the decreasing size of the simplex pattern is
evident at the design points move toward (X4, X5) = (1.0, 1.0).

xS : :

1 0

Figure2.19 The sequence of design points evaluated during a nongradient-
based pattern search optimization of Rosenbrock’s function.

While pattern search algorithms are useful in many optimization problems, this example shows
some of the drawbacks to this algorithm. While a pattern search method may make good initial
progress towards an optimum, it is often slow to converge. On a smooth, differentiable function
such as Rosenbrock’s function, a nongradient-based method will not be as efficient as a gradient-
based method. However, there are many engineering design applications where gradient
information is inaccurate or unavailable, which renders gradient-based optimizers ineffective.
Thus, pattern search algorithms (and other nongradient-based algorithms such as genetic
algorithms and simulated annealing) are often good choices in complex engineering applications
when the quality of gradient data is suspect.

2.4.7 Nongradient-based Optimization via Genetic Algorithm

In contrast to pattern search algorithms, which are local optimization methods, genetic
algorithms (GA) are global optimization methods. As was described above for the pattern search
algorithm, the Rosenbrock function is not an ideal test problem for showcasing the capabilities of
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Figure2.20 A close-up view showsthe shape of thesimplex pattern
used at the start of the pattern search algorithm.
genetic algorithms. Rather, GAs are best suited to optimization problems that have multiple local
optima, and where gradients are either too expensive to compute or do not exist.

Genetic algorithms, also known as Evolutionary Algorithms (EAS), are based on Darwin’s theory
of survival of thefittest. The GA agorithm starts with arandomly selected population of design
points in the parameter space, where the values of the design parameters form a*“ genetic string,”
which is analogous to DNA in abiological system, that uniquely represents each design point in
the population. The GA then follows a sequence of generations, where the best design pointsin
the population (i.e., those having low objective function values) are considered to be the most
“fit” and are allowed to survive and reproduce. The GA simulates the evolutionary process by
employing the mathematical analogs of processes such as natural selection, breeding, and
mutation. Ultimately, the GA identifies adesign point, or afamily of design points, that
minimize the objective function of the optimization problem. An extensive discussion of GAsis
beyond the scope of this text, but may be found in avariety of sources (cf., [40] pp. 149-158;
[37]). Detailed information on the GA algorithms available in DAKOTA isgiven in the
DAKOTA Reference Manual [17]. The SGOPT library, which provides the GA software that has
been linked into DAKOTA, is described in Reference [42].

Figure 2.21 shows a DAKQOTA input file that uses a genetic algorithm to minimize the
Rosenbrock function. For this example the GA has a population size of 50. At the start of thefirst
generation, arandom number generator is used to select 50 design points that will comprise the
initial population. [ A specific seed value is used in this example to generate repeatabl e results,
although, in general, one should use the default setting which allows the GA to choose a random
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seed.] A two-point crossover technique is used to exchange genetic string values between the
members of the population during the GA breeding process. The result of the breeding processis
apopulation comprised of the 10 best “parent” design points (elitist strategy) plus 40 new “child”
design points. The GA optimization process will be terminated after either 6,000 iterations
(generations of the GA) or 10,000 function evaluations. The GA software available in DAKOTA
provides the user with much flexibility in choosing the settings used in the optimization process.
See[17] and [42] for details on these settings.

# DAKOTA Exanpl e problem genetic algorithm
# used to mnimze Rosenbrock's function

vari abl es,
conti nuous_design = 2
cdv_| ower _bounds -2
cdv_upper _bounds 2.
cdv_descri ptor ' X

—_——_

0-2.0
02.0 \
1" 'x2
interface, \

application direct, \
anal ysis_driver = ' rosenbr ock’

responses,
num obj ective_functions = 1
no_gradi ents
no_hessi ans

—_——_

net hod
sgopt _pga_rea
seed = 11011011
popul ation_size = 50
repl acenent _type elitist = 10
crossover_type two_point
max_i terati ons = 6000
max_functi on_eval uati ons = 10000
# out put verbose

—— = ———__

strat egy,

si ngl e_net hod

tabul ar _graphi cs_dat a
# gr aphics

——_

Figure2.21 A DAKOTA input filethat specifiesthe use of a genetic
algorithm for optimizing Rosenbrock’s function.

Theinput fileis executed by DAKOTA using the following command:
dakota -i dakota_rosenbrock ga opt.in >! ga_opt. out

wherethefilega_opt . out . sav hasbeenincludedin/ Dakot a/ Get ti ngSt art ed/
Exanpl es. The GA optimization results printed at the end of this file show that the best design
point found was (X4, X5) = (0.96, 0.93). Thefilega_t abul ar. dat . sav providesalisting of
the design parameter values and objective function values for al 10,000 design points evaluated
during the running of the GA. Figure 2.22 shows the population of 50 randomly selected design
points that comprise the first generation of the GA, and Figure 2.23 shows the final population of
50 design points, where most of the 50 points are clustered near (x4, X5) = (0.96, 0.93).
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Figure2.22 The50 design pointsin theinitial population
selected by the genetic algorithm.

20 /

Figure2.23 The50 design pointsin the final population selected by the genetic
algorithm. Most of the pointsare clustered near (x4, X5) = (0.96, 0.93).
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As described above, a GA is not well-suited to an optimization problem involving a smooth,
differentiable objective such as the Rosenbrock function. Rather, GAs are better suited to
optimization problems where conventional gradient-based optimization fails, such as situations
where there are multiple local optima and/or gradients cannot be computed. In such cases, the
computational expense of a GA iswarranted since other optimization methods are not applicable
or impractical. In many optimization problems, GAs often quickly identify promising regions of
the design space where the global minimum may be located. However, a GA can be slow to
converge to the optimum. For this reason, it can be an effective approach to combine the global
search capabilities of a GA with the efficient local search of a gradient-based algorithm in a
multilevel hybrid optimization strategy. In this approach, the optimization starts by using afew
iterations of a GA to provide the initial search for a good region of the parameter space (low
objective function and/or feasible constraints), and then it switches to a gradient-based algorithm
(using the best design point found by the GA asiits starting point) to perform an efficient local
search for an optimum design point. More information on this multilevel hybrid approachis
provided in Chapter 13.

2.4.8 .Monte Carlo Sampling

Figure 2.24 shows the DAKOTA input file for an example problem which demonstrates some of
the random sampling capabilities available in DAKOTA. In this example, the design parameters,
X1 and Xo, will be treated as uncertain parameters that have uniform distributions over the interval
[-2, 2]. Thisis specified in the variables section of the input file, beginning with the keyword

uni f or m_uncert ai n. For comparison, the keywords from the previous examples are
retained, but have been commented out. Another change in the input file occursin the responses
section where the keyword num r esponse_f unct i ons isused in place of

num obj ecti ve_functi ons. Thefina changesto the input file occur in the method
section, where the keyword nond_sanpl i ng (nond is an abbreviation for nondeterministic) is
used. The other keywords in the methods section of the input file specify the number of samples
(200), the seed for the random number generator (17), the sampling method (random), and the
response threshold (100.0). The seed specification alows a user to obtain repeatable results
from multiple runs. If aseed value is not specified, then DAKOTA's sampling methods are
designed to generate nonrepeatable behavior (by initializing the seed using a system clock). The
keyword r esponse_t hr eshol ds allowsthe user to specify threshold values for which
DAKOTA will compute statistics on the response function output. Note that a unique threshold
value can be specified for each response function.

In this example, DAKOTA will select 200 design points from within the parameter space,
evaluate the value of Rosenbrock’s function at all 200 points, and then perform some basic
statistical calculations on the 200 response val ues.

This DAKQOTA input file is executed using the following command:
dakota -i dakota_rosenbrock _nond.in > nond. out
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# DAKOTA exampl e problem Mnte Carlo sanpling
# study on Rosenbrock's function

vari abl es,

conti nuous_design = 2
cdv_initial _point 0.0 O
cdv_| ower _bounds -2.0 -2.
cdv_upper _bounds 2.0 2
cdv_descri ptor x1

uni formuncertain = 2
uuv_di st _| ower bound
uuv_di st _upper _bound
uuv_descriptor =

HHEHRHH
—— e ————__

" wn

interface, \
application direct, \
anal ysi s_driver = ' rosenbrock

responses
# num obj ective_functions = 1
num response_functions =1
no_gradi ents
no_hessi ans

———_

met hod,
nond_sanpl i ng
sanmpl es = 200
seed = 17
sanpl e_type random
response_t hreshol ds = 100.0

————_

strategy, \
si ngl e_net hod \
tabul ar _graphi cs_data \
gr aphi cs

Figure2.24 The DAKOTA input filefor the Monte Carlo
sampling example problem.

Seethefilenond. out . sav in/ Dakot a/ Getti ngSt art ed/ Exanpl es for comparison
to the results produced by DAKOTA. Note that your results will differ from those in thisfile if
your seed value differsor if no seed is specified.

The statistical data on the 200 Monte Carlo samplesis printed at the end of the output file in the
section that starts with “ Statistics for each response function....” In this section, DAKOTA
outputs the mean, standard deviation, coefficient of variation, and 95% confidence intervals for
each of the response functions, followed by the percentages of the response function values that
are above and below the response threshold values specified in the input file. Figure 2.25 shows
the locations of the 200 sample sites within the parameter space of the Rosenbrock function.
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Figure2.25 Locationsin the parameter space of the 200 Monte Carlo samples
using a uniform distribution for both x; and x,.

2.4.9 Optimization with a User-Supplied Simulation Code - Case 1

Many of the previous examples made use of thedi r ect interface to access the Rosenbrock and
textbook test functions that are compiled into DAKOTA. In engineering applications, it is much
more common to use the syst emor f or k interface approaches within DAKOTA to manage
external simulation codes. In both of these cases, the communication between DAKOTA and the
external code is conducted through the reading and writing of short text files. For this example,
the C++ program r osenbr ock. Cin/ Dakot a/ t est isused asthe simulation code. Thisfile
iscompiled to create the stand-aloner osenbr ock executable that is referenced as the

anal ysi s_dri ver inFigure 2.26. This stand-alone program performs the same function
evaluations as DAKOTA's internal Rosenbrock test function.

Figure 2.26 shows the text of the DAKOTA input file named

dakot a_r osenbrock_syscal | . i n that isprovided in the directory / Dakot a/

Get ti ngSt art ed/ Exanpl es. The only differences between thisinput file and the onein
Figure 2.10 occur in the interface keyword section. The keyword sy st emindicates that
DAKOTA will use system callsto create separate UNIX processes for executions of the user-
supplied ssmulation code. The name of the simulation code, and the names for DAKOTA’s
parameters and results file are specified using theanal ysi s_dri ver,paraneters _fil e,
andresul ts_fil e keywords, respectively.
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# DAKOTA exanpl e problem The systemcal
# interface nmethod is denonstrated on a
# gradi ent - based unconstrai ned optim zation
# of Rosenbrock’s function
vari abl es \
conti nuous_design = 2 \
cdv_descriptor "x1' 'x2 \
cdv_initial _point -1.2 1.0 \
cdv_| ower _bounds -2.0 -2.0 \
cdv_upper _bounds 2.0 2.0
i nterface, \
application system \
anal ysi s_driver = 'rosenbrock’ \
parameters _file = 'paranms.in’ \
results file = 'resul ts.out’ \
# file_tag \
# file save
responses, \
num obj ective_functions = 1 \
numeri cal _gradients \
nmet hod_sour ce dakot a \
interval _type forward \
fd_step_size = .000001 \
no_hessi ans
met hod, \
# dot _bfgs \
conm n_frcg \
convergence_tol erance = 1.0e-4 \
max_iterations = 100 \
out put qui et
strategy, \
si ngl e_met hod \
gr aphi cs \
t abul ar _graphi cs_data

Figure2.26 DAKOTA input filefor gradient-based optimization using
the system call interfaceto an external rosenbrock simulator.

This example problem is executed using the command:
dakota -i dakota_rosenbrock syscall.in > syscall. out

Thisrun of DAKQOTA takes longer to complete than the previous gradient-based optimization
example since the sy st eminterface method has additional process creation and file 1/0
overhead, as compared to the internal communication that occurs when thedi r ect interface
method isused. Thefilesyscal | . out . sav isprovided inthe/ Dakot a/

CettingStart ed/ Exanpl es directory for comparison to the output results produced when
executing the command given above.

To gain a better understanding of what exactly DAKOTA is doing with the syst eminterface
method, edit the input file to remove the comment symbols that are in front of the keywords
file tagandfil e_save andre-run DAKOTA. Check the listing of the local directory and
you will see many new files with names such aspar ans. i n. 1, par ans. i n. 2, etc., and
results.out.1,results.out. 2, etc. Thereisonepar ans. i n. Xfileand one
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resul ts. out. Xfilefor each of the function evaluations performed by DAKOTA. Thisisthe
filelisting for par ans. i n. 1:

2 variables 1 functions
-1.2000000000e+00 x1

1. 0000000000e+00 x2

1 ASV_1

The first line gives the number of variables and the number of response functions. For
optimization on Rosenbrock’s function, there are two variables (x; and x,) and one function (the
objective function). The values of the variables are listed next in the file, with the descriptor tag
(‘x1" or ‘x2' from the DAKOTA input file) following the numerical value. The last line of the
parametersfile is the syntax for DAKOTA's active set vector (ASV). Thereisone ASV line
printed in the parameters file for each response function. In this case, the ASV value of 1
indicates that DAKOTA is requesting that the simulation code return the response function value
tothefileresul t s. out . X. (ASV syntax: 1 = value of response function, 2 = gradient of
response function, 4 = Hessian of response function, and any combination up to 7 = value,
gradient, and Hessian of the response function. See Section 4.7 for more detail.)

The executable program r osenbr ock readsin thepar ans. i n. Xfile and evaluates the

objective function at the given values for x, and x,. Then, r osenbr ock writes out the objective

function datato ther esul t s. out . Xfile. Hereisthelisting for thefiler esul t s. out . 1:
2.4200000000e+01 f

The value shown above is the value of the objective function, and the descriptor ‘f’ is an optiona
tag returned by the simulation code. When the system call has completed, DAKOTA readsin the
datafromther esul t s. i n. Xfile. Then, DAKOTA continues with executions of the

r osenbr ock program until the optimization process is complete.

2.4.10 Optimization with a User-Supplied Simulation Code - Case 2

In many situations the user-supplied simulation code cannot be modified to read and write the
par ans. i n. Xfileandther esul t s. out . Xfile, asdescribed above. Typically, this occurs
when the simulation code is a commercial or proprietary software product that has specific input
file and output file formats. In such cases, it is common to replace the executable program name
in the DAKOTA input file with the name of a UNIX shell script containing a sequence of
commands that read and write the necessary files and run the simulation code. For example, the
executable program named r osenbr ock listed in Figure 2.26 could be replaced by aUNIX C-
shell script named si nmul at or _scri pt, with the script containing a sequence of commands
to perform the following steps: insert the data from the par anet er s. i n. Xfile into the input
file of the smulation code, execute the simulation code, post process the files generated by the
simulation code to compute response data, and return the response datato DAKOTA in the
resul ts. out. Xfile. The steps that are typically used in constructing and using a UNIX shell
script are described in Section 16.1.
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2.5Whereto Gofrom Here

This chapter has provided an introduction to the basic capabilities of DAKOTA including
parameter studies, various types of optimization, and Monte Carlo sampling. More information
on the DAKOTA input file syntax is provided in the remaining chaptersin thistext and in the
DAKOTA Reference Manual [17]. Additional example problems that demonstrate some of
DAKOTA's advanced capabilities are provided in Chapter 10, Chapter 13, Chapter 16, and
Chapter 20.

DAKOTA Users Manual - Getting Started with DAKOTA

49



3.0 DAKQOTA Capabilities

3.1 Overview

This chapter provides a brief, but comprehensive, overview of DAKOTA’s capabilities.
Additional details and example problems are provided in subsequent chapters in this manual.

3.2 Parameter Study Methods

Parameter studies are often performed to explore the effect of parametric changes within
simulation models. DAKOTA provides four parameter study methods that may be selected by the
user.

Multidimensional: Forms aregular lattice or grid in an n-dimensional parameter space, where
the user specifies the number of intervals used for each parameter.

Vector: Performs a parameter study along aline between any two points in an n-dimensional
parameter space, where the user specifies the number of steps used in the study.

Centered: Given apoint in an n-dimensional parameter space, this method eval uates nearby
points along the coordinate axes of the parameter space. The user selects the number of steps and
the step size.

List: The user suppliesalist of pointsin an n-dimensiona space where DAKOTA will evaluate
response data from the simulation code.

Additional information on these methods is provided in Chapter 8.

3.3 Sampling Methods and Design of Experiments

Sampling methods and design of experiments are often used to explore the parameter space of an
engineering design problem. Two software packages are available in DAKOTA for performing
these studies, LHS and DDACE, both of which were developed at Sandia Labs.

LHS (Latin Hypercube Sampling): This package provides both Monte Carlo (random)
sampling and latin hypercube sampling methods, which can be used with probabilistic variables
in DAKQOTA that have the following distributions: Gaussian (normal), lognormal, uniform,
loguniform, Weibull, and user-supplied histograms. In addition, the user can supply a correlation
matrix for the variables to account for correlations among the variables [45]. The LHS package
currently serves two purposes. (1) it can be used for uncertainty quantification by sampling over
uncertain variables characterized by probability distributions (see Section 3.4), or (2) it can be
used in a DACE mode in which any design and state variables are treated as having uniform
distributions (seetheal | _vari abl es flag in the Reference Manual [17]). The LHS package
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comesin two versions: “old” (circa 1980) and “new” (circa 1998), where only the former may
currently be distributed externally.

DDACE (Distributed Design and Analysis of Computer Experiments): The DACE package
includes both stochastic sampling methods and classical design of experiments methods [64].
The stochastic methods are Monte Carlo (random) sampling, latin hypercube sampling, and
orthogonal array sampling. The DDACE package currently supports variables that have either
normal or uniform distributions. However, only the uniform distribution is available in the
DAKOTA interface to DDACE. The classical design of experiments methods in DDACE are
central composite design (CCD) and Box-Behnken (BB) sampling. A grid-based sampling
method also is available. DDACE is available under a GNU Lesser General Public Licenseand is
distributed with DAKOTA.

Additional information on these methods is provided in Chapter 9.

3.4 Uncertainty Quantification

Uncertainty quantification methods (also referred to as nondeterministic analysis methods)
involve the computation of probabilistic information about response functions based on sets of
simulations taken from the specified probability distributions for uncertain input parameters. Put
another way, these methods perform a forward uncertainty propagation in which probability
information for input parametersis mapped to probability information for output response
functions. The UQ methods in DAKQOTA include various sampling-based approaches (e.g.,
Monte Carlo and Latin hypercube sampling) discussed previously in Section 3.3, along with
analytic reliability methods and stochastic finite element methods.

Analytic Reliability Methods: This suite of methods includes the Advanced Mean Value
Method (AMV), the iterated Advanced Mean Value Method (AMV +), and the First Order
Reliability Method (FORM). Efforts are currently underway to implement the Second Order
Reliability Method (SORM). Currently the AMV and AMV + methods are dependent on the
NPSOL optimization software package. This dependence will be remedied in afuture version of
DAKOTA.

Stochastic Finite Element M ethods: The objective of these techniquesis to characterize the
response of systems whose governing equations involve stochastic coefficients. The development
of these techniques mirrors that of deterministic finite element analysis utilizing the notions of
projection, orthogonality, and weak convergence [29], [30].

Additional information on these methods is provided in Chapter 10.

3.5 Optimization Software Packages

Several optimization software packages have been integrated with DAKOTA. These include
freely-avail able software packages developed by research groups external to Sandia Labs,
Sandia-devel oped software that has been released to the public under GNU licenses, and
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commercially-devel oped software. These optimization software packages provide the DAKOTA
user with accessto well-tested, proven methods for use in engineering design applications, as
well as access to some of the newest developments in optimization algorithm research.

CONMIN (CONstrained MINimization): Methods for gradient-based constrained and
unconstrained optimization [65]. The constrained optimization algorithm is the method of
feasible directions (MFD) and the unconstrained optimization algorithm is the Fletcher-Reeves
conjugate gradient (CG) method. This software is freely available to the public from NASA, and
the CONMIN source codeisincluded with DAKOTA.

SGOPT (Stochastic Global OPTimization): Methods for nongradient-based bound-constrained
optimization including pattern search methods and genetic (evolutionary) algorithms [42]. This
software is available to the public under a GNU Lesser General Public License (LGPL) and the
source code for SGOPT isincluded with DAKOTA (web page: www.cs.sandia.gov/SGOPT).

COLINY: Methods for nongradient-based optimization which utilize the Common Optimization
Library INterface (COLIN). Thisalgorithm library will eventually supersede SGOPT. COLINY
algorithms not available in SGOPT currently include APPS and DIRECT. This software is not
yet available to the public.

PICO (Parallel Integer Combinatorial Optimization): PICO’s branch-and-bound algorithm is
available in DAKQOTA for use on nonlinear optimization problems involving discrete variables or
a combination of continuous and discrete variables [16]. PICO is available to the public under the
GNU LGPL and the source code isincluded with DAKOTA (web page: www.cs.sandia.gov/
PICO). Note: PICO’s methods for linear programming are not available under DAKOTA.

APPS (Asynchronous Parallel Pattern Search): Advanced pattern search (nongradient-based)
methods that are capable of fully asynchronous operation on parallel computers [44]. The APPS
algorithms are availabl e to the public under the GNU LGPL (web page: csmr.ca.sandia.gov/
projects/apps.html) and will be included with the COLINY distribution (see above) for use in
DAKOQOTA.

OPT ++: Methods for gradient-based and nongradient-based optimization of unconstrained,
bound-constrained, and nonlinearly constrained optimization problems [50]. OPT++ includes a
variety of Newton-based methods (quasi-Newton, finite-difference Newton, Gauss-Newton, and
full-Newton), as well as the Polak-Ribeire CG method and the parallel direct search (PDS)
method. OPT++ is an active research tool and new optimization capabilities are continually
being added to its suite of capabilities. OPT++ is available to the public under the GNU LGPL
and the source code is included with DAKOTA (web page: csmr.ca.sandia.gov/projects/opt++/
opt++.html).

MOOCHO (Multifunctional Object-Oriented ar CHitecture for Optimization): formerly
known as rSQP++, MOOCHO provides both general-purpose gradient-based algorithms for
nested analysis and design (NAND) and large-scale gradient-based optimization algorithms for
simultaneous analysis and design (SAND). This software is not yet available to the public.
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NPSOL : Methods for gradient-based constrained and unconstrained optimization problems
using a sequential quadratic programming (SQP) algorithm [31]. NPSOL isacommercial
software product of Stanford University (web site: www.sbsi-sol-optimize.com). Sandia National
Laboratories, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory all
have site licenses for NPSOL. Other users may obtain their own copy of NPSOL and compile it
with the DAKOTA source code by following the steps given in the file /Dakota/INSTALL.

DOT (Design Optimization Tools): Methods for gradient-based optimization for constrained
and unconstrained optimization problems [67]. The algorithms available for constrained
optimization are modified-MFD, SQP, and sequential linear programming (SLP). The algorithms
available for unconstrained optimization are the Fletcher-Reeves CG method and the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton technique. DOT is acommercial software
product of Vanderplaats Research and Development, Inc. (web page: www.vrand.com). Sandia
National Laboratories and Los Alamos National Laboratory have limited seats for DOT. Other
users may obtain their own copy of DOT and compile it with the DAKOTA source code by
following the steps given in the file /Dakota/INSTALL.

Additional information on these methods is provided in Chapter 11.

3.6 Additional Optimization Capabilities

The optimization software packages described above provide algorithms to handle awide variety
of optimization problems. This includes algorithms for constrained and unconstrained
optimization, as well as algorithms for gradient-based and nongradient-based optimization.
Listed below are additional optimization capabilities that are available in DAKOTA.

M ultiobjective Optimization: In multiobjective optimization, a composite objective function is
constructed from a set of individual objective functions. The user can specify the scalar weight
factorsthat are applied to the individual objective functionsin computing the composite
objective function. This approach works with any of the optimization methods listed in Section
3.5. Also, both constrained and unconstrained multiobjective optimization problems can be
formulated and solved with DAKOTA. Note that multiobjective optimization is related to the
Pareto-set optimization strategy described in Section 3.8, with the difference that the former
computes a single optimum and the latter computes a set of optimain order to generate a Pareto
trade-off surface.

Simultaneous Analysisand Design (SAND): In SAND, one converges the optimization process
at the same time as converging a nonlinear simulation code. In this approach, the solution of the
simulation code (often a system of ordinary or partial differential equations) is posed as a set of
equality constraintsin the optimization problem and these equality constraints are only satisfied
by the optimizer in the limit. This formulation necessitates a close coupling between DAKOTA
and the simulation code so that the internal vectors and matrices from the ssmulation code (in
particular, the residual vector and its state and design Jacobian matrices) are available to the
SAND optimizer. This approach has the potential to reduce the cost of optimization significantly
since the nonlinear simulation is only converged once, instead of on every function evaluation.
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The drawback is that this approach requires substantial software modifications to the simulation
code; something that can be impractical in some cases and impossible in others. A new SAND
capability employing the MOOCHO library is under development that will intrusively couple
DAKOTA with multiphysics simulation frameworks under development at Sandia.

Additional information on these methods is provided in Chapter 11.

3.7 Nonlinear Least Squaresfor Parameter Estimation

Nonlinear least squares methods are optimization algorithms which exploit the special structure
of aleast squares objective function (see Section 1.4.2). These problems commonly arisein
parameter estimation and test/analysis reconciliation. In practice, least squares solvers will tend
to converge more rapidly than general-purpose optimization algorithms when the residual terms
in the least squares formulation tend towards zero at the solution. Least squares solvers may
experience difficulty when the residuals at the solution are significant.

Gauss-Newton: DAKOTA's Gauss-Newton a gorithm utilizes the Hessian approximation
described in Section 1.4.2. The exact objective function value, exact objective function gradient,
and the approximate objective function Hessian are defined from the least squares term values
and gradients and are passed to the full-Newton optimizer from the OPT++ software package. As
for al of the Newton-based optimization algorithms in OPT++, unconstrained, bound-
constrained, and generally-constrained problems are supported. However, for the generally-
constrained case, a derivative order mismatch existsin that the nonlinear interior point full
Newton algorithm will require second-order information for the nonlinear constraints whereas
the Gauss-Newton approximation only requires first order information for the least squares
terms.

NL SSOL : the NLSSOL agorithm isacommercial software product of Stanford University (web
site: www.sbsi-sol-optimize.com) that is bundled with current versions of the NPSOL library. It
uses an SQP-based approach to solve generally-constrained nonlinear least squares problems. It
periodically employs the Gauss-Newton Hessian approximation to accelerate the search. It
requires only first-order information for the least squares terms and nonlinear constraints. Sandia
National Laboratories, Lawrence Livermore National Laboratory, and Los Alamos National
Laboratory all have site licenses for NLSSOL. Other users may obtain their own copy of
NLSSOL and compileit with the DAKOTA source code by following the NPSOL installation steps
given in the file /Dakota/INSTALL.

Additional information on these methodsis provided in Chapter 12.

3.8 Optimization Strategies

Dueto the flexibility of DAKOTA's object-oriented design, it isrelatively easy to create
algorithms that combine several of DAKOTA's capabilities. These algorithms are referred to as
strategies.
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Multilevel Hybrid Optimization: This strategy allows the user to specify a sequence of
optimization methods, with the results from one method providing the starting point for the next
method in the sequence. An example which is useful in many engineering design problems
involves the use of a nongradient-based global optimization method (e.g., genetic algorithm) to
identify a promising region of the parameter space, which feeds its results into a gradient-based
method (quasi-Newton, SQP, etc.) to perform an efficient local search for the optimum point.

Multistart L ocal Optimization: This strategy uses many local optimization runs (often
gradient-based), each of which is started from a different initial point in the parameter space.
Thisis an attractive strategy in situations where multiple local optima are known to exist or may
potentially exist in the parameter space. This approach combines the efficiency of local
optimization methods with the parameter space coverage of aglobal stratification technique.

Par eto-Set Optimization: The Pareto-set optimization strategy allows the user to specify
different sets of weights for the individual objective functions in a multiobjective optimization
problem. DAKOTA executes each of these weighting sets as a separate optimization problem,
serialy or in parallel, and then outputs the set of optimal designs which define the Pareto set.
Pareto set information can be useful in making trade-off decisions in engineering design
problems.

Mixed Integer Nonlinear Programming (MINLP): This strategy uses the branch and bound
capabilities of the PICO package to perform optimization on problems that have both discrete
and continuous design variables. PICO provides a branch and bound engine targeted at mixed
integer linear programs (MILP), which when combined with DAKOTA’s nonlinear optimization
methods, resultsin a MINLP capability. In addition, the multiple NLPs solved within MINLP
provide an opportunity for concurrent execution of multiple optimizations.

Surrogate-Based Optimization (SBO): This strategy combines the sampling methods,
approximation methods, and optimization capabilities of DAKOTA. The SBO strategy is
particularly effective on real-world engineering design problems that contain nonsmooth features
(e.g., Sope discontinuities, multiple local minima) where gradient-based optimization methods
often have trouble. In SBO, the optimization algorithm operates on a surrogate model instead of
directly operating on the computationally expensive simulation model. The surrogate model can
be formed from data samples and surface fitting methods (see Section 3.9), or it can bea
simplified (e.g., coarsened finite element mesh, less detailed) version of the original
computational model. For either type of surrogate model, the SBO algorithm periodically checks
the accuracy of the surrogate model against the original high-fidelity model. The SBO strategy in
DAKOTA can be implemented using heuristic rules (less expensive) or a strategy that is
guaranteed to converge (more expensive). The development of SBO strategiesis an area of active
research in the DAKOTA project.

Optimization Under Uncertainty (OUU): Many rea-world engineering design problems
contain stochastic features and must be treated using OUU methods such as robust design and
reliability-based design. For OUU, the uncertainty quantification methods of DAKOTA are
combined with optimization algorithms. This allows the user to formulate problems where one or
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more of the objective and constraints are stochastic. Due to the computational expense of both
optimization and UQ, the simple nesting of these methods in OUU can be computationally
prohibitive for real-world design problems. For this reason, surrogate-based OUU methods have
been devel oped which can reduce the overall expense by an order of magnitude or more. OUU
methods are an active research area.

These strategies are covered in more detail in Chapter 13.

3.9 Surface Fitting M ethods

Surface fitting methods, often referred to as response surface methods, can be used to explore the
variations in response quantities over regions of the parameter space. In addition, the surfaces
can serve as surrogate models for optimization studies (see the surrogate-based optimization
strategy in Section 3.8). The surface fitting methods in DAKOTA include software developed by
Sandia researchers and by various researchersin the academic community. These surface fitting
methods work in conjunction with the sampling methods and design of experiments methods
described in Section 3.3.

First-order Taylor Series Expansion: Thisisalocal first-order model centered at a point in the
parameter space.

Polynomial Regression: First-order (linear), second-order (quadratic), and third-order (cubic)
polynomial response surfaces computed using linear least squares regression methods. Note:
thereis currently no use of forward- or backward-stepping regression methods to eliminate
unnecessary terms from the polynomia model.

Kriging Interpolation: An implementation of spatia interpolation using kriging methods and
Gaussian correlation functions [36]. The algorithm used in the kriging process generates a C?%-
continuous surface that exactly interpolates the data values.

Artificial Neural Networks: An implementation of the stochastic layered perceptron neural
network developed by Prof. D. C. Zimmerman of the University of Houston [72]. This neural
network method isintended to have alower training (fitting) cost than typical neural networks.

Multivariate Adaptive Regression Splines (MARS): Software developed by Prof. J. H.

Friedman of Stanford University [27]. The MARS method creates a C?-continuous patchwork of
splines in the parameter space.

Additional information on these methods is provided in Chapter 14.

3.10 Parallel Computing

The methods and strategies in DAKOTA are designed to exploit parallel computing resources
such as those found in a desktop multiprocessor workstation, a network of workstations, or a
massively parallel computing platform. This parallel computing capability isacritical

DAKOTA Users Manual - DAKOTA Capabilities 56



technology for rendering real-world engineering design problems computationally tractable.
DAKOQOTA employs the concept of multilevel parallelism, which takes simultaneous advantage of
opportunities for parallel execution from multiple sources:

Parallel Simulation Codes: DAKOTA works equally well with both serial and parallel
simulation codes.

Concurrent Execution of Analyseswithin a Function Evaluation: Some engineering design
applications call for the use of multiple ssmulation code executions (different disciplinary codes,
the same code for different load cases or environments, etc.) in order to evaluate asingle
response data set for asingle set of parameters. If these simulation code executions are
independent (or if coupling is enforced at a higher level), DAKOTA can perform them in parallel.

Concurrent Execution of Function Evaluationswithin an Iterator: With very few exceptions,
the iterative algorithms described in Section 3.2 through Section 3.7 all provide opportunities for
the concurrent evaluation of response data sets for different parameter sets. Whenever there
exists a set of design point evaluations that are independent, DAKOTA can perform themin
parallel.

Concurrent Execution of Iteratorswithin a Strategy: Some of the DAKOTA strategies
described in Section 3.8 generate a sequence of iterator subproblems. For example, the MINLP,
Pareto-set, and multi-start strategies generate sets of optimization subproblems, and the
optimization under uncertainty strategy generates sets of uncertainty quantification subproblems.
Whenever these subproblems are independent, DAKOTA can perform them in parallel.

It isimportant to recognize that these four parallelism levels are nested, in that a strategy can
schedule and manage concurrent iterators, each of which may manage concurrent function
evaluations, each of which may manage concurrent analyses, each of which may execute on
multiple processors. Additional information on parallel computing with DAKOTA is provided in
Chapter 15.

3.11 Summary

DAKOTA is both a production tool for engineering design and analysis activities and aresearch
tool for the development of new algorithms in optimization, uncertainty quantification, and
related areas. Because of the extensible, object-oriented design of DAKQOTA, it isrelatively easy
to add new iterative algorithms, strategies, simulation interfacing approaches, surface fitting
methods, etc. In addition, DAKOTA can serve as arapid prototyping tool for algorithm
development. That is, by having a broad range of building blocks available (i.e., paralel
computing, surrogate models, simulation interfaces, fundamental algorithms, etc.), new
capabilities can be assembled rapidly which leverage the previous software investments. For
additional discussion on framework extensibility, refer to the DAKOTA Developers Manual [18].

The capabilities of DAKOTA have been used to solve engineering design and optimization
problems at Sandia Labs, at other Department of Energy labs, and by our industrial and academic
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collaborators. Often, this real-world experience has provided motivation for research into new
areas of optimization. The DAKOTA development team wel comes feedback on the capabilities
of this software toolkit, as well as suggestions for new areas of research.
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4.0 Variables

4.1 Overview

The variables section in aDAKOTA input file specifies the parameter set to be iterated by a
particular method. In the case of an optimization study, these variables are adjusted in order to
locate an optimal design; in the case of parameter studies/sensitivity analysis/design of
experiments, these parameters are perturbed to explore the parameter space; and in the case of
uncertainty analysis, the variables are associated with probabilistic characterizations which are
used to quantify the uncertainty in response functions. To accommodate these and other types of
studies, DAKOTA supports design, uncertain, and state variable types for continuous and discrete
variable domains.

This chapter will present a brief overview of the types of variables and their uses, aswell as
cover some user issues relating to integer/discrete conversions, file formats, and the active set
vector. For a detailed description of variables section syntax and example specifications, refer to
the variables commands chapter in the DAKOTA Reference Manual [17].

4.2 Design Variables

Design variables are those variables which are modified for the purposes of computing an
optimal design. These variables may be continuous (real-valued) or discrete (integer-valued).

4.2.1 Continuous Design Variables

The most common type of design variables encountered in engineering applications are of the
continuous type. These variables may assume any real value (e.g., 12. 34, - 1. 735e+07)
within their bounds. All but a handful of the optimization algorithmsin DAKOTA support
continuous design variables exclusively.

4.2.2 Discrete Design Variables

Engineering design problems may contain discrete variables such as material types, feature
counts, stock gauge selections, etc. These variables may assume only afixed number of values
within their bounds. While the general discrete variable case would allow this fixed set of values
to include real numbers (e.g., X; can only assumethevalues4. 2, 6. 4, and 8. 5), DAKOTA

assumes that the discrete variables can be specified as a sequence of integers (e.g., Xx; can be 1,

2, or 3) and that a mapping from the integer sequence to the discrete values can be applied if
necessary within the user’sinterface. A common mapping isto use the integer value from
DAKOTA astheindex into avector of discrete real values.

Discrete variables may be classified as either “noncategorical” or “categorical” discrete variables.
In the former noncategorical case, the integrality condition can be relaxed during the solution
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process since the model can still compute meaningful response functions for non-integer values.
For example, adiscrete variable representing the thickness of a structureis generaly a
noncategorical variable since it can assume a continuous range of values during the algorithm
iterations, even if it is desired to have a stock gauge thickness in the end. In the latter categorical
case, the integrality cannot be relaxed since the model cannot obtain a solution for a non-integer
value. For example, feature counts are generally categorical variables, since most computational
models will not support a non-integer value for the number of instances of some feature (e.g.,
number of support brackets).

Gradient-based optimization methods cannot be directly applied to problems with discrete
variables. For problems with noncategorical variables, branch and bound techniques can be used
to relax the integrality conditions and apply gradient-based methods to a series of generated
subproblems. For problems with categorical variables, nongradient-based methods (e.g.,

sgopt _pga_i nt) are commonly used. Branch and bound techniques are discussed in Section
13.5 and nongradient-based methods are further described in Chapter 11.

In addition to engineering applications, many non-engineering applicationsin the fields of
scheduling, logistics, and resource allocation contain discrete design parameters. Within the
Department of Energy, solution techniques for these problems impact programs in stockpile
evaluation and management, production planning, nonproliferation, transportation (routing,
packing, logistics), infrastructure analysis and design, energy production, environmental
remediation, and tools for massively parallel computing such as domain decomposition and
meshing.

4.3 Uncertain Variables

Deterministic variables (i.e., those with a single known value) do not capture the behavior of the
input variablesin all situations. In many cases, the exact value of a model parameter is not
precisely known. An example of such an input variable is the thickness of a heat treatment
coating on a structural steel 1-beam used in building construction. Due to variabilities and
tolerances in the coating process, the thickness of the layer is known to follow a normal
distribution with a certain mean and standard deviation as determined from experimental data.
The inclusion of the uncertainty in the coating thickness is essential to accurately represent the
resulting uncertainty in the response of the building.

Currently, uncertain variablesin DAKOTA are modeled as continuous random variables, or in the
case of histogram, with an empirical histogram representation. If a problem contains discrete
random variables, then these variables can be modeled using the point-based histogram
representation. The following types of uncertain variables are available:

1. Normal: characterized by a mean and standard deviation. Also referred to as Gaussian.
Bounded normal is also supported with an additional specification of lower and upper
bounds.
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2. Lognormal: characterized by a mean and either a standard deviation or an error factor. The
natural logarithm of alognormal variable has anormal distribution. Bounded lognormal is
also supported with an additional specification of lower and upper bounds.

3. Uniform: characterized by alower bound and an upper bound. Probability is constant
between the bounds.

4. Loguniform: characterized by alower bound and an upper bound. The natural logarithm of a
loguniform variable has a uniform distribution.

5. Weibull: characterized by an apha parameter and a beta parameter.

6. Histogram: characterized by a set of (x,y) pairs that either map out histogram bins (a
continuous interval with associated bin count) or histogram points (a discrete point value
with associated count).

For additional information on random variable probability distributions, refer to [41] and [71].
Refer to the DAKOTA Reference Manual [17] for more detail on the uncertain variable
specifications and to Chapter 10 for a description of methods available to quantify the
uncertainty in the response.

4.4 State Variables

State variables consist of “other” variables which are to be mapped through the simulation
interface, in that they are not to be used for design and they are not modeled as being uncertain.
State variables provide a convenient mechanism for parameterizing additional model inputs
which, in the case of a numerical simulator, might include solver convergence tolerances, time
step controls, or mesh fidelity parameters. Similar to the design variables discussed in Section
4.2, state variables can be continuous (real-valued) or discrete (integer-valued). For discrete
variables which are not a sequence of integers, a mapping can be applied between the integer and
discrete valuesin the user’s interface.

State variables, as with other types of variables, are viewed differently depending on the method
in use. Since these variables are neither design nor uncertain variables, algorithms for
optimization, least squares, and uncertainty quantification do not iterate on these variables; i.e.,
they are not active and are hidden from the algorithm. However, DAKOTA still maps these
variables through the user’s interface where they affect the computational model in use. This
allows optimization, least squares, and uncertainty quantification studies to be executed under
different simulation conditions (which will result, in general, in different results). Parameter
studies and design of experiments methods, on the other hand, are general-purpose iterative
techniques which do not draw a distinction between variable types. They include state variables
in the set of variables to be iterated, which allows these studies to explore the effect of state
variable values on the response data of interest.

In the future, state variables might be used in direct coordination with an optimization, |east
sguares, or uncertainty quantification algorithm. For example, state variables could be used to
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enact model adaptivity through the use of a coarse mesh or loose solver tolerances in theinitial
stages of an optimization with continuous model refinement as the algorithm nears the optimal
solution.

45 Mixed Variables

The iterative method selected for use in DAKOTA determines what subset, or view, of the
variables datais active in the iteration. The general case of having a mixture of various different
types of variablesis supported within all of the DAKOTA methods even though certain methods
will only modify certain types of variables (e.g., optimizers and |least squares methods only
modify design variables, and uncertainty quantification methods only utilize uncertain variables).
Thisimplies that variables which are not under the direct control of a particular iterator will be
mapped through the interface unmodified for all evaluations of the iterator. This allowsfor a
variety of parameterizations within the model in addition to those which are being used by a
particular iterator, which can provide the convenience of consolidating the control over various
modeling parameters in asingle file (the DAKQOTA input file). An important related point is that
the variable set that is active with a particular iterator is the same variable set for which
derivatives are computed (see Section 6.3).

4.6 DAKOTA Parameters File Data For mat

Application interfaces which employ system calls and forks to create separate simulation
processes must communicate with the simulation through the file system. This is accomplished
through the reading and writing of parameters and results files. DAKOTA uses its own format for
this data input/output. Depending on the user’s interface specification, DAKOTA will write the
parametersfilein either standard or APREPRO format. The former option uses asimple

“val ue tag” format, whereas the latter optionusesa“{ tag = val ue }” format for
compatibility with the APREPRO utility [61].

4.6.1 Parameters file format (standard)

Prior to invoking a simulation, DAKOTA creates a parameters file which contains the current
parameter values and a set of function requests. The standard format for this parametersfileis
shown in Figure 4.1.
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<int> vari abl es <int> functions

<doubl e> <var_tag_cdv,>
<doubl e> <var _tag_cdv,>

<doubl e> <var _tag_cdv,>
<int> <var_tag_ddv,>
<i nt> <var_tag_ddv,>

<i nt> <var_tag_ddv,>
<doubl e> <var _tag_nuv,>
<doubl e> <var _tag_nuv,>

<doubl e> <var_t ag_nuv,>
<doubl e> <var _tag_| nuv,;>
<doubl e> <var _tag_| nuv,>

<doubl e> <var _tag_| nuv,>
<doubl e> <var _tag_uuv,>
<doubl e> <var _tag_uuv,>

<doubl e> <var_t ag_uuv,>
<doubl e> <var _tag_| uuv,>
<doubl e> <var _tag_| uuv,>

<doubl e> <var _tag_| uuv,>
<doubl e> <var_tag_wuv,>
<doubl e> <var _tag_wuv,>

<doubl e> <var _tag_wuv,>
<doubl e> <var _t ag_huv,>
<doubl e> <var _t ag_huv,>

<doubl e> <var _tag_huv,>
<doubl e> <var_tag_csv,>
<doubl e> <var _tag_csv,>

<doubl e> <var_tag_csv,>
<int> <var_tag_dsv,>
<int> <var_tag_dsv,>

<int> <var_tag_dsv,>

-
S

Descriptive header

Continuous design vars.
(Negy Values and tags)

Discrete design vars.

(Ngqy Values and tags)

L ognormal uncertain vars.
(Njnuy vValues and tags)

~

Normal uncertain vars.
(Npyy Values and tags)

Uniform uncertain vars.
(nyyy values and tags)

L oguniform uncertain vars.

(Njuuy Values and tags)
Weibull uncertain vars.
(Nyyy Values and tags)

Histogram uncertain vars.
(Npyy Values and tags)

Continuous state vars.
(nesy Values and tags)

Discrete state vars.
(ngsy Values and tags)

<int> ASV_1 _

<int> ASV 2 Active set vector
. (m values and tags)
<int> ASV_m

Figure4.l  Parametersfile dataformat - standard option.
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where “<i nt >” denotes an integer value, “<doubl e>" denotes a double precision value, and

“. .. 7" indicates omitted lines for brevity. The first line specifies the total number of variables (n)
with itsidentifier string “var i abl es” followed by the number of functions (m) with its
identifier string “f unct i ons.” Theseintegers are useful for dynamic memory allocation within
asimulator or filter program. The next n lines specify the current values and descriptors of all of
the variables within the parameter set in the following order: continuous design, discrete design,
normal uncertain, lognormal uncertain, uniform uncertain, loguniform uncertain, weibull
uncertain, histogram uncertain, continuous state, and discrete state variables. The lengths of these
vectorsadd to atotal of n (thatis, Ncgy + Nggy + Moy + NMinuy + Nuav + Nguy

Nwuv + Nhuy + Ngsy + Ngsy = N). If any of the variable types are not present in the
problem, then its block is omitted entirely from the parameters file. The tags are the variable
descriptors specified in the user’s DAKOTA input file, or if no descriptors have been specified,
default descriptors are used. The next mlines specify the request vector for each of them
functionsin the response data set. These integer codes indicate what datais required on the
current function evaluation and are described further in Section 4.7.

4.6.2 Parameters file format (APREPRQ)

For the APREPRO format option, the same data is present and the same ordering is used asin the
standard format. The only difference isthat values are associated with their tags within

“{ tag = val ue }” congtructsasshown in Figure 4.2. This allows direct usage of these
parameters files by the APREPRO utility, which is a pre-processor that can significantly simplify
model parameterization. When a parameters file in APREPRO format isincluded within a
template file (using an include directive), the APREPRO utility recognizes these constructs as
variable definitions which can then be used to popul ate targets throughout the template file [61].
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DAKOTA VARS = <int> }

DAKOTA FNS = <i
<var _tag_cdv,>
<var _tag_cdv,>

%var_tag_cdvn>
<var _tag_ddv,>
<var _tag_ddv,>

<var _t ag_ddv,>
<var_tag_nuvq{>
<var _tag_nuvyp>

<var _tag_nuv,>

<var _tag_I nuv,>
<var _tag_I| nuv,>

<var _tag_I| nuv,>

<var _tag_uuvq>
<var _tag_uuv,>

<var _tag_uuv,>

<var _tag_Il uuv,>
<var _tag_I| uuv,>

<var _tag_I| uuv,>

<var_tag_wuvq>
<var _tag_wuv,>

<var _tag_wuv,>
<var _tag_huv,>
<var _tag_huv,>

<var _t ag_huv,>
<var_tag_csv,>
<var _tag_csvy,>

<var _tag_csv,>
<var _tag_dsv,>
<var _tag_dsv,>

<var _tag_dsv,>

nt> }

= <doubl e> }
= <doubl e> }
= <doubl e> }

= <doubl e> }
<doubl e> }
<doubl e> }

T

<doubl e>
<doubl e>

<doubl e>
<int>}
<int>}

<int> }
<doubl e>
<doubl e>

<doubl e> }
<doubl e> }
<doubl e> }

<doubl e> }
<doubl e> }
<doubl e>

<doubl e>
<doubl e>
<doubl e>

<doubl e>
<doubl e>
<doubl e>

<doubl e>
<int>}
<int>}

T

}
}
}

/

N

IYTIYTIYT|Y

[ )

—— [ S N W] [ Ny ) ——

Descriptive header

Continuous design vars.
(Negy Values and tags)

Discrete design vars.
(Nggy Values and tags)

Normal uncertain vars.
(Npyy Values and tags)

L ognormal uncertain vars.

(Njuy Values and tags)

Uniform uncertain vars.
(nyyy values and tags)

L oguniform uncertain vars.

(Nyuy vValues and tags)

Weibull uncertain vars.
(nyyuy Values and tags)

Histogram uncertain vars.
(Npyy Values and tags)

Continuous state vars.
(nes, Values and tags)

Discrete state vars.
(ngsy Valuesand tags)

<int>
ASV_1 = <int>} {\\
ASV 2 = <int> } Active set vector
- . / (m values and tags)
ASV_m = <int> }
Figure4.2  Parametersfiledataformat - APREPRO option.

DAKOTA Users Manud

- Variables

65




4.7 The Active Set Vector

The active set vector contains a set of integer codes, one per response function, which describe
the data needed on a particular execution of an interface. Integer values of O through 7 denote a
3-bit binary representation of all possible combinations of value, gradient, and Hessian requests
for a particular function, with the most significant bit denoting the Hessian, the middle bit
denoting the gradient, and the least significant bit denoting the value. The specific trandations
areshown in Table 4.1.

Table4.1 Active set vector integer codes.

IrC]:tsgzr reprmgtion MG
7 111 Get Hessian, gradient, and value
6 110 Get Hessian and gradient
5 101 Get Hessian and value
4 100 Get Hessian
3 011 Get gradient and value
2 010 Get gradient
1 001 Get value
0 000 No data required, function isinactive

The active set vector in DAKOTA gets its name from managing the active s, i.e., the set of
functions that are active on a particular function evaluation. However, it also manages the type of
data that is needed for functions that are active, and in that sense, has an extended meaning
beyond that typically used in the optimization literature.

4.7.1 Active set vector control

Active set vector control may be turned off to alow the user to ssimplify the supplied interface by
removing the need to check the content of the active set vector on each evaluation. The Interface
Commands chapter in the Reference Manual provides additional information on this option
(deactivate active_set _vect or). Of course, this option trades some efficiency for
simplicity and is most appropriate for those cases in which only arelatively small penalty occurs
when returning more data than may be needed on a particular function evaluation.
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5.0 Interfaces

5.1 Overview

The interface section in a DAKOTA input file specifies how function evaluations will be
performed. The mechanisms currently in place for performing function evaluationsinvolve
interfacing either with an application (i.e., acomputational simulation code) or with an
approximation (i.e., a surrogate-model).

In the case of asimulation code, theappl i cat i on interface is used to invoke the simulation
with either system calls, forks, or direct function invocations. In the system call and fork cases, a
separate process is created for the ssmulation and communication between DAKOTA and the
simulation occurs through parameter and response files. For system call and fork interfaces, then,
the interface section must also specify the details of this data transfer. In the direct function case,
a separate processis not created and communication occurs directly through the function
parameter list. Section 5.2 through Section 5.5 provide information on the application interfacing
approaches.

In the case of use of an approximation in place of an expensive ssimulation code, an
appr oxi mat i on interface can be selected to make use of surrogate modeling capabilities
available within DAKQOTA. Surrogate models are discussed further in Chapter 14.

This chapter will present an overview of the application interface procedures and components, as
well as cover issues relating to file management and example data mappings. For a detailed
description of interface section syntax, refer to the interface commands chapter in the DAKOTA
Reference Manual [17].

5.2 The Direct Function Application Interface

The direct function interface capability may be used to invoke simulations which are linked into
the DAKQOTA executable. This interface eliminates overhead from process creation and file [/0
and can simplify operations on massively parallel computers. These advantages are balanced
with the practicality of converting an existing simulation code into alink library with a
subroutine interface. Sandia’'s SALINAS structural dynamics code and Phoenix Integration’s
Model Center framework have been linked in thisway, and a direct interface to Sandia's SIERRA
multiphysics framework is under development. In the latter case, the additional effort is
particularly justified since SIERRA unifies an entire suite of physics codes.

In addition to direct linking with simulation codes, the direct interface also provides access to
internal polynomial test functions that are used for algorithm performance and regression testing.
The following test functions are available: t ext book (includingt ext _book1,

t ext _book2,text book3,andt ext book_ ouu),rosenbrock, cyl i nder _head,
andcanti | ever. While these functions are also available as external programsin the
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/ Dakot a/ t est directory, maintaining internally linked versions alows more rapid testing. See
Chapter 20 for additional information on these test problems. An example input specification for
adirect interface follows:

interface, \
application direct, \
anal ysis_driver = 'rosenbrock’

Additional specification examples are provided in Section 2.4, additional information on
asynchronous usage of the direct function interface is provided in Section 15.3.1, and the details
of adding a simulation code to the direct interface are provided in Section 16.2.

5.3 The System Call Application I nterface

The system call approach invokes a simulation code or simulation driver by using thesyst em
function from the standard C library [46]. In this approach, the system call creates a new process
which communicates with DAKOTA through parameter and response files. The system call
approach allows the simulation to be initiated via its standard invocation procedure (as a “ black
box”) and then coordinated with any variety of tools for pre- and post-processing. This approach
has been widely used in previous studies [24], [25]. The system call approach involves more
process creation and file I/0O overhead than the direct function approach; however, thisis most
often of very little significance relative to the expense of the simulations. An example of a system
call interface specification follows:

i nterface, \
application system \
anal ysis_driver = "text_book’ \
paraneters _file = 'text_book.in \
results file = 'text _book.out’ \
file_tag \

file save

More detailed examples of using the system call interface are provided in Section 2.4.9 and in
Section 16.1, and information on asynchronous usage of the system call interfaceis provided in
Section 15.3.2.

5.4 The Fork Application Interface

The fork application interface usesthef or k, exec, andwai t families of functions to manage
simulation codes or simulation drivers. Thef or k or vf or k calls create a copy of the DAKOTA
process, execvp replaces this copy with the simulation code or driver process, and then
DAKOTA usesthewai t orwai t pi d functionsto wait for completion of the new process.
Transfer of variables and response data between DAKOTA and the simulator code or driver
occurs through the file system in exactly the same manner as for the system call interface. An
example of afork interface specification follows:

interface, \
application fork, \
input _filter = "test 3pc_if’ \
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output _filter = 'test_3pc_of’ \
anal ysis_driver = "test_3pc_ac’ \
paraneters file = "th.in’ \
results file = 'th.out’ \

file_tag
Information on asynchronous usage of the fork interfaceis provided in Section 15.3.3.

5.5 Fork or System Call: Which to Use?

The primary operational difference between the fork and system call application interfacesis
that, in the fork interface, the f or k/exec functions return a UNIX process identifier which can
be utilized by thewai t /wai t pi d functions to detect the completion of a simulation, whereas
the system call application interface must use aresponse file detection scheme for this purpose.
Thus, an important advantage of the fork interface over the system call interfaceisthat it avoids
the potential of afile race condition. This condition can occur when the responses file has been
created but the writing of the response data set to this file has not been completed (see Section
15.3.2). While significant care has been taken to manage this file race condition in the system
call case, the fork interface still has the potential to be more robust when performing function
evaluations asynchronously.

Another advantage of the fork interface is that it has additional asynchronous capabilities when a
function evaluation involves multiple analyses. As shown in Table 15.1, the fork interface
supports asynchronous local and hybrid parallelism modes for managing concurrent analyses
within function evaluations, whereas the system call interface does not. These additional
capabilities again stem from the ability to track child processes by their UNIX process
identifiers.

The only observed disadvantage to the fork interface in comparison to the system interface is that
thef or k/exec/wai t functions are not part of the standard C library, whereasthe syst em
function is. Asaresult, support for implementations of thef or k/exec/wai t functions can
vary from platform to platform. At one time, these commands were not available on some of
Sandia's massively paralel computers. However, in the more mainstream UNIX environments,
availability of f or k/exec/wai t should not be an issue.

In summary, the system call interface has been aworkhorse for many years and is well tested and
proven. However, the fork interface supports additional capabilities and is recommended when
managing asynchronous simulation code executions. Having both interfaces avail able has proven
to be useful on a number of occasions and they will both continue to be supported for the
foreseeable future.

5.6 Interface Components

Figure 5.1 is an extension of Figure 1.1 which adds the detail of the components that make up
each of the application interfaces (system call, fork, and direct). These components include an
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i nput _filter (“IFilter”), oneor moreanal ysis_drivers,andanout put_filter
(“OFilter”). The input and output filters provide optional facilities for managing simulation pre-
and post-processing, respectively. More specifically, the input filter can be used to insert the
DAKOQOTA parametersinto the input files required by the simulator program, and the output filter
can be used to recover the raw data from the simulation results and compute the desired response
dataset. If thereisasingle analysis code, it is often convenient to combine these pre- and post-
processing functionsinto a single simulation driver script, and the separate input and output filter
facilities are rarely used in this case. If there are multiple analysis drivers, however, the input and
output filter facilities provide a convenient means for managing nonrepeated portions of the pre-
and post-processing for multiple analyses. That is, pre- and post-processing tasks that must be
performed for each analysis can be performed within the individual analysis drivers, and shared
pre- and post-processing tasks that are only performed once for the set of analyses can be
performed within the input and output filters.

y—|DAKOTA <+——
DAKOTA_ > DAKOTA
Parameters File T AN Results File
e - / - AN h ~
/// / AN \\\
/Appl ication Interface I
=TT Analysis L AETES
( 1Filter® : = (OFilter
<122 | Code/Driver ||| ~= =7
|
Lo N |
L |

N S : J

Figure51  Components of the application interface.

When spawning function evaluations using system calls or forks, DAKOTA must communicate
parameter and response data with the analysis drivers and filters through use of the file system.
Thisis accomplished by passing the names of the parameters and results files on the command
line when executing an analysis driver or filter. The input filter or analysis driver read datafrom
the parameters file and the output filter or analysis driver write the appropriate data to the
responses file. While not essential when the file names are fixed, the file names must be retrieved
from the command line when DAKQOTA is changing the file names from one function evaluation
to the next (i.e., using UNIX temporary files or root names tagged with numerical identifiers). In
the case of a UNIX C-shell script, the two command line arguments are retrieved using

$ar gv[ 1] and $ar gv[ 2] (see[1]). Inthe case of aC or C++ program, command line
arguments are retrieved using ar gc (argument count) and ar gv (argument vector) [46], and for
Fortran 77, thei ar gc function returns the argument count and the get ar g subroutine returns
command line arguments.
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5.6.1 Single analysis driver without filters

If asingleanal ysi s_dri ver isselected in the interface specification to perform the
complete parameters to responses mapping and filters are not needed (as indicated by omission
of thei nput _filter andout put _filter specifications), then only one process will
appear in the execution syntax of the application interface. An example of this syntax in the
system call caseis:

(driver parans.in results.out)

where“dri ver ” isthe user-specified analysis driver and “par ans. i n” and

“resul ts. out” arethe names of the parameters and results files, respectively, passed on the
command line. In this case, the user need not retrieve the command line arguments since the
same file names will be employed each time.

For the same mapping, the fork application interface echoes the following syntax:
bl ocki ng fork: driver params.in results.out

for which only a single blocking fork is needed to perform the evaluation.

Executing the same mapping with the direct application interface resultsin an echo of the
following syntax:
Direct function: invoking driver

where this analysis driver must be linked as a function within DAKOTA's direct interface (see
Section 16.2). Note that no files are involved for communication of parameter and response data,
since this datais passed directly through the function parameter lists. Execution of the direct
interface must currently be performed synchronously since multithreading is not yet supported.

Both the system call and fork interfaces support asynchronous operations. The asynchronous
system call execution syntax involves executing the system call in the background:
(driver parans.in.l results.out.1) &

and the asynchronous fork execution syntax involves use of a nonblocking fork:
nonbl ocking fork: driver parans.in.1 results.out.1

where file tagging (see Section 5.7.2) has been user-specified in both cases to prevent conflicts
between concurrent analysis drivers. In these cases, the user must retrieve the command line
arguments since the file names change on each evaluation.

5.6.2 Single analysis driver with filters

When filters are used, the syntax of the system call that DAKOTA performsis:

(ifilter parans.in results. out;
driver paranms.in results. out;
ofilter parans.in results. out)

inwhich theinput filter (i fi |l t er”), analysisdriver (“dri ver ™), and output filter
(“of i I t er ™) processes are combined into a single system call through the use of semi-colons
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and parentheses (see [1]). All three portions are passed the names of the parameters and results
files on the command line.

For the same mapping, the fork application interface echoes the following syntax:

bl ocking fork: ifilter parans.in results. out;
driver parans.in results.out;
ofilter paranms.in results. out

where a series of three blocking forksis used to perform the evaluation.

Executing the same mapping with the direct application interface resultsin an echo of the
following syntax:
Direct function: invoking { ifilter driver ofilter }

where each of the three components must be linked as a function within DAKOTA's direct
interface. Since asynchronous operations are not yet supported, execution simply involves
invocation of each of the three linked functions in succession. Again, no files are involved since
parameter and response data are passed directly through the function parameter lists.

Asynchronous executions would appear as follows for the system call interface:

(ifilter paranms.in.1 results.out. 1;
driver parans.in.1 results.out. 1;
ofilter parans.in.1l results.out.l) &

and, for the fork interface, as:

nonbl ocking fork: ifilter paranms.in.l results.out.1;
driver parans.in.l1 results.out.1;
ofilter params.in.1l results.out.1

where file tagging of evaluations has again been user-specified in both cases. For the system call
application interface, use of parentheses and semi-colons to bind the three processes into asingle
system call simplifies asynchronous process management compared to an approach using
separate system calls. The fork application interface, on the other hand, does not rely on
parentheses and accomplishes asynchronous operations by first forking an intermediate process.
Thisintermediate processis then reforked for the execution of the input filter, analysis driver, and
output filter. The intermediate process can be blocking or nonblocking (nonblocking in this case),
and the second level of forks can be blocking or nonblocking (blocking in this case). The fact
that forks can be reforked multiple times using either blocking or nonblocking approaches
provides the enhanced flexibility to support avariety of parallelism models (see Chapter 15).

5.6.3 Multiple analysis drivers without filters

If alistof anal ysi s_dri ver s isspecified and filters are not needed (as indicated by
omission of thei nput _filter andout put _filter specifications), then the system call
syntax would appear as.

(driverl params.in results.out. 1;
driver2 parans.in results. out. 2;
driver3 parans.in results.out.3)
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where“dri ver 1”7, “dri ver 2”,and“dri ver 3” are the user-specified analysis drivers and
“parans.in” and“resul ts. out” arethe user-selected names of the parameters and results
files. Note that the results files for the different analysis drivers have been automatically tagged
to prevent overwriting. This automatic tagging of analyses (see Section 5.7.4) is a separate
operation from user-sel ected tagging of evaluations (see Section 5.7.2).

For the same mapping, the fork application interface echoes the following syntax:

bl ocking fork: driverl parans.in results.out.1;
driver2 parans.in results. out. 2;
driver3 parans.in results.out.3

for which a series of three blocking forksis needed (no reforking of an intermediate processis
required).

Executing the same mapping with the direct application interface resultsin an echo of the
following syntax:
Direct function: invoking { driverl driver2 driver3 }

where, again, each of these components must be linked within DAKOTA's direct interface and
no files are involved for parameter and response data transfer.

Both the system call and fork interfaces support asynchronous function evaluations. The
asynchronous system call execution syntax would be reported as

(driverl parans.in.l results.out.1.1
driver2 parans.in.1 results.out.1l.2;
driver3 parans.in.1l results.out.1.3) &

and the nonblocking fork execution syntax would be reported as

nonbl ocking fork: driverl paranms.in.1l results.out.1.1
driver2 parans.in.1l results.out.1.2;
driver3 parans.in.1l results.out.1.3

where, in both cases, file tagging of evaluations has been user-specified to prevent conflicts
between concurrent analysis drivers and file tagging of the results files for multiple analysesis
automatically used. In the fork interface case, an intermediate processis forked to allow anon-
blocking function evaluation, and this intermediate process is then reforked for the execution of
each of the analysis drivers.

5.6.4 Multiple analysis drivers with filters

Finally, when combining filters with multiple anal ysi s_dri ver s, the syntax of the system
call that DAKOTA performsis:

(ifilter paranms.in.1 results.out. 1;
driverl parans.in.1l results.out.1.1
driver2 parans.in.1l results.out.1.2;
driver3 parans.in.1l results.out. 1. 3;
ofilter paranms.in.1l results.out.1)

in which all processes have again been combined into a single system call through the use of
semi-colons and parentheses. Note that the secondary file tagging for the resultsfilesis only used
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for the analysis drivers and not for the filters. Thisis consistent with the filters’ defined purpose
of managing the non-repeated portions of analysis pre- and post-processing (e.g., overlay of
response results from individual analyses; see Section 5.7.4 for additional information).

For the same mapping, the fork application interface echoes the following syntax:

bl ocking fork: ifilter parans.in.l1l results.out.1;
driverl parans.in.1l results.out.1.1
driver2 parans.in.1l results.out.1l.2;
driver3 parans.in.1l results.out. 1. 3;
ofilter parans.in.1l results.out.1l

for which a series of five blocking forksis used (no reforking of an intermediate processis
required).

Executing the same mapping with the direct application interface resultsin an echo of the
following syntax:

Direct function: invoking { ifilter driverl driver2 driver3
ofilter }

where each of these components must be linked as a function within DAKOTA’s direct interface.
Since asynchronous operations are not supported, execution simply involves invocation of each
of the five linked functions in succession. Again, no files are involved for parameter and
response data transfer since this datais passed directly through the function parameter lists.

Asynchronous executions would appear as follows for the system call interface:

(ifilter paranms.in.1 results.out. 1;
driverl parans.in.1l results.out.1.1
driver2 parans.in.1l results.out.1l.2;
driver3 parans.in.1l results.out.1.3;

[
[
[
ofilter parans.in.1l results.out.l) &
and for the fork interface:

nonbl ocking fork: ifilter paranms.in.l results.out.1;
driverl parans.in.1l results.out.1.1
driver2 parans.in.1l results.out.1l.2;
driver3 parans.in.1l results.out. 1. 3;
ofilter params.in.1l results.out.1

where, again, user-selected file tagging of evaluations is combined with automatic file tagging of
analyses. In the fork interface case, an intermediate processis forked to allow a non-blocking
function evaluation, and this intermediate process is then reforked for the execution of the input
filter, each of the analysis drivers, and the output filter.

5.7 File Management

This section describes some of the file management features that are employed during an
execution of DAKOTA when file transfer of datais used for the communication between
DAKQOTA and the simulation code (i.e., when the system call or fork interfaces are used). These
features can be used for generating unique filenames when utilizing DAKOTA's parall el
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execution capabilities and for debugging purposes when troubleshooting the interface between
DAKOQOTA and the ssimulation code.

5.7.1 File Saving

Thefi | e_save option in the interface specification alows the user to control whether
parameters and results files are retained or removed from the working directory. DAKOTA's
default behavior is to remove files once their use is complete in order to not clutter the working
directory. If the method output setting is verbose, a file remove notification will follow the
function evaluation echo, e.g.:

(driver [usr/tnp/aaaa20305 /usr/tnp/ baaa20305)
Renovi ng /usr/tnp/aaaa20305 and /usr/tnp/ baaa20305

However, by specifying f i | e_save in theinterface specification, these files will not be
removed. This latter behavior is often useful for debugging communication between DAKOTA
and simulator programs. An example of af i | e_save specification is shown in the file tagging
example below.

5.7.2 File Tagaing for Evaluations

When auser providespar aneters_fil eandresul ts_fil e specifications, the

fil 