
SAND2014-5015
Unlimited Release

July 2014
Updated May 8, 2015

Dakota, A Multilevel Parallel Object-Oriented Framework for
Design Optimization, Parameter Estimation, Uncertainty

Quantification, and Sensitivity Analysis:
Version 6.2 Reference Manual

Brian M. Adams, Mohamed S. Ebeida, Michael S. Eldred, John D. Jakeman,
Laura P. Swiler, J. Adam Stephens, Dena M. Vigil, Timothy M. Wildey

Optimization and Uncertainty Quantification Department

William J. Bohnhoff
Radiation Transport Department

Keith R. Dalbey
Mission Analysis and Simulation Department

John P. Eddy
System Readiness and Sustainment Technologies Department

Kenneth T. Hu
Validation and Uncertainty Quantification Department

Lara E. Bauman, Patricia D. Hough
Quantitative Modeling and Analysis Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, New Mexico 87185

4

Abstract
The Dakota (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible

and extensible interface between simulation codes and iterative analysis methods. Dakota contains algorithms
for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliabil-
ity, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitiv-
ity/variance analysis with design of experiments and parameter study methods. These capabilities may be used
on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer
nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement
abstractions of the key components required for iterative systems analyses, the Dakota toolkit provides a flexible
and extensible problem-solving environment for design and performance analysis of computational models on
high performance computers.

This report serves as a reference manual for the commands specification for the Dakota software, providing
input overviews, option descriptions, and example specifications.

Contents

1 Main Page 7
1.1 How to Use this Manual . 7

2 Running Dakota 9
2.1 Usage . 9
2.2 Examples . 10
2.3 Execution Phases . 10
2.4 Restarting Dakota Studies . 11
2.5 The Dakota Restart Utility . 12

3 Test Problems 17
3.1 Textbook . 17
3.2 Rosenbrock . 20

4 Dakota Input Specification 21
4.1 Dakota NIDR . 21
4.2 Input Spec Overview . 21
4.3 Sample Input Files . 23
4.4 Input Spec Summary . 27

5 Topics Area 69
5.1 admin . 69
5.2 dakota IO . 70
5.3 dakota concepts . 80
5.4 models . 97
5.5 variables . 100
5.6 responses . 106
5.7 interface . 107
5.8 methods . 109
5.9 advanced topics . 127
5.10 packages . 131

6 Keywords Area 143
6.1 environment . 144
6.2 method . 176
6.3 model . 1473
6.4 variables . 1587
6.5 interface . 1735

5

6 CONTENTS

6.6 responses . 1786

Bibliographic References 1879

Chapter 1

Main Page

The Dakota (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible, ex-
tensible interface between analysis codes and iteration methods.

Author

Brian M. Adams, Lara E. Bauman, William J. Bohnhoff, Keith R. Dalbey, John P. Eddy, Mohamed S.
Ebeida, Michael S. Eldred, Patricia D. Hough, Kenneth T. Hu, John D. Jakeman, Laura P. Swiler, J. Adam
Stephens, Dena M. Vigil, Timothy M. Wildey

The Reference Manual documents all the input keywords that can appear in a Dakota input file to configure a
Dakota study. Its organization closely mirrors the structure of dakota.input.summary. For more informa-
tion see Dakota Input Specification. For information on software structure, refer to the Developers Manual [3],
and for a tour of Dakota features and capabilities, including a tutorial, refer to the User’s Manual (Adams et al.,
2010) [4].

1.1 How to Use this Manual
• To learn how to run Dakota from the command line, see Running Dakota

• To learn to how to restart Dakota studies, see Restarting Dakota Studies

• To learn about the Dakota restart utility, see The Dakota Restart Utility

To find more information about a specific keyword

1. Use the search box at the top right (currently only finds keyword names)

2. Browse the Keywords tree on the left navigation pane

3. Look at the Dakota Input Specification

4. Navigate through the keyword pages, starting from the Keywords Area

To find more information about a Dakota related topic

1. Browse the Topics Area on the left navigation pane

2. Navigate through the topics pages, starting from the Topics Area

A small number of examples are included (see Sample Input Files) along with a description of the test prob-
lems (see Test Problems).

A bibliography for the Reference Manual is provided in Bibliographic References

7

8 CHAPTER 1. MAIN PAGE

Chapter 2

Running Dakota

The Dakota executable file is named dakota (dakota.exe on Windows) and is most commonly run from a
terminal or command prompt.

2.1 Usage
If the dakota command is entered at the command prompt without any arguments, a usage message similar to
the following appears:

usage: dakota [options and <args>]
-help (Print this summary)
-version (Print Dakota version number)
-input <$val> (REQUIRED Dakota input file $val)
-output <$val> (Redirect Dakota standard output to file $val)
-error <$val> (Redirect Dakota standard error to file $val)
-parser <$val> (Parsing technology: nidr[strict][:dumpfile])
-no_input_echo (Do not echo Dakota input file)
-check (Perform input checks)
-pre_run [$val] (Perform pre-run (variables generation) phase)
-run [$val] (Perform run (model evaluation) phase)
-post_run [$val] (Perform post-run (final results) phase)
-read_restart [$val] (Read an existing Dakota restart file $val)
-stop_restart <$val> (Stop restart file processing at evaluation $val)
-write_restart [$val] (Write a new Dakota restart file $val)

Of these command line options, only input is required, and the -input switch can be omitted if the input
file name is the final item appearing on the command line (see Examples); all other command-line inputs are
optional.

• help prints the usage message above.

• version prints version information for the executable.

• check invokes a dry-run mode in which the input file is processed and checked for errors, but the study is
not performed.

• input provides the name of the Dakota input file.

• output and error options provide file names for redirection of the Dakota standard output (stdout) and
standard error (stderr), respectively.

9

10 CHAPTER 2. RUNNING DAKOTA

• The parser option is for debugging and will not be further described here.

• By default, Dakota will echo the input file to the output stream, but no input echo can override this
behavior.

• read restart and write restart commands provide the names of restart databases to read from
and write to, respectively.

• stop restart command limits the number of function evaluations read from the restart database (the
default is all the evaluations) for those cases in which some evaluations were erroneous or corrupted. Restart
management is an important technique for retaining data from expensive engineering applications.

• -pre run, -run, and -post run instruct Dakota to run one or more execution phases, excluding others.
The commands must be followed by filenames as described in Execution Phases.

Command line switches can be abbreviated so long as the abbreviation is unique, so the following are valid,
unambiguous specifications: -h, -v, -c, -i, -o, -e, -s, -w, -re, -pr, -ru, and -po and can be used in place
of the longer forms of the command line options.

For information on restarting Dakota, see Restarting Dakota Studies and The Dakota Restart Utility.

2.2 Examples
To run Dakota with a particular input file, the following syntax can be used:

dakota -i dakota.in

or more simply
dakota dakota.in

This will echo the standard output (stdout) and standard error (stderr) messages to the terminal. To redirect
stdout and stderr to separate files, the -o and -e command line options may be used:

dakota -i dakota.in -o dakota.out -e dakota.err

or
dakota -o dakota.out -e dakota.err dakota.in

Alternatively, any of a variety of Unix redirection variants can be used. Refer to[7] for more information on
Unix redirection. The simplest of these redirects stdout to another file:

dakota dakota.in > dakota.out

2.3 Execution Phases
Dakota has three execution phases: pre-run, run, and post-run.

• pre-run can be used to generate variable sets

• run (core run) invokes the simulation to evaluate variables, producing responses

• post-run accepts variable/response sets and analyzes the results (for example, calculate correlations
from a set of samples). Currently only two modes are supported and only for sampling, parameter study,
and DACE methods:

(1) pre-run only with optional tabular output of variables:
dakota -i dakota.in -pre_run [::myvariables.dat]

(2) post-run only with required tabular input of variables/responses:
dakota -i dakota.in -post_run myvarsresponses.dat::

2.4. RESTARTING DAKOTA STUDIES 11

2.4 Restarting Dakota Studies
Dakota is often used to solve problems that require repeatedly running computationally expensive simulation
codes. In some cases you may want to repeat an optimization study, but with a tighter final convergence tolerance.
This would be costly if the entire optimization analysis had to be repeated. Interruptions imposed by computer us-
age policies, power outages, and system failures could also result in costly delays. However, Dakota automatically
records the variable and response data from all function evaluations so that new executions of Dakota can pick up
where previous executions left off. The Dakota restart file (dakota.rst by default) archives the tabulated inter-
face evaluations in a binary format. The primary restart commands at the command line are -read restart,
-write restart, and -stop restart.

2.4.1 Writing Restart Files
To write a restart file using a particular name, the -write restart command line input (may be abbreviated
as -w) is used:

dakota -i dakota.in -write_restart my_restart_file

If no -write restart specification is used, then Dakota will still write a restart file, but using the default
name dakota.rst instead of a user-specified name.

To turn restart recording off, the user may use the restart file keyword, in the interface block. This can
increase execution speed and reduce disk storage requirements, but at the expense of a loss in the ability to recover
and continue a run that terminates prematurely. This option is not recommended when function evaluations are
costly or prone to failure. Please note that using the deactivate restart file specification will result in a
zero length restart file with the default name dakota.rst, which can overwrite an exiting file.

2.4.2 Using Restart Files
To restart Dakota from a restart file, the -read restart command line input (may be abbreviated as -r) is
used:

dakota -i dakota.in -read_restart my_restart_file

If no -read restart specification is used, then Dakota will not read restart information from any file (i.e.,
the default is no restart processing).

To read in only a portion of a restart file, the -stop restart control (may be abbreviated as -s) is used to
specify the number of entries to be read from the database. Note that this integer value corresponds to the restart
record processing counter (as can be seen when using the print utility (see The Dakota Restart Utility) which
may differ from the evaluation numbers used in the previous run if, for example, any duplicates were detected
(since these duplicates are not recorded in the restart file). In the case of a -stop restart specification, it is
usually desirable to specify a new restart file using -write restart so as to remove the records of erroneous
or corrupted function evaluations. For example, to read in the first 50 evaluations from dakota.rst:

dakota -i dakota.in -r dakota.rst -s 50 -w dakota_new.rst

The dakota new.rst file will contain the 50 processed evaluations from dakota.rst as well as any
new evaluations. All evaluations following the 50th in dakota.rst have been removed from the latest restart
record.

2.4.3 Appending to a Restart File
If the -write restart and -read restart specifications identify the same file (including the case where
-write restart is not specified and -read restart identifies dakota.rst), then new evaluations will
be appended to the existing restart file.

12 CHAPTER 2. RUNNING DAKOTA

2.4.4 Working with multiple Restart Files
If the -write restart and -read restart specifications identify different files, then the evaluations read
from the file identified by -read restart are first written to the -write restart file. Any new evalua-
tions are then appended to the -write restart file. In this way, restart operations can be chained together
indefinitely with the assurance that all of the relevant evaluations are present in the latest restart file.

2.4.5 How it Works
Dakota’s restart algorithm relies on its duplicate detection capabilities. Processing a restart file populates the list of
function evaluations that have been performed. Then, when the study is restarted, it is started from the beginning
(not a warm start) and many of the function evaluations requested by the iterator are intercepted by the duplicate
detection code. This approach has the primary advantage of restoring the complete state of the iteration (including
the ability to correctly detect subsequent duplicates) for all methods/iterators without the need for iterator-specific
restart code. However, the possibility exists for numerical round-off error to cause a divergence between the
evaluations performed in the previous and restarted studies. This has been rare in practice.

2.5 The Dakota Restart Utility
The Dakota restart utility program provides a variety of facilities for managing restart files from Dakota execu-
tions. The executable program name is dakota restart util and it has the following options, as shown by
the usage message returned when executing the utility without any options:

Usage:
dakota_restart_util command <arg1> [<arg2> <arg3> ...] --options

dakota_restart_util print <restart_file>
dakota_restart_util to_neutral <restart_file> <neutral_file>
dakota_restart_util from_neutral <neutral_file> <restart_file>
dakota_restart_util to_tabular <restart_file> <text_file> [--custom_annotated [header] [eval_id] [interface_id]]
dakota_restart_util remove <double> <old_restart_file> <new_restart_file>
dakota_restart_util remove_ids <int_1> ... <int_n> <old_restart_file> <new_restart_file>
dakota_restart_util cat <restart_file_1> ... <restart_file_n> <new_restart_file>

options:
--help show dakota_restart_util help message
--custom_annotated arg tabular file options: header, eval_id, interface_id

Several of these functions involve format conversions. In particular, the binary format used for restart files can
be converted to ASCII text and printed to the screen, converted to and from a neutral file format, or converted to
a tabular format for importing into 3rd-party graphics programs. In addition, a restart file with corrupted data can
be repaired by value or id, and multiple restart files can be combined to create a master database.

2.5.1 Print Command
The print option is useful to show contents of a restart file, since the binary format is not convenient for direct
inspection. The restart data is printed in full precision, so that exact matching of points is possible for restarted
runs or corrupted data removals. For example, the following command

dakota_restart_util print
dakota.rst

results in output similar to the following:

--
Restart record 1 (evaluation id 1):
--
Parameters:

1.8000000000000000e+00 intake_dia

2.5. THE DAKOTA RESTART UTILITY 13

1.0000000000000000e+00 flatness

Active response data:
Active set vector = { 3 3 3 3 }

-2.4355973813420619e+00 obj_fn
-4.7428486677140930e-01 nln_ineq_con_1
-4.5000000000000001e-01 nln_ineq_con_2
1.3971143170299741e-01 nln_ineq_con_3

[-4.3644298963447897e-01 1.4999999999999999e-01] obj_fn gradient
[1.3855136437818300e-01 0.0000000000000000e+00] nln_ineq_con_1 gradient
[0.0000000000000000e+00 1.4999999999999999e-01] nln_ineq_con_2 gradient
[0.0000000000000000e+00 -1.9485571585149869e-01] nln_ineq_con_3 gradient

--
Restart record 2 (evaluation id 2):
--
Parameters:

2.1640000000000001e+00 intake_dia
1.7169994018008317e+00 flatness

Active response data:
Active set vector = { 3 3 3 3 }

-2.4869127192988878e+00 obj_fn
6.9256958799989843e-01 nln_ineq_con_1
-3.4245008972987528e-01 nln_ineq_con_2
8.7142207937157910e-03 nln_ineq_con_3

[-4.3644298963447897e-01 1.4999999999999999e-01] obj_fn gradient
[2.9814239699997572e+01 0.0000000000000000e+00] nln_ineq_con_1 gradient
[0.0000000000000000e+00 1.4999999999999999e-01] nln_ineq_con_2 gradient
[0.0000000000000000e+00 -1.6998301774282701e-01] nln_ineq_con_3 gradient

...<snip>...

Restart file processing completed: 11 evaluations retrieved.

2.5.2 Neutral File Format
A Dakota restart file can be converted to a neutral file format using a command like the following:

dakota_restart_util to_neutral dakota.rst dakota.neu

which results in a report similar to the following:

Writing neutral file dakota.neu
Restart file processing completed: 11 evaluations retrieved.

Similarly, a neutral file can be returned to binary format using a command like the following:

dakota_restart_util from_neutral dakota.neu dakota.rst

which results in a report similar to the following:

Reading neutral file dakota.neu
Writing new restart file dakota.rst
Neutral file processing completed: 11 evaluations retrieved.

The contents of the generated neutral file are similar to the following (from the first two records for the
Cylinder example in[4]).

6 7 2 1.8000000000000000e+00 intake_dia 1.0000000000000000e+00 flatness 0 0 0 0
NULL 4 2 1 0 3 3 3 3 1 2 obj_fn nln_ineq_con_1 nln_ineq_con_2 nln_ineq_con_3

-2.4355973813420619e+00 -4.7428486677140930e-01 -4.5000000000000001e-01
1.3971143170299741e-01 -4.3644298963447897e-01 1.4999999999999999e-01
1.3855136437818300e-01 0.0000000000000000e+00 0.0000000000000000e+00

14 CHAPTER 2. RUNNING DAKOTA

1.4999999999999999e-01 0.0000000000000000e+00 -1.9485571585149869e-01 1
6 7 2 2.1640000000000001e+00 intake_dia 1.7169994018008317e+00 flatness 0 0 0 0
NULL 4 2 1 0 3 3 3 3 1 2 obj_fn nln_ineq_con_1 nln_ineq_con_2 nln_ineq_con_3

-2.4869127192988878e+00 6.9256958799989843e-01 -3.4245008972987528e-01
8.7142207937157910e-03 -4.3644298963447897e-01 1.4999999999999999e-01
2.9814239699997572e+01 0.0000000000000000e+00 0.0000000000000000e+00
1.4999999999999999e-01 0.0000000000000000e+00 -1.6998301774282701e-01 2

This format is not intended for direct viewing (print should be used for this purpose). Rather, the neutral
file capability has been used in the past for managing portability of restart data across platforms (recent use of
more portable binary formats has largely eliminated this need) or for advanced repair of restart records (in cases
where the remove command was insufficient).

2.5.3 Tabular Format
Conversion of a binary restart file to a tabular format enables convenient import of this data into 3rd-party post-
processing tools such as Matlab, TECplot, Excel, etc. This facility is nearly identical to the output activated by
the tabular data keyword in the Dakota input file specification, but with two important differences:

1. No function evaluations are suppressed as they are with tabular data (i.e., any internal finite difference
evaluations are included).

2. The conversion can be performed later, i.e., for Dakota runs executed previously.

An example command for converting a restart file to tabular format is:

dakota_restart_util to_tabular dakota.rst dakota.m

which results in a report similar to the following:

Writing tabular text file dakota.m
Restart file processing completed: 10 evaluations tabulated.

The contents of the generated tabular file are similar to the following (from the example in the Restart section
of[4]). Note that while evaluations resulting from numerical derivative offsets would be reported (as described
above), derivatives returned as part of the evaluations are not reported (since they do not readily fit within a
compact tabular format):

%eval_id interface x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 NO_ID 0.9 1.1 0.0002 0.26 0.76
2 NO_ID 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 NO_ID 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
4 NO_ID 0.9 1.10011 0.0002004407265 0.259945 0.7602420121
5 NO_ID 0.9 1.09989 0.0001995607255 0.260055 0.7597580121
6 NO_ID 0.58256179 0.4772224441 0.1050555937 0.1007670171 -0.06353963386
7 NO_ID 0.5826200462 0.4772224441 0.1050386469 0.1008348962 -0.06356876195
8 NO_ID 0.5825035339 0.4772224441 0.1050725476 0.1006991449 -0.06351050577
9 NO_ID 0.58256179 0.4772701663 0.1050283245 0.100743156 -0.06349408333
10 NO_ID 0.58256179 0.4771747219 0.1050828704 0.1007908783 -0.06358517983
...

Controlling tabular format: The command-line option --custom annotated gives control of headers
in the resulting tabular file. It supports options

• header: include %-commented header row with labels

• eval id: include leading column with evaluation ID

• interface id: include leading column with interface ID

2.5. THE DAKOTA RESTART UTILITY 15

For example, to recover Dakota 6.0 tabular format, which contained a header row, leading column with evaluation
ID, but no interface ID:

dakota_restart_util to_tabular dakota.rst dakota.m --custom_annotated header eval_id

Resulting in

%eval_id x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 0.9 1.1 0.0002 0.26 0.76
2 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

2.5.4 Concatenation of Multiple Restart Files
In some instances, it is useful to combine restart files into a single master function evaluation database. For
example, when constructing a data fit surrogate model, data from previous studies can be pulled in and reused to
create a combined data set for the surrogate fit. An example command for concatenating multiple restart files is:

dakota_restart_util cat dakota.rst.1 dakota.rst.2 dakota.rst.3 dakota.rst.all

which results in a report similar to the following:

Writing new restart file dakota.rst.all
dakota.rst.1 processing completed: 10 evaluations retrieved.
dakota.rst.2 processing completed: 110 evaluations retrieved.
dakota.rst.3 processing completed: 65 evaluations retrieved.

The dakota.rst.all database now contains 185 evaluations and can be read in for use in a subsequent
Dakota study using the -read restart option to the dakota executable.

2.5.5 Removal of Corrupted Data
On occasion, a simulation or computer system failure may cause a corruption of the Dakota restart file. For
example, a simulation crash may result in failure of a post-processor to retrieve meaningful data. If 0’s (or other
erroneous data) are returned from the user’s analysis driver, then this bad data will get recorded in the
restart file. If there is a clear demarcation of where corruption initiated (typical in a process with feedback, such
as gradient-based optimization), then use of the -stop restart option for the dakota executable can be
effective in continuing the study from the point immediately prior to the introduction of bad data. If, however,
there are interspersed corruptions throughout the restart database (typical in a process without feedback, such as
sampling), then the remove and remove ids options of dakota restart util can be useful.

An example of the command syntax for the remove option is:

dakota_restart_util remove 2.e-04 dakota.rst dakota.rst.repaired

which results in a report similar to the following:

Writing new restart file dakota.rst.repaired
Restart repair completed: 65 evaluations retrieved, 2 removed, 63 saved.

where any evaluations in dakota.rst having an active response function value that matches 2.e-04 within
machine precision are discarded when creating dakota.rst.repaired.

An example of the command syntax for the remove ids option is:

dakota_restart_util remove_ids 12 15 23 44 57 dakota.rst dakota.rst.repaired

which results in a report similar to the following:

Writing new restart file dakota.rst.repaired
Restart repair completed: 65 evaluations retrieved, 5 removed, 60 saved.

16 CHAPTER 2. RUNNING DAKOTA

where evaluation ids 12, 15, 23, 44, and 57 have been discarded when creating dakota.rst.repaired.
An important detail is that, unlike the -stop restart option which operates on restart record numbers, the
remove ids option operates on evaluation ids. Thus, removal is not necessarily based on the order of appearance
in the restart file. This distinction is important when removing restart records for a run that contained either
asynchronous or duplicate evaluations, since the restart insertion order and evaluation ids may not correspond in
these cases (asynchronous evaluations have ids assigned in the order of job creation but are inserted in the restart
file in the order of job completion, and duplicate evaluations are not recorded which introduces offsets between
evaluation id and record number). This can also be important if removing records from a concatenated restart file,
since the same evaluation id could appear more than once. In this case, all evaluation records with ids matching
the remove ids list will be removed.

If neither of these removal options is sufficient to handle a particular restart repair need, then the fallback
position is to resort to direct editing of a neutral file to perform the necessary modifications.

Chapter 3

Test Problems

This page contains additional information about two test problems that are used in Dakota examples throughout
the Dakota manuals Textbook and Rosenbrock.

Many of these examples are also used as code verification tests. The examples are run periodically and the
results are checked against known solutions. This ensures that the algorithms are correctly implemented.

Additional test problems are described in the User’s Manual.

3.1 Textbook

The two-variable version of the “textbook” test problem provides a nonlinearly constrained optimization test case.
It is formulated as:

minimize f = (x1 − 1)4 + (x2 − 1)4

subject to g1 = x2
1 −

x2

2
≤ 0 (textbookform)

g2 = x2
2 −

x1

2
≤ 0

0.5 ≤ x1 ≤ 5.8
− 2.9 ≤ x2 ≤ 2.9

Contours of this test problem are illustrated in the next two figures.

17

18 CHAPTER 3. TEST PROBLEMS

Figure 3.1: Contours of the textbook problem on the [-3,4] x [-3,4] domain. The feasible region lies at the
intersection of the two constraints g 1 (solid) and g 2 (dashed).

Figure 3.2: Contours of the textbook problem zoomed into an area containing the constrained optimum point (x -
1,x 2) = (0.5,0.5). The feasible region lies at the intersection of the two constraints g 1 (solid) and g 2 (dashed).

For the textbook test problem, the unconstrained minimum occurs at (x1, x2) = (1, 1). However, the inclusion
of the constraints moves the minimum to (x1, x2) = (0.5, 0.5). Equation textbookform presents the 2-dimensional

3.1. TEXTBOOK 19

form of the textbook problem. An extended formulation is stated as

minimize f =
n∑
i=1

(xi − 1)4

subject to g1 = x2
1 −

x2

2
≤ 0 (tbe)

g2 = x2
2 −

x1

2
≤ 0

0.5 ≤ x1 ≤ 5.8
− 2.9 ≤ x2 ≤ 2.9

where n is the number of design variables. The objective function is designed to accommodate an arbitrary
number of design variables in order to allow flexible testing of a variety of data sets. Contour plots for the n = 2
case have been shown previously.

For the optimization problem given in Equation tbe, the unconstrained solution
(num nonlinear inequality constraints set to zero) for two design variables is:

x1 = 1.0
x2 = 1.0

with

f∗ = 0.0

The solution for the optimization problem constrained by g1\ (num nonlinear inequality constraints
set to one) is:

x1 = 0.763
x2 = 1.16

with

f∗ = 0.00388
g∗1 = 0.0 (active)

The solution for the optimization problem constrained by g1 and g2\ (num nonlinear inequality -
constraints set to two) is:

x1 = 0.500
x2 = 0.500

with

f∗ = 0.125
g∗1 = 0.0 (active)
g∗2 = 0.0 (active)

Note that as constraints are added, the design freedom is restricted (the additional constraints are active at the
solution) and an increase in the optimal objective function is observed.

20 CHAPTER 3. TEST PROBLEMS

3.2 Rosenbrock
The Rosenbrock function[34] is a well-known test problem for optimization algorithms. The standard formulation
includes two design variables, and computes a single objective function. This problem can also be posed as a
least-squares optimization problem with two residuals to be minimzed because the objective function is the sum
of squared terms.

Standard Formulation
The standard two-dimensional formulation can be stated as

minimize f = 100(x2 − x2
1)2 + (1− x1)2 (rosenstd)

Surface and contour plots for this function are shown in the Dakota User’s Manual.
The optimal solution is:

x1 = 1.0
x2 = 1.0

with

f∗ = 0.0

A Least-Squares Optimization Formulation
This test problem may also be used to exercise least-squares solution methods by recasting the standard prob-

lem formulation into:
minimize f = (f1)2 + (f2)2 (rosenls)

where
f1 = 10(x2 − x2

1) (rosenr1)

and
f2 = 1− x1 (rosenr2)

are residual terms.
The included analysis driver can handle both formulations. In the Dakota/test directory, the rosenbrock

executable (compiled from Dakota Source/test/rosenbrock.cpp) checks the number of response func-
tions passed in the parameters file and returns either an objective function (as computed from Equation rosenstd)
for use with optimization methods or two least squares terms (as computed from Equations rosenr1 -rosenr2) for
use with least squares methods. Both cases support analytic gradients of the function set with respect to the design
variables. See the User’s Manual for examples of both cases (search for Rosenbrock).

Chapter 4

Dakota Input Specification

4.1 Dakota NIDR
Valid Dakota input is dictated governed by the NIDR[30] input specification file, dakota.input.nspec. This
file is used by a code generator to create parsing system components that are compiled into Dakota. Therefore,
dakota.input.nspec and its derived summary, dakota.input.summary, are the definitive source for input syntax,
capability options, and optional and required capability sub-parameters for any given Dakota version.

Beginning users may find dakota.input.summary overwhelming or confusing and will likely derive more ben-
efit from adapting example input files to a particular problem. Some examples can be found here: Sample Input
Files. Advanced users can master the many input specification possibilities by understanding the structure of the
input specification file.

4.2 Input Spec Overview
Refer to the dakota.input.summary file, in Input Spec Summary, for current input specifications.

• The summary describes every keyword including:

– Whether it is required or optional
– Whether it takes ARGUMENTS (always required) Additional notes about ARGUMENTS can be found

here: Specifying Arguments.
– Whether it has an ALIAS, or synonym
– Which additional keywords can be specified to change its behavior

• Additional details and descriptions are described in Keywords Area

• For additional details on NIDR specification logic and rules, refer to[30] (Gay, 2008).

4.2.1 Common Specification Mistakes
Spelling mistakes and omission of required parameters are the most common errors. Some causes of errors are
more obscure:

• Documentation of new capability sometimes lags its availability in source and executables, especially stable
releases. When parsing errors occur that the documentation cannot explain, reference to the particular input
specification used in building the executable, which is installed alongside the executable, will often resolve
the errors.

21

22 CHAPTER 4. DAKOTA INPUT SPECIFICATION

• If you want to compare results with those obtained using an earlier version of Dakota (prior to 4.1), your
input file for the earlier version must use backslashes to indicate continuation lines for Dakota keywords.
For example, rather than

Comment about the following "responses" keyword...
responses,

objective_functions = 1
Comment within keyword "responses"
analytic_gradients

Another comment within keyword "responses"
no_hessians

you would need to write

Comment about the following "responses" keyword...
responses, \

objective_functions = 1 \
Comment within keyword "responses" \
analytic_gradients \

Another comment within keyword "responses" \
no_hessians

with no white space (blanks or tabs) after the \ character.

In most cases, the NIDR system provides error messages that help the user isolate errors in Dakota input files.

4.2.2 Specifying Arguments
Some keywords, such as those providing bounds on variables, have an associated list of values or strings, referred
to as arguments.

When the same value should be repeated several times in a row, you can use the notation N∗value instead of
repeating the value N times.

For example

lower_bounds -2.0 -2.0 -2.0
upper_bounds 2.0 2.0 2.0

could also be written

lower_bounds 3*-2.0
upper_bounds 3* 2.0

(with optional spaces around the ∗).
Another possible abbreviation is for sequences: L:S:U (with optional spaces around the :) is expanded to L

L+S L+2∗S ... U, and L:U (with no second colon) is treated as L:1:U.
For example, in one of the test examples distributed with Dakota (test case 2 of test/dakota uq -

textbook sop lhs.in),

histogram_point = 2
abscissas = 50. 60. 70. 80. 90.

30. 40. 50. 60. 70.
counts = 10 20 30 20 10

10 20 30 20 10

could also be written

histogram_point = 2
abscissas = 50 : 10 : 90

30 : 10 : 70
counts = 10:10:30 20 10

10:10:30 20 10

4.3. SAMPLE INPUT FILES 23

Count and sequence abbreviations can be used together. For example

response_levels =
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

can be abbreviated

response_levels =
2*0.0:0.1:1.0

4.3 Sample Input Files
A Dakota input file is a collection of fields from the dakota.input.summary file that describe the problem to be
solved by Dakota. Several examples follow.

Sample 1: Optimization
The following sample input file shows single-method optimization of the Textbook Example (see Textbook)

using DOT’s modified method of feasible directions. A similar file is available as Dakota/examples/users/textbook-
opt conmin.in.

Dakota Input File: textbook_opt_conmin.in
environment
graphics
tabular_data
tabular_data_file = ’textbook_opt_conmin.dat’

method
dot_mmfd #DOT performs better but may not be available
conmin_mfd
max_iterations = 50
convergence_tolerance = 1e-4

variables
continuous_design = 2
initial_point 0.9 1.1
upper_bounds 5.8 2.9
lower_bounds 0.5 -2.9
descriptors ’x1’ ’x2’

interface
direct
analysis_driver = ’text_book’

responses
objective_functions = 1
nonlinear_inequality_constraints = 2
numerical_gradients
method_source dakota
interval_type central
fd_gradient_step_size = 1.e-4
no_hessians

Sample 2: Least Squares (Calibration)
The following sample input file shows a nonlinear least squares (calibration) solution of the Rosenbrock Exam-

ple (see Rosenbrock) using the NL2SOL method. A similar file is available as Dakota/examples/users/rosen-
opt nls.in

Dakota Input File: rosen_opt_nls.in
environment

24 CHAPTER 4. DAKOTA INPUT SPECIFICATION

graphics
tabular_data
tabular_data_file = ’rosen_opt_nls.dat’

method
max_iterations = 100
convergence_tolerance = 1e-4
nl2sol

model
single

variables
continuous_design = 2
initial_point -1.2 1.0
lower_bounds -2.0 -2.0
upper_bounds 2.0 2.0
descriptors ’x1’ "x2"

interface
analysis_driver = ’rosenbrock’
direct

responses
calibration_terms = 2
analytic_gradients
no_hessians

Sample 3: Nondeterministic Analysis
The following sample input file shows Latin Hypercube Monte Carlo sampling using the Textbook Example

(see Textbook). A similar file is available as Dakota/test/dakota uq textbook lhs.in.

method,
sampling,
samples = 100 seed = 1
complementary distribution
response_levels = 3.6e+11 4.0e+11 4.4e+11

6.0e+04 6.5e+04 7.0e+04
3.5e+05 4.0e+05 4.5e+05

sample_type lhs

variables,
normal_uncertain = 2
means = 248.89, 593.33
std_deviations = 12.4, 29.7
descriptors = ’TF1n’ ’TF2n’
uniform_uncertain = 2
lower_bounds = 199.3, 474.63
upper_bounds = 298.5, 712.
descriptors = ’TF1u’ ’TF2u’
weibull_uncertain = 2
alphas = 12., 30.
betas = 250., 590.
descriptors = ’TF1w’ ’TF2w’
histogram_bin_uncertain = 2
num_pairs = 3 4
abscissas = 5 8 10 .1 .2 .3 .4
counts = 17 21 0 12 24 12 0
descriptors = ’TF1h’ ’TF2h’
histogram_point_uncertain = 1
num_pairs = 2
abscissas = 3 4

4.3. SAMPLE INPUT FILES 25

counts = 1 1
descriptors = ’TF3h’

interface,
fork asynch evaluation_concurrency = 5
analysis_driver = ’text_book’

responses,
response_functions = 3
no_gradients
no_hessians

Sample 4: Parameter Study
The following sample input file shows a 1-D vector parameter study using the Textbook Example (see Text-

book). It makes use of the default environment and model specifications, so they can be omitted. A similar file is
available in the test directory as Dakota/examples/users/rosen ps vector.in.

Dakota Input File: rosen_ps_vector.in
environment
graphics
tabular_data
tabular_data_file = ’rosen_ps_vector.dat’

method
vector_parameter_study
final_point = 1.1 1.3
num_steps = 10

variables
continuous_design = 2
initial_point -0.3 0.2
descriptors ’x1’ "x2"

interface
analysis_driver = ’rosenbrock’
direct

responses
objective_functions = 1
no_gradients
no_hessians

Sample 5: Hybrid Strategy
The following sample input file shows a hybrid environment using three methods. It employs a genetic algo-

rithm, pattern search, and full Newton gradient-based optimization in succession to solve the Textbook Example
(see Textbook). A similar file is available as Dakota/examples/users/textbook hybrid strat.in.

environment
graphics
hybrid sequential
method_list = ’PS’ ’PS2’ ’NLP’

method
id_method = ’PS’
model_pointer = ’M1’
coliny_pattern_search stochastic
seed = 1234
initial_delta = 0.1
threshold_delta = 1.e-4
solution_accuracy = 1.e-10

26 CHAPTER 4. DAKOTA INPUT SPECIFICATION

exploratory_moves basic_pattern
#verbose output

method
id_method = ’PS2’
model_pointer = ’M1’
max_function_evaluations = 10
coliny_pattern_search stochastic
seed = 1234
initial_delta = 0.1
threshold_delta = 1.e-4
solution_accuracy = 1.e-10
exploratory_moves basic_pattern
#verbose output

method
id_method = ’NLP’
model_pointer = ’M2’

optpp_newton
gradient_tolerance = 1.e-12
convergence_tolerance = 1.e-15
#verbose output

model
id_model = ’M1’
single
variables_pointer = ’V1’
interface_pointer = ’I1’
responses_pointer = ’R1’

model
id_model = ’M2’
single
variables_pointer = ’V1’
interface_pointer = ’I1’
responses_pointer = ’R2’

variables
id_variables = ’V1’
continuous_design = 2
initial_point 0.6 0.7
upper_bounds 5.8 2.9
lower_bounds 0.5 -2.9
descriptors ’x1’ ’x2’

interface
id_interface = ’I1’
direct
analysis_driver= ’text_book’

responses
id_responses = ’R1’
objective_functions = 1
no_gradients
no_hessians

responses
id_responses = ’R2’
objective_functions = 1
analytic_gradients
analytic_hessians

4.4. INPUT SPEC SUMMARY 27

Additional example input files, as well as the corresponding output and graphics, are provided in the Tutorial
chapter of the Users Manual [4] (Adams et al., 2010).

4.4 Input Spec Summary
This file is derived automatically from dakota.input.nspec, which is used in the generation of parser system files
that are compiled into the Dakota executable. Therefore, these files are the definitive source for input syntax,
capability options, and associated data inputs. Refer to the Developers Manual information on how to modify the
input specification and propagate the changes through the parsing system.

Key features of the input specification and the associated user input files include:

• In the input specification, required individual specifications simply appear, optional individual and group
specifications are enclosed in [], required group specifications are enclosed in (), and either-or relationships
are denoted by the | symbol. These symbols only appear in dakota.input.nspec; they must not appear in
actual user input files.

• Keyword specifications (i.e., environment, method, model, variables, interface, and responses)
begin with the keyword possibly preceded by white space (blanks, tabs, and newlines) both in the input
specifications and in user input files. For readability, keyword specifications may be spread across several
lines. Earlier versions of Dakota (prior to 4.1) required a backslash character (\) at the ends of intermediate
lines of a keyword. While such backslashes are still accepted, they are no longer required.

• Some of the keyword components within the input specification indicate that the user must supply INTE-
GER, REAL, STRING, INTEGERLIST, REALLIST, or STRINGLIST data as part of the specification. In
a user input file, the "=" is optional, data in a LIST can be separated by commas or whitespace, and the
STRING data are enclosed in single or double quotes (e.g., ’text book’ or ”text book”).

• In user input files, input is largely order-independent (except for entries in lists of data), case insensitive,
and white-space insensitive. Although the order of input shown in the Sample Input Files generally follows
the order of options in the input specification, this is not required.

• In user input files, specifications may be abbreviated so long as the abbreviation is unique. For example,
the npsol sqp specification within the method keyword could be abbreviated as npsol, but dot sqp
should not be abbreviated as dot since this would be ambiguous with other DOT method specifications.

• In both the input specification and user input files, comments are preceded by #.

• ALIAS refers to synonymous keywords, which often exist for backwards compatability. Users are encour-
aged to use the most current keyword.

KEYWORD01 environment
[check]
[output_file STRING]
[error_file STRING]
[read_restart STRING

[stop_restart INTEGER >= 0]
]

[write_restart STRING]
[pre_run

[input STRING]
[output STRING

[annotated
|
(custom_annotated

28 CHAPTER 4. DAKOTA INPUT SPECIFICATION

[header]
[eval_id]
[interface_id]
]

|
(freeform
]

]
[run

[input STRING]
[output STRING]
]

[post_run
[input STRING

[annotated
|
(custom_annotated

[header]
[eval_id]
[interface_id]
]

|
(freeform
]

[output STRING]
]

[graphics]
[tabular_data ALIAS tabular_graphics_data

[tabular_data_file ALIAS tabular_graphics_file STRING]
[annotated
|
(custom_annotated

[header]
[eval_id]
[interface_id]
]

|
(freeform
]

[output_precision INTEGER >= 0]
[results_output

[results_output_file STRING]
]

[top_method_pointer ALIAS method_pointer STRING]

KEYWORD12 method
[id_method STRING]
[output

debug
| verbose
| normal
| quiet
| silent
]

[max_iterations INTEGER >= 0]
[max_function_evaluations INTEGER >= 0]
[speculative]
[convergence_tolerance REAL]
[constraint_tolerance REAL]
[scaling]
[final_solutions INTEGER >= 0]
(hybrid

4.4. INPUT SPEC SUMMARY 29

(sequential ALIAS uncoupled
(method_name_list STRINGLIST
[model_pointer_list STRING]
)

| method_pointer_list STRINGLIST
)

|
(embedded ALIAS coupled

(global_method_name STRING
[global_model_pointer STRING]
)

| global_method_pointer STRING
(local_method_name STRING
[local_model_pointer STRING]
)

| local_method_pointer STRING
[local_search_probability REAL]
)

|
(collaborative

(method_name_list STRINGLIST
[model_pointer_list STRING]
)

| method_pointer_list STRINGLIST
)

[iterator_servers INTEGER > 0]
[iterator_scheduling

master
| peer
]

[processors_per_iterator INTEGER > 0]
)

|
(multi_start

(method_name STRING
[model_pointer STRING]
)

| method_pointer STRING
[random_starts INTEGER

[seed INTEGER]
]

[starting_points REALLIST]
[iterator_servers INTEGER > 0]
[iterator_scheduling

master
| peer
]

[processors_per_iterator INTEGER > 0]
)

|
(pareto_set

(method_name ALIAS opt_method_name STRING
[model_pointer ALIAS opt_model_pointer STRING]
)

| method_pointer ALIAS opt_method_pointer STRING
[random_weight_sets INTEGER

[seed INTEGER]
]

[weight_sets ALIAS multi_objective_weight_sets REALLIST]
[iterator_servers INTEGER > 0]
[iterator_scheduling

master

30 CHAPTER 4. DAKOTA INPUT SPECIFICATION

| peer
]

[processors_per_iterator INTEGER > 0]
)

|
(surrogate_based_local

method_pointer ALIAS approx_method_pointer STRING
| method_name ALIAS approx_method_name STRING
model_pointer ALIAS approx_model_pointer STRING
[soft_convergence_limit INTEGER]
[truth_surrogate_bypass]
[trust_region

[initial_size REAL]
[minimum_size REAL]
[contract_threshold REAL]
[expand_threshold REAL]
[contraction_factor REAL]
[expansion_factor REAL]
]

[approx_subproblem
original_primary
| single_objective
| augmented_lagrangian_objective
| lagrangian_objective
original_constraints
| linearized_constraints
| no_constraints
]

[merit_function
penalty_merit
| adaptive_penalty_merit
| lagrangian_merit
| augmented_lagrangian_merit
]

[acceptance_logic
tr_ratio
| filter
]

[constraint_relax
homotopy
]

)
|
(surrogate_based_global

method_pointer ALIAS approx_method_pointer STRING
| method_name ALIAS approx_method_name STRING
model_pointer ALIAS approx_model_pointer STRING
[replace_points]
)

|
(dot_frcg

[linear_inequality_constraint_matrix REALLIST]
[linear_inequality_lower_bounds REALLIST]
[linear_inequality_upper_bounds REALLIST]
[linear_inequality_scale_types STRINGLIST]
[linear_inequality_scales REALLIST]
[linear_equality_constraint_matrix REALLIST]
[linear_equality_targets REALLIST]
[linear_equality_scale_types STRINGLIST]
[linear_equality_scales REALLIST]
[model_pointer STRING]
)

4.4. INPUT SPEC SUMMARY 31

| dot_mmfd
| dot_bfgs
| dot_slp
| dot_sqp
|
(dot

frcg
| mmfd
| bfgs
| slp
| sqp
[linear_inequality_constraint_matrix REALLIST]
[linear_inequality_lower_bounds REALLIST]
[linear_inequality_upper_bounds REALLIST]
[linear_inequality_scale_types STRINGLIST]
[linear_inequality_scales REALLIST]
[linear_equality_constraint_matrix REALLIST]
[linear_equality_targets REALLIST]
[linear_equality_scale_types STRINGLIST]
[linear_equality_scales REALLIST]
[model_pointer STRING]
)

|
(conmin_frcg

[linear_inequality_constraint_matrix REALLIST]
[linear_inequality_lower_bounds REALLIST]
[linear_inequality_upper_bounds REALLIST]
[linear_inequality_scale_types STRINGLIST]
[linear_inequality_scales REALLIST]
[linear_equality_constraint_matrix REALLIST]
[linear_equality_targets REALLIST]
[linear_equality_scale_types STRINGLIST]
[linear_equality_scales REALLIST]
[model_pointer STRING]
)

| conmin_mfd
|
(conmin

frcg
| mfd
[linear_inequality_constraint_matrix REALLIST]
[linear_inequality_lower_bounds REALLIST]
[linear_inequality_upper_bounds REALLIST]
[linear_inequality_scale_types STRINGLIST]
[linear_inequality_scales REALLIST]
[linear_equality_constraint_matrix REALLIST]
[linear_equality_targets REALLIST]
[linear_equality_scale_types STRINGLIST]
[linear_equality_scales REALLIST]
[model_pointer STRING]
)

|
(dl_solver STRING

[linear_inequality_constraint_matrix REALLIST]
[linear_inequality_lower_bounds REALLIST]
[linear_inequality_upper_bounds REALLIST]
[linear_inequality_scale_types STRINGLIST]
[linear_inequality_scales REALLIST]
[linear_equality_constraint_matrix REALLIST]
[linear_equality_targets REALLIST]
[linear_equality_scale_types STRINGLIST]
[linear_equality_scales REALLIST]

32 CHAPTER 4. DAKOTA INPUT SPECIFICATION

[model_pointer STRING]
)

|
(npsol_sqp

[verify_level INTEGER]
[function_precision REAL]
[linesearch_tolerance REAL]
[linear_inequality_constraint_matrix REALLIST]
[linear_inequality_lower_bounds REALLIST]
[linear_inequality_upper_bounds REALLIST]
[linear_inequality_scale_types STRINGLIST]
[linear_inequality_scales REALLIST]
[linear_equality_constraint_matrix REALLIST]
[linear_equality_targets REALLIST]
[linear_equality_scale_types STRINGLIST]
[linear_equality_scales REALLIST]
[model_pointer STRING]
)

| nlssol_sqp
|
(stanford

npsol
| nlssol
[verify_level INTEGER]
[function_precision REAL]
[linesearch_tolerance REAL]
[linear_inequality_constraint_matrix REALLIST]
[linear_inequality_lower_bounds REALLIST]
[linear_inequality_upper_bounds REALLIST]
[linear_inequality_scale_types STRINGLIST]
[linear_inequality_scales REALLIST]
[linear_equality_constraint_matrix REALLIST]
[linear_equality_targets REALLIST]
[linear_equality_scale_types STRINGLIST]
[linear_equality_scales REALLIST]
[model_pointer STRING]
)

|
(nlpql_sqp

[linear_inequality_constraint_matrix REALLIST]
[linear_inequality_lower_bounds REALLIST]
[linear_inequality_upper_bounds REALLIST]
[linear_inequality_scale_types STRINGLIST]
[linear_inequality_scales REALLIST]
[linear_equality_constraint_matrix REALLIST]
[linear_equality_targets REALLIST]
[linear_equality_scale_types STRINGLIST]
[linear_equality_scales REALLIST]
[model_pointer STRING]
)

|
(optpp_cg

[max_step REAL]
[gradient_tolerance REAL]
[linear_inequality_constraint_matrix REALLIST]
[linear_inequality_lower_bounds REALLIST]
[linear_inequality_upper_bounds REALLIST]
[linear_inequality_scale_types STRINGLIST]
[linear_inequality_scales REALLIST]
[linear_equality_constraint_matrix REALLIST]
[linear_equality_targets REALLIST]
[linear_equality_scale_types STRINGLIST]

4.4. INPUT SPEC SUMMARY 33

[linear_equality_scales REALLIST]
[model_pointer STRING]
)

|
(optpp_q_newton

| optpp_fd_newton
| optpp_g_newton
| optpp_newton
[search_method

value_based_line_search
| gradient_based_line_search
| trust_region
| tr_pds
]

[merit_function
el_bakry
| argaez_tapia
| van_shanno
]

[steplength_to_boundary REAL]
[centering_parameter REAL]
[max_step REAL]
[gradient_tolerance REAL]
[linear_inequality_constraint_matrix REALLIST]
[linear_inequality_lower_bounds REALLIST]
[linear_inequality_upper_bounds REALLIST]
[linear_inequality_scale_types STRINGLIST]
[linear_inequality_scales REALLIST]
[linear_equality_constraint_matrix REALLIST]
[linear_equality_targets REALLIST]
[linear_equality_scale_types STRINGLIST]
[linear_equality_scales REALLIST]
[model_pointer STRING]
)

|
(optpp_pds

[search_scheme_size INTEGER]
[linear_inequality_constraint_matrix REALLIST]
[linear_inequality_lower_bounds REALLIST]
[linear_inequality_upper_bounds REALLIST]
[linear_inequality_scale_types STRINGLIST]
[linear_inequality_scales REALLIST]
[linear_equality_constraint_matrix REALLIST]
[linear_equality_targets REALLIST]
[linear_equality_scale_types STRINGLIST]
[linear_equality_scales REALLIST]
[model_pointer STRING]
)

|
(asynch_pattern_search ALIAS coliny_apps

[initial_delta REAL]
[contraction_factor REAL]
[threshold_delta REAL]
[solution_target ALIAS solution_accuracy REAL]
[synchronization
blocking
| nonblocking
]

[merit_function
merit_max
| merit_max_smooth
| merit1

34 CHAPTER 4. DAKOTA INPUT SPECIFICATION

| merit1_smooth
| merit2
| merit2_smooth
| merit2_squared
]

[constraint_penalty REAL]
[smoothing_factor REAL]
[linear_inequality_constraint_matrix REALLIST]
[linear_inequality_lower_bounds REALLIST]
[linear_inequality_upper_bounds REALLIST]
[linear_inequality_scale_types STRINGLIST]
[linear_inequality_scales REALLIST]
[linear_equality_constraint_matrix REALLIST]
[linear_equality_targets REALLIST]
[linear_equality_scale_types STRINGLIST]
[linear_equality_scales REALLIST]
[model_pointer STRING]
)

|
(mesh_adaptive_search

[function_precision REAL]
[seed INTEGER > 0]
[history_file STRING]
[display_format STRING]
[variable_neighborhood_search REAL]
[neighbor_order INTEGER > 0]
[display_all_evaluations]
[linear_inequality_constraint_matrix REALLIST]
[linear_inequality_lower_bounds REALLIST]
[linear_inequality_upper_bounds REALLIST]
[linear_inequality_scale_types STRINGLIST]
[linear_inequality_scales REALLIST]
[linear_equality_constraint_matrix REALLIST]
[linear_equality_targets REALLIST]
[linear_equality_scale_types STRINGLIST]
[linear_equality_scales REALLIST]
[model_pointer STRING]
)

|
(moga

[fitness_type
layer_rank
| domination_count
]

[replacement_type
elitist
| roulette_wheel
| unique_roulette_wheel
|
(below_limit REAL

[shrinkage_fraction ALIAS shrinkage_percentage REAL]
)

]
[niching_type

radial REALLIST
| distance REALLIST
|
(max_designs REALLIST

[num_designs INTEGER >= 2]
)

]
[convergence_type

4.4. INPUT SPEC SUMMARY 35

metric_tracker
[percent_change REAL]
[num_generations INTEGER >= 0]
]

[postprocessor_type
orthogonal_distance REALLIST
]

[population_size INTEGER >= 0]
[log_file STRING]
[print_each_pop]
[initialization_type

simple_random
| unique_random
| flat_file STRING
]

[crossover_type
multi_point_binary INTEGER
| multi_point_parameterized_binary INTEGER
| multi_point_real INTEGER
|
(shuffle_random
[num_parents INTEGER > 0]
[num_offspring INTEGER > 0]
)

[crossover_rate REAL]
]

[mutation_type
bit_random
| replace_uniform
|
(offset_normal
| offset_cauchy
| offset_uniform
[mutation_scale REAL]
)

[mutation_rate REAL]
]

[seed INTEGER > 0]
[linear_inequality_constraint_matrix REALLIST]
[linear_inequality_lower_bounds REALLIST]
[linear_inequality_upper_bounds REALLIST]
[linear_inequality_scale_types STRINGLIST]
[linear_inequality_scales REALLIST]
[linear_equality_constraint_matrix REALLIST]
[linear_equality_targets REALLIST]
[linear_equality_scale_types STRINGLIST]
[linear_equality_scales REALLIST]
[model_pointer STRING]
)

|
(soga

[fitness_type
merit_function
[constraint_penalty REAL]
]

[replacement_type
elitist
| favor_feasible
| roulette_wheel
| unique_roulette_wheel
]

[convergence_type

36 CHAPTER 4. DAKOTA INPUT SPECIFICATION

(best_fitness_tracker
[percent_change REAL]
[num_generations INTEGER >= 0]
)

|
(average_fitness_tracker

[percent_change REAL]
[num_generations INTEGER >= 0]
)

]
[population_size INTEGER >= 0]
[log_file STRING]
[print_each_pop]
[initialization_type

simple_random
| unique_random
| flat_file STRING
]

[crossover_type
multi_point_binary INTEGER
| multi_point_parameterized_binary INTEGER
| multi_point_real INTEGER
|
(shuffle_random

[num_parents INTEGER > 0]
[num_offspring INTEGER > 0]
)

[crossover_rate REAL]
]

[mutation_type
bit_random
| replace_uniform
|
(offset_normal

| offset_cauchy
| offset_uniform
[mutation_scale REAL]
)

[mutation_rate REAL]
]

[seed INTEGER > 0]
[linear_inequality_constraint_matrix REALLIST]
[linear_inequality_lower_bounds REALLIST]
[linear_inequality_upper_bounds REALLIST]
[linear_inequality_scale_types STRINGLIST]
[linear_inequality_scales REALLIST]
[linear_equality_constraint_matrix REALLIST]
[linear_equality_targets REALLIST]
[linear_equality_scale_types STRINGLIST]
[linear_equality_scales REALLIST]
[model_pointer STRING]
)

|
(coliny_pattern_search

[constant_penalty]
[no_expansion]
[expand_after_success INTEGER]
[pattern_basis

coordinate
| simplex
]

[stochastic]

4.4. INPUT SPEC SUMMARY 37

[total_pattern_size INTEGER]
[exploratory_moves

multi_step
| adaptive_pattern
| basic_pattern
]

[synchronization
blocking
| nonblocking
]

[contraction_factor REAL]
[constraint_penalty REAL]
[initial_delta REAL]
[threshold_delta REAL]
[solution_target ALIAS solution_accuracy REAL]
[seed INTEGER > 0]
[show_misc_options]
[misc_options STRINGLIST]
[model_pointer STRING]
)

|
(coliny_solis_wets

[contract_after_failure INTEGER]
[no_expansion]
[expand_after_success INTEGER]
[constant_penalty]
[contraction_factor REAL]
[constraint_penalty REAL]
[initial_delta REAL]
[threshold_delta REAL]
[solution_target ALIAS solution_accuracy REAL]
[seed INTEGER > 0]
[show_misc_options]
[misc_options STRINGLIST]
[model_pointer STRING]
)

|
(coliny_cobyla

[initial_delta REAL]
[threshold_delta REAL]
[solution_target ALIAS solution_accuracy REAL]
[seed INTEGER > 0]
[show_misc_options]
[misc_options STRINGLIST]
[model_pointer STRING]
)

|
(coliny_direct

[division
major_dimension
| all_dimensions
]

[global_balance_parameter REAL]
[local_balance_parameter REAL]
[max_boxsize_limit REAL]
[min_boxsize_limit REAL]
[constraint_penalty REAL]
[solution_target ALIAS solution_accuracy REAL]
[seed INTEGER > 0]
[show_misc_options]
[misc_options STRINGLIST]
[model_pointer STRING]

38 CHAPTER 4. DAKOTA INPUT SPECIFICATION

)
|
(coliny_ea

[population_size INTEGER > 0]
[initialization_type

simple_random
| unique_random
| flat_file STRING
]

[fitness_type
linear_rank
| merit_function
]

[replacement_type
random INTEGER
| chc INTEGER
| elitist INTEGER
[new_solutions_generated INTEGER]
]

[crossover_rate REAL]
[crossover_type

two_point
| blend
| uniform
]

[mutation_rate REAL]
[mutation_type

replace_uniform
|
(offset_normal

| offset_cauchy
| offset_uniform
[mutation_scale REAL]
[mutation_range INTEGER]
)

[non_adaptive]
]

[constraint_penalty REAL]
[solution_target ALIAS solution_accuracy REAL]
[seed INTEGER > 0]
[show_misc_options]
[misc_options STRINGLIST]
[model_pointer STRING]
)

|
(coliny_beta

beta_solver_name STRING
[solution_target ALIAS solution_accuracy REAL]
[seed INTEGER > 0]
[show_misc_options]
[misc_options STRINGLIST]
[model_pointer STRING]
)

|
(nl2sol

[function_precision REAL]
[absolute_conv_tol REAL]
[x_conv_tol REAL]
[singular_conv_tol REAL]
[singular_radius REAL]
[false_conv_tol REAL]
[initial_trust_radius REAL]

4.4. INPUT SPEC SUMMARY 39

[covariance INTEGER]
[regression_diagnostics]
[model_pointer STRING]
)

|
(nonlinear_cg

[misc_options STRINGLIST]
[model_pointer STRING]
)

|
(ncsu_direct

[solution_target ALIAS solution_accuracy REAL]
[min_boxsize_limit REAL]
[volume_boxsize_limit REAL]
[model_pointer STRING]
)

|
(genie_opt_darts

| genie_direct
[seed INTEGER > 0]
[model_pointer STRING]
)

|
(efficient_global

[gaussian_process ALIAS kriging
surfpack
| dakota
]

[use_derivatives]
[import_points_file STRING

[annotated
|
(custom_annotated

[header]
[eval_id]
[interface_id]
]

|
(freeform
[active_only]
]

[export_points_file STRING
[annotated
|
(custom_annotated

[header]
[eval_id]
[interface_id]
]

|
(freeform
]

[seed INTEGER > 0]
[model_pointer STRING]
)

|
(polynomial_chaos ALIAS nond_polynomial_chaos

[p_refinement
uniform
|
(dimension_adaptive

sobol

40 CHAPTER 4. DAKOTA INPUT SPECIFICATION

| decay
| generalized
)

]
[askey
| wiener]
(quadrature_order INTEGERLIST

[dimension_preference REALLIST]
[nested
| non_nested]
)

|
(sparse_grid_level INTEGERLIST

[restricted
| unrestricted]
[dimension_preference REALLIST]
[nested
| non_nested]
)

| cubature_integrand INTEGER
|
(expansion_order INTEGERLIST

[dimension_preference REALLIST]
[basis_type

tensor_product
| total_order
|
(adapted

[advancements INTEGER]
[soft_convergence_limit INTEGER]
)

]
(collocation_points INTEGERLIST

| collocation_ratio REAL
[ratio_order REAL]
[(least_squares
[svd
| equality_constrained]
)
|
(orthogonal_matching_pursuit ALIAS omp

[noise_tolerance REALLIST]
]

| basis_pursuit ALIAS bp
|
(basis_pursuit_denoising ALIAS bpdn

[noise_tolerance REALLIST]
]

|
(least_angle_regression ALIAS lars

[noise_tolerance REALLIST]
]

|
(least_absolute_shrinkage ALIAS lasso

[noise_tolerance REALLIST]
[l2_penalty REAL]
]

[cross_validation]
[use_derivatives]
[tensor_grid]
[reuse_points ALIAS reuse_samples]
)

4.4. INPUT SPEC SUMMARY 41

|
(expansion_samples INTEGERLIST
[reuse_points ALIAS reuse_samples]
[incremental_lhs]
)

[import_points_file STRING
[annotated
|
(custom_annotated

[header]
[eval_id]
[interface_id]
]
|
(freeform
[active_only]
]

)
|
(orthogonal_least_interpolation ALIAS least_interpolation ALIAS oli

collocation_points INTEGERLIST
[cross_validation]
[tensor_grid INTEGERLIST]
[reuse_points ALIAS reuse_samples]
[import_points_file STRING
[annotated
|
(custom_annotated

[header]
[eval_id]
[interface_id]
]
|
(freeform
[active_only]
]

)
| import_expansion_file STRING
[variance_based_decomp

[interaction_order INTEGER > 0]
[drop_tolerance REAL]
]

[diagonal_covariance
| full_covariance]
[normalized]
[sample_type

lhs
| random
]

[probability_refinement ALIAS sample_refinement
import
| adapt_import
| mm_adapt_import
[refinement_samples INTEGER]
]

[export_points_file STRING
[annotated
|
(custom_annotated
[header]
[eval_id]
[interface_id]

42 CHAPTER 4. DAKOTA INPUT SPECIFICATION

]
|
(freeform
]

[export_expansion_file STRING]
[fixed_seed]
[reliability_levels REALLIST

[num_reliability_levels INTEGERLIST]
]

[response_levels REALLIST
[num_response_levels INTEGERLIST]
[compute

probabilities
| reliabilities
| gen_reliabilities
[system

series
| parallel
]

]
]

[distribution
cumulative
| complementary
]

[probability_levels REALLIST
[num_probability_levels INTEGERLIST]
]

[gen_reliability_levels REALLIST
[num_gen_reliability_levels INTEGERLIST]
]

[rng
mt19937
| rnum2
]

[samples INTEGER]
[seed INTEGER > 0]
[model_pointer STRING]
)

|
(stoch_collocation ALIAS nond_stoch_collocation

[(p_refinement
uniform
|
(dimension_adaptive

sobol
| generalized
)

)
|
(h_refinement

uniform
|
(dimension_adaptive

sobol
| generalized
)

| local_adaptive
]

[piecewise
| askey
| wiener]

4.4. INPUT SPEC SUMMARY 43

quadrature_order INTEGERLIST
|
(sparse_grid_level INTEGERLIST

[restricted
| unrestricted]
[nodal
| hierarchical]
)

[dimension_preference REALLIST]
[use_derivatives]
[nested
| non_nested]
[variance_based_decomp

[interaction_order INTEGER > 0]
[drop_tolerance REAL]
]

[diagonal_covariance
| full_covariance]
[sample_type

lhs
| random
]

[probability_refinement ALIAS sample_refinement
import
| adapt_import
| mm_adapt_import
[refinement_samples INTEGER]
]

[export_points_file STRING
[annotated
|
(custom_annotated
[header]
[eval_id]
[interface_id]
]

|
(freeform
]

[fixed_seed]
[reliability_levels REALLIST

[num_reliability_levels INTEGERLIST]
]

[response_levels REALLIST
[num_response_levels INTEGERLIST]
[compute
probabilities
| reliabilities
| gen_reliabilities
[system

series
| parallel
]
]

]
[distribution

cumulative
| complementary
]

[probability_levels REALLIST
[num_probability_levels INTEGERLIST]
]

44 CHAPTER 4. DAKOTA INPUT SPECIFICATION

[gen_reliability_levels REALLIST
[num_gen_reliability_levels INTEGERLIST]
]

[rng
mt19937
| rnum2
]

[samples INTEGER]
[seed INTEGER > 0]
[model_pointer STRING]
)

|
(sampling ALIAS nond_sampling

[sample_type
random
| lhs
|
(incremental_lhs

| incremental_random
previous_samples INTEGER
)

]
[variance_based_decomp

[drop_tolerance REAL]
]

[backfill]
[fixed_seed]
[reliability_levels REALLIST

[num_reliability_levels INTEGERLIST]
]

[response_levels REALLIST
[num_response_levels INTEGERLIST]
[compute

probabilities
| reliabilities
| gen_reliabilities
[system

series
| parallel
]

]
]

[distribution
cumulative
| complementary
]

[probability_levels REALLIST
[num_probability_levels INTEGERLIST]
]

[gen_reliability_levels REALLIST
[num_gen_reliability_levels INTEGERLIST]
]

[rng
mt19937
| rnum2
]

[samples INTEGER]
[seed INTEGER > 0]
[model_pointer STRING]
)

|
(importance_sampling ALIAS nond_importance_sampling

4.4. INPUT SPEC SUMMARY 45

import
| adapt_import
| mm_adapt_import
[refinement_samples INTEGER]
[response_levels REALLIST

[num_response_levels INTEGERLIST]
[compute
probabilities
| gen_reliabilities
[system

series
| parallel
]
]

]
[distribution

cumulative
| complementary
]

[probability_levels REALLIST
[num_probability_levels INTEGERLIST]
]

[gen_reliability_levels REALLIST
[num_gen_reliability_levels INTEGERLIST]
]

[rng
mt19937
| rnum2
]

[samples INTEGER]
[seed INTEGER > 0]
[model_pointer STRING]
)

|
(gpais ALIAS gaussian_process_adaptive_importance_sampling

[emulator_samples INTEGER]
[import_points_file STRING

[annotated
|
(custom_annotated
[header]
[eval_id]
[interface_id]
]

|
(freeform
[active_only]
]

[export_points_file STRING
[annotated
|
(custom_annotated
[header]
[eval_id]
[interface_id]
]

|
(freeform
]

[response_levels REALLIST
[num_response_levels INTEGERLIST]
[compute

46 CHAPTER 4. DAKOTA INPUT SPECIFICATION

probabilities
| gen_reliabilities
[system

series
| parallel
]

]
]

[distribution
cumulative
| complementary
]

[probability_levels REALLIST
[num_probability_levels INTEGERLIST]
]

[gen_reliability_levels REALLIST
[num_gen_reliability_levels INTEGERLIST]
]

[rng
mt19937
| rnum2
]

[samples INTEGER]
[seed INTEGER > 0]
[model_pointer STRING]
)

|
(adaptive_sampling ALIAS nond_adaptive_sampling

[emulator_samples INTEGER]
[fitness_metric

predicted_variance
| distance
| gradient
]

[batch_selection
naive
| distance_penalty
| topology
| constant_liar
]

[batch_size INTEGER]
[import_points_file STRING

[annotated
|
(custom_annotated

[header]
[eval_id]
[interface_id]
]

|
(freeform
[active_only]
]

[export_points_file STRING
[annotated
|
(custom_annotated

[header]
[eval_id]
[interface_id]
]

|

4.4. INPUT SPEC SUMMARY 47

(freeform
]

[response_levels REALLIST
[num_response_levels INTEGERLIST]
[compute
probabilities
| gen_reliabilities
[system

series
| parallel
]
]

]
[misc_options STRINGLIST]
[distribution

cumulative
| complementary
]

[probability_levels REALLIST
[num_probability_levels INTEGERLIST]
]

[gen_reliability_levels REALLIST
[num_gen_reliability_levels INTEGERLIST]
]

[rng
mt19937
| rnum2
]

[samples INTEGER]
[seed INTEGER > 0]
[model_pointer STRING]
)

|
(pof_darts ALIAS nond_pof_darts

[lipschitz
local
| global
]

[emulator_samples INTEGER]
[response_levels REALLIST

[num_response_levels INTEGERLIST]
[compute
probabilities
| gen_reliabilities
[system

series
| parallel
]
]

]
[distribution

cumulative
| complementary
]

[probability_levels REALLIST
[num_probability_levels INTEGERLIST]
]

[gen_reliability_levels REALLIST
[num_gen_reliability_levels INTEGERLIST]
]

[rng
mt19937

48 CHAPTER 4. DAKOTA INPUT SPECIFICATION

| rnum2
]

[samples INTEGER]
[seed INTEGER > 0]
[model_pointer STRING]
)

|
(efficient_subspace ALIAS nond_efficient_subspace

[emulator_samples INTEGER]
[batch_size INTEGER]
[distribution

cumulative
| complementary
]

[probability_levels REALLIST
[num_probability_levels INTEGERLIST]
]

[gen_reliability_levels REALLIST
[num_gen_reliability_levels INTEGERLIST]
]

[rng
mt19937
| rnum2
]

[samples INTEGER]
[seed INTEGER > 0]
[model_pointer STRING]
)

|
(global_evidence ALIAS nond_global_evidence

[sbo
| ego
[gaussian_process ALIAS kriging

surfpack
| dakota
]

[use_derivatives]
[import_points_file STRING

[annotated
|
(custom_annotated

[header]
[eval_id]
[interface_id]
]

|
(freeform
[active_only]
]

[export_points_file STRING
[annotated
|
(custom_annotated

[header]
[eval_id]
[interface_id]
]

|
(freeform
]

]
| ea

4.4. INPUT SPEC SUMMARY 49

| lhs]
[response_levels REALLIST

[num_response_levels INTEGERLIST]
[compute
probabilities
| gen_reliabilities
[system

series
| parallel
]
]

]
[distribution

cumulative
| complementary
]

[probability_levels REALLIST
[num_probability_levels INTEGERLIST]
]

[gen_reliability_levels REALLIST
[num_gen_reliability_levels INTEGERLIST]
]

[rng
mt19937
| rnum2
]

[samples INTEGER]
[seed INTEGER > 0]
[model_pointer STRING]
)

|
(global_interval_est ALIAS nond_global_interval_est

[sbo
| ego
[gaussian_process ALIAS kriging
surfpack
| dakota
]

[use_derivatives]
[import_points_file STRING
[annotated
|
(custom_annotated

[header]
[eval_id]
[interface_id]
]
|
(freeform
[active_only]
]

[export_points_file STRING
[annotated
|
(custom_annotated

[header]
[eval_id]
[interface_id]
]
|
(freeform
]

50 CHAPTER 4. DAKOTA INPUT SPECIFICATION

]
| ea
| lhs]
[rng

mt19937
| rnum2
]

[samples INTEGER]
[seed INTEGER > 0]
[model_pointer STRING]
)

|
(bayes_calibration ALIAS nond_bayes_calibration

(queso
[emulator

(gaussian_process ALIAS kriging
surfpack
| dakota
[emulator_samples INTEGER]
[posterior_adaptive]
[import_points_file STRING

[annotated
|
(custom_annotated

[header]
[eval_id]
[interface_id]
]

|
(freeform
[active_only]
]

[export_points_file STRING
[annotated
|
(custom_annotated

[header]
[eval_id]
[interface_id]
]

|
(freeform
]

)
|
(pce

sparse_grid_level INTEGERLIST
|
(expansion_order INTEGERLIST

collocation_ratio REAL
[posterior_adaptive]
)

)
|
(sc

sparse_grid_level INTEGERLIST
)

[use_derivatives]
]

[logit_transform]
[dram
| delayed_rejection

4.4. INPUT SPEC SUMMARY 51

| adaptive_metropolis
| metropolis_hastings
| multilevel]
[rng
mt19937
| rnum2
]

[proposal_covariance
(derivatives

[proposal_updates INTEGER]
)
| prior
|
(values REALLIST

diagonal
| matrix
)
|
(filename STRING

diagonal
| matrix
)
]

)
|
(gpmsa

emulator_samples INTEGER
[import_points_file STRING
[annotated
|
(custom_annotated

[header]
[eval_id]
[interface_id]
]
|
(freeform
[active_only]
]

[export_points_file STRING
[annotated
|
(custom_annotated

[header]
[eval_id]
[interface_id]
]
|
(freeform
]

[dram
| delayed_rejection
| adaptive_metropolis
| metropolis_hastings
| multilevel]
[rng
mt19937
| rnum2
]

[proposal_covariance
(derivatives

[proposal_updates INTEGER]

52 CHAPTER 4. DAKOTA INPUT SPECIFICATION

)
| prior
|
(values REALLIST

diagonal
| matrix
)

|
(filename STRING

diagonal
| matrix
)

]
)

|
(dream

[chains INTEGER >= 3]
[num_cr INTEGER >= 1]
[crossover_chain_pairs INTEGER >= 0]
[gr_threshold REAL > 0.0]
[jump_step INTEGER >= 0]
[emulator

(gaussian_process ALIAS kriging
surfpack
| dakota
[emulator_samples INTEGER]
[posterior_adaptive]
[import_points_file STRING

[annotated
|
(custom_annotated

[header]
[eval_id]
[interface_id]
]

|
(freeform
[active_only]
]

[export_points_file STRING
[annotated
|
(custom_annotated

[header]
[eval_id]
[interface_id]
]

|
(freeform
]

)
|
(pce

sparse_grid_level INTEGERLIST
|
(expansion_order INTEGERLIST

collocation_ratio REAL
[posterior_adaptive]
)

)
|
(sc

4.4. INPUT SPEC SUMMARY 53

sparse_grid_level INTEGERLIST
)
[use_derivatives]
]

)
[standardized_space]
[likelihood_scale REAL]
[calibrate_sigma]
[samples INTEGER]
[seed INTEGER > 0]
[model_pointer STRING]
)

|
(dace

grid
| random
| oas
| lhs
| oa_lhs
| box_behnken
| central_composite
[main_effects]
[quality_metrics]
[variance_based_decomp

[drop_tolerance REAL]
]

[fixed_seed]
[symbols INTEGER]
[samples INTEGER]
[seed INTEGER > 0]
[model_pointer STRING]
)

|
(fsu_cvt

[latinize]
[quality_metrics]
[variance_based_decomp

[drop_tolerance REAL]
]

[fixed_seed]
[trial_type

grid
| halton
| random
]

[num_trials INTEGER]
[samples INTEGER]
[seed INTEGER > 0]
[model_pointer STRING]
)

|
(psuade_moat

[partitions INTEGERLIST]
[samples INTEGER]
[seed INTEGER > 0]
[model_pointer STRING]
)

|
(local_evidence ALIAS nond_local_evidence

[sqp
| nip]
[response_levels REALLIST

54 CHAPTER 4. DAKOTA INPUT SPECIFICATION

[num_response_levels INTEGERLIST]
[compute

probabilities
| gen_reliabilities
[system

series
| parallel
]

]
]

[probability_levels REALLIST
[num_probability_levels INTEGERLIST]
]

[gen_reliability_levels REALLIST
[num_gen_reliability_levels INTEGERLIST]
]

[distribution
cumulative
| complementary
]

[model_pointer STRING]
)

|
(local_interval_est ALIAS nond_local_interval_est

[sqp
| nip]
[model_pointer STRING]
)

|
(local_reliability ALIAS nond_local_reliability

[mpp_search
x_taylor_mean
| u_taylor_mean
| x_taylor_mpp
| u_taylor_mpp
| x_two_point
| u_two_point
| no_approx
[sqp
| nip]
[integration

first_order
| second_order
[probability_refinement ALIAS sample_refinement

import
| adapt_import
| mm_adapt_import
[refinement_samples INTEGER]
[seed INTEGER > 0]
]

]
]

[response_levels REALLIST
[num_response_levels INTEGERLIST]
[compute

probabilities
| reliabilities
| gen_reliabilities
[system

series
| parallel
]

4.4. INPUT SPEC SUMMARY 55

]
]

[reliability_levels REALLIST
[num_reliability_levels INTEGERLIST]
]

[distribution
cumulative
| complementary
]

[probability_levels REALLIST
[num_probability_levels INTEGERLIST]
]

[gen_reliability_levels REALLIST
[num_gen_reliability_levels INTEGERLIST]
]

[model_pointer STRING]
)

|
(global_reliability ALIAS nond_global_reliability

x_gaussian_process ALIAS x_kriging
| u_gaussian_process ALIAS u_kriging
[surfpack
| dakota]
[import_points_file STRING

[annotated
|
(custom_annotated
[header]
[eval_id]
[interface_id]
]

|
(freeform
[active_only]
]

[export_points_file STRING
[annotated
|
(custom_annotated
[header]
[eval_id]
[interface_id]
]

|
(freeform
]

[use_derivatives]
[seed INTEGER > 0]
[rng

mt19937
| rnum2
]

[response_levels REALLIST
[num_response_levels INTEGERLIST]
[compute
probabilities
| gen_reliabilities
[system

series
| parallel
]
]

56 CHAPTER 4. DAKOTA INPUT SPECIFICATION

]
[distribution

cumulative
| complementary
]

[probability_levels REALLIST
[num_probability_levels INTEGERLIST]
]

[gen_reliability_levels REALLIST
[num_gen_reliability_levels INTEGERLIST]
]

[model_pointer STRING]
)

|
(fsu_quasi_mc

halton
| hammersley
[latinize]
[quality_metrics]
[variance_based_decomp

[drop_tolerance REAL]
]

[samples INTEGER]
[fixed_sequence]
[sequence_start INTEGERLIST]
[sequence_leap INTEGERLIST]
[prime_base INTEGERLIST]
[model_pointer STRING]
)

|
(vector_parameter_study

final_point REALLIST
| step_vector REALLIST
num_steps INTEGER
[model_pointer STRING]
)

|
(list_parameter_study

list_of_points REALLIST
|
(import_points_file STRING

[annotated
|
(custom_annotated

[header]
[eval_id]
[interface_id]
]

|
(freeform
[active_only]
)

[model_pointer STRING]
)

|
(centered_parameter_study

step_vector REALLIST
steps_per_variable ALIAS deltas_per_variable INTEGERLIST
[model_pointer STRING]
)

|
(multidim_parameter_study

4.4. INPUT SPEC SUMMARY 57

partitions INTEGERLIST
[model_pointer STRING]
)

|
(richardson_extrap

estimate_order
| converge_order
| converge_qoi
[refinement_rate REAL]
[model_pointer STRING]
)

KEYWORD model
[id_model STRING]
[variables_pointer STRING]
[responses_pointer STRING]
[hierarchical_tagging]
(single

[interface_pointer STRING]
)

|
(surrogate

[id_surrogates INTEGERLIST]
(global

(gaussian_process ALIAS kriging
(dakota

[point_selection]
[trend
constant
| linear
| reduced_quadratic
]

)
|
(surfpack

[trend
constant
| linear
| reduced_quadratic
| quadratic
]

[optimization_method STRING]
[max_trials INTEGER > 0]
[nugget REAL > 0
| find_nugget INTEGER]
[correlation_lengths REALLIST]
[export_model_file STRING]
)
)

|
(mars
[max_bases INTEGER]
[interpolation

linear
| cubic
]
[export_model_file STRING]
)

|
(moving_least_squares
[poly_order INTEGER]
[weight_function INTEGER]

58 CHAPTER 4. DAKOTA INPUT SPECIFICATION

[export_model_file STRING]
)

|
(neural_network

[max_nodes ALIAS nodes INTEGER]
[range REAL]
[random_weight INTEGER]
[export_model_file STRING]
)

|
(radial_basis

[bases INTEGER]
[max_pts INTEGER]
[min_partition INTEGER]
[max_subsets INTEGER]
[export_model_file STRING]
)

|
(polynomial

linear
| quadratic
| cubic
[export_model_file STRING]
)

[piecewise_decomposition
[cell_type STRING]
[support_layers INTEGER]
[discontinuity_detection

jump_threshold REAL
| gradient_threshold REAL
]

]
[total_points INTEGER
| minimum_points
| recommended_points]
[dace_method_pointer STRING
| actual_model_pointer STRING]
[reuse_points ALIAS reuse_samples

all
| region
| none
]

[import_points_file ALIAS samples_file STRING
[annotated
|
(custom_annotated

[header]
[eval_id]
[interface_id]
]

|
(freeform
[active_only]
]

[export_points_file STRING
[annotated
|
(custom_annotated

[header]
[eval_id]
[interface_id]
]

4.4. INPUT SPEC SUMMARY 59

|
(freeform
]

[use_derivatives]
[correction
zeroth_order
| first_order
| second_order
additive
| multiplicative
| combined
]

[metrics ALIAS diagnostics STRINGLIST
[cross_validation

[folds INTEGER
| percent REAL]
]
[press]
]

[challenge_points_file STRING
[annotated
|
(custom_annotated

[header]
[eval_id]
[interface_id]
]
|
(freeform
[active_only]
]

)
|
(multipoint

tana
actual_model_pointer STRING
)

|
(local

taylor_series
actual_model_pointer STRING
)

|
(hierarchical

low_fidelity_model_pointer STRING
high_fidelity_model_pointer STRING
(correction
zeroth_order
| first_order
| second_order
additive
| multiplicative
| combined
)

)
)

|
(nested

[optional_interface_pointer STRING
[optional_interface_responses_pointer STRING]
]

(sub_method_pointer STRING

60 CHAPTER 4. DAKOTA INPUT SPECIFICATION

[iterator_servers INTEGER > 0]
[iterator_scheduling

master
| peer
]

[processors_per_iterator INTEGER > 0]
[primary_variable_mapping STRINGLIST]
[secondary_variable_mapping STRINGLIST]
[primary_response_mapping REALLIST]
[secondary_response_mapping REALLIST]
)

)

KEYWORD12 variables
[id_variables STRING]
[active

all
| design
| uncertain
| aleatory
| epistemic
| state
]

[mixed
| relaxed]
[continuous_design INTEGER > 0

[initial_point ALIAS cdv_initial_point REALLIST]
[lower_bounds ALIAS cdv_lower_bounds REALLIST]
[upper_bounds ALIAS cdv_upper_bounds REALLIST]
[scale_types ALIAS cdv_scale_types STRINGLIST]
[scales ALIAS cdv_scales REALLIST]
[descriptors ALIAS cdv_descriptors STRINGLIST]
]

[discrete_design_range INTEGER > 0
[initial_point ALIAS ddv_initial_point INTEGERLIST]
[lower_bounds ALIAS ddv_lower_bounds INTEGERLIST]
[upper_bounds ALIAS ddv_upper_bounds INTEGERLIST]
[descriptors ALIAS ddv_descriptors STRINGLIST]
]

[discrete_design_set
[integer INTEGER > 0

[elements_per_variable ALIAS num_set_values INTEGERLIST]
elements ALIAS set_values INTEGERLIST
[categorical STRINGLIST

[adjacency_matrix INTEGERLIST]
]

[initial_point INTEGERLIST]
[descriptors STRINGLIST]
]

[string INTEGER > 0
[elements_per_variable ALIAS num_set_values INTEGERLIST]
elements ALIAS set_values STRINGLIST
[adjacency_matrix INTEGERLIST]
[initial_point STRINGLIST]
[descriptors STRINGLIST]
]

[real INTEGER > 0
[elements_per_variable ALIAS num_set_values INTEGERLIST]
elements ALIAS set_values REALLIST
[categorical STRINGLIST

[adjacency_matrix INTEGERLIST]
]

4.4. INPUT SPEC SUMMARY 61

[initial_point REALLIST]
[descriptors STRINGLIST]
]

]
[normal_uncertain INTEGER > 0

means ALIAS nuv_means REALLIST
std_deviations ALIAS nuv_std_deviations REALLIST
[lower_bounds ALIAS nuv_lower_bounds REALLIST]
[upper_bounds ALIAS nuv_upper_bounds REALLIST]
[initial_point REALLIST]
[descriptors ALIAS nuv_descriptors STRINGLIST]
]

[lognormal_uncertain INTEGER > 0
(lambdas ALIAS lnuv_lambdas REALLIST

zetas ALIAS lnuv_zetas REALLIST
)

|
(means ALIAS lnuv_means REALLIST

std_deviations ALIAS lnuv_std_deviations REALLIST
| error_factors ALIAS lnuv_error_factors REALLIST
)

[lower_bounds ALIAS lnuv_lower_bounds REALLIST]
[upper_bounds ALIAS lnuv_upper_bounds REALLIST]
[initial_point REALLIST]
[descriptors ALIAS lnuv_descriptors STRINGLIST]
]

[uniform_uncertain INTEGER > 0
lower_bounds ALIAS uuv_lower_bounds REALLIST
upper_bounds ALIAS uuv_upper_bounds REALLIST
[initial_point REALLIST]
[descriptors ALIAS uuv_descriptors STRINGLIST]
]

[loguniform_uncertain INTEGER > 0
lower_bounds ALIAS luuv_lower_bounds REALLIST
upper_bounds ALIAS luuv_upper_bounds REALLIST
[initial_point REALLIST]
[descriptors ALIAS luuv_descriptors STRINGLIST]
]

[triangular_uncertain INTEGER > 0
modes ALIAS tuv_modes REALLIST
lower_bounds ALIAS tuv_lower_bounds REALLIST
upper_bounds ALIAS tuv_upper_bounds REALLIST
[initial_point REALLIST]
[descriptors ALIAS tuv_descriptors STRINGLIST]
]

[exponential_uncertain INTEGER > 0
betas ALIAS euv_betas REALLIST
[initial_point REALLIST]
[descriptors ALIAS euv_descriptors STRINGLIST]
]

[beta_uncertain INTEGER > 0
alphas ALIAS buv_alphas REALLIST
betas ALIAS buv_betas REALLIST
lower_bounds ALIAS buv_lower_bounds REALLIST
upper_bounds ALIAS buv_upper_bounds REALLIST
[initial_point REALLIST]
[descriptors ALIAS buv_descriptors STRINGLIST]
]

[gamma_uncertain INTEGER > 0
alphas ALIAS gauv_alphas REALLIST
betas ALIAS gauv_betas REALLIST
[initial_point REALLIST]

62 CHAPTER 4. DAKOTA INPUT SPECIFICATION

[descriptors ALIAS gauv_descriptors STRINGLIST]
]

[gumbel_uncertain INTEGER > 0
alphas ALIAS guuv_alphas REALLIST
betas ALIAS guuv_betas REALLIST
[initial_point REALLIST]
[descriptors ALIAS guuv_descriptors STRINGLIST]
]

[frechet_uncertain INTEGER > 0
alphas ALIAS fuv_alphas REALLIST
betas ALIAS fuv_betas REALLIST
[initial_point REALLIST]
[descriptors ALIAS fuv_descriptors STRINGLIST]
]

[weibull_uncertain INTEGER > 0
alphas ALIAS wuv_alphas REALLIST
betas ALIAS wuv_betas REALLIST
[initial_point REALLIST]
[descriptors ALIAS wuv_descriptors STRINGLIST]
]

[histogram_bin_uncertain INTEGER > 0
[pairs_per_variable ALIAS num_pairs INTEGERLIST]
abscissas ALIAS huv_bin_abscissas REALLIST
ordinates ALIAS huv_bin_ordinates REALLIST
| counts ALIAS huv_bin_counts REALLIST
[initial_point REALLIST]
[descriptors ALIAS huv_bin_descriptors STRINGLIST]
]

[poisson_uncertain INTEGER > 0
lambdas REALLIST
[initial_point INTEGERLIST]
[descriptors STRINGLIST]
]

[binomial_uncertain INTEGER > 0
probability_per_trial ALIAS prob_per_trial REALLIST
num_trials INTEGERLIST
[initial_point INTEGERLIST]
[descriptors STRINGLIST]
]

[negative_binomial_uncertain INTEGER > 0
probability_per_trial ALIAS prob_per_trial REALLIST
num_trials INTEGERLIST
[initial_point INTEGERLIST]
[descriptors STRINGLIST]
]

[geometric_uncertain INTEGER > 0
probability_per_trial ALIAS prob_per_trial REALLIST
[initial_point INTEGERLIST]
[descriptors STRINGLIST]
]

[hypergeometric_uncertain INTEGER > 0
total_population INTEGERLIST
selected_population INTEGERLIST
num_drawn INTEGERLIST
[initial_point INTEGERLIST]
[descriptors STRINGLIST]
]

[histogram_point_uncertain
[integer INTEGER > 0

[pairs_per_variable ALIAS num_pairs INTEGERLIST]
abscissas INTEGERLIST
counts REALLIST

4.4. INPUT SPEC SUMMARY 63

[initial_point INTEGERLIST]
[descriptors STRINGLIST]
]

[string INTEGER > 0
[pairs_per_variable ALIAS num_pairs INTEGERLIST]
abscissas STRINGLIST
counts REALLIST
[initial_point STRINGLIST]
[descriptors STRINGLIST]
]

[real INTEGER > 0
[pairs_per_variable ALIAS num_pairs INTEGERLIST]
abscissas REALLIST
counts REALLIST
[initial_point REALLIST]
[descriptors STRINGLIST]
]

]
[uncertain_correlation_matrix REALLIST]
[continuous_interval_uncertain ALIAS interval_uncertain INTEGER > 0

[num_intervals ALIAS iuv_num_intervals INTEGERLIST]
[interval_probabilities ALIAS interval_probs ALIAS iuv_interval_probs REALLIST]
lower_bounds REALLIST
upper_bounds REALLIST
[initial_point REALLIST]
[descriptors ALIAS iuv_descriptors STRINGLIST]
]

[discrete_interval_uncertain ALIAS discrete_uncertain_range INTEGER > 0
[num_intervals INTEGERLIST]
[interval_probabilities ALIAS interval_probs ALIAS range_probabilities ALIAS range_probs REALLIST]
lower_bounds INTEGERLIST
upper_bounds INTEGERLIST
[initial_point INTEGERLIST]
[descriptors STRINGLIST]
]

[discrete_uncertain_set
[integer INTEGER > 0
[elements_per_variable ALIAS num_set_values INTEGERLIST]
elements ALIAS set_values INTEGERLIST
[set_probabilities ALIAS set_probs REALLIST]
[categorical STRINGLIST]
[initial_point INTEGERLIST]
[descriptors STRINGLIST]
]

[string INTEGER > 0
[elements_per_variable ALIAS num_set_values INTEGERLIST]
elements ALIAS set_values STRINGLIST
[set_probabilities ALIAS set_probs REALLIST]
[initial_point STRINGLIST]
[descriptors STRINGLIST]
]

[real INTEGER > 0
[elements_per_variable ALIAS num_set_values INTEGERLIST]
elements ALIAS set_values REALLIST
[set_probabilities ALIAS set_probs REALLIST]
[categorical STRINGLIST]
[initial_point REALLIST]
[descriptors STRINGLIST]
]

]
[continuous_state INTEGER > 0

[initial_state ALIAS csv_initial_state REALLIST]

64 CHAPTER 4. DAKOTA INPUT SPECIFICATION

[lower_bounds ALIAS csv_lower_bounds REALLIST]
[upper_bounds ALIAS csv_upper_bounds REALLIST]
[descriptors ALIAS csv_descriptors STRINGLIST]
]

[discrete_state_range INTEGER > 0
[initial_state ALIAS dsv_initial_state INTEGERLIST]
[lower_bounds ALIAS dsv_lower_bounds INTEGERLIST]
[upper_bounds ALIAS dsv_upper_bounds INTEGERLIST]
[descriptors ALIAS dsv_descriptors STRINGLIST]
]

[discrete_state_set
[integer INTEGER > 0

[elements_per_variable ALIAS num_set_values INTEGERLIST]
elements ALIAS set_values INTEGERLIST
[categorical STRINGLIST]
[initial_state INTEGERLIST]
[descriptors STRINGLIST]
]

[string INTEGER > 0
[elements_per_variable ALIAS num_set_values INTEGERLIST]
elements ALIAS set_values STRINGLIST
[initial_state STRINGLIST]
[descriptors STRINGLIST]
]

[real INTEGER > 0
[elements_per_variable ALIAS num_set_values INTEGERLIST]
elements ALIAS set_values REALLIST
[categorical STRINGLIST]
[initial_state REALLIST]
[descriptors STRINGLIST]
]

]

KEYWORD12 interface
[id_interface STRING]
[algebraic_mappings STRING]
[analysis_drivers STRINGLIST

[analysis_components STRINGLIST]
[input_filter STRING]
[output_filter STRING]
(system

| fork
[parameters_file STRING]
[results_file STRING]
[allow_existing_results]
[verbatim]
[aprepro ALIAS dprepro]
[file_tag]
[file_save]
[work_directory

[named STRING]
[directory_tag ALIAS dir_tag]
[directory_save ALIAS dir_save]
[link_files STRINGLIST]
[copy_files STRINGLIST]
[replace]
]

)
|
(direct

[processors_per_analysis INTEGER > 0]
)

4.4. INPUT SPEC SUMMARY 65

| matlab
|
(python

[numpy]
)

| scilab
| grid
[failure_capture

abort
| retry INTEGER
| recover REALLIST
| continuation
]

[deactivate
[active_set_vector]
[evaluation_cache]
[strict_cache_equality
[cache_tolerance REAL]
]

[restart_file]
]

]
[asynchronous

[evaluation_concurrency INTEGER > 0]
[local_evaluation_scheduling

dynamic
| static
]

[analysis_concurrency INTEGER > 0]
]

[evaluation_servers INTEGER > 0]
[evaluation_scheduling

master
|
(peer

dynamic
| static
)

]
[processors_per_evaluation INTEGER > 0]
[analysis_servers INTEGER > 0]
[analysis_scheduling

master
| peer
]

KEYWORD12 responses
[id_responses STRING]
[descriptors ALIAS response_descriptors STRINGLIST]
(objective_functions ALIAS num_objective_functions INTEGER >= 0

[sense STRINGLIST]
[primary_scale_types ALIAS objective_function_scale_types STRINGLIST]
[primary_scales ALIAS objective_function_scales REALLIST]
[weights ALIAS multi_objective_weights REALLIST]
[nonlinear_inequality_constraints ALIAS num_nonlinear_inequality_constraints INTEGER >= 0

[lower_bounds ALIAS nonlinear_inequality_lower_bounds REALLIST]
[upper_bounds ALIAS nonlinear_inequality_upper_bounds REALLIST]
[scale_types ALIAS nonlinear_inequality_scale_types STRINGLIST]
[scales ALIAS nonlinear_inequality_scales REALLIST]
]

[nonlinear_equality_constraints ALIAS num_nonlinear_equality_constraints INTEGER >= 0
[targets ALIAS nonlinear_equality_targets REALLIST]

66 CHAPTER 4. DAKOTA INPUT SPECIFICATION

[scale_types ALIAS nonlinear_equality_scale_types STRINGLIST]
[scales ALIAS nonlinear_equality_scales REALLIST]
]

[scalar_objectives ALIAS num_scalar_objectives INTEGER >= 0]
[field_objectives ALIAS num_field_objectives INTEGER >= 0

lengths INTEGERLIST
[num_coordinates_per_field INTEGERLIST]
[coordinate_list REALLIST
| coordinate_data_file STRING]
]

)
|
(calibration_terms ALIAS least_squares_terms ALIAS num_least_squares_terms INTEGER >= 0

[scalar_calibration_terms INTEGER >= 0]
[field_calibration_terms INTEGER >= 0

lengths INTEGERLIST
[num_coordinates_per_field INTEGERLIST]
[coordinate_list REALLIST
| coordinate_data_file STRING]
]

[primary_scale_types ALIAS calibration_term_scale_types ALIAS least_squares_term_scale_types STRINGLIST]
[primary_scales ALIAS calibration_term_scales ALIAS least_squares_term_scales REALLIST]
[weights ALIAS calibration_weights ALIAS least_squares_weights REALLIST]
[(calibration_data

[num_experiments INTEGER >= 0]
[num_config_variables INTEGER >= 0]
[variance_type STRINGLIST]
[scalar_data_file STRING

[annotated
|
(custom_annotated

[header]
[exp_id]
]

|
(freeform
]

[interpolate]
[read_field_coordinates]
)

|
(calibration_data_file ALIAS least_squares_data_file STRING

[annotated
|
(custom_annotated

[header]
[exp_id]
]

|
(freeform
[num_experiments INTEGER >= 0]
[num_config_variables INTEGER >= 0]
[variance_type STRINGLIST]
]

[nonlinear_inequality_constraints ALIAS num_nonlinear_inequality_constraints INTEGER >= 0
[lower_bounds ALIAS nonlinear_inequality_lower_bounds REALLIST]
[upper_bounds ALIAS nonlinear_inequality_upper_bounds REALLIST]
[scale_types ALIAS nonlinear_inequality_scale_types STRINGLIST]
[scales ALIAS nonlinear_inequality_scales REALLIST]
]

[nonlinear_equality_constraints ALIAS num_nonlinear_equality_constraints INTEGER >= 0
[targets ALIAS nonlinear_equality_targets REALLIST]

4.4. INPUT SPEC SUMMARY 67

[scale_types ALIAS nonlinear_equality_scale_types STRINGLIST]
[scales ALIAS nonlinear_equality_scales REALLIST]
]

)
|
(response_functions ALIAS num_response_functions INTEGER >= 0

[scalar_responses ALIAS num_scalar_responses INTEGER >= 0]
[field_responses ALIAS num_field_responses INTEGER >= 0

lengths INTEGERLIST
[num_coordinates_per_field INTEGERLIST]
[coordinate_list REALLIST
| coordinate_data_file STRING]
]

)
no_gradients
| analytic_gradients
|
(mixed_gradients

id_numerical_gradients INTEGERLIST
id_analytic_gradients INTEGERLIST
[method_source]
[(dakota

[ignore_bounds]
[relative
| absolute
| bounds]
)

| vendor]
[interval_type]
[forward
| central]
[fd_step_size ALIAS fd_gradient_step_size REALLIST]
)

|
(numerical_gradients

[method_source]
[(dakota

[ignore_bounds]
[relative
| absolute
| bounds]
)

| vendor]
[interval_type]
[forward
| central]
[fd_step_size ALIAS fd_gradient_step_size REALLIST]
)

no_hessians
|
(numerical_hessians

[fd_step_size ALIAS fd_hessian_step_size REALLIST]
[relative
| absolute
| bounds]
[forward
| central]
)

|
(quasi_hessians

(bfgs
[damped]

68 CHAPTER 4. DAKOTA INPUT SPECIFICATION

)
| sr1
)

| analytic_hessians
|
(mixed_hessians

[id_numerical_hessians INTEGERLIST
[fd_step_size ALIAS fd_hessian_step_size REALLIST]
]

[relative
| absolute
| bounds]
[forward
| central]
[id_quasi_hessians INTEGERLIST

(bfgs
[damped]
)

| sr1
]

[id_analytic_hessians INTEGERLIST]
)

Chapter 5

Topics Area

This page introduces the user to the topics used to organize keywords.

• admin

• dakota IO

• dakota concepts

• models

• variables

• responses

• interface

• methods

• advanced topics

• packages

5.1 admin

Description

This is only for management while ref man is under construction

Related Topics

• empty

• problem

• not yet reviewed

69

70 CHAPTER 5. TOPICS AREA

Related Keywords

5.1.1 empty

Description
This topic tracks the keywords which do not have content in the reference manual

Related Topics

Related Keywords

5.1.2 problem

Description
empty

Related Topics

Related Keywords

5.1.3 not yet reviewed

Description
Not yet reviewed.

Related Topics

Related Keywords

5.2 dakota IO

Description
Keywords and Concepts relating inputs to Dakota and outputs from Dakota

Related Topics
• dakota inputs

• dakota output

• file formats

Related Keywords
• error file : Base filename for error redirection

• output file : Base filename for output redirection

• input : Base filename for post-run mode data input

5.2. DAKOTA IO 71

• output : Base filename for post-run mode data output

• input : Base filename for pre-run mode data input

• output : Base filename for pre-run mode data output

• read restart : Base filename for restart file read

• stop restart : Evaluation ID number at which to stop reading restart file

• input : Base filename for run mode data input

• output : Base filename for run mode data output

• write restart : Base filename for restart file write

5.2.1 dakota inputs

Description
empty

Related Topics
• block

• data import capabilities

Related Keywords

5.2.2 block

Description
A block is the highest level of keyword organization in Dakota. There are currently 6 blocks in the Dakota input
spec:

Related Topics
• block identifier

• block pointer

Related Keywords
• environment : Top-level settings for Dakota execution

• interface : Specifies how function evaluations will be performed in order to map the variables into the
responses.

• method : Begins Dakota method selection and behavioral settings.

• model : Specifies how variables are mapped into a set of responses

• responses : Description of the model output data returned to Dakota upon evaluation of an interface.

• variables : Specifies the parameter set to be iterated by a particular method.

72 CHAPTER 5. TOPICS AREA

block identifier

Description
empty

Related Topics

Related Keywords
• id interface : Name the interface block; helpful when there are multiple

• id method : Name the method block; helpful when there are multiple

• id model : Give the model block an identifying name, in case of multiple model blocks

• id responses : Name the response block, helpful when there are multiple

block pointer

Description
See block pointer for details about pointers.

Related Topics

Related Keywords
• top method pointer : Identify which method leads the Dakota study

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

5.2. DAKOTA IO 73

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer list : Associate models with method names

• method pointer list : Pointers to methods to execute sequantially or collaboratively

• global model pointer : Pointer to model used by global method

• global method pointer : Pointer to global method

• local model pointer : Pointer to model used by local method

• local method pointer : Pointer to local method

• model pointer list : Associate models with method names

• method pointer list : Pointers to methods to execute sequantially or collaboratively

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

74 CHAPTER 5. TOPICS AREA

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• method pointer : Pointer to sub-method to run from each starting point

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• method pointer : Pointer to optimization or least-squares sub-method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• method pointer : Pointer to sub-method to apply to surrogate

• model pointer : Identifier for model block to be used by a method

• method pointer : Pointer to sub-method to apply to surrogate

5.2. DAKOTA IO 75

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• optional interface pointer : Pointer to interface that provides non-nested responses

• optional interface responses pointer : Pointer to responses block that defines non-nested responses

• sub method pointer : The sub method pointer specifies the method block for the sub-iterator

• responses pointer : Specify which reponses block will be used by this model block

• interface pointer : Interface block pointer for the single model type

• dace method pointer : Specify a method to gather training data

• high fidelity model pointer : Pointer to high fidelity model

• low fidelity model pointer : Pointer to low fidelity model

• actual model pointer : Pointer to specify a ”truth” model, from which to construct a surrogate

• actual model pointer : Pointer to specify a ”truth” model, from which to construct a surrogate

• variables pointer : Specify which variables block will be included with this model block

• id variables : Name the variables block; helpful when there are multiple

5.2.3 data import capabilities

Description
empty

Related Topics

Related Keywords

5.2.4 dakota output

Description
empty

Related Topics

Related Keywords
• graphics : Display a 2D graphics window of variables and responses

• output precision : Control the output precision

• results output : (Experimental) Write a summary file containing the final results

• results output file : The base file name of the results file

• tabular data : Write a tabular results file with variable and response history

76 CHAPTER 5. TOPICS AREA

• tabular data file : File name for tabular data output

• output : Control how much method information is written to the screen and output file

5.2.5 file formats

Description
See sections ”Inputs to Dakota” and ”Outputs from Dakota” in the Dakota User’s Manual[4].

Related Topics

Related Keywords
• annotated : Selects annotated tabular file format

• custom annotated : Selects custom-annotated tabular file format

• freeform : Selects freeform file format

• annotated : Selects annotated tabular file format

• custom annotated : Selects custom-annotated tabular file format

• freeform : Selects freeform file format

• annotated : Selects annotated tabular file format

• custom annotated : Selects custom-annotated tabular file format

• freeform : Selects freeform file format

• aprepro : Write parameters files in APREPRO syntax

• aprepro : Write parameters files in APREPRO syntax

• annotated : Selects annotated tabular file format

• custom annotated : Selects custom-annotated tabular file format

• freeform : Selects freeform file format

• active only : Import only active variables from tabular data file

• annotated : Selects annotated tabular file format

• custom annotated : Selects custom-annotated tabular file format

• freeform : Selects freeform file format

• annotated : Selects annotated tabular file format

• custom annotated : Selects custom-annotated tabular file format

• freeform : Selects freeform file format

• active only : Import only active variables from tabular data file

5.2. DAKOTA IO 77

• annotated : Selects annotated tabular file format

• custom annotated : Selects custom-annotated tabular file format

• freeform : Selects freeform file format

• annotated : Selects annotated tabular file format

• custom annotated : Selects custom-annotated tabular file format

• freeform : Selects freeform file format

• active only : Import only active variables from tabular data file

• annotated : Selects annotated tabular file format

• custom annotated : Selects custom-annotated tabular file format

• freeform : Selects freeform file format

• annotated : Selects annotated tabular file format

• custom annotated : Selects custom-annotated tabular file format

• freeform : Selects freeform file format

• active only : Import only active variables from tabular data file

• annotated : Selects annotated tabular file format

• custom annotated : Selects custom-annotated tabular file format

• freeform : Selects freeform file format

• annotated : Selects annotated tabular file format

• custom annotated : Selects custom-annotated tabular file format

• freeform : Selects freeform file format

• active only : Import only active variables from tabular data file

• annotated : Selects annotated tabular file format

• custom annotated : Selects custom-annotated tabular file format

• freeform : Selects freeform file format

• annotated : Selects annotated tabular file format

• custom annotated : Selects custom-annotated tabular file format

• freeform : Selects freeform file format

• active only : Import only active variables from tabular data file

• annotated : Selects annotated tabular file format

• custom annotated : Selects custom-annotated tabular file format

78 CHAPTER 5. TOPICS AREA

• freeform : Selects freeform file format

• annotated : Selects annotated tabular file format

• custom annotated : Selects custom-annotated tabular file format

• freeform : Selects freeform file format

• active only : Import only active variables from tabular data file

• annotated : Selects annotated tabular file format

• custom annotated : Selects custom-annotated tabular file format

• freeform : Selects freeform file format

• annotated : Selects annotated tabular file format

• custom annotated : Selects custom-annotated tabular file format

• freeform : Selects freeform file format

• active only : Import only active variables from tabular data file

• annotated : Selects annotated tabular file format

• custom annotated : Selects custom-annotated tabular file format

• freeform : Selects freeform file format

• annotated : Selects annotated tabular file format

• custom annotated : Selects custom-annotated tabular file format

• freeform : Selects freeform file format

• active only : Import only active variables from tabular data file

• annotated : Selects annotated tabular file format

• custom annotated : Selects custom-annotated tabular file format

• freeform : Selects freeform file format

• annotated : Selects annotated tabular file format

• custom annotated : Selects custom-annotated tabular file format

• freeform : Selects freeform file format

• active only : Import only active variables from tabular data file

• annotated : Selects annotated tabular file format

• custom annotated : Selects custom-annotated tabular file format

• freeform : Selects freeform file format

• annotated : Selects annotated tabular file format

5.2. DAKOTA IO 79

• custom annotated : Selects custom-annotated tabular file format

• freeform : Selects freeform file format

• active only : Import only active variables from tabular data file

• annotated : Selects annotated tabular file format

• custom annotated : Selects custom-annotated tabular file format

• freeform : Selects freeform file format

• active only : Import only active variables from tabular data file

• annotated : Selects annotated tabular file format

• custom annotated : Selects custom-annotated tabular file format

• freeform : Selects freeform file format

• active only : Import only active variables from tabular data file

• annotated : Selects annotated tabular file format

• custom annotated : Selects custom-annotated tabular file format

• freeform : Selects freeform file format

• annotated : Selects annotated tabular file format

• custom annotated : Selects custom-annotated tabular file format

• freeform : Selects freeform file format

• active only : Import only active variables from tabular data file

• annotated : Selects annotated tabular file format

• custom annotated : Selects custom-annotated tabular file format

• freeform : Selects freeform file format

• annotated : Selects annotated tabular file format

• custom annotated : Selects custom-annotated tabular file format

• freeform : Selects freeform file format

• active only : Import only active variables from tabular data file

• annotated : Selects annotated tabular file format

• custom annotated : Selects custom-annotated tabular file format

• freeform : Selects freeform file format

• annotated : Selects annotated tabular file format

• custom annotated : Selects custom-annotated tabular file format

80 CHAPTER 5. TOPICS AREA

• freeform : Selects freeform file format

• active only : Import only active variables from tabular data file

• annotated : Selects annotated tabular file format

• custom annotated : Selects custom-annotated tabular file format

• freeform : Selects freeform file format

• annotated : Selects annotated tabular file format for experiment data

• custom annotated : Selects custom-annotated tabular file format for experiment data

• freeform : Selects free-form tabular file format for experiment data

• annotated : Selects annotated tabular file format for experiment data

• custom annotated : Selects custom-annotated tabular file format for experiment data

• freeform : Selects free-form tabular file format for experiment data

5.3 dakota concepts

Description
Miscallaneous concepts related to Dakota operation

Related Topics
• method independent controls

• block

• strategies

• command line options

• restarts

• pointers

Related Keywords

5.3.1 method independent controls

Description
The <method independent controls> are those controls which are valid for a variety of methods. In
some cases, these controls are abstractions which may have slightly different implementations from one method
to the next. While each of these controls is not valid for every method, the controls are valid for enough methods
that it was reasonable to consolidate the specifications.

Related Topics
• linear constraints

5.3. DAKOTA CONCEPTS 81

Related Keywords
• constraint tolerance : The maximum allowable value of constraint violation still considered to be feasible

• convergence tolerance : Stopping criterion based on convergence of the objective function

• final solutions : Number of designs returned as the best solutions

• id method : Name the method block; helpful when there are multiple

• max function evaluations : Stopping criteria based on number of function evaluations

• max iterations : Stopping criteria based on number of iterations

• output : Control how much method information is written to the screen and output file

• scaling : Turn on scaling for variables, responses, and constraints

• speculative : Compute speculative gradients

5.3.2 linear constraints

Description
Many methods use linear equality or inequality constraints.

Related Topics

Related Keywords
• linear equality constraint matrix : Define coefficients of the linear equalities

• linear equality scale types : Specify how each linear equality constraint is scaled

• linear equality scales : Define the characteristic values to scale linear equalities

• linear equality targets : Define target values for the linear equality constraints

• linear inequality constraint matrix : Define coefficients of the linear inequality constraints

• linear inequality lower bounds : Define lower bounds for the linear inequality constraint

• linear inequality scale types : Specify how each linear inequality constraint is scaled

• linear inequality scales : Define the characteristic values to scale linear inequalities

• linear inequality upper bounds : Define upper bounds for the linear inequality constraint

• linear equality constraint matrix : Define coefficients of the linear equalities

• linear equality scale types : Specify how each linear equality constraint is scaled

• linear equality scales : Define the characteristic values to scale linear equalities

• linear equality targets : Define target values for the linear equality constraints

• linear inequality constraint matrix : Define coefficients of the linear inequality constraints

82 CHAPTER 5. TOPICS AREA

• linear inequality lower bounds : Define lower bounds for the linear inequality constraint

• linear inequality scale types : Specify how each linear inequality constraint is scaled

• linear inequality scales : Define the characteristic values to scale linear inequalities

• linear inequality upper bounds : Define upper bounds for the linear inequality constraint

• linear equality constraint matrix : Define coefficients of the linear equalities

• linear equality scale types : Specify how each linear equality constraint is scaled

• linear equality scales : Define the characteristic values to scale linear equalities

• linear equality targets : Define target values for the linear equality constraints

• linear inequality constraint matrix : Define coefficients of the linear inequality constraints

• linear inequality lower bounds : Define lower bounds for the linear inequality constraint

• linear inequality scale types : Specify how each linear inequality constraint is scaled

• linear inequality scales : Define the characteristic values to scale linear inequalities

• linear inequality upper bounds : Define upper bounds for the linear inequality constraint

• linear equality constraint matrix : Define coefficients of the linear equalities

• linear equality scale types : Specify how each linear equality constraint is scaled

• linear equality scales : Define the characteristic values to scale linear equalities

• linear equality targets : Define target values for the linear equality constraints

• linear inequality constraint matrix : Define coefficients of the linear inequality constraints

• linear inequality lower bounds : Define lower bounds for the linear inequality constraint

• linear inequality scale types : Specify how each linear inequality constraint is scaled

• linear inequality scales : Define the characteristic values to scale linear inequalities

• linear inequality upper bounds : Define upper bounds for the linear inequality constraint

• linear equality constraint matrix : Define coefficients of the linear equalities

• linear equality scale types : Specify how each linear equality constraint is scaled

• linear equality scales : Define the characteristic values to scale linear equalities

• linear equality targets : Define target values for the linear equality constraints

• linear inequality constraint matrix : Define coefficients of the linear inequality constraints

• linear inequality lower bounds : Define lower bounds for the linear inequality constraint

• linear inequality scale types : Specify how each linear inequality constraint is scaled

• linear inequality scales : Define the characteristic values to scale linear inequalities

5.3. DAKOTA CONCEPTS 83

• linear inequality upper bounds : Define upper bounds for the linear inequality constraint

• linear equality constraint matrix : Define coefficients of the linear equalities

• linear equality scale types : Specify how each linear equality constraint is scaled

• linear equality scales : Define the characteristic values to scale linear equalities

• linear equality targets : Define target values for the linear equality constraints

• linear inequality constraint matrix : Define coefficients of the linear inequality constraints

• linear inequality lower bounds : Define lower bounds for the linear inequality constraint

• linear inequality scale types : Specify how each linear inequality constraint is scaled

• linear inequality scales : Define the characteristic values to scale linear inequalities

• linear inequality upper bounds : Define upper bounds for the linear inequality constraint

• linear equality constraint matrix : Define coefficients of the linear equalities

• linear equality scale types : Specify how each linear equality constraint is scaled

• linear equality scales : Define the characteristic values to scale linear equalities

• linear equality targets : Define target values for the linear equality constraints

• linear inequality constraint matrix : Define coefficients of the linear inequality constraints

• linear inequality lower bounds : Define lower bounds for the linear inequality constraint

• linear inequality scale types : Specify how each linear inequality constraint is scaled

• linear inequality scales : Define the characteristic values to scale linear inequalities

• linear inequality upper bounds : Define upper bounds for the linear inequality constraint

• linear equality constraint matrix : Define coefficients of the linear equalities

• linear equality scale types : Specify how each linear equality constraint is scaled

• linear equality scales : Define the characteristic values to scale linear equalities

• linear equality targets : Define target values for the linear equality constraints

• linear inequality constraint matrix : Define coefficients of the linear inequality constraints

• linear inequality lower bounds : Define lower bounds for the linear inequality constraint

• linear inequality scale types : Specify how each linear inequality constraint is scaled

• linear inequality scales : Define the characteristic values to scale linear inequalities

• linear inequality upper bounds : Define upper bounds for the linear inequality constraint

• linear equality constraint matrix : Define coefficients of the linear equalities

• linear equality scale types : Specify how each linear equality constraint is scaled

84 CHAPTER 5. TOPICS AREA

• linear equality scales : Define the characteristic values to scale linear equalities

• linear equality targets : Define target values for the linear equality constraints

• linear inequality constraint matrix : Define coefficients of the linear inequality constraints

• linear inequality lower bounds : Define lower bounds for the linear inequality constraint

• linear inequality scale types : Specify how each linear inequality constraint is scaled

• linear inequality scales : Define the characteristic values to scale linear inequalities

• linear inequality upper bounds : Define upper bounds for the linear inequality constraint

• linear equality constraint matrix : Define coefficients of the linear equalities

• linear equality scale types : Specify how each linear equality constraint is scaled

• linear equality scales : Define the characteristic values to scale linear equalities

• linear equality targets : Define target values for the linear equality constraints

• linear inequality constraint matrix : Define coefficients of the linear inequality constraints

• linear inequality lower bounds : Define lower bounds for the linear inequality constraint

• linear inequality scale types : Specify how each linear inequality constraint is scaled

• linear inequality scales : Define the characteristic values to scale linear inequalities

• linear inequality upper bounds : Define upper bounds for the linear inequality constraint

• linear equality constraint matrix : Define coefficients of the linear equalities

• linear equality scale types : Specify how each linear equality constraint is scaled

• linear equality scales : Define the characteristic values to scale linear equalities

• linear equality targets : Define target values for the linear equality constraints

• linear inequality constraint matrix : Define coefficients of the linear inequality constraints

• linear inequality lower bounds : Define lower bounds for the linear inequality constraint

• linear inequality scale types : Specify how each linear inequality constraint is scaled

• linear inequality scales : Define the characteristic values to scale linear inequalities

• linear inequality upper bounds : Define upper bounds for the linear inequality constraint

• linear equality constraint matrix : Define coefficients of the linear equalities

• linear equality scale types : Specify how each linear equality constraint is scaled

• linear equality scales : Define the characteristic values to scale linear equalities

• linear equality targets : Define target values for the linear equality constraints

• linear inequality constraint matrix : Define coefficients of the linear inequality constraints

5.3. DAKOTA CONCEPTS 85

• linear inequality lower bounds : Define lower bounds for the linear inequality constraint

• linear inequality scale types : Specify how each linear inequality constraint is scaled

• linear inequality scales : Define the characteristic values to scale linear inequalities

• linear inequality upper bounds : Define upper bounds for the linear inequality constraint

• linear equality constraint matrix : Define coefficients of the linear equalities

• linear equality scale types : Specify how each linear equality constraint is scaled

• linear equality scales : Define the characteristic values to scale linear equalities

• linear equality targets : Define target values for the linear equality constraints

• linear inequality constraint matrix : Define coefficients of the linear inequality constraints

• linear inequality lower bounds : Define lower bounds for the linear inequality constraint

• linear inequality scale types : Specify how each linear inequality constraint is scaled

• linear inequality scales : Define the characteristic values to scale linear inequalities

• linear inequality upper bounds : Define upper bounds for the linear inequality constraint

• linear equality constraint matrix : Define coefficients of the linear equalities

• linear equality scale types : Specify how each linear equality constraint is scaled

• linear equality scales : Define the characteristic values to scale linear equalities

• linear equality targets : Define target values for the linear equality constraints

• linear inequality constraint matrix : Define coefficients of the linear inequality constraints

• linear inequality lower bounds : Define lower bounds for the linear inequality constraint

• linear inequality scale types : Specify how each linear inequality constraint is scaled

• linear inequality scales : Define the characteristic values to scale linear inequalities

• linear inequality upper bounds : Define upper bounds for the linear inequality constraint

• linear equality constraint matrix : Define coefficients of the linear equalities

• linear equality scale types : Specify how each linear equality constraint is scaled

• linear equality scales : Define the characteristic values to scale linear equalities

• linear equality targets : Define target values for the linear equality constraints

• linear inequality constraint matrix : Define coefficients of the linear inequality constraints

• linear inequality lower bounds : Define lower bounds for the linear inequality constraint

• linear inequality scale types : Specify how each linear inequality constraint is scaled

• linear inequality scales : Define the characteristic values to scale linear inequalities

86 CHAPTER 5. TOPICS AREA

• linear inequality upper bounds : Define upper bounds for the linear inequality constraint

• linear equality constraint matrix : Define coefficients of the linear equalities

• linear equality scale types : Specify how each linear equality constraint is scaled

• linear equality scales : Define the characteristic values to scale linear equalities

• linear equality targets : Define target values for the linear equality constraints

• linear inequality constraint matrix : Define coefficients of the linear inequality constraints

• linear inequality lower bounds : Define lower bounds for the linear inequality constraint

• linear inequality scale types : Specify how each linear inequality constraint is scaled

• linear inequality scales : Define the characteristic values to scale linear inequalities

• linear inequality upper bounds : Define upper bounds for the linear inequality constraint

• linear equality constraint matrix : Define coefficients of the linear equalities

• linear equality scale types : Specify how each linear equality constraint is scaled

• linear equality scales : Define the characteristic values to scale linear equalities

• linear equality targets : Define target values for the linear equality constraints

• linear inequality constraint matrix : Define coefficients of the linear inequality constraints

• linear inequality lower bounds : Define lower bounds for the linear inequality constraint

• linear inequality scale types : Specify how each linear inequality constraint is scaled

• linear inequality scales : Define the characteristic values to scale linear inequalities

• linear inequality upper bounds : Define upper bounds for the linear inequality constraint

• linear equality constraint matrix : Define coefficients of the linear equalities

• linear equality scale types : Specify how each linear equality constraint is scaled

• linear equality scales : Define the characteristic values to scale linear equalities

• linear equality targets : Define target values for the linear equality constraints

• linear inequality constraint matrix : Define coefficients of the linear inequality constraints

• linear inequality lower bounds : Define lower bounds for the linear inequality constraint

• linear inequality scale types : Specify how each linear inequality constraint is scaled

• linear inequality scales : Define the characteristic values to scale linear inequalities

• linear inequality upper bounds : Define upper bounds for the linear inequality constraint

• linear equality constraint matrix : Define coefficients of the linear equalities

• linear equality scale types : Specify how each linear equality constraint is scaled

5.3. DAKOTA CONCEPTS 87

• linear equality scales : Define the characteristic values to scale linear equalities

• linear equality targets : Define target values for the linear equality constraints

• linear inequality constraint matrix : Define coefficients of the linear inequality constraints

• linear inequality lower bounds : Define lower bounds for the linear inequality constraint

• linear inequality scale types : Specify how each linear inequality constraint is scaled

• linear inequality scales : Define the characteristic values to scale linear inequalities

• linear inequality upper bounds : Define upper bounds for the linear inequality constraint

• linear equality constraint matrix : Define coefficients of the linear equalities

• linear equality scale types : Specify how each linear equality constraint is scaled

• linear equality scales : Define the characteristic values to scale linear equalities

• linear equality targets : Define target values for the linear equality constraints

• linear inequality constraint matrix : Define coefficients of the linear inequality constraints

• linear inequality lower bounds : Define lower bounds for the linear inequality constraint

• linear inequality scale types : Specify how each linear inequality constraint is scaled

• linear inequality scales : Define the characteristic values to scale linear inequalities

• linear inequality upper bounds : Define upper bounds for the linear inequality constraint

• linear equality constraint matrix : Define coefficients of the linear equalities

• linear equality scale types : Specify how each linear equality constraint is scaled

• linear equality scales : Define the characteristic values to scale linear equalities

• linear equality targets : Define target values for the linear equality constraints

• linear inequality constraint matrix : Define coefficients of the linear inequality constraints

• linear inequality lower bounds : Define lower bounds for the linear inequality constraint

• linear inequality scale types : Specify how each linear inequality constraint is scaled

• linear inequality scales : Define the characteristic values to scale linear inequalities

• linear inequality upper bounds : Define upper bounds for the linear inequality constraint

• linear equality constraint matrix : Define coefficients of the linear equalities

• linear equality scale types : Specify how each linear equality constraint is scaled

• linear equality scales : Define the characteristic values to scale linear equalities

• linear equality targets : Define target values for the linear equality constraints

• linear inequality constraint matrix : Define coefficients of the linear inequality constraints

88 CHAPTER 5. TOPICS AREA

• linear inequality lower bounds : Define lower bounds for the linear inequality constraint

• linear inequality scale types : Specify how each linear inequality constraint is scaled

• linear inequality scales : Define the characteristic values to scale linear inequalities

• linear inequality upper bounds : Define upper bounds for the linear inequality constraint

• linear equality constraint matrix : Define coefficients of the linear equalities

• linear equality scale types : Specify how each linear equality constraint is scaled

• linear equality scales : Define the characteristic values to scale linear equalities

• linear equality targets : Define target values for the linear equality constraints

• linear inequality constraint matrix : Define coefficients of the linear inequality constraints

• linear inequality lower bounds : Define lower bounds for the linear inequality constraint

• linear inequality scale types : Specify how each linear inequality constraint is scaled

• linear inequality scales : Define the characteristic values to scale linear inequalities

• linear inequality upper bounds : Define upper bounds for the linear inequality constraint

• linear equality constraint matrix : Define coefficients of the linear equalities

• linear equality scale types : Specify how each linear equality constraint is scaled

• linear equality scales : Define the characteristic values to scale linear equalities

• linear equality targets : Define target values for the linear equality constraints

• linear inequality constraint matrix : Define coefficients of the linear inequality constraints

• linear inequality lower bounds : Define lower bounds for the linear inequality constraint

• linear inequality scale types : Specify how each linear inequality constraint is scaled

• linear inequality scales : Define the characteristic values to scale linear inequalities

• linear inequality upper bounds : Define upper bounds for the linear inequality constraint

5.3.3 block

Description
A block is the highest level of keyword organization in Dakota. There are currently 6 blocks in the Dakota input
spec:

Related Topics
• block identifier

• block pointer

5.3. DAKOTA CONCEPTS 89

Related Keywords
• environment : Top-level settings for Dakota execution

• interface : Specifies how function evaluations will be performed in order to map the variables into the
responses.

• method : Begins Dakota method selection and behavioral settings.

• model : Specifies how variables are mapped into a set of responses

• responses : Description of the model output data returned to Dakota upon evaluation of an interface.

• variables : Specifies the parameter set to be iterated by a particular method.

block identifier

Description
empty

Related Topics

Related Keywords
• id interface : Name the interface block; helpful when there are multiple

• id method : Name the method block; helpful when there are multiple

• id model : Give the model block an identifying name, in case of multiple model blocks

• id responses : Name the response block, helpful when there are multiple

block pointer

Description
See block pointer for details about pointers.

Related Topics

Related Keywords
• top method pointer : Identify which method leads the Dakota study

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

90 CHAPTER 5. TOPICS AREA

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer list : Associate models with method names

• method pointer list : Pointers to methods to execute sequantially or collaboratively

• global model pointer : Pointer to model used by global method

• global method pointer : Pointer to global method

• local model pointer : Pointer to model used by local method

5.3. DAKOTA CONCEPTS 91

• local method pointer : Pointer to local method

• model pointer list : Associate models with method names

• method pointer list : Pointers to methods to execute sequantially or collaboratively

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• method pointer : Pointer to sub-method to run from each starting point

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• method pointer : Pointer to optimization or least-squares sub-method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

92 CHAPTER 5. TOPICS AREA

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• method pointer : Pointer to sub-method to apply to surrogate

• model pointer : Identifier for model block to be used by a method

• method pointer : Pointer to sub-method to apply to surrogate

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• optional interface pointer : Pointer to interface that provides non-nested responses

• optional interface responses pointer : Pointer to responses block that defines non-nested responses

• sub method pointer : The sub method pointer specifies the method block for the sub-iterator

• responses pointer : Specify which reponses block will be used by this model block

• interface pointer : Interface block pointer for the single model type

• dace method pointer : Specify a method to gather training data

• high fidelity model pointer : Pointer to high fidelity model

• low fidelity model pointer : Pointer to low fidelity model

• actual model pointer : Pointer to specify a ”truth” model, from which to construct a surrogate

• actual model pointer : Pointer to specify a ”truth” model, from which to construct a surrogate

• variables pointer : Specify which variables block will be included with this model block

• id variables : Name the variables block; helpful when there are multiple

5.3.4 strategies

Description

empty

Related Topics

• advanced strategies

5.3. DAKOTA CONCEPTS 93

Related Keywords

5.3.5 advanced strategies

Description
empty

Related Topics

Related Keywords

5.3.6 command line options

Description
empty

Related Topics

Related Keywords
• check : Invoke Dakota in input check mode

• error file : Base filename for error redirection

• output file : Base filename for output redirection

• post run : Invoke Dakota with post-run mode active

• pre run : Invoke Dakota with pre-run mode active

• read restart : Base filename for restart file read

• run : Invoke Dakota with run mode active

• write restart : Base filename for restart file write

5.3.7 restarts

Description
empty

Related Topics

Related Keywords

5.3.8 pointers

Description
For all pointer specifications, if a pointer string is specified and no corresponding id string is available, Dakota
will exit with an error message.

If the pointer is optional and no pointer string is specified, then the last specification parsed will be used.
It is appropriate to omit optional cross-referencing whenever the relationships are unambiguous due to the

presence of only one specification.

94 CHAPTER 5. TOPICS AREA

Related Topics
• block pointer

• objective function pointer

Related Keywords

5.3.9 block pointer

Description
See block pointer for details about pointers.

Related Topics

Related Keywords
• top method pointer : Identify which method leads the Dakota study

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

5.3. DAKOTA CONCEPTS 95

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer list : Associate models with method names

• method pointer list : Pointers to methods to execute sequantially or collaboratively

• global model pointer : Pointer to model used by global method

• global method pointer : Pointer to global method

• local model pointer : Pointer to model used by local method

• local method pointer : Pointer to local method

• model pointer list : Associate models with method names

• method pointer list : Pointers to methods to execute sequantially or collaboratively

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• method pointer : Pointer to sub-method to run from each starting point

• model pointer : Identifier for model block to be used by a method

96 CHAPTER 5. TOPICS AREA

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• method pointer : Pointer to optimization or least-squares sub-method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• method pointer : Pointer to sub-method to apply to surrogate

• model pointer : Identifier for model block to be used by a method

• method pointer : Pointer to sub-method to apply to surrogate

• model pointer : Identifier for model block to be used by a method

• model pointer : Identifier for model block to be used by a method

• optional interface pointer : Pointer to interface that provides non-nested responses

• optional interface responses pointer : Pointer to responses block that defines non-nested responses

• sub method pointer : The sub method pointer specifies the method block for the sub-iterator

5.4. MODELS 97

• responses pointer : Specify which reponses block will be used by this model block

• interface pointer : Interface block pointer for the single model type

• dace method pointer : Specify a method to gather training data

• high fidelity model pointer : Pointer to high fidelity model

• low fidelity model pointer : Pointer to low fidelity model

• actual model pointer : Pointer to specify a ”truth” model, from which to construct a surrogate

• actual model pointer : Pointer to specify a ”truth” model, from which to construct a surrogate

• variables pointer : Specify which variables block will be included with this model block

• id variables : Name the variables block; helpful when there are multiple

5.3.10 objective function pointer

Description
See block pointer for details about pointers.

Related Topics

Related Keywords
• id analytic gradients : Identify which analytical gradient corresponds to which response

• id numerical gradients : Identify which numerical gradient corresponds to which response

• id analytic hessians : Identify which analytical Hessian corresponds to which response

• id numerical hessians : Identify which numerical-Hessian corresponds to which response

• id quasi hessians : Identify which quasi-Hessian corresponds to which response

5.4 models

Description
Keywords and Concepts relating to the model block

Related Topics
• surrogate models

• recast models

• multifidelity models

• reduced order models

• nested models

• advanced model recursion

98 CHAPTER 5. TOPICS AREA

Related Keywords

5.4.1 surrogate models

Description

empty

Related Topics

• surrogate based optimization methods

Related Keywords

• point selection : Enable greedy selection of well-spaced build points

• export model file : Export surrogate to Surfpack model file

• export model file : Export surrogate to Surfpack model file

• metrics : Compute surrogate quality metrics

• cross validation : Perform k-fold cross validation

• export model file : Export surrogate to Surfpack model file

• export model file : Export surrogate to Surfpack model file

• max nodes : Maximum number of hidden layer nodes

• random weight : (Inactive) Random weight control

• range : Range for neural network random weights

• export model file : Export surrogate to Surfpack model file

• bases : Initial number of radial basis functions

• export model file : Export surrogate to Surfpack model file

• max pts : Maximum number of RBF CVT points

• max subsets : Number of trial RBF subsets

• min partition : (Inactive) Minimum RBF partition

• reuse points : Surrogate model training data reuse control

5.4.2 surrogate based optimization methods

Description

empty

5.4. MODELS 99

Related Topics

Related Keywords
• efficient global : Global Surrogate Based Optimization, a.k.a. EGO

• surrogate based global : Global Surrogate Based Optimization

• surrogate based local : Local Surrogate Based Optimization

5.4.3 recast models

Description
empty

Related Topics

Related Keywords

5.4.4 multifidelity models

Description
empty

Related Topics

Related Keywords

5.4.5 reduced order models

Description
empty

Related Topics

Related Keywords

5.4.6 nested models

Description
empty

Related Topics

Related Keywords

5.4.7 advanced model recursion

Description
empty

100 CHAPTER 5. TOPICS AREA

Related Topics

• hybrid and recursions logic

Related Keywords

hybrid and recursions logic

Description

empty

Related Topics

Related Keywords

5.5 variables

Description

Keywords and concepts relating to the variables block

Related Topics

• variable domain

• variable type

Related Keywords

5.5.1 variable domain

Description

Dakota variables can be grouped by their valid domains.

1. Mixed: continuous and discrete variables are treated separately

2. Relaxed: noncategorical discrete variables are relaxed and treated as continuous variables (categorical vari-
ables are non-relaxable and remain discrete)

Refer to mixed and relaxed for additional information.

Related Topics

• continuous variables

• discrete variables

5.5. VARIABLES 101

Related Keywords

5.5.2 continuous variables

Description
This page collects information related to the topic of continuous design, uncertain, and state variables.

Related Topics

Related Keywords
• beta uncertain : Aleatory uncertain variable - beta

• continuous design : Continuous design variables; each defined by a real interval

• continuous interval uncertain : Epistemic uncertain variable - values from one or more continuous intervals

• continuous state : Continuous state variables

• exponential uncertain : Aleatory uncertain variable - exponential

• frechet uncertain : Aleatory uncertain variable - Frechet

• gamma uncertain : Aleatory uncertain variable - gamma

• gumbel uncertain : Aleatory uncertain variable - gumbel

• histogram bin uncertain : Aleatory uncertain variable - continuous histogram

• lognormal uncertain : Aleatory uncertain variable - lognormal

• loguniform uncertain : Aleatory uncertain variable - loguniform

• normal uncertain : Aleatory uncertain variable - normal (Gaussian)

• triangular uncertain : Aleatory uncertain variable - triangular

• uniform uncertain : Aleatory uncertain variable - uniform

• weibull uncertain : Aleatory uncertain variable - Weibull

5.5.3 discrete variables

Description
This page discusses discrete design, uncertain, and state variables (which have discrete in their keyword name)
as they have similar specifications. These include:

1. Integer ranges

2. Sets of integers

3. Sets of reals

4. Sets of strings and each is described below.

102 CHAPTER 5. TOPICS AREA

In addition, some aleatory uncertain variables, e.g., binomial uncertain, are discrete integer-valued random
variables specified using parameters. These are described on their individual keyword pages.

Sets
Sets of integers, reals, and strings have similar specifications, though different value types.
The variables are specified using three keywords:

• Variable declaration keyword - specifies the number of variables being defined

• elements per variable - a list of positive integers specifying how many set members each variable
admits

– Length = # of variables

• elements - a list of the permissible integer values in ALL sets, concatenated together.

– Length = sum of elements per variable, or an integer multiple of number of variables

– The order is very important here.

– The list is partitioned according to the values of elements per variable, and each partition is
assigned to a variable.

• The ordering of elements per variable, and the partitions of elements must match the strings
from descriptors

For string variables, each string element value must be quoted and may contain alphanumeric, dash, under-
score, and colon. White space, quote characters, and backslash/metacharacters are not permitted.

Examples are given on the pages:

• discrete design set integer

• discrete design set real

• discrete design set string

• discrete uncertain set integer

• discrete uncertain set real

• discrete uncertain set string

Range
For discrete variables defined by range(s), the lower bounds and upper bounds restrict the permisible

values. For design variables, this constrains the feasible design space and is frequently used to prevent nonphysical
designs. This is a discrete interval variable that may take any integer value within bounds (e.g., [1, 4], allowing
values of 1, 2, 3, or 4). For some variable types, each variable is can be defined by multiple ranges.

Examples are given on the pages:

• discrete interval uncertain

5.5. VARIABLES 103

Related Topics

Related Keywords

• binomial uncertain : Aleatory uncertain discrete variable - binomial

• discrete design range : Discrete design variables; each defined by an integer interval

• discrete design set : Set-valued discrete design variables

• integer : Integer-valued discrete design variables

• real : Real-valued discrete design variables

• string : String-valued discrete design set variables

• discrete interval uncertain : Epistemic uncertain variable - values from one or more discrete intervals

• discrete state range : Discrete state variables; each defined by an integer interval

• discrete state set : Set-valued discrete state variables

• integer : Discrete state variables, each defined by a set of permissible integers

• real : Discrete state variables, each defined by a set of permissible real numbers

• string : String-valued discrete state set variables

• discrete uncertain set : Set-valued discrete uncertain variables

• integer : Discrete, epistemic uncertain variable - integers within a set

• real : Discrete, epistemic uncertain variable - real numbers within a set

• string : Discrete, epistemic uncertain variable - strings within a set

• geometric uncertain : Aleatory uncertain discrete variable - geometric

• histogram point uncertain : Aleatory uncertain variable - discrete histogram

• hypergeometric uncertain : Aleatory uncertain discrete variable - hypergeometric

• negative binomial uncertain : Aleatory uncertain discrete variable - negative binomial

• poisson uncertain : Aleatory uncertain discrete variable - Poisson

5.5.4 variable type

Description

Dakota variables can be grouped by their type, including all, design, uncertain, aleatory, epistemic,
or state. There are certain situations where the user may want to explicitly control the subset of variables that is
considered active for a certain Dakota method, and override the default alignments between methods and variable
types. Refer to active for additional information.

104 CHAPTER 5. TOPICS AREA

Related Topics
• design variables

• aleatory uncertain variables

• epistemic uncertain variables

• state variables

Related Keywords

5.5.5 design variables

Description
Design variables are those variables which are modified for the purposes of computing an optimal design.

The most common type of design variables encountered in engineering applications are of the continuous type.
These variables may assume any real value within their bounds. All but a handful of the optimization algorithms
in Dakota support continuous design variables exclusively.

Related Topics

Related Keywords
• continuous design : Continuous design variables; each defined by a real interval

• discrete design range : Discrete design variables; each defined by an integer interval

• discrete design set : Set-valued discrete design variables

• integer : Integer-valued discrete design variables

• real : Real-valued discrete design variables

• string : String-valued discrete design set variables

5.5.6 aleatory uncertain variables

Description
Aleatory uncertainty is also known as inherent variability, irreducible uncertainty, or randomness.

Aleatory uncertainty is predominantly charaterized using probability theory. This is the only option imple-
mented in Dakota.

Related Topics

Related Keywords
• beta uncertain : Aleatory uncertain variable - beta

• binomial uncertain : Aleatory uncertain discrete variable - binomial

• exponential uncertain : Aleatory uncertain variable - exponential

5.5. VARIABLES 105

• frechet uncertain : Aleatory uncertain variable - Frechet

• gamma uncertain : Aleatory uncertain variable - gamma

• geometric uncertain : Aleatory uncertain discrete variable - geometric

• gumbel uncertain : Aleatory uncertain variable - gumbel

• histogram bin uncertain : Aleatory uncertain variable - continuous histogram

• histogram point uncertain : Aleatory uncertain variable - discrete histogram

• hypergeometric uncertain : Aleatory uncertain discrete variable - hypergeometric

• lognormal uncertain : Aleatory uncertain variable - lognormal

• loguniform uncertain : Aleatory uncertain variable - loguniform

• negative binomial uncertain : Aleatory uncertain discrete variable - negative binomial

• normal uncertain : Aleatory uncertain variable - normal (Gaussian)

• poisson uncertain : Aleatory uncertain discrete variable - Poisson

• triangular uncertain : Aleatory uncertain variable - triangular

• uniform uncertain : Aleatory uncertain variable - uniform

• weibull uncertain : Aleatory uncertain variable - Weibull

5.5.7 epistemic uncertain variables

Description
Epistemic uncertainty is uncertainty due to lack of knowledge.

In Dakota, epistemic uncertainty is characterized by interval analysis or the Dempster-Shafer theory of evi-
dence.

Note that epistemic uncertainty can also be modeled with probability density functions - similarly to aleatory
uncertainty Dakota does not support this capability.

Related Topics

Related Keywords
• continuous interval uncertain : Epistemic uncertain variable - values from one or more continuous intervals

• discrete interval uncertain : Epistemic uncertain variable - values from one or more discrete intervals

• discrete uncertain set : Set-valued discrete uncertain variables

• integer : Discrete, epistemic uncertain variable - integers within a set

• real : Discrete, epistemic uncertain variable - real numbers within a set

• string : Discrete, epistemic uncertain variable - strings within a set

106 CHAPTER 5. TOPICS AREA

5.5.8 state variables

Description
State variables provide a convenient mechanism for managing additional model parameterizations such as mesh
density, simulation convergence tolerances, and time step controls.

Only parameter studies and design of experiments methods will iterate on state variables.
The initial state is used as the only value for the state variable for all other methods, unless active

state is invoked.
If a method iterates on a state variable, the variable is treated as a design variable with the given bounds, or as

a uniform uncertain variable with the given bounds.
If the state variable is defined only by its bounds, and the method does NOT iterate on state variables, then the

initial state must be inferred.

Related Topics

Related Keywords
• continuous state : Continuous state variables

• discrete state range : Discrete state variables; each defined by an integer interval

• discrete state set : Set-valued discrete state variables

• integer : Discrete state variables, each defined by a set of permissible integers

• real : Discrete state variables, each defined by a set of permissible real numbers

• string : String-valued discrete state set variables

5.6 responses

Description
Keywords and concepts relating to the responses block

Related Topics
• response types

Related Keywords

5.6.1 response types

Description
The specification must be one of three types:

1. objective and constraint functions

2. calibration (least squares) terms and constraint functions

3. a generic response functions specification.

5.7. INTERFACE 107

These correspond to (a) optimization, (b) deterministic (least squares) or stochastic (Bayesian) inversion, and
(c) general-purpose analyzer methods such as parameter studies, DACE, and UQ methods, respectively. Refer to
responses for additional details and examples.

Related Topics

Related Keywords

5.7 interface

Description

Keywords and Concepts relating to the interface block, which is used to connect Dakota to external analysis
codes (simulations, etc.)

Related Topics

• simulation file management

• workflow management

• advanced simulation interfaces

Related Keywords

5.7.1 simulation file management

Description

empty

Related Topics

Related Keywords

5.7.2 workflow management

Description

empty

Related Topics

Related Keywords

5.7.3 advanced simulation interfaces

Description

empty

108 CHAPTER 5. TOPICS AREA

Related Topics
• simulation failure

• concurrency and parallelism

Related Keywords
simulation failure

Description
empty

Related Topics

Related Keywords
concurrency and parallelism

Description
empty

Related Topics

Related Keywords
• processors per analysis : Specify the number of processors per analysis when Dakota is run in parallel

• analysis scheduling : Specify the scheduling of concurrent analyses when Dakota is run in parallel

• master : Specify a dedicated master partition for parallel analysis scheduling

• peer : Specify a peer partition for parallel analysis scheduling

• analysis servers : Specify the number of analysis servers when Dakota is run in parallel

• asynchronous : Specify analysis driver concurrency, when Dakota is run in serial

• analysis concurrency : Limit the number of analysis drivers within an evaluation that Dakota will schedule

• evaluation concurrency : Determine how many concurrent evaluations Dakota will schedule

• local evaluation scheduling : Control how local asynchronous jobs are scheduled

• master : Specify a dedicated master partition for parallel evaluation scheduling

• peer : Specify a peer partition for parallel evaluation scheduling

• dynamic : Specify dynamic scheduling in a peer partition when Dakota is run in parallel.

• static : Specify static scheduling in a peer partition when Dakota is run in parallel.

• evaluation servers : Specify the number of evaluation servers when Dakota is run in parallel

• processors per evaluation : Specify the number of processors per evaluation server when Dakota is run in
parallel

5.8. METHODS 109

• iterator scheduling : Specify the scheduling of concurrent iterators when Dakota is run in parallel

• master : Specify a dedicated master partition for parallel iterator scheduling

• peer : Specify a peer partition for parallel iterator scheduling

• iterator servers : Specify the number of iterator servers when Dakota is run in parallel

• processors per iterator : Specify the number of processors per iterator server when Dakota is run in parallel

• iterator scheduling : Specify the scheduling of concurrent iterators when Dakota is run in parallel

• master : Specify a dedicated master partition for parallel iterator scheduling

• peer : Specify a peer partition for parallel iterator scheduling

• iterator servers : Specify the number of iterator servers when Dakota is run in parallel

• processors per iterator : Specify the number of processors per iterator server when Dakota is run in parallel

• iterator scheduling : Specify the scheduling of concurrent iterators when Dakota is run in parallel

• master : Specify a dedicated master partition for parallel iterator scheduling

• peer : Specify a peer partition for parallel iterator scheduling

• iterator servers : Specify the number of iterator servers when Dakota is run in parallel

• processors per iterator : Specify the number of processors per iterator server when Dakota is run in parallel

• iterator scheduling : Specify the scheduling of concurrent iterators when Dakota is run in parallel

• master : Specify a dedicated master partition for parallel iterator scheduling

• peer : Specify a peer partition for parallel iterator scheduling

• iterator servers : Specify the number of iterator servers when Dakota is run in parallel

• processors per iterator : Specify the number of processors per iterator server when Dakota is run in parallel

5.8 methods

Description
Keywords and Concepts relating to the method block, including discussion of the different methods and algo-
rithms availabe in Dakota

Related Topics
• parameter studies

• sensitivity analysis and design of experiments

• uncertainty quantification

• optimization and calibration

110 CHAPTER 5. TOPICS AREA

Related Keywords

5.8.1 parameter studies

Description
Parameter studies employ deterministic designs to explore the effect of parametric changes within simulation
models, yielding one form of sensitivity analysis. They can help assess simulation characteristics such as smooth-
ness, multi-modality, robustness, and nonlinearity, which affect the choice of algorithms and controls in follow-on
optimization and UQ studies.

Dakota’s parameter study methods compute response data sets at a selection of points in the parameter space.
These points may be specified as a vector, a list, a set of centered vectors, or a multi-dimensional grid. Capability
overviews and examples of the different types of parameter studies are provided in the Users Manual [4].

With the exception of output verbosity (a setting of silent will suppress some parameter study diagnostic
output), Dakota’s parameter study methods do not make use of the method independent controls. Therefore, the
parameter study documentation which follows is limited to the method dependent controls for the vector, list,
centered, and multidimensional parameter study methods.

Related Topics

Related Keywords
• centered parameter study : Samples variables along points moving out from a center point

• list parameter study : Samples variables as a specified values

• multidim parameter study : Samples variables on full factorial grid of study points

• partitions : Samples variables on full factorial grid of study points

• vector parameter study : Samples variables along a user-defined vector

5.8.2 sensitivity analysis and design of experiments

Description
empty

Related Topics
• design and analysis of computer experiments

• sampling

Related Keywords

5.8.3 design and analysis of computer experiments

Description
Design and Analysis of Computer Experiments (DACE) methods compute response data sets at a selection of
points in the parameter space. Three libraries are provided for performing these studies: DDACE, FSUDace,
and PSUADE. The design of experiments methods do not currently make use of any of the method independent
controls.

5.8. METHODS 111

Related Topics

Related Keywords

• dace : Design and Analysis of Computer Experiments

• fsu cvt : Design of Computer Experiments - Centroidal Voronoi Tessellation

• fsu quasi mc : Design of Computer Experiments - Quasi-Monte Carlo sampling

• hammersley : Use Hammersley sequences

• psuade moat : Morris One-at-a-Time

5.8.4 sampling

Description

Sampling techniques are selected using the sampling method selection. This method generates sets of samples
according to the probability distributions of the uncertain variables and maps them into corresponding sets of
response functions, where the number of samples is specified by the samples integer specification. Means,
standard deviations, coefficients of variation (COVs), and 95% confidence intervals are computed for the response
functions. Probabilities and reliabilities may be computed for response levels specifications, and response
levels may be computed for either probability levels or reliability levels specifications (refer
to the Method Commands chapter in the Dakota Reference Manual[5] for additional information).

Currently, traditional Monte Carlo (MC) and Latin hypercube sampling (LHS) are supported by Dakota and
are chosen by specifying sample type as random or lhs. In Monte Carlo sampling, the samples are selected
randomly according to the user-specified probability distributions. Latin hypercube sampling is a stratified sam-
pling technique for which the range of each uncertain variable is divided into Ns segments of equal probability,
where Ns is the number of samples requested. The relative lengths of the segments are determined by the nature
of the specified probability distribution (e.g., uniform has segments of equal width, normal has small segments
near the mean and larger segments in the tails). For each of the uncertain variables, a sample is selected randomly
from each of these equal probability segments. These Ns values for each of the individual parameters are then
combined in a shuffling operation to create a set of Ns parameter vectors with a specified correlation structure.
A feature of the resulting sample set is that every row and column in the hypercube of partitions has exactly one
sample. Since the total number of samples is exactly equal to the number of partitions used for each uncertain
variable, an arbitrary number of desired samples is easily accommodated (as compared to less flexible approaches
in which the total number of samples is a product or exponential function of the number of intervals for each
variable, i.e., many classical design of experiments methods).

Advantages of sampling-based methods include their relatively simple implementation and their independence
from the scientific disciplines involved in the analysis. The main drawback of these techniques is the large number
of function evaluations needed to generate converged statistics, which can render such an analysis computationally
very expensive, if not intractable, for real-world engineering applications. LHS techniques, in general, require
fewer samples than traditional Monte Carlo for the same accuracy in statistics, but they still can be prohibitively
expensive. For further information on the method and its relationship to other sampling techniques, one is referred
to the works by McKay, et al.[59], Iman and Shortencarier[53], and Helton and Davis[46]. Note that under certain
separability conditions associated with the function to be sampled, Latin hypercube sampling provides a more
accurate estimate of the mean value than does random sampling. That is, given an equal number of samples, the
LHS estimate of the mean will have less variance than the mean value obtained through random sampling.

112 CHAPTER 5. TOPICS AREA

Related Topics

Related Keywords

• importance sampling : Importance sampling

• sampling : Randomly samples variables according to their distributions

5.8.5 uncertainty quantification

Description

Dakota provides a variety of methods for propagating both aleatory and epistemic uncertainty.
At a high level, uncertainty quantification (UQ) or nondeterministic analysis is the process of characteriz-

ing input uncertainties, forward propagating these uncertainties through a computational model, and performing
statistical or interval assessments on the resulting responses. This process determines the effect of uncertainties
and assumptions on model outputs or results. In Dakota, uncertainty quantification methods specifically focus on
the forward propagation part of the process, where probabilistic or interval information on parametric inputs are
mapped through the computational model to assess statistics or intervals on outputs. For an overview of these
approaches for engineering applications, consult[42].

UQ is related to sensitivity analysis in that the common goal is to gain an understanding of how variations in
the parameters affect the response functions of the engineering design problem. However, for UQ, some or all
of the components of the parameter vector, are considered to be uncertain as specified by particular probability
distributions (e.g., normal, exponential, extreme value), or other uncertainty structures. By assigning specific
distributional structure to the inputs, distributional structure for the outputs (i.e, response statistics) can be inferred.
This migrates from an analysis that is more {qualitative} in nature, in the case of sensitivity analysis, to an analysis
that is more rigorously {quantitative}.

UQ methods are often distinguished by their ability to propagate aleatory or epistemic input uncertainty char-
acterizations, where aleatory uncertainties are irreducible variabilities inherent in nature and epistemic uncertain-
ties are reducible uncertainties resulting from a lack of knowledge. Since sufficient data is generally available
for aleatory uncertainties, probabilistic methods are commonly used for computing response distribution statistics
based on input probability distribution specifications. Conversely, for epistemic uncertainties, any use of proba-
bility distributions is based on subjective knowledge rather than objective data, and we may alternatively explore
nonprobabilistic methods based on interval specifications.

Dakota contains capabilities for performing nondeterministic analysis with both types of input uncertainty.
These UQ methods have been developed by Sandia Labs, in conjunction with collaborators in academia[31],[32],[21],[79].

The aleatory UQ methods in Dakota include various sampling-based approaches (e.g., Monte Carlo and Latin
Hypercube sampling), local and global reliability methods, and stochastic expansion (polynomial chaos expan-
sions and stochastic collocation) approaches. The epistemic UQ methods include local and global interval analysis
and Dempster-Shafer evidence theory. These are summarized below and then described in more depth in subse-
quent sections of this chapter. Dakota additionally supports mixed aleatory/epistemic UQ via interval-valued
probability, second-order probability, and Dempster-Shafer theory of evidence. These involve advanced model
recursions and are described in Section.

Dakota contains capabilities for performing nondeterministic analysis with both types of input uncertainty.
These UQ methods have been developed by Sandia Labs, in conjunction with collaborators in academia[31],[32],[21],[79].

The aleatory UQ methods in Dakota include various sampling-based approaches (e.g., Monte Carlo and Latin
Hypercube sampling), local and global reliability methods, and stochastic expansion (polynomial chaos expan-
sions and stochastic collocation) approaches. The epistemic UQ methods include local and global interval analysis
and Dempster-Shafer evidence theory. These are summarized below and then described in more depth in subse-
quent sections of this chapter. Dakota additionally supports mixed aleatory/epistemic UQ via interval-valued

5.8. METHODS 113

probability, second-order probability, and Dempster-Shafer theory of evidence. These involve advanced model
recursions and are described in Section.

The choice of uncertainty quantification method depends on how the input uncertainty is characterized, the
computational budget, and the desired output accuracy. The recommendations for UQ methods are summarized
in Tableand are discussed in the remainder of the section.

TODO: Put table in Doxygen if still needed

Related Topics
• aleatory uncertainty quantification methods

• epistemic uncertainty quantification methods

• variable support

Related Keywords
• adaptive sampling : (Experimental) Build a GP surrogate and refine it adaptively

• efficient subspace : (Experimental) efficient subspace method (ESM)

• global interval est : Interval analysis using global optimization methods

• global reliability : Global reliability methods

• gpais : Gaussian Process Adaptive Importance Sampling

• importance sampling : Importance sampling

• local interval est : Interval analysis using local optimization

• local reliability : Local reliability method

• mpp search : Specify which MPP search option to use

• pof darts : Probability-of-Failure (POF) darts is a novel method for estimating the probability of failure
based on random sphere-packing.

• sampling : Randomly samples variables according to their distributions

5.8.6 aleatory uncertainty quantification methods

Description
Aleatory uncertainty is also known as inherent variability, irreducible uncertainty, or randomness.

Aleatory uncertainty is typically charaterized using probability theory.

Related Topics
• sampling

• reliability methods

• stochastic expansion methods

114 CHAPTER 5. TOPICS AREA

Related Keywords

• importance sampling : Importance sampling

sampling

Description

Sampling techniques are selected using the sampling method selection. This method generates sets of samples
according to the probability distributions of the uncertain variables and maps them into corresponding sets of
response functions, where the number of samples is specified by the samples integer specification. Means,
standard deviations, coefficients of variation (COVs), and 95% confidence intervals are computed for the response
functions. Probabilities and reliabilities may be computed for response levels specifications, and response
levels may be computed for either probability levels or reliability levels specifications (refer
to the Method Commands chapter in the Dakota Reference Manual[5] for additional information).

Currently, traditional Monte Carlo (MC) and Latin hypercube sampling (LHS) are supported by Dakota and
are chosen by specifying sample type as random or lhs. In Monte Carlo sampling, the samples are selected
randomly according to the user-specified probability distributions. Latin hypercube sampling is a stratified sam-
pling technique for which the range of each uncertain variable is divided into Ns segments of equal probability,
where Ns is the number of samples requested. The relative lengths of the segments are determined by the nature
of the specified probability distribution (e.g., uniform has segments of equal width, normal has small segments
near the mean and larger segments in the tails). For each of the uncertain variables, a sample is selected randomly
from each of these equal probability segments. These Ns values for each of the individual parameters are then
combined in a shuffling operation to create a set of Ns parameter vectors with a specified correlation structure.
A feature of the resulting sample set is that every row and column in the hypercube of partitions has exactly one
sample. Since the total number of samples is exactly equal to the number of partitions used for each uncertain
variable, an arbitrary number of desired samples is easily accommodated (as compared to less flexible approaches
in which the total number of samples is a product or exponential function of the number of intervals for each
variable, i.e., many classical design of experiments methods).

Advantages of sampling-based methods include their relatively simple implementation and their independence
from the scientific disciplines involved in the analysis. The main drawback of these techniques is the large number
of function evaluations needed to generate converged statistics, which can render such an analysis computationally
very expensive, if not intractable, for real-world engineering applications. LHS techniques, in general, require
fewer samples than traditional Monte Carlo for the same accuracy in statistics, but they still can be prohibitively
expensive. For further information on the method and its relationship to other sampling techniques, one is referred
to the works by McKay, et al.[59], Iman and Shortencarier[53], and Helton and Davis[46]. Note that under certain
separability conditions associated with the function to be sampled, Latin hypercube sampling provides a more
accurate estimate of the mean value than does random sampling. That is, given an equal number of samples, the
LHS estimate of the mean will have less variance than the mean value obtained through random sampling.

Related Topics

Related Keywords

• importance sampling : Importance sampling

• sampling : Randomly samples variables according to their distributions

5.8. METHODS 115

reliability methods

Description

Reliability methods provide an alternative approach to uncertainty quantification which can be less computa-
tionally demanding than sampling techniques. Reliability methods for uncertainty quantification are based on
probabilistic approaches that compute approximate response function distribution statistics based on specified un-
certain variable distributions. These response statistics include response mean, response standard deviation, and
cumulative or complementary cumulative distribution functions (CDF/CCDF). These methods are often more ef-
ficient at computing statistics in the tails of the response distributions (events with low probability) than sampling
based approaches since the number of samples required to resolve a low probability can be prohibitive.

The methods all answer the fundamental question: “Given a set of uncertain input variables, X, and a scalar
response function, g, what is the probability that the response function is below or above a certain level, z̄?” The
former can be written as P [g(X) ≤ z̄] = Fg(z̄) where Fg(z̄) is the cumulative distribution function (CDF) of the
uncertain response g(X) over a set of response levels. The latter can be written as P [g(X) > z̄] and defines the
complementary cumulative distribution function (CCDF).

This probability calculation involves a multi-dimensional integral over an irregularly shaped domain of inter-
est, D, where g(X) < z as displayed in Figure figUQ05 for the case of two variables. The reliability methods
all involve the transformation of the user-specified uncertain variables, X, with probability density function,
p(x1, x2), which can be non-normal and correlated, to a space of independent Gaussian random variables, u,
possessing a mean value of zero and unit variance (i.e., standard normal variables). The region of interest, D, is
also mapped to the transformed space to yield, Du , where g(U) < z as shown in Figure figUQ06. The Nataf
transformation[17], which is identical to the Rosenblatt transformation[72] in the case of independent random
variables, is used in Dakota to accomplish this mapping. This transformation is performed to make the probability
calculation more tractable. In the transformed space, probability contours are circular in nature as shown in Figure
figUQ06 unlike in the original uncertain variable space, Figure figUQ05 . Also, the multi-dimensional integrals
can be approximated by simple functions of a single parameter, β, called the reliability index. β is the minimum
Euclidean distance from the origin in the transformed space to the response surface. This point is also known as
the most probable point (MPP) of failure. Note, however, the methodology is equally applicable for generic func-
tions, not simply those corresponding to failure criteria; this nomenclature is due to the origin of these methods
within the disciplines of structural safety and reliability. Note that there are local and global reliability methods.
The majority of the methods available are local, meaning that a local optimization formulation is used to locate
one MPP. In contrast, global methods can find multiple MPPs if they exist.

Related Topics

Related Keywords

• global reliability : Global reliability methods

• u gaussian process : Create GP surrogate in u-space

• x gaussian process : Create GP surrogate in x-space

• local reliability : Local reliability method

• mpp search : Specify which MPP search option to use

• integration : Integration approach

• first order : First-order integration scheme

116 CHAPTER 5. TOPICS AREA

• probability refinement : Allow refinement of probability and generalized reliability results using impor-
tance sampling

• second order : Second-order integration scheme

• no approx : Perform MPP search on original response functions (use no approximation)

• u taylor mean : Form Taylor series approximation in ”u-space” at variable means

• u taylor mpp : U-space Taylor series approximation with iterative updates

• u two point : Predict MPP using Two-point Adaptive Nonlinear Approximation in ”u-space”

• x taylor mean : Form Taylor series approximation in ”x-space” at variable means

• x taylor mpp : X-space Taylor series approximation with iterative updates

• x two point : Predict MPP using Two-point Adaptive Nonlinear Approximation in ”x-space”

• probability refinement : Allow refinement of probability and generalized reliability results using impor-
tance sampling

• probability refinement : Allow refinement of probability and generalized reliability results using impor-
tance sampling

stochastic expansion methods

Description
The development of these techniques mirrors that of deterministic finite element analysis utilizing the notions of
projection, orthogonality, and weak convergence[31],[32]. Rather than estimating point probabilities, they form an
approximation to the functional relationship between response functions and their random inputs, which provides
a more complete uncertainty representation for use in multi-code simulations. Expansion methods include polyno-
mial chaos expansions (PCE), which employ multivariate orthogonal polynomials that are tailored to representing
particular input probability distributions, and stochastic collocation (SC), which employs multivariate interpola-
tion polynomials. For PCE, expansion coefficients may be evaluated using a spectral projection approach (based
on sampling, tensor-product quadrature, Smolyak sparse grid, or cubature methods for numerical integration) or a
regression approach (least squares or compressive sensing). For SC, interpolants are formed over tensor-product
or sparse grids and may be local or global, value-based or gradient-enhanced, and nodal or hierarchical. In global
value-based cases (Lagrange polynomials), the barycentric formulation is used[10],[56],[49] to improve numeri-
cal efficiency and stability. Both sets of methods provide analytic response moments and variance-based metrics;
however, CDF/CCDF probabilities are evaluated numerically by sampling on the expansion.

Related Topics

Related Keywords

5.8.7 epistemic uncertainty quantification methods

Description
Epistemic uncertainty is uncertainty due to lack of knowledge.

In Dakota, epistemic uncertainty analysis is performed using interval analysis or Dempster-Shafer theory of
evidence.

Note that epistemic uncertainty can also be modeled probabilistically. It would be more accurate to call this
class of method, non-probabilistic uncertainty quantification, but the name persists for historical reasons.

5.8. METHODS 117

Related Topics
• interval estimation

• evidence theory

Related Keywords
• global evidence : Evidence theory with evidence measures computed with global optimization methods

• global interval est : Interval analysis using global optimization methods

• local evidence : Evidence theory with evidence measures computed with local optimization methods

• local interval est : Interval analysis using local optimization

interval estimation

Description
In interval analysis, one assumes that nothing is known about an epistemic uncertain variable except that its value
lies somewhere within an interval. In this situation, it is NOT assumed that the value has a uniform probability
of occuring within the interval. Instead, the interpretation is that any value within the interval is a possible value
or a potential realization of that variable. In interval analysis, the uncertainty quantification problem is one of
determining the resulting bounds on the output (defining the output interval) given interval bounds on the inputs.
Again, any output response that falls within the output interval is a possible output with no frequency information
assigned to it.

We have the capability to perform interval analysis using either global interval est or local -
interval est. In the global approach, one uses either a global optimization method or a sampling method to
assess the bounds. global interval est allows the user to specify either lhs, which performs Latin Hyper-
cube Sampling and takes the minimum and maximum of the samples as the bounds (no optimization is performed)
or ego. In the case of ego, the efficient global optimization method is used to calculate bounds. The ego method
is described in Section . If the problem is amenable to local optimization methods (e.g. can provide derivatives
or use finite difference method to calculate derivatives), then one can use local methods to calculate these bounds.
local interval est allows the user to specify either sqp which is sequential quadratic programming, or
nip which is a nonlinear interior point method.

Note that when performing interval analysis, it is necessary to define interval uncertain variables as described
in Section . For interval analysis, one must define only one interval per input variable, in contrast with Dempster-
Shafer evidence theory, where an input can have several possible intervals. Interval analysis can be considered a
special case of Dempster-Shafer evidence theory where each input is defined by one input interval with a basic
probability assignment of one. In Dakota, however, the methods are separate and semantic differences exist in
the output presentation. If you are performing a pure interval analysis, we recommend using either global -
interval est or local interval est instead of global evidence or local evidence, for rea-
sons of simplicity. An example of interval estimation is found in the Dakota/examples/users/cantilever-
uq global interval.in, and also in Section .

Note that we have kept separate implementations of interval analysis and Dempster-Shafer evidence the-
ory because our users often want to couple interval analysis on an outer loop’’ with an aleatory,
probabilistic analysis on aninner loop” for nested, second-order probability calculations. See Sec-
tion for additional details on these nested approaches. These interval methods can also be used as the outer loop
within an interval-valued probability analysis for propagating mixed aleatory and epistemic uncertainty – refer to
Section for additional details.

118 CHAPTER 5. TOPICS AREA

Interval analysis is often used to model epistemic uncertainty. In interval analysis, the uncertainty quantifica-
tion problem is one of determining the resulting bounds on the output (defining the output interval) given interval
bounds on the inputs.

We can do interval analysis using either %global interval est or local interval est. In the
global approach, one uses either a global optimization method or a sampling method to assess the bounds, whereas
the local method uses gradient information in a derivative-based optimization approach.

An example of interval estimation is shown in Figure , with example results in Figure . This example is
a demonstration of calculating interval bounds for three outputs of the cantilever beam problem. The cantilever
beam problem is described in detail in Section . Given input intervals of [1,10] on beam width and beam thickness,
we can see that the interval estimate of beam weight is approximately [1,100].

:examples:interval out

--
Min and Max estimated values for each response function:
weight: Min = 1.0000169352e+00 Max = 9.9999491948e+01
stress: Min = -9.7749994284e-01 Max = 2.1499428450e+01
displ: Min = -9.9315672724e-01 Max = 6.7429714485e+01

Related Topics

Related Keywords
• global interval est : Interval analysis using global optimization methods

• local interval est : Interval analysis using local optimization

evidence theory

Description
This section discusses Dempster-Shafer evidence theory. In this approach, one does not assign a probability
distribution to each uncertain input variable. Rather, one divides each uncertain input variable into one or more
intervals. The input parameters are only known to occur within intervals: nothing more is assumed.

Each interval is defined by its upper and lower bounds, and a Basic Probability Assignment (BPA) associated
with that interval. The BPA represents a probability of that uncertain variable being located within that interval.

The intervals and BPAs are used to construct uncertainty measures on the outputs called ”belief” and ”plau-
sibility.” Belief represents the smallest possible probability that is consistent with the evidence, while plausibility
represents the largest possible probability that is consistent with the evidence. For more information about the
Dempster-Shafer theory of evidence, see [66] and[47].

Similar to the interval approaches, one may use global or local methods to determine plausbility and belief
measures for the outputs.

Usage Notes
Note that to calculate the plausibility and belief cumulative distribution functions, one has to look at all

combinations of intervals for the uncertain variables. Within each interval cell combination, the minimum and
maximum value of the objective function determine the belief and plausibility, respectively. In terms of imple-
mentation, global methods use LHS sampling or global optimization to calculate the minimum and maximum
values of the objective function within each interval cell, while local methods use gradient-based optimization
methods to calculate these minima and maxima.

Finally, note that many non-deterministic keywords apply to the evidence methods, but one needs to be careful
about the interpretation and translate probabilistic measures to epistemic ones. For example, if the user specifies
distribution of type complementary, a complementary plausibility and belief function will be generated for the

5.8. METHODS 119

evidence methods (as opposed to a complementary distribution function in the sampling case). If the user spec-
ifies a set of responses levels, both the belief and plausibility will be calculated for each response level. Likewise,
if the user specifies a probability level, the probability level will be interpreted both as a belief and plausibility,
and response levels corresponding to the belief and plausibility levels will be calculated. Finally, if generalized re-
liability levels are specified, either as inputs (gen reliability levels) or outputs (response levels
with compute gen reliabilities), then these are directly converted to/from probability levels and the
same probability-based mappings described above are performed.

Related Topics

Related Keywords
• global evidence : Evidence theory with evidence measures computed with global optimization methods

• local evidence : Evidence theory with evidence measures computed with local optimization methods

5.8.8 variable support

Description
Different nondeterministic methods have differing support for uncertain variable distributions. Tables 5.37, 5.38,
and 5.39 summarize the uncertain variables that are available for use by the different methods, where a ”-” indi-
cates that the distribution is not supported by the method, a ”U” means the uncertain input variables of this type
must be uncorrelated, a ”C” denotes that correlations are supported involving uncertain input variables of this
type, and an ”A” means the appropriate variables must be specified as active in the variables specification block.
For example, if one wants to support sampling or a stochastic expansion method over both continuous uncertain
and continuous state variables, the specification active all must be listed in the variables specification block.
Additional notes include:

• we have four variants for stochastic expansions (SE), listed as Wiener, Askey, Extended, and Piecewise
which draw from different sets of basis polynomials. The term stochastic expansion indicates polynomial
chaos and stochastic collocation collectively, although the Piecewise option is only currently supported for
stochastic collocation. Refer to polynomial chaos and stoch collocation for additional information on these
three options.

• methods supporting the epistemic interval distributions have differing approaches: sampling and the lhs
option of global interval est model the interval basic probability assignments (BPAs) as continu-
ous histogram bin distributions for purposes of generating samples; local interval est and the ego
option of global interval est ignore the BPA details and models these variables as simple bounded
regions defined by the cell extremes; and local evidence and global evidence model the interval
specifications as true BPAs.

Related Topics

Related Keywords

5.8.9 optimization and calibration

Description
Optimization algorithms work to minimize (or maximize) an objective function, typically calculated by the user
simulation code, subject to constraints on design variables and responses. Available approaches in Dakota include

120 CHAPTER 5. TOPICS AREA

well-tested, proven gradient-based, derivative-free local, and global methods for use in science and engineering
design applications. Dakota also offers more advanced algorithms, e.g., to manage multi-objective optimization or
perform surrogate-based minimization. This chapter summarizes optimization problem formulation, standard al-
gorithms available in Dakota (mostly through included third-party libraries, see Section 6.5 of[4]), some advanced
capabilities, and offers usage guidelines.

Optimization Formulations

This section provides a basic introduction to the mathematical formulation of optimization, problems. The primary
goal of this section is to introduce terms relating to these topics, and is not intended to be a description of theory
or numerical algorithms. For further details, consult[8] ,[34],[41],[65], and [84].

A general optimization problem is formulated as follows:

minimize: f(x)
x ∈ <n

subject to: gL ≤ g(x) ≤ gU
h(x) = ht (5.1)
aL ≤ Aix ≤ aU
Aex = at
xL ≤ x ≤ xU

where vector and matrix terms are marked in bold typeface. In this formulation, x = [x1, x2, . . . , xn] is an
n-dimensional vector of real-valued design variables or design parameters. The n-dimensional vectors, xL and
xU , are the lower and upper bounds, respectively, on the design parameters. These bounds define the allowable
values for the elements of x, and the set of all allowable values is termed the design space or the parameter space.
A design point or a sample point is a particular set of values within the parameter space.

The optimization goal is to minimize the objective function, f(x), while satisfying the constraints. Constraints
can be categorized as either linear or nonlinear and as either inequality or equality. The nonlinear inequality
constraints}, g(x), are “2-sided,” in that they have both lower and upper bounds, gL and gU , respectively. The
nonlinear equality constraints, h(x), have target values specified by ht. The linear inequality constraints create
a linear system Aix, where Ai is the coefficient matrix for the linear system. These constraints are also 2-sided
as they have lower and upper bounds, aL and aU , respectively. The linear equality constraints create a linear
system Aex, where Ae is the coefficient matrix for the linear system and at are the target values. The constraints
partition the parameter space into feasible and infeasible regions. A design point is said to be feasible if and only
if it satisfies all of the constraints. Correspondingly, a design point is said to be infeasible if it violates one or
more of the constraints.

Many different methods exist to solve the optimization problem given in Section 6.1 of[4], all of which iterate
on x in some manner. That is, an initial value for each parameter in x is chosen, the response quantities, f(x),
g(x), h(x), are computed, often by running a simulation, and some algorithm is applied to generate a new x that
will either reduce the objective function, reduce the amount of infeasibility, or both. To facilitate a general presen-
tation of these methods, three criteria will be used in the following discussion to differentiate them: optimization
problem type, search goal, and search method.

The optimization problem type can be characterized both by the types of constraints present in the problem
and by the linearity or nonlinearity of the objective and constraint functions. For constraint categorization, a hi-
erarchy of complexity exists for optimization algorithms, ranging from simple bound constraints, through linear
constraints, to full nonlinear constraints. By the nature of this increasing complexity, optimization problem cat-
egorizations are inclusive of all constraint types up to a particular level of complexity. That is, an unconstrained

5.8. METHODS 121

problem has no constraints, a bound-constrained problem has only lower and upper bounds on the design pa-
rameters, a linearly-constrained problem has both linear and bound constraints, and a nonlinearly-constrained
problem may contain the full range of nonlinear, linear, and bound constraints. If all of the linear and nonlinear
constraints are equality constraints, then this is referred to as an equality-constrained problem, and if all of the
linear and nonlinear constraints are inequality constraints, then this is referred to as an inequality-constrained
problem. Further categorizations can be made based on the linearity of the objective and constraint functions. A
problem where the objective function and all constraints are linear is called a linear programming (LP) problem.
These types of problems commonly arise in scheduling, logistics, and resource allocation applications. Likewise,
a problem where at least some of the objective and constraint functions are nonlinear is called a nonlinear pro-
gramming (NLP) problem. These NLP problems predominate in engineering applications and are the primary
focus of Dakota.

The search goal refers to the ultimate objective of the optimization algorithm, i.e., either global or local
optimization. In global optimization, the goal is to find the design point that gives the lowest feasible objective
function value over the entire parameter space. In contrast, in local optimization, the goal is to find a design point
that is lowest relative to a “nearby” region of the parameter space. In almost all cases, global optimization will be
more computationally expensive than local optimization. Thus, the user must choose an optimization algorithm
with an appropriate search scope that best fits the problem goals and the computational budget.

The search method refers to the approach taken in the optimization algorithm to locate a new design point
that has a lower objective function or is more feasible than the current design point. The search method can be
classified as either gradient-based or nongradient-based. In a gradient-based algorithm, gradients of the response
functions are computed to find the direction of improvement. Gradient-based optimization is the search method
that underlies many efficient local optimization methods. However, a drawback to this approach is that gradients
can be computationally expensive, inaccurate, or even nonexistent. In such situations, nongradient-based search
methods may be useful. There are numerous approaches to nongradient-based optimization. Some of the more
well known of these include pattern search methods (nongradient-based local techniques) and genetic algorithms
(nongradient-based global techniques).

Because of the computational cost of running simulation models, surrogate-based optimization (SBO) meth-
ods are often used to reduce the number of actual simulation runs. In SBO, a surrogate or approximate model is
constructed based on a limited number of simulation runs. The optimization is then performed on the surrogate
model. Dakota has an extensive framework for managing a variety of local, multipoint, global, and hierarchical
surrogates for use in optimization. Finally, sometimes there are multiple objectives that one may want to optimize
simultaneously instead of a single scalar objective. In this case, one may employ multi-objective methods that are
described in Section 6.3.1 of[4].

This overview of optimization approaches underscores that no single optimization method or algorithm works
best for all types of optimization problems. Section 6.4 of[4] offers guidelines for choosing a Dakota optimization
algorithm best matched to your specific optimization problem.

Constraint Considerations Dakota’s input commands permit the user to specify two-sided nonlinear inequality
constraints of the form gLi ≤ gi(x) ≤ gUi , as well as nonlinear equality constraints of the form hj(x) = htj .
Some optimizers (e.g., npsol , optpp , soga, and moga methods) can handle these constraint forms di-
rectly, whereas other optimizers (e.g., asynch pattern search, dot , and conmin , mesh adaptive-
search) require Dakota to perform an internal conversion of all constraints to one-sided inequality constraints

of the form gi(x) ≤ 0. In the latter case, the two-sided inequality constraints are treated as gi(x) − gUi ≤ 0
and gLi − gi(x) ≤ 0 and the equality constraints are treated as hj(x) − htj ≤ 0 and htj − hj(x) ≤ 0. The
situation is similar for linear constraints: asynch pattern search, npsol , optpp , soga, and moga
methods support them directly, whereas dot and conmin methods do not. For linear inequalities of the form
aLi ≤ aTi x ≤ aUi and linear equalities of the form aTi x = atj , the nonlinear constraint arrays in dot and
conmin methods are further augmented to include aTi x − aUi ≤ 0 and aLi − aTi x ≤ 0 in the inequality
case and aTi x − atj ≤ 0 and atj − aTi x ≤ 0 in the equality case. Awareness of these constraint augmenta-

122 CHAPTER 5. TOPICS AREA

tion procedures can be important for understanding the diagnostic data returned from the dot and conmin
methods. Other optimizers fall somewhere in between. nlpql methods support nonlinear equality constraints
hj(x) = 0 and nonlinear one-sided inequalities gi(x) ≥ 0, but does not natively support linear constraints. Con-
straint mappings are used with NLPQL for both linear and nonlinear cases. Most coliny methods now support
two-sided nonlinear inequality constraints and nonlinear constraints with targets, but do not natively support linear
constraints.

When gradient and Hessian information is used in the optimization, derivative components are most com-
monly computed with respect to the active continuous variables, which in this case are the continuous design
variables. This differs from parameter study methods (for which all continuous variables are active) and from
nondeterministic analysis methods (for which the uncertain variables are active). Refer to Chapter 11 of[4] for
additional information on derivative components and active continuous variables.

Optimizing with Dakota: Choosing a Method

This section summarizes the optimization methods available in Dakota. We group them according to search
method and search goal and establish their relevance to types of problems. For a summary of this discussion, see
Section 6.4 of[4].

Gradient-Based Local Methods Gradient-based optimizers are best suited for efficient navigation to a local
minimum in the vicinity of the initial point. They are not intended to find global optima in nonconvex design
spaces. For global optimization methods, see Section 6.2.3 of[4]. Gradient-based optimization methods are
highly efficient, with the best convergence rates of all of the local optimization methods, and are the methods of
choice when the problem is smooth, unimodal, and well-behaved. However, these methods can be among the least
robust when a problem exhibits nonsmooth, discontinuous, or multimodal behavior. The derivative-free methods
described in Section 6.2.2 of[4] are more appropriate for problems with these characteristics.

Gradient accuracy is a critical factor for gradient-based optimizers, as inaccurate derivatives will often lead to
failures in the search or pre-mature termination of the method. Analytic gradients and Hessians are ideal but often
unavailable. If analytic gradient and Hessian information can be provided by an application code, a full Newton
method will achieve quadratic convergence rates near the solution. If only gradient information is available and
the Hessian information is approximated from an accumulation of gradient data, the superlinear convergence rates
can be obtained. It is most often the case for engineering applications, however, that a finite difference method
will be used by the optimization algorithm to estimate gradient values. Dakota allows the user to select the step
size for these calculations, as well as choose between forward-difference and central-difference algorithms. The
finite difference step size should be selected as small as possible, to allow for local accuracy and convergence, but
not so small that the steps are “in the noise.” This requires an assessment of the local smoothness of the response
functions using, for example, a parameter study method. Central differencing will generally produce more reliable
gradients than forward differencing but at roughly twice the expense.

Gradient-based methods for nonlinear optimization problems can be described as iterative processes in which
a sequence of subproblems, usually which involve an approximation to the full nonlinear problem, are solved until
the solution converges to a local optimum of the full problem. The optimization methods available in Dakota fall
into several categories, each of which is characterized by the nature of the subproblems solved at each iteration.

Related Topics
• local optimization methods

• global optimization methods

• bayesian calibration

• nonlinear least squares

5.8. METHODS 123

• advanced optimization

Related Keywords
• dl solver : (Experimental) Dynamically-loaded solver

5.8.10 local optimization methods

Description
empty

Related Topics
• unconstrained

• constrained

• sequential quadratic programming

Related Keywords
• coliny cobyla : Constrained Optimization BY Linear Approximations (COBYLA)

• nlpql sqp : Sequential Quadratic Program

• nonlinear cg : (Experimental) nonlinear conjugate gradient optimization

• npsol sqp : Sequential Quadratic Program

• optpp cg : A conjugate gradient optimization method

• optpp fd newton : Finite Difference Newton optimization method

• optpp g newton : Newton method based least-squares calbration

• optpp newton : Newton method based optimization

• optpp q newton : Quasi-Newton optimization method

unconstrained

Description
empty

Related Topics

Related Keywords
constrained

Description
empty

124 CHAPTER 5. TOPICS AREA

Related Topics

Related Keywords
• coliny cobyla : Constrained Optimization BY Linear Approximations (COBYLA)

sequential quadratic programming

Description
Sequential Quadratic Programming (SQP) algorithms are a class of mathematical programming problems used to
solve nonlinear optimization problems with nonlinera constraints. These methods are a generalization of Newton’s
method: each iteration involves minimizing a quadratic model of the problem. These subproblems are formulated
as minimizing a quadratic approximation of the Lagrangian subject to linearized constraints. Only gradient infor-
mation is required; Hessians are approximated by low-rank updates defined by the step taken at each iteration. It
is important to note that while the solution found by an SQP method will respect the constraints, the intermediate
iterates may not. SQP methods available in Dakota are dot sqp, nlpql sqp, nlssol sqp, and npsol -
sqp. The particular implementation in nlpql sqp uses a variant with distributed and non-monotone line search.
Thus, this variant is designed to be more robust in the presence of inaccurate or noisy gradients common in many
engineering applications.

Related Topics

Related Keywords
• nlpql sqp : Sequential Quadratic Program

• nlssol sqp : Sequential Quadratic Program for nonlinear least squares

• npsol sqp : Sequential Quadratic Program

5.8.11 global optimization methods

Description
empty

Related Topics

Related Keywords
• asynch pattern search : Pattern search, derivative free optimization method

• coliny direct : DIviding RECTangles method

• coliny ea : Evolutionary Algorithm

• coliny pattern search : Pattern search, derivative free optimization method

• efficient global : Global Surrogate Based Optimization, a.k.a. EGO

• ncsu direct : DIviding RECTangles method

• soga : Single-objective Genetic Algorithm (a.k.a Evolutionary Algorithm)

5.8. METHODS 125

5.8.12 bayesian calibration

Description
See the discussion of Bayesian Calibration in the Dakota User’s Manual [4].

Related Topics

Related Keywords
• bayes calibration : Bayesian calibration

• dream : DREAM (DiffeRential Evolution Adaptive Metropolis)

• chains : Number of chains in DREAM

• crossover chain pairs : Number of chains used in crossover.

• gr threshold : Convergence tolerance for the Gelman-Rubin statistic

• jump step : Number of generations a long jump step is taken

• num cr : Number of candidate points for each crossover.

• gpmsa : (Experimental) Gaussian Process Models for Simulation Analysis (GPMSA) Markov Chain Monte
Carlo algorithm with Gaussian Process Surrogate

• adaptive metropolis : Use the Adaptive Metropolis MCMC algorithm

• delayed rejection : Use the Delayed Rejection MCMC algorithm

• dram : Use the DRAM MCMC algorithm

• metropolis hastings : Use the Metropolis-Hastings MCMC algorithm

• multilevel : Use the multilevel MCMC algorithm.

• proposal covariance : Defines the technique used to generate the MCMC proposal covariance.

• derivatives : Uses derivatives to inform the MCMC proposal covariance.

• prior : Uses the covariance of the prior distributions to define the MCMC proposal covariance.

• queso : Markov Chain Monte Carlo algorithms from the QUESO package

• adaptive metropolis : Use the Adaptive Metropolis MCMC algorithm

• delayed rejection : Use the Delayed Rejection MCMC algorithm

• dram : Use the DRAM MCMC algorithm

• metropolis hastings : Use the Metropolis-Hastings MCMC algorithm

• multilevel : Use the multilevel MCMC algorithm.

• proposal covariance : Defines the technique used to generate the MCMC proposal covariance.

• derivatives : Uses derivatives to inform the MCMC proposal covariance.

• prior : Uses the covariance of the prior distributions to define the MCMC proposal covariance.

126 CHAPTER 5. TOPICS AREA

5.8.13 nonlinear least squares

Description

Dakota’s least squares branch currently contains three methods for solving nonlinear least squares problems:

• NL2SOL, a trust-region method that adaptively chooses between two Hessian approximations (Gauss--
Newton and Gauss-Newton plus a quasi-Newton approximation to the rest of the Hessian)

• NLSSOL, a sequential quadratic programming (SQP) approach that is from the same algorithm family as
NPSOL

• Gauss-Newton, which supplies the Gauss-Newton Hessian approximation to the full-Newton optimizers
from OPT++.

The important difference of these algorithms from general-purpose optimization methods is that the response set
is defined by calibration terms (e.g. separate terms for each residual), rather than an objective function. Thus, a
finer granularity of data is used by least squares solvers as compared to that used by optimizers. This allows the
exploitation of the special structure provided by a sum of squares objective function.

Related Topics

Related Keywords

• nl2sol : Trust-region method for nonlinear least squares

• nlssol sqp : Sequential Quadratic Program for nonlinear least squares

5.8.14 advanced optimization

Description

empty

Related Topics

• scaling

• multiobjective methods

• surrogate based optimization methods

Related Keywords

scaling

Description

empty

5.9. ADVANCED TOPICS 127

Related Topics

Related Keywords
multiobjective methods

Description
empty

Related Topics

Related Keywords
surrogate based optimization methods

Description
empty

Related Topics

Related Keywords
• efficient global : Global Surrogate Based Optimization, a.k.a. EGO

• surrogate based global : Global Surrogate Based Optimization

• surrogate based local : Local Surrogate Based Optimization

5.9 advanced topics

Description
Advanced Dakota capabilities

Related Topics
• advanced strategies

• advanced model recursion

• advanced simulation interfaces

• advanced optimization

Related Keywords

5.9.1 advanced strategies

Description
empty

128 CHAPTER 5. TOPICS AREA

Related Topics

Related Keywords

5.9.2 advanced model recursion

Description
empty

Related Topics
• hybrid and recursions logic

Related Keywords
hybrid and recursions logic

Description
empty

Related Topics

Related Keywords

5.9.3 advanced simulation interfaces

Description
empty

Related Topics
• simulation failure

• concurrency and parallelism

Related Keywords
simulation failure

Description
empty

Related Topics

Related Keywords
concurrency and parallelism

Description
empty

5.9. ADVANCED TOPICS 129

Related Topics

Related Keywords
• processors per analysis : Specify the number of processors per analysis when Dakota is run in parallel

• analysis scheduling : Specify the scheduling of concurrent analyses when Dakota is run in parallel

• master : Specify a dedicated master partition for parallel analysis scheduling

• peer : Specify a peer partition for parallel analysis scheduling

• analysis servers : Specify the number of analysis servers when Dakota is run in parallel

• asynchronous : Specify analysis driver concurrency, when Dakota is run in serial

• analysis concurrency : Limit the number of analysis drivers within an evaluation that Dakota will schedule

• evaluation concurrency : Determine how many concurrent evaluations Dakota will schedule

• local evaluation scheduling : Control how local asynchronous jobs are scheduled

• master : Specify a dedicated master partition for parallel evaluation scheduling

• peer : Specify a peer partition for parallel evaluation scheduling

• dynamic : Specify dynamic scheduling in a peer partition when Dakota is run in parallel.

• static : Specify static scheduling in a peer partition when Dakota is run in parallel.

• evaluation servers : Specify the number of evaluation servers when Dakota is run in parallel

• processors per evaluation : Specify the number of processors per evaluation server when Dakota is run in
parallel

• iterator scheduling : Specify the scheduling of concurrent iterators when Dakota is run in parallel

• master : Specify a dedicated master partition for parallel iterator scheduling

• peer : Specify a peer partition for parallel iterator scheduling

• iterator servers : Specify the number of iterator servers when Dakota is run in parallel

• processors per iterator : Specify the number of processors per iterator server when Dakota is run in parallel

• iterator scheduling : Specify the scheduling of concurrent iterators when Dakota is run in parallel

• master : Specify a dedicated master partition for parallel iterator scheduling

• peer : Specify a peer partition for parallel iterator scheduling

• iterator servers : Specify the number of iterator servers when Dakota is run in parallel

• processors per iterator : Specify the number of processors per iterator server when Dakota is run in parallel

• iterator scheduling : Specify the scheduling of concurrent iterators when Dakota is run in parallel

• master : Specify a dedicated master partition for parallel iterator scheduling

• peer : Specify a peer partition for parallel iterator scheduling

130 CHAPTER 5. TOPICS AREA

• iterator servers : Specify the number of iterator servers when Dakota is run in parallel

• processors per iterator : Specify the number of processors per iterator server when Dakota is run in parallel

• iterator scheduling : Specify the scheduling of concurrent iterators when Dakota is run in parallel

• master : Specify a dedicated master partition for parallel iterator scheduling

• peer : Specify a peer partition for parallel iterator scheduling

• iterator servers : Specify the number of iterator servers when Dakota is run in parallel

• processors per iterator : Specify the number of processors per iterator server when Dakota is run in parallel

5.9.4 advanced optimization

Description
empty

Related Topics
• scaling

• multiobjective methods

• surrogate based optimization methods

Related Keywords
scaling

Description
empty

Related Topics

Related Keywords
multiobjective methods

Description
empty

Related Topics

Related Keywords
surrogate based optimization methods

Description
empty

5.10. PACKAGES 131

Related Topics

Related Keywords
• efficient global : Global Surrogate Based Optimization, a.k.a. EGO

• surrogate based global : Global Surrogate Based Optimization

• surrogate based local : Local Surrogate Based Optimization

5.10 packages

Description
This topic organizes information about the different software packages (libraries) that are integrated into Dakota

Related Topics
• package coliny

• package conmin

• package ddace

• package dot

• package fsudace

• package hopspack

• package jega

• package nlpql

• package npsol

• package optpp

• package psuade

• package queso

• package scolib

Related Keywords

5.10.1 package coliny

Description
SCOLIB (formerly known as COLINY) is a collection of nongradient-based optimizers that support the Common
Optimization Library INterface (COLIN). SCOLIB optimizers currently include coliny cobyla, coliny-
direct, coliny ea, coliny pattern search and coliny solis wets. (Yes, the input spec still has

”coliny” prepended to the method name.) Additional SCOLIB information is available from https://software.-
sandia.gov/trac/acro.

https://software.sandia.gov/trac/acro
https://software.sandia.gov/trac/acro

132 CHAPTER 5. TOPICS AREA

SCOLIB solvers now support bound constraints and general nonlinear constraints. Supported nonlinear con-
straints include both equality and two-sided inequality constraints. SCOLIB solvers do not yet support linear
constraints. Most SCOLIB optimizers treat constraints with a simple penalty scheme that adds constraint -
penalty times the sum of squares of the constraint violations to the objective function. Specific exceptions to
this method for handling constraint violations are noted below. (The default value of constraint penalty
is 1000.0, except for methods that dynamically adapt their constraint penalty, for which the default value is 1.0.)

The method independent controls for max iterations and max function evaluations limit the
number of major iterations and the number of function evaluations that can be performed during a SCOLIB opti-
mization, respectively. The convergence tolerance control defines the threshold value on relative change
in the objective function that indicates convergence. The output verbosity specification controls the amount
of information generated by SCOLIB: the silent, quiet, and normal settings correspond to minimal re-
porting from SCOLIB, whereas the verbose setting corresponds to a higher level of information, and debug
outputs method initialization and a variety of internal SCOLIB diagnostics. The majority of SCOLIB’s meth-
ods perform independent function evaluations that can directly take advantage of Dakota’s parallel capabilities.
Only coliny solis wets, coliny cobyla, and certain configurations of coliny pattern search
are inherently serial. The parallel methods automatically utilize parallel logic when the Dakota configuration
supports parallelism. Lastly, neither speculative gradients nor linear constraints are currently supported with
SCOLIB.

Some SCOLIB methods exploit parallelism through the use of Dakota’s concurrent function evaluations. The
nature of the algorithms, however, limits the amount of concurrency that can be exploited. The maximum amount
of evaluation concurrency that can be leveraged by the various methods is as follows:

• COBYLA: one

• DIRECT: twice the number of variables

• Evolutionary Algorithms: size of the population

• Pattern Search: size of the search pattern

• Solis-Wets: one

All SCOLIB methods support the show misc options optional specification which results in a dump of all the
allowable method inputs. Note that the information provided by this command refers to optimizer parameters that
are internal to SCOLIB, and which may differ from corresponding parameters used by the Dakota interface. The
misc options optional specification provides a means for inputing additional settings supported by the SCOLI-
B methods but which are not currently mapped through the Dakota input specification. Care must be taken in using
this specification; they should only be employed by users familiar with the full range of parameter specifications
available directly from SCOLIB and understand any differences that exist between those specifications and the
ones available through Dakota.

Each of the SCOLIB methods supports the solution target control, which defines a convergence crite-
rion in which the optimizer will terminate if it finds an objective function value lower than the specified target.

Related Topics

Related Keywords
• coliny beta : (Experimental) Coliny beta solver

• coliny cobyla : Constrained Optimization BY Linear Approximations (COBYLA)

• coliny direct : DIviding RECTangles method

5.10. PACKAGES 133

• coliny ea : Evolutionary Algorithm

• coliny pattern search : Pattern search, derivative free optimization method

• coliny solis wets : Simple greedy local search method

5.10.2 package conmin

Description

The CONMIN library[83] is a public domain library of nonlinear programming optimizers, specifically the
Fletcher-Reeves conjugate gradient (Dakota’s conmin frcg method) method for unconstrained optimization,
and the method of feasible directions (Dakota’s conmin mfd method) for constrained optimization. As CONM-
IN was a predecessor to the DOT commercial library, the algorithm controls are very similar.

Related Topics

Related Keywords

• conmin : Access to methods in the CONMIN library

• frcg : A conjugate gradient optimization method

• mfd : Method of feasible directions

5.10.3 package ddace

Description

The Distributed Design and Analysis of Computer Experiments (DDACE) library provides the following DA-
CE techniques: grid sampling (grid), pure random sampling (random), orthogonal array sampling (oas),
latin hypercube sampling (lhs), orthogonal array latin hypercube sampling (oa lhs), Box-Behnken (box -
behnken), and central composite design (central composite).

It is worth noting that there is some overlap in sampling techniques with those available from the nonde-
terministic branch. The current distinction is that the nondeterministic branch methods are designed to sample
within a variety of probability distributions for uncertain variables, whereas the design of experiments methods
treat all variables as having uniform distributions. As such, the design of experiments methods are well-suited
for performing parametric studies and for generating data sets used in building global approximations, but are not
currently suited for assessing the effect of uncertainties characterized with probability distribution. If a design of
experiments over both design/state variables (treated as uniform) and uncertain variables (with probability distri-
butions) is desired, then sampling can support this with active all specified in the Variables specification
block.

Related Topics

Related Keywords

• dace : Design and Analysis of Computer Experiments

134 CHAPTER 5. TOPICS AREA

5.10.4 package dot

Description
The DOT library [85] contains nonlinear programming optimizers, specifically the Broyden-Fletcher-Goldfarb--
Shanno (Dakota’s dot bfgs method) and Fletcher-Reeves conjugate gradient (Dakota’s dot frcg method)
methods for unconstrained optimization, and the modified method of feasible directions (Dakota’s dot mmfd
method), sequential linear programming (Dakota’s dot slp method), and sequential quadratic programming
(Dakota’s dot sqp method) methods for constrained optimization.

Related Topics

Related Keywords
• dot : Access to methods in the DOT package

• bfgs : A conjugate gradient optimization method

• frcg : A conjugate gradient optimization method

• mmfd : Method of feasible directions

• slp : Sequential Linear Programming

• sqp : Sequential Quadratic Program

5.10.5 package fsudace

Description
The Florida State University Design and Analysis of Computer Experiments (FSUDace) library provides the
following DACE techniques: quasi-Monte Carlo sampling (fsu quasi mc) based on the Halton sequence
(halton) or the Hammersley sequence (hammersley), and Centroidal Voronoi Tessellation (fsu cvt).

Related Topics

Related Keywords
• quality metrics : Calculate metrics to assess the quality of quasi-Monte Carlo samples

• fsu cvt : Design of Computer Experiments - Centroidal Voronoi Tessellation

• quality metrics : Calculate metrics to assess the quality of quasi-Monte Carlo samples

• halton : Generate samples from a Halton sequence

• fsu quasi mc : Design of Computer Experiments - Quasi-Monte Carlo sampling

• halton : Generate samples from a Halton sequence

• hammersley : Use Hammersley sequences

• quality metrics : Calculate metrics to assess the quality of quasi-Monte Carlo samples

5.10. PACKAGES 135

5.10.6 package hopspack

Description

The HOPSPACK software [69] contains the asynchronous parallel pattern search (APPS) algorithm [37]. It can
handle unconstrained problems as well as those with bound constraints, linear constraints, and general nonlinear
constraints.

HOPSPACK is available to the public under the GNU LGPL and the source code is included with Dakota. HO-
PSPACK-specific software documentation is available from https://software.sandia.gov/trac/hopspack.

Related Topics

Related Keywords

• asynch pattern search : Pattern search, derivative free optimization method

5.10.7 package jega

Description

The JEGA library[19] contains two global optimization methods. The first is a Multi-objective Genetic Algorithm
(MOGA) which performs Pareto optimization. The second is a Single-objective Genetic Algorithm (SOGA)
which performs optimization on a single objective function. Both methods support general constraints and a
mixture of real and discrete variables. The JEGA library was written by John Eddy, currently a member of the
technical staff in the System Readiness and Sustainment Technologies department at Sandia National Laboratories
in Albuquerque. These algorithms are accessed as moga and soga within Dakota.

Related Topics

Related Keywords

• moga : Multi-objective Genetic Algorithm (a.k.a Evolutionary Algorithm)

• soga : Single-objective Genetic Algorithm (a.k.a Evolutionary Algorithm)

5.10.8 package nlpql

Description

The NLPQL library is a commercially-licensed library containing a sequential quadratic programming (SQP) op-
timizer, specified as Dakota’s nlpql sqp method, for constrained optimization. The particular implementation
used is NLPQLP [74], a variant with distributed and non-monotone line search.

Related Topics

Related Keywords

• nlpql sqp : Sequential Quadratic Program

https://software.sandia.gov/trac/hopspack

136 CHAPTER 5. TOPICS AREA

5.10.9 package npsol

Description

The NPSOL library[33] contains a sequential quadratic programming (SQP) implementation (the npsol sqp
method). SQP is a nonlinear programming optimizer for constrained minimization.

Related Topics

Related Keywords

• npsol sqp : Sequential Quadratic Program

5.10.10 package optpp

Description

The OPT++ library[60] contains primarily gradient-based nonlinear programming optimizers for unconstrained,
bound-constrained, and nonlinearly constrained minimization: Polak-Ribiere conjugate gradient (Dakota’s optpp-
cg method), quasi-Newton (Dakota’s optpp q newton method), finite difference Newton (Dakota’s optpp-
fd newton method), and full Newton (Dakota’s optpp newton method).

The conjugate gradient method is strictly unconstrained, and each of the Newton-based methods are auto-
matically bound to the appropriate OPT++ algorithm based on the user constraint specification (unconstrained,
bound-constrained, or generally-constrained). In the generally-constrained case, the Newton methods use a non-
linear interior-point approach to manage the constraints. The library also contains a direct search algorithm, PDS
(parallel direct search, Dakota’s optpp pds method), which supports bound constraints.

Method Independent Controls
These are specified directly under the method block.

1. max iterations

2. max function evaluations

3. convergence tolerance

4. output

5. speculative

Concurrency
OPT++’s gradient-based methods are not parallel algorithms and cannot directly take advantage of concurrent

function evaluations. However, if numerical gradients with method source dakota is specified, a
parallel Dakota configuration can utilize concurrent evaluations for the finite difference gradient computations.

Constraints
Linear constraint specifications are supported by each of the Newton methods (optpp newton, optpp q-

newton, optpp fd newton, and optpp g newton)
optpp cg must be unconstrained
optpp pds can be, at most, bound-constrained.

5.10. PACKAGES 137

Related Topics

Related Keywords

• optpp cg : A conjugate gradient optimization method

• optpp fd newton : Finite Difference Newton optimization method

• optpp g newton : Newton method based least-squares calbration

• optpp newton : Newton method based optimization

• optpp pds : Simplex-based derivative free optimization method

• optpp q newton : Quasi-Newton optimization method

5.10.11 package psuade

Description

The Problem Solving Environment for Uncertainty Analysis and Design Exploration (PSUADE) is a Lawrence
Livermore National Laboratory tool for metamodeling, sensitivity analysis, uncertainty quantification, and opti-
mization. Its features include non-intrusive and parallel function evaluations, sampling and analysis methods, an
integrated design and analysis framework, global optimization, numerical integration, response surfaces (MARS
and higher order regressions), graphical output with Pgplot or Matlab, and fault tolerance [81].

Related Topics

Related Keywords

• psuade moat : Morris One-at-a-Time

5.10.12 package queso

Description

QUESO stands for Quantification of Uncertainty for Estimation, Simulation, and Optimization. It supports
Bayesian calibration methods. It is developed at The University of Texas at Austin.

Related Topics

Related Keywords

• bayes calibration : Bayesian calibration

• gpmsa : (Experimental) Gaussian Process Models for Simulation Analysis (GPMSA) Markov Chain Monte
Carlo algorithm with Gaussian Process Surrogate

• queso : Markov Chain Monte Carlo algorithms from the QUESO package

138 CHAPTER 5. TOPICS AREA

5.10.13 package scolib

Description

SCOLIB (formerly known as COLINY) is a collection of nongradient-based optimizers that support the Common
Optimization Library INterface (COLIN). SCOLIB optimizers currently include coliny cobyla, coliny-
direct, coliny ea, coliny pattern search and coliny solis wets. (Yes, the input spec still has

”coliny” prepended to the method name.) Additional SCOLIB information is available from https://software.-
sandia.gov/trac/acro.

SCOLIB solvers now support bound constraints and general nonlinear constraints. Supported nonlinear con-
straints include both equality and two-sided inequality constraints. SCOLIB solvers do not yet support linear
constraints. Most SCOLIB optimizers treat constraints with a simple penalty scheme that adds constraint -
penalty times the sum of squares of the constraint violations to the objective function. Specific exceptions to
this method for handling constraint violations are noted below. (The default value of constraint penalty
is 1000.0, except for methods that dynamically adapt their constraint penalty, for which the default value is 1.0.)

The method independent controls for max iterations and max function evaluations limit the
number of major iterations and the number of function evaluations that can be performed during a SCOLIB opti-
mization, respectively. The convergence tolerance control defines the threshold value on relative change
in the objective function that indicates convergence. The output verbosity specification controls the amount
of information generated by SCOLIB: the silent, quiet, and normal settings correspond to minimal re-
porting from SCOLIB, whereas the verbose setting corresponds to a higher level of information, and debug
outputs method initialization and a variety of internal SCOLIB diagnostics. The majority of SCOLIB’s meth-
ods perform independent function evaluations that can directly take advantage of Dakota’s parallel capabilities.
Only coliny solis wets, coliny cobyla, and certain configurations of coliny pattern search
are inherently serial. The parallel methods automatically utilize parallel logic when the Dakota configuration
supports parallelism. Lastly, neither speculative gradients nor linear constraints are currently supported with
SCOLIB.

Some SCOLIB methods exploit parallelism through the use of Dakota’s concurrent function evaluations. The
nature of the algorithms, however, limits the amount of concurrency that can be exploited. The maximum amount
of evaluation concurrency that can be leveraged by the various methods is as follows:

• COBYLA: one

• DIRECT: twice the number of variables

• Evolutionary Algorithms: size of the population

• Pattern Search: size of the search pattern

• Solis-Wets: one

All SCOLIB methods support the show misc options optional specification which results in a dump of all the
allowable method inputs. Note that the information provided by this command refers to optimizer parameters that
are internal to SCOLIB, and which may differ from corresponding parameters used by the Dakota interface. The
misc options optional specification provides a means for inputing additional settings supported by the SCOLI-
B methods but which are not currently mapped through the Dakota input specification. Care must be taken in using
this specification; they should only be employed by users familiar with the full range of parameter specifications
available directly from SCOLIB and understand any differences that exist between those specifications and the
ones available through Dakota.

Each of the SCOLIB methods supports the solution target control, which defines a convergence crite-
rion in which the optimizer will terminate if it finds an objective function value lower than the specified target.

https://software.sandia.gov/trac/acro
https://software.sandia.gov/trac/acro

5.10. PACKAGES 139

Related Topics

Related Keywords
• coliny beta : (Experimental) Coliny beta solver

• coliny cobyla : Constrained Optimization BY Linear Approximations (COBYLA)

• coliny direct : DIviding RECTangles method

• coliny ea : Evolutionary Algorithm

• coliny pattern search : Pattern search, derivative free optimization method

• coliny solis wets : Simple greedy local search method

140 CHAPTER 5. TOPICS AREA

Dis-
tribu-
tion
Type

Sam-
pling

Local
Reli-
abil-
ity

Global
Reli-
abil-
ity

Wiener
SE

Askey
SE

Ex-
tended
SE

Piece-
wise
SE

Local
Inter-
val

Global
Inter-
val

Local
Evi-
dence

Global
Evi-
dence

Nor-
mal

C C C C C C - - - - -

Bounded
Nor-
mal

C U U U U U U - - - -

Log-
nor-
mal

C C C C C U - - - - -

Bounded
Log-
nor-
mal

C U U U U U U - - - -

Uni-
form

C C C C U U U - - - -

Logu-
ni-
form

C U U U U U U - - - -

Trian-
gular

C U U U U U U - - - -

Expo-
nen-
tial

C C C C U U - - - - -

Beta C U U U U U U - - - -

Gamma
C C C C U U - - - - -

Gum-
bel

C C C C C U - - - - -

Frechet
C C C C C U - - - - -

Weibull
C C C C C U - - - - -

Con-
tinu-
ous
His-
togram
Bin

C U U U U U U - - - -

Table 5.1: Summary of Distribution Types supported by Nondeterministic Methods, Part I (Continuous Aleatory
Types)

5.10. PACKAGES 141

Dis-
tribu-
tion
Type

Sam-
pling

Local
Reli-
abil-
ity

Global
Reli-
abil-
ity

Wiener
SE

Askey
SE

Ex-
tended
SE

Piece-
wise
SE

Local
Inter-
val

Global
Inter-
val

Local
Evi-
dence

Global
Evi-
dence

Pois-
son

C - - - - - - - - - -

Bino-
mial

C - - - - - - - - - -

Nega-
tive
Bino-
mial

C - - - - - - - - - -

Geo-
met-
ric

C - - - - - - - - - -

Hy-
per-
geo-
met-
ric

C - - - - - - - - - -

Dis-
crete
His-
togram
Point

C - - - - - - - - - -

Table 5.2: Summary of Distribution Types supported by Nondeterministic Methods, Part II (Discrete Aleatory
Types)

142 CHAPTER 5. TOPICS AREA

Dis-
tribu-
tion
Type

Sam-
pling

Local
Reli-
abil-
ity

Global
Reli-
abil-
ity

Wiener
SE

Askey
SE

Ex-
tended
SE

Piece-
wise
SE

Local
Inter-
val

Global
Inter-
val

Local
Evi-
dence

Global
Evi-
dence

Inter-
val

U - U,A U,A U,A U,A U,A U U U U

Con-
tinu-
ous
De-
sign

U,A - U,A U,A U,A U,A U,A - - - -

Dis-
crete
De-
sign
Range,
Int
Set,
Real
Set

U,A - - - - - - - - - -

Con-
tinu-
ous
State

U,A - U,A U,A U,A U,A U,A - - - -

Dis-
crete
State
Range,
Int
Set,
Real
Set

U,A - - - - - - - - - -

Table 5.3: Summary of Distribution Types supported by Nondeterministic Methods, Part III (Epistemic, Design,
and State Types)

Chapter 6

Keywords Area

This page lists the six blocks. From here, you can navigate to every keyword.

• environment

• method

• model

• variables

• interface

• responses

Introduction to Dakota Keywords
In Dakota, the environment manages execution modes and I/O streams and defines the top-level iterator. Gen-

erally speaking, an iterator contains a model and a model contains a set of variables, an interface, and a set of
responses. An iterator repeatedly operates on the model to map the variables into responses using the interface.
Each of these six components (environment, method, model, variables, interface, and responses) are separate
specifications in the user’s input file, and as a whole, determine the study to be performed during an execution of
the Dakota software.

A Dakota execution is limited to a single environment, but may involve multiple methods and multiple models.
In particular, advanced iterators (i.e., meta- and component-based iterators) and advanced models (i.e., nested and
surrogate models) may specialize to include recursions with additional sub-iterators and sub-models. Since each
model may contain its own variables, interface, and responses, there may be multiple specifications of the method,
model, variables, interface, and responses sections.

Keyword Pages
Every Dakota keyword has its own page in this manual. The page describes:

• Whether the keyword takes ARGUMENTS, and the data type Additional notes about ARGUMENTS can be
found here: Specifying Arguments.

• Whether it has an ALIAS

• Which additional keywords can be specified to change its behavior

• Which of these additional keywords are required or optional

• Additional information about how to use the keyword in an input file

143

144 CHAPTER 6. KEYWORDS AREA

6.1 environment
• Keywords Area

• environment

Top-level settings for Dakota execution

Topics
This keyword is related to the topics:

• block

Specification
Alias: none

Argument(s): none
Default: no environment

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional check Invoke Dakota in
input check mode

Optional output file Base filename for
output redirection

Optional error file Base filename for
error redirection

Optional read restart Base filename for
restart file read

Optional write restart Base filename for
restart file write

Optional pre run Invoke Dakota
with pre-run mode
active

Optional run Invoke Dakota
with run mode
active

6.1. ENVIRONMENT 145

Optional post run Invoke Dakota
with post-run
mode active

Optional graphics Display a 2D
graphics window
of variables and
responses

Optional tabular data Write a tabular
results file with
variable and
response history

Optional output precision Control the output
precision

Optional results output (Experimental)
Write a summary
file containing the
final results

Optional top method -
pointer

Identify which
method leads the
Dakota study

Description
The environment section in a Dakota input file is optional. It specifies the top-level solution environment, op-
tionally including run modes, output controls, and identification of the primary iterative method (top method-
pointer). The output-related keywords address graphics, generation of tabular and results data, and precision

of numerical output.
Run Mode Defaults
Dakota run phases include check, pre run, run, and post run. The default behavior is to pre run,

run, and post run, though any or all of these may be specified to select specific run phases. Specifying check
will cause Dakota to exit before any selected run modes.

6.1.1 check
• Keywords Area

• environment

• check

Invoke Dakota in input check mode

Topics
This keyword is related to the topics:

• command line options

146 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): none
Default: no check; proceed to run

Description
When specified, Dakota input will be parsed and the problem instantiated. Dakota will exit reporting whether any
errors were found.

6.1.2 output file
• Keywords Area

• environment

• output file

Base filename for output redirection

Topics
This keyword is related to the topics:

• dakota IO

• command line options

Specification
Alias: none

Argument(s): STRING
Default: output to console, not file

Description
Specify a base filename to which Dakota output will be directed. Output will (necessarily) be redirected after the
input file is parsed. This option is overridden by any command-line -output option.

Default Behavior
Output to console (screen).

6.1.3 error file
• Keywords Area

• environment

• error file

Base filename for error redirection

6.1. ENVIRONMENT 147

Topics
This keyword is related to the topics:

• dakota IO

• command line options

Specification
Alias: none

Argument(s): STRING
Default: errors to console, not file

Description
Specify a base filename to which Dakota errors will be directed. Errors will (necessarily) be redirected after the
input file is parsed. This option is overridden by any command-line -error option.

Default Behavior
Errors to console (screen).

6.1.4 read restart
• Keywords Area

• environment

• read restart

Base filename for restart file read

Topics
This keyword is related to the topics:

• dakota IO

• command line options

Specification
Alias: none

Argument(s): STRING
Default: no restart read

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional stop restart Evaluation ID
number at which to
stop reading restart
file

148 CHAPTER 6. KEYWORDS AREA

Description
Specify a base filename for the restart file Dakota should read. This option is overridden by any command-line
-read restart option.

Default Behavior
No restart file is read.

stop restart

• Keywords Area

• environment

• read restart

• stop restart

Evaluation ID number at which to stop reading restart file

Topics
This keyword is related to the topics:

• dakota IO

Specification
Alias: none

Argument(s): INTEGER
Default: read all records

Description
This option is overridden by any command-line -stop restart option.

6.1.5 write restart
• Keywords Area

• environment

• write restart

Base filename for restart file write

Topics
This keyword is related to the topics:

• dakota IO

• command line options

6.1. ENVIRONMENT 149

Specification
Alias: none

Argument(s): STRING
Default: dakota.rst

Description
Specify a base filename for the restart file Dakota should write. This option is overridden by any command-line
-write restart option.

6.1.6 pre run
• Keywords Area

• environment

• pre run

Invoke Dakota with pre-run mode active

Topics
This keyword is related to the topics:

• command line options

Specification
Alias: none

Argument(s): none
Default: pre-run, run, post-run all executed

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional input Base filename for
pre-run mode data
input

Optional output Base filename for
pre-run mode data
output

Description
When specified, Dakota execution will include the pre-run mode, which sets up methods and often generates
parameter sets to evaluate. This mode is currently useful for parameter study, DACE, and Monte Carlo sampling
methods.

Default Behavior
When no run modes are specified, Dakota will perform pre-run, run, and post-run phases.

150 CHAPTER 6. KEYWORDS AREA

input

• Keywords Area

• environment

• pre run

• input

Base filename for pre-run mode data input

Topics
This keyword is related to the topics:

• dakota IO

Specification
Alias: none

Argument(s): STRING
Default: no pre-run specific input read

Description
(For future expansion; not currently used by any methods.) Specify a base filename from which Dakota will read
any pre-run input data. This option is overridden by any command-line -pre run arguments.

output

• Keywords Area

• environment

• pre run

• output

Base filename for pre-run mode data output

Topics
This keyword is related to the topics:

• dakota IO

Specification
Alias: none

Argument(s): STRING
Default: no pre-run specific output written

6.1. ENVIRONMENT 151

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional(Choose
One)

tabular format
(Group 1)

annotated Selects annotated
tabular file format

custom annotated Selects
custom-annotated
tabular file format

freeform Selects freeform
file format

Description

Specify a base filename to which Dakota will write any pre-run output data (typically parameter sets to be evalu-
ated). This option is overridden by any command-line -pre run arguments.

Usage Tips
Dakota exports tabular data in one of three formats:

• annotated (default)

• custom annotated

• freeform

annotated

• Keywords Area

• environment

• pre run

• output

• annotated

Selects annotated tabular file format

Topics

This keyword is related to the topics:

• file formats

Specification

Alias: none
Argument(s): none
Default: annotated format

152 CHAPTER 6. KEYWORDS AREA

Description
An annotated tabular file is a whitespace-separated text file with one leading header row of comments/column la-
bels. Each subsequent row contains an evaluation ID and interface ID, followed by data for variables, or variables
followed by responses, depending on context.

Default Behavior
By default, Dakota imports and exports tabular files in annotated format. The annotated keyword can be

used to explicitly specify this.
Usage Tips

• To specify pre-Dakota 6.1 tabular format, which did not include interface id, specify custom annotated
header eval id

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export an annotated top-level tabular data file containing a header row, leading eval id and interface id columns,
and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
annotated

Resulting tabular file:

%eval_id interface x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 NO_ID 0.9 1.1 0.0002 0.26 0.76
2 NO_ID 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 NO_ID 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

custom annotated

• Keywords Area

• environment

• pre run

• output

• custom annotated

Selects custom-annotated tabular file format

Topics
This keyword is related to the topics:

• file formats

6.1. ENVIRONMENT 153

Specification
Alias: none

Argument(s): none
Default: annotated format

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional header Enable header row
in
custom-annotated
tabular file

Optional eval id Enable evaluation
ID column in
custom-annotated
tabular file

Optional interface id Enable interface
ID column in
custom-annotated
tabular file

Description
A custom-annotated tabular file is a whitespace-separated text file typically containing row data for variables, or
variables followed by responses, though the format is used for other tabular exports/imports as well. Custom-
annotated allows user options for whether header row, eval id column, and interface id column appear
in the tabular file, thus bridging freeform and (fully) annotated.

Default Behavior
The annotated format is the default for tabular export/import. To control which header row and columns

are in the input/output, specify custom annotated, followed by options, in the relevant export/import context.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export a custom-annotated tabular file in Dakota 6.0 format, which contained only header and eval id (no interface-
id), and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
custom_annotated header eval_id

Resulting tabular file:

154 CHAPTER 6. KEYWORDS AREA

%eval_id x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 0.9 1.1 0.0002 0.26 0.76
2 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

header

• Keywords Area

• environment

• pre run

• output

• custom annotated

• header

Enable header row in custom-annotated tabular file

Specification
Alias: none

Argument(s): none
Default: no header

Description
See description of parent custom annotated

eval id

• Keywords Area

• environment

• pre run

• output

• custom annotated

• eval id

Enable evaluation ID column in custom-annotated tabular file

Specification
Alias: none

Argument(s): none
Default: no eval id column

6.1. ENVIRONMENT 155

Description
See description of parent custom annotated

interface id

• Keywords Area

• environment

• pre run

• output

• custom annotated

• interface id

Enable interface ID column in custom-annotated tabular file

Specification
Alias: none

Argument(s): none
Default: no interface id column

Description
See description of parent custom annotated

freeform

• Keywords Area

• environment

• pre run

• output

• freeform

Selects freeform file format

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Default: annotated format

156 CHAPTER 6. KEYWORDS AREA

Description
A freeform tabular file is whitespace-separated text file with no leading header row and no leading columns. Most
commonly, each row contains data for variables, or variables followed by responses, though the format is used for
other tabular exports/imports as well.

Default Behavior
The annotated format is the default for tabular export/import. To change this behavior, specify freeform

in the relevant export/import context.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• In freeform, the num rows x num cols total data entries may be separated with any whitespace including
spaces, tabs, and newlines. In this format, vectors may therefore appear as a single row or single column
(or mixture; entries will populate the vector in order).

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export a freeform tabular file containing only data for variables and responses. Input file fragment:
environment

tabular_data
tabular_data_file = ’dakota_summary.dat’
freeform

Resulting tabular file:
0.9 1.1 0.0002 0.26 0.76

0.90009 1.1 0.0001996404857 0.2601620081 0.759955
0.89991 1.1 0.0002003604863 0.2598380081 0.760045

...

6.1.7 run
• Keywords Area

• environment

• run

Invoke Dakota with run mode active

Topics
This keyword is related to the topics:

• command line options

Specification
Alias: none

Argument(s): none
Default: pre-run, run, post-run all executed

6.1. ENVIRONMENT 157

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional input Base filename for
run mode data
input

Optional output Base filename for
run mode data
output

Description

When specified, Dakota execution will include the run mode, which invokes interfaces to map parameters to
responses.

Default Behavior
When no run modes are specified, Dakota will perform pre-run, run, and post-run phases.

input

• Keywords Area

• environment

• run

• input

Base filename for run mode data input

Topics

This keyword is related to the topics:

• dakota IO

Specification

Alias: none
Argument(s): STRING
Default: no run specific input read

Description

(For future expansion; not currently used by any methods.) Specify a base filename from which Dakota will
read any run input data, such as parameter sets to evaluate. This option is overridden by any command-line -run
arguments.

158 CHAPTER 6. KEYWORDS AREA

output

• Keywords Area

• environment

• run

• output

Base filename for run mode data output

Topics
This keyword is related to the topics:

• dakota IO

Specification
Alias: none

Argument(s): STRING
Default: no run specific output written

Description
(For future expansion; not currently used by any methods.) Specify a base filename to which Dakota will write
any run output data (typically parameter, response pairs). This option is overridden by any command-line -run
arguments.

6.1.8 post run
• Keywords Area

• environment

• post run

Invoke Dakota with post-run mode active

Topics
This keyword is related to the topics:

• command line options

Specification
Alias: none

Argument(s): none
Default: pre-run, run, post-run all executed

6.1. ENVIRONMENT 159

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional input Base filename for
post-run mode data
input

Optional output Base filename for
post-run mode data
output

Description
When specified, Dakota execution will include the post-run mode, which analyzes parameter/response data sets
and computes final results.. This mode is currently useful for parameter study, DACE, and Monte Carlo sampling
methods.

Default Behavior
When no run modes are specified, Dakota will perform pre-run, run, and post-run phases.

input

• Keywords Area

• environment

• post run

• input

Base filename for post-run mode data input

Topics
This keyword is related to the topics:

• dakota IO

Specification
Alias: none

Argument(s): STRING
Default: no post-run specific input read

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional(Choose
One)

tabular format
(Group 1)

annotated Selects annotated
tabular file format

160 CHAPTER 6. KEYWORDS AREA

custom annotated Selects
custom-annotated
tabular file format

freeform Selects freeform
file format

Description

Specify a base filename from which Dakota will read any post-run input data, such as parameter/response data on
which to calulate final statistics. This option is overridden by any command-line -post run arguments.

Usage Tips
Dakota imports tabular data in one of three formats:

• annotated (default)

• custom annotated

• freeform

annotated

• Keywords Area

• environment

• post run

• input

• annotated

Selects annotated tabular file format

Topics

This keyword is related to the topics:

• file formats

Specification

Alias: none
Argument(s): none
Default: annotated format

6.1. ENVIRONMENT 161

Description
An annotated tabular file is a whitespace-separated text file with one leading header row of comments/column la-
bels. Each subsequent row contains an evaluation ID and interface ID, followed by data for variables, or variables
followed by responses, depending on context.

Default Behavior
By default, Dakota imports and exports tabular files in annotated format. The annotated keyword can be

used to explicitly specify this.
Usage Tips

• To specify pre-Dakota 6.1 tabular format, which did not include interface id, specify custom annotated
header eval id

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export an annotated top-level tabular data file containing a header row, leading eval id and interface id columns,
and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
annotated

Resulting tabular file:

%eval_id interface x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 NO_ID 0.9 1.1 0.0002 0.26 0.76
2 NO_ID 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 NO_ID 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

custom annotated

• Keywords Area

• environment

• post run

• input

• custom annotated

Selects custom-annotated tabular file format

Topics
This keyword is related to the topics:

• file formats

162 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): none
Default: annotated format

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional header Enable header row
in
custom-annotated
tabular file

Optional eval id Enable evaluation
ID column in
custom-annotated
tabular file

Optional interface id Enable interface
ID column in
custom-annotated
tabular file

Description
A custom-annotated tabular file is a whitespace-separated text file typically containing row data for variables, or
variables followed by responses, though the format is used for other tabular exports/imports as well. Custom-
annotated allows user options for whether header row, eval id column, and interface id column appear
in the tabular file, thus bridging freeform and (fully) annotated.

Default Behavior
The annotated format is the default for tabular export/import. To control which header row and columns

are in the input/output, specify custom annotated, followed by options, in the relevant export/import context.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export a custom-annotated tabular file in Dakota 6.0 format, which contained only header and eval id (no interface-
id), and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
custom_annotated header eval_id

Resulting tabular file:

6.1. ENVIRONMENT 163

%eval_id x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 0.9 1.1 0.0002 0.26 0.76
2 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

header

• Keywords Area

• environment

• post run

• input

• custom annotated

• header

Enable header row in custom-annotated tabular file

Specification
Alias: none

Argument(s): none
Default: no header

Description
See description of parent custom annotated

eval id

• Keywords Area

• environment

• post run

• input

• custom annotated

• eval id

Enable evaluation ID column in custom-annotated tabular file

Specification
Alias: none

Argument(s): none
Default: no eval id column

164 CHAPTER 6. KEYWORDS AREA

Description
See description of parent custom annotated

interface id

• Keywords Area

• environment

• post run

• input

• custom annotated

• interface id

Enable interface ID column in custom-annotated tabular file

Specification
Alias: none

Argument(s): none
Default: no interface id column

Description
See description of parent custom annotated

freeform

• Keywords Area

• environment

• post run

• input

• freeform

Selects freeform file format

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Default: annotated format

6.1. ENVIRONMENT 165

Description
A freeform tabular file is whitespace-separated text file with no leading header row and no leading columns. Most
commonly, each row contains data for variables, or variables followed by responses, though the format is used for
other tabular exports/imports as well.

Default Behavior
The annotated format is the default for tabular export/import. To change this behavior, specify freeform

in the relevant export/import context.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• In freeform, the num rows x num cols total data entries may be separated with any whitespace including
spaces, tabs, and newlines. In this format, vectors may therefore appear as a single row or single column
(or mixture; entries will populate the vector in order).

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export a freeform tabular file containing only data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
freeform

Resulting tabular file:

0.9 1.1 0.0002 0.26 0.76
0.90009 1.1 0.0001996404857 0.2601620081 0.759955
0.89991 1.1 0.0002003604863 0.2598380081 0.760045

...

output

• Keywords Area

• environment

• post run

• output

Base filename for post-run mode data output

Topics
This keyword is related to the topics:

• dakota IO

166 CHAPTER 6. KEYWORDS AREA

Specification

Alias: none
Argument(s): STRING
Default: no post-run specific output written

Description

(For future expansion; not currently used by any methods.) Specify a base filename to which Dakota will write
any post-run output data. This option is overridden by any command-line -post run arguments.

6.1.9 graphics

• Keywords Area

• environment

• graphics

Display a 2D graphics window of variables and responses

Topics

This keyword is related to the topics:

• dakota output

Specification

Alias: none
Argument(s): none
Default: graphics off

Description

For most studies, the graphics flag activates a 2D graphics window containing history plots for the variables
and response functions in the study. This window is updated in an event loop with approximately a 2 second cycle
time. Some study types such as surrogate-based optimization or local reliability specialize the use of the graphics
window.

There is no dependence between the graphics flag and the tabular data flag; they may be used inde-
pendently or concurrently.

See Also

These keywords may also be of interest:

• tabular data

6.1. ENVIRONMENT 167

6.1.10 tabular data
• Keywords Area

• environment

• tabular data

Write a tabular results file with variable and response history

Topics
This keyword is related to the topics:

• dakota output

Specification
Alias: tabular graphics data

Argument(s): none
Default: no tabular data output

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional tabular data file File name for
tabular data output

Optional(Choose
One)

tabular format
(Group 1)

annotated Selects annotated
tabular file format

custom annotated Selects
custom-annotated
tabular file format

freeform Selects freeform
file format

Description
Specifying the tabular data flag writes to a data file the same variable and response function history data
plotted when using the graphics flag. Within the generated data file, the variables and response functions
appear as columns and each function evaluation provides a new table row. This capability is most useful for
post-processing of Dakota results with third-party graphics tools such as MatLab, Excel, Tecplot, etc.

There is no dependence between the graphics flag and the tabular data flag; they may be used inde-
pendently or concurrently.

Dakota exports tabular data in one of three formats:

• annotated (default)

• custom annotated

• freeform

168 CHAPTER 6. KEYWORDS AREA

See Also

These keywords may also be of interest:

• graphics

tabular data file

• Keywords Area

• environment

• tabular data

• tabular data file

File name for tabular data output

Topics

This keyword is related to the topics:

• dakota output

Specification

Alias: tabular graphics file
Argument(s): STRING
Default: dakota tabular.dat

Description

Specifies a name to use for the tabular data file, overriding the default dakota tabular.dat.

annotated

• Keywords Area

• environment

• tabular data

• annotated

Selects annotated tabular file format

Topics

This keyword is related to the topics:

• file formats

6.1. ENVIRONMENT 169

Specification
Alias: none

Argument(s): none
Default: annotated format

Description
An annotated tabular file is a whitespace-separated text file with one leading header row of comments/column la-
bels. Each subsequent row contains an evaluation ID and interface ID, followed by data for variables, or variables
followed by responses, depending on context.

Default Behavior
By default, Dakota imports and exports tabular files in annotated format. The annotated keyword can be

used to explicitly specify this.
Usage Tips

• To specify pre-Dakota 6.1 tabular format, which did not include interface id, specify custom annotated
header eval id

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export an annotated top-level tabular data file containing a header row, leading eval id and interface id columns,
and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
annotated

Resulting tabular file:

%eval_id interface x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 NO_ID 0.9 1.1 0.0002 0.26 0.76
2 NO_ID 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 NO_ID 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

custom annotated

• Keywords Area

• environment

• tabular data

• custom annotated

Selects custom-annotated tabular file format

170 CHAPTER 6. KEYWORDS AREA

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Default: annotated format

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional header Enable header row
in
custom-annotated
tabular file

Optional eval id Enable evaluation
ID column in
custom-annotated
tabular file

Optional interface id Enable interface
ID column in
custom-annotated
tabular file

Description
A custom-annotated tabular file is a whitespace-separated text file typically containing row data for variables, or
variables followed by responses, though the format is used for other tabular exports/imports as well. Custom-
annotated allows user options for whether header row, eval id column, and interface id column appear
in the tabular file, thus bridging freeform and (fully) annotated.

Default Behavior
The annotated format is the default for tabular export/import. To control which header row and columns

are in the input/output, specify custom annotated, followed by options, in the relevant export/import context.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export a custom-annotated tabular file in Dakota 6.0 format, which contained only header and eval id (no interface-
id), and data for variables and responses. Input file fragment:

6.1. ENVIRONMENT 171

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
custom_annotated header eval_id

Resulting tabular file:

%eval_id x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 0.9 1.1 0.0002 0.26 0.76
2 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

header

• Keywords Area

• environment

• tabular data

• custom annotated

• header

Enable header row in custom-annotated tabular file

Specification
Alias: none

Argument(s): none
Default: no header

Description
See description of parent custom annotated

eval id

• Keywords Area

• environment

• tabular data

• custom annotated

• eval id

Enable evaluation ID column in custom-annotated tabular file

Specification
Alias: none

Argument(s): none
Default: no eval id column

172 CHAPTER 6. KEYWORDS AREA

Description
See description of parent custom annotated

interface id

• Keywords Area

• environment

• tabular data

• custom annotated

• interface id

Enable interface ID column in custom-annotated tabular file

Specification
Alias: none

Argument(s): none
Default: no interface id column

Description
See description of parent custom annotated

freeform

• Keywords Area

• environment

• tabular data

• freeform

Selects freeform file format

Topics

This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Default: annotated format

6.1. ENVIRONMENT 173

Description
A freeform tabular file is whitespace-separated text file with no leading header row and no leading columns. Most
commonly, each row contains data for variables, or variables followed by responses, though the format is used for
other tabular exports/imports as well.

Default Behavior
The annotated format is the default for tabular export/import. To change this behavior, specify freeform

in the relevant export/import context.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• In freeform, the num rows x num cols total data entries may be separated with any whitespace including
spaces, tabs, and newlines. In this format, vectors may therefore appear as a single row or single column
(or mixture; entries will populate the vector in order).

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export a freeform tabular file containing only data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
freeform

Resulting tabular file:

0.9 1.1 0.0002 0.26 0.76
0.90009 1.1 0.0001996404857 0.2601620081 0.759955
0.89991 1.1 0.0002003604863 0.2598380081 0.760045

...

6.1.11 output precision
• Keywords Area

• environment

• output precision

Control the output precision

Topics
This keyword is related to the topics:

• dakota output

174 CHAPTER 6. KEYWORDS AREA

Specification

Alias: none
Argument(s): INTEGER
Default: 10

Description

The precision of numeric output precision can be set dwith output precision, with an upper limit of 16.
When not specified, most Dakota output will default to a precision of 10, though filesystem interfaces and pre-run
output use higher precision for accuracy and better results reproducibility.

6.1.12 results output

• Keywords Area

• environment

• results output

(Experimental) Write a summary file containing the final results

Topics

This keyword is related to the topics:

• dakota output

Specification

Alias: none
Argument(s): none
Default: no results output

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional results output file The base file name
of the results file

Description

Final results from a Dakota study can be output to dakota results.txt by specifying results output (optionally
specifying an alternate file name with results output filename). The current experimental text file format
is hierarchical and a precursor to planned output to structured text formats such as XML or YAML, and binary
formats such as HDF5. The contents, organization, and format of results files are all under active development
and are subject to change.

6.1. ENVIRONMENT 175

results output file

• Keywords Area

• environment

• results output

• results output file

The base file name of the results file

Topics

This keyword is related to the topics:

• dakota output

Specification

Alias: none
Argument(s): STRING
Default: dakota results.txt

Description

Default file name is dakota results.txt

6.1.13 top method pointer

• Keywords Area

• environment

• top method pointer

Identify which method leads the Dakota study

Topics

This keyword is related to the topics:

• block pointer

Specification

Alias: method pointer
Argument(s): STRING
Default: see discussion

176 CHAPTER 6. KEYWORDS AREA

Description
An optional top method pointer specification may be used to point to a particular method specification that
will lead the Dakota analysis. The associated string must be a method identifier specified via id method. If top-
method pointer is not used, then it will be inferred as decribed below (no top method pointer within

an environment specification is treated the same as no environment specification).
Default Behavior
The top method pointer keyword is typically used in Dakota studies consisting of more than one method

block to clearly indicate which is the leading method. This method provides the starting point for the iteration.
The corresponding method specification may recurse with additional sub-method pointers in the case of ”meta-
iteration” (see method) or may specify a single method without recursion. Either case will ultimately result in
identification of one or more model specifications using model pointer, which again may or may not involve
further recursion (see nested and surrogate for recursion cases). Each of the model specifications identify the
variables and responses specifications (using variables pointer and responses pointer) that are used to build the
model, and depending on the type of model, may also identify an interface specification (for example, using
interface pointer). If one of these specifications does not provide an optional pointer, then that component will be
constructed using the last specification parsed.

When the environment block is omitted, the top level method will be inferred as follows: When a single
method is specified, there is no ambiguity and the sole method will be the top method. When multiple methods are
specified, the top level method will be deduced from the hierarchical relationships implied by method pointers. If
this inference is not well defined (e.g., there are multiple method specifications without any pointer relationship),
then the default behavior is to employ the last method specification parsed.

Examples
Specify that the optimization method is the outermost method in an optimization under uncertainty study
environment

top_method_pointer ’OPTIMIZATION_METHOD’
method

id_method ’UQ_METHOD’
...
method

id_method ’OPTIMIZATION_METHOD’
...

See Also
These keywords may also be of interest:

• id method

6.2 method
• Keywords Area

• method

Begins Dakota method selection and behavioral settings.

Topics
This keyword is related to the topics:

• block

6.2. METHOD 177

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional id method Name the method
block; helpful
when there are
multiple

Optional output Control how much
method
information is
written to the
screen and output
file

Optional max iterations Stopping criteria
based on number
of iterations

Optional max function -
evaluations

Stopping criteria
based on number
of function
evaluations

Optional speculative Compute
speculative
gradients

Optional convergence -
tolerance

Stopping criterion
based on
convergence of the
objective function

Optional constraint -
tolerance

The maximum
allowable value of
constraint violation
still considered to
be feasible

Optional scaling Turn on scaling for
variables,
responses, and
constraints

178 CHAPTER 6. KEYWORDS AREA

Optional final solutions Number of designs
returned as the best
solutions

Required(Choose
One)

Group 1

hybrid Strategy in which a
set of methods
synergistically
seek an optimal
design

multi start Multi-Start
Optimization
Method

pareto set Pareto set
optimization

surrogate based -
local

Local Surrogate
Based
Optimization

surrogate based -
global

Global Surrogate
Based
Optimization

dot frcg A conjugate
gradient
optimization
method

dot mmfd Method of feasible
directions

dot bfgs A conjugate
gradient
optimization
method

dot slp Sequential Linear
Programming

dot sqp Sequential
Quadratic Program

dot Access to methods
in the DOT
package

conmin frcg A conjugate
gradient
optimization
method

conmin mfd Method of feasible
directions

conmin Access to methods
in the CONMIN
library

6.2. METHOD 179

dl solver (Experimental)
Dynamically-
loaded
solver

npsol sqp Sequential
Quadratic Program

nlssol sqp Sequential
Quadratic Program
for nonlinear least
squares

stanford Select methods
from the Stanford
package

nlpql sqp Sequential
Quadratic Program

optpp cg A conjugate
gradient
optimization
method

optpp q newton Quasi-Newton
optimization
method

optpp fd newton Finite Difference
Newton
optimization
method

optpp g newton Newton method
based least-squares
calbration

optpp newton Newton method
based optimization

optpp pds Simplex-based
derivative free
optimization
method

asynch pattern -
search

Pattern search,
derivative free
optimization
method

mesh adaptive -
search

Finds optimal
variable values
using adaptive
mesh-based search

180 CHAPTER 6. KEYWORDS AREA

moga Multi-objective
Genetic Algorithm
(a.k.a Evolutionary
Algorithm)

soga Single-objective
Genetic Algorithm
(a.k.a Evolutionary
Algorithm)

coliny pattern -
search

Pattern search,
derivative free
optimization
method

coliny solis wets Simple greedy
local search
method

coliny cobyla Constrained
Optimization BY
Linear
Approximations
(COBYLA)

coliny direct DIviding
RECTangles
method

coliny ea Evolutionary
Algorithm

coliny beta (Experimental)
Coliny beta solver

nl2sol Trust-region
method for
nonlinear least
squares

nonlinear cg (Experimental)
nonlinear
conjugate gradient
optimization

ncsu direct DIviding
RECTangles
method

genie opt darts Voronoi-based
high-dimensional
global Lipschitzian
optimization

6.2. METHOD 181

genie direct Classical
high-dimensional
global Lipschitzian
optimization
Classical
high-dimensional
global Lipschitzian
optimization

efficient global Global Surrogate
Based
Optimization,
a.k.a. EGO

polynomial chaos Uncertainty
quantification
using polynomial
chaos expansions

stoch collocation Uncertainty
quantification with
stochastic
collocation

sampling Randomly samples
variables according
to their
distributions

importance -
sampling

Importance
sampling

gpais Gaussian Process
Adaptive
Importance
Sampling

adaptive sampling (Experimental)
Build a GP
surrogate and
refine it adaptively

pof darts Probability-of--
Failure (POF) darts
is a novel method
for estimating the
probability of
failure based on
random
sphere-packing.

182 CHAPTER 6. KEYWORDS AREA

efficient subspace (Experimental)
efficient subspace
method (ESM)

global evidence Evidence theory
with evidence
measures
computed with
global optimization
methods

global interval est Interval analysis
using global
optimization
methods

bayes calibration Bayesian
calibration

dace Design and
Analysis of
Computer
Experiments

fsu cvt Design of
Computer
Experiments -
Centroidal Voronoi
Tessellation

psuade moat Morris
One-at-a-Time

local evidence Evidence theory
with evidence
measures
computed with
local optimization
methods

local interval est Interval analysis
using local
optimization

local reliability Local reliability
method

global reliability Global reliability
methods

fsu quasi mc Design of
Computer
Experiments -
Quasi-Monte Carlo
sampling

6.2. METHOD 183

vector parameter -
study

Samples variables
along a
user-defined vector

list parameter -
study

Samples variables
as a specified
values

centered -
parameter study

Samples variables
along points
moving out from a
center point

multidim -
parameter study

Samples variables
on full factorial
grid of study points

richardson extrap Estimate order of
convergence of a
response as model
fidelity increases

Description
The method keyword signifies the start of a block in the Dakota input file. Said block contains the various
keywords necessary to specify a method and to control its behavior.

Method Block Requirements
At least one method block must appear in the Dakota input file. Multiple method blocks may be needed to

fully define advanced analysis approaches.
Each method block must specify one method and, optionally, any associated keywords that govern the be-

havior of the method.
The Methods
Each method block must select one method.
Starting with Dakota v6.0, the methods are grouped into two types: standard methods and multi-component

methods.
The standard methods are stand-alone and self-contained in the sense that they only require a model to perform

a study. They do not call other methods. While methods such as polynomial chaos and efficient-
global internally utilize multiple iterator and surrogate model components, these components are generally

hidden from user control due to restrictions on modularity; thus, these methods are stand-alone.
The multi-component group of methods provides a higher level ”meta-algorithm” that points to other methods

and models that support sub-iteration. For example, in a sequential hybrid method, the hybrid method specifi-
cation must identify a list of subordinate methods, and the ”meta-algorithm” executes these methods in sequence
and transfers information between them. Surrogate-based minimizers provide another example in that they point
both to other methods (e.g. what optimization method is used to solve the approximate subproblem) as well as to
models (e.g. what type of surrogate model is employed). Multi-component methods generally provide some level
of ”plug and play” modularity, through their flexible support of a variety of method and model selections.

Component-Based Iterator Commands
Component-based iterator specifications include hybrid, multi-start, pareto set, surrogate-based local, surrogate-

based global, and branch and bound methods. Whereas a standard iterator specification only needs an optional
model pointer string (specified with model pointer), component-based iterator specifications can include

184 CHAPTER 6. KEYWORDS AREA

method pointer, method name, and model pointer specifications in order to define the components employed in
the ”meta-iteration.” In particular, these specifications identify one or more methods (by pointer or by name) to
specify the subordinate iterators that will be used in the top-level algorithm. Identifying a sub-iterator by name
instead of by pointer is a lightweight option that relaxes the need for a separate method specification for the sub-
iterator; however, a model pointer may be required in this case to provide the specification connectivity normally
supported by the method pointer. Refer to these individual method descriptions for specific requirements for these
advanced methods.

Method Independent Controls
In addition to the method, there are 10 optional keywords, which are referred to as method independent

controls. These controls are valid for enough methods that it was reasonable to pull them out of the method
dependent blocks and consolidate the specifications, however, they are NOT universally respected by all methods.

Examples
Several examples follow. The first example shows a minimal specification for an optimization method.
method

dot_sqp

This example uses all of the defaults for this method.
A more sophisticated example would be

method,
id_method = ’NLP1’
dot_sqp

max_iterations = 50
convergence_tolerance = 1e-4
output verbose
model_pointer = ’M1’

This example demonstrates the use of identifiers and pointers as well as some method independent and method
dependent controls for the sequential quadratic programming (SQP) algorithm from the DOT library. The max-
iterations, convergence tolerance, and output settings are method independent controls, in that

they are defined for a variety of methods (see dot for usage of these controls).
The next example shows a specification for a least squares method.

method
optpp_g_newton

max_iterations = 10
convergence_tolerance = 1.e-8
search_method trust_region
gradient_tolerance = 1.e-6

Some of the same method independent controls are present along with several method dependent controls (search-
method and gradient tolerance) which are only meaningful for OPT++ methods (see package optpp).

The next example shows a specification for a nondeterministic method with several method dependent controls
(refer to sampling).
method

sampling
samples = 100
seed = 12345
sample_type lhs
response_levels = 1000. 500.

The last example shows a specification for a parameter study method where, again, each of the controls are
method dependent (refer to vector parameter study).
method

vector_parameter_study
step_vector = 1. 1. 1.
num_steps = 10

6.2. METHOD 185

6.2.1 id method
• Keywords Area

• method

• id method

Name the method block; helpful when there are multiple

Topics
This keyword is related to the topics:

• block identifier

• method independent controls

Specification
Alias: none

Argument(s): STRING
Default: strategy use of last method parsed

Description
The method identifier string is supplied with id method and is used to provide a unique identifier string for
use with environment or meta-iterator specifications (refer to environment). It is appropriate to omit a method
identifier string if only one method is included in the input file, since the single method to use is unambiguous in
this case.

6.2.2 output
• Keywords Area

• method

• output

Control how much method information is written to the screen and output file

Topics
This keyword is related to the topics:

• dakota output

• method independent controls

Specification
Alias: none

Argument(s): none
Default: normal

186 CHAPTER 6. KEYWORDS AREA

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

output level
(Group 1)

debug Level 5 of 5 -
maximum

verbose Level 4 of 5 - more
than normal

normal Level 3 of 5 -
default

quiet Level 2 of 5 - less
than normal

silent Level 1 of 5 -
minimum

Description
Choose from a total of five output levels during the course of a Dakota study. If there is no user specification for
output verbosity, then the default setting is normal.

Specific mappings are as follows:

• silent (i.e., really quiet): silent iterators, silent model, silent interface, quiet approximation, quiet file
operations

• quiet: quiet iterators, quiet model, quiet interface, quiet approximation, quiet file operations

• normal: normal iterators, normal model, normal interface, quiet approximation, quiet file operations

• verbose: verbose iterators, normal model, verbose interface, verbose approximation, verbose file opera-
tions

• debug (i.e., really verbose): debug iterators, normal model, debug interface, verbose approximation, ver-
bose file operations

Note that iterators and interfaces utilize the full granularity in verbosity, whereas models, approximations, and file
operations do not. With respect to iterator verbosity, different iterators implement this control in slightly different
ways (as described below in the method independent controls descriptions for each iterator), however the meaning
is consistent.

For models, interfaces, approximations, and file operations, quiet suppresses parameter and response set re-
porting and silent further suppresses function evaluation headers and scheduling output. Similarly, verbose
adds file management, approximation evaluation, and global approximation coefficient details, and debug further
adds diagnostics from nonblocking schedulers.

debug

• Keywords Area

• method

• output

• debug

Level 5 of 5 - maximum

6.2. METHOD 187

Specification

Alias: none
Argument(s): none

Description

This is described on output

verbose

• Keywords Area

• method

• output

• verbose

Level 4 of 5 - more than normal

Specification

Alias: none
Argument(s): none

Description

This is described on output

normal

• Keywords Area

• method

• output

• normal

Level 3 of 5 - default

Specification

Alias: none
Argument(s): none

Description

This is described on output

188 CHAPTER 6. KEYWORDS AREA

quiet

• Keywords Area

• method

• output

• quiet

Level 2 of 5 - less than normal

Specification
Alias: none

Argument(s): none

Description
This is described on output

silent

• Keywords Area

• method

• output

• silent

Level 1 of 5 - minimum

Specification
Alias: none

Argument(s): none

Description
This is described on output

6.2.3 max iterations
• Keywords Area

• method

• max iterations

Stopping criteria based on number of iterations

6.2. METHOD 189

Topics
This keyword is related to the topics:

• method independent controls

Specification
Alias: none

Argument(s): INTEGER
Default: 100 (exceptions: fsu cvt , local reliability: 25; global {reliability , interval est , evidence} / efficient-

global: 25∗n)

Description
The maximum number of iterations.

The default for max iterations is 100.

See Also
These keywords may also be of interest:

• max function evaluations

6.2.4 max function evaluations
• Keywords Area

• method

• max function evaluations

Stopping criteria based on number of function evaluations

Topics
This keyword is related to the topics:

• method independent controls

Specification
Alias: none

Argument(s): INTEGER
Default: 1000

Description
The maximum number of function evaluations.

The default for max function evaluations is 1000.

190 CHAPTER 6. KEYWORDS AREA

See Also
These keywords may also be of interest:

• max iterations

6.2.5 speculative
• Keywords Area

• method

• speculative

Compute speculative gradients

Topics
This keyword is related to the topics:

• method independent controls

Specification
Alias: none

Argument(s): none
Default: no speculation

Description
When performing gradient-based optimization in parallel, speculative gradients can be selected to address
the load imbalance that can occur between gradient evaluation and line search phases. In a typical gradient-based
optimization, the line search phase consists primarily of evaluating the objective function and any constraints at a
trial point, and then testing the trial point for a sufficient decrease in the objective function value and/or constraint
violation. If a sufficient decrease is not observed, then one or more additional trial points may be attempted
sequentially. However, if the trial point is accepted then the line search phase is complete and the gradient
evaluation phase begins. By speculating that the gradient information associated with a given line search trial point
will be used later, additional coarse grained parallelism can be introduced by computing the gradient information
(either by finite difference or analytically) in parallel, at the same time as the line search phase trial-point function
values. This balances the total amount of computation to be performed at each design point and allows for
efficient utilization of multiple processors. While the total amount of work performed will generally increase
(since some speculative gradients will not be used when a trial point is rejected in the line search phase), the run
time will usually decrease (since gradient evaluations needed at the start of each new optimization cycle were
already performed in parallel during the line search phase). Refer to [14] for additional details. The speculative
specification is implemented for the gradient-based optimizers in the DOT, CONMIN, and OPT++ libraries,
and it can be used with dakota numerical or analytic gradient selections in the responses specification (refer
to responses gradient section for information on these specifications). It should not be selected with vendor
numerical gradients since vendor internal finite difference algorithms have not been modified for this purpose.
In full-Newton approaches, the Hessian is also computed speculatively. NPSOL and NLSSOL do not support
speculative gradients, as their gradient-based line search in user-supplied gradient mode (dakota numerical or
analytic gradients) is a superior approach for load-balanced parallel execution.

6.2. METHOD 191

The speculative specification enables speculative computation of gradient and/or Hessian information,
where applicable, for parallel optimization studies. By speculating that the derivative information at the current
point will be used later, the complete data set (all available gradient/Hessian information) can be computed on
every function evaluation. While some of these computations will be wasted, the positive effects are a consis-
tent parallel load balance and usually shorter wall clock time. The speculative specification is applicable
only when parallelism in the gradient calculations can be exploited by Dakota (it will be ignored for vendor
numerical gradients).

6.2.6 convergence tolerance
• Keywords Area

• method

• convergence tolerance

Stopping criterion based on convergence of the objective function

Topics
This keyword is related to the topics:

• method independent controls

Specification
Alias: none

Argument(s): REAL
Default: 1.e-4

Description
The convergence tolerance specification provides a real value for controlling the termination of iteration.

It is a relative convergence tolerance for the objective function; i.e., if the change in the objective function
between successive iterations divided by the previous objective function is less than the amount specified by
convergence tolerance, then this convergence criterion is satisfied on the current iteration.

Therefore, permissible values are between 0 and 1, non-inclusive.
Behavior Varies by Package/Library
This control is used with optimization and least squares iterators (DOT, CONMIN, NPSOL, NLSSOL, OP-

T++, and SCOLIB) and is not used within the uncertainty quantification, design of experiments, or parameter
study iterator branches.

Since no progress may be made on one iteration followed by significant progress on a subsequent iteration,
some libraries require that the convergence tolerance be satisfied on two or more consecutive iterations prior to
termination of iteration.

Notes on each library:

• DOT: must be satisfied for two consecutive iterations

• NPSOL: defines an internal optimality tolerance which is used in evaluating if an iterate satisfies the first-
order Kuhn-Tucker conditions for a minimum. The magnitude of convergence tolerance approx-
imately specifies the number of significant digits of accuracy desired in the final objective function (e.g.,
convergence tolerance = 1.e-6 will result in approximately six digits of accuracy in the final
objective function).

192 CHAPTER 6. KEYWORDS AREA

• NL2SOL: See nl2sol

6.2.7 constraint tolerance
• Keywords Area

• method

• constraint tolerance

The maximum allowable value of constraint violation still considered to be feasible

Topics
This keyword is related to the topics:

• method independent controls

Specification
Alias: none

Argument(s): REAL
Default: Library default

Description
The constraint tolerance specification determines the maximum allowable value of infeasibility that any
constraint in an optimization problem may possess and still be considered to be satisfied.

If a constraint function is greater than this value then it is considered to be violated by the optimization
algorithm. This specification gives some control over how tightly the constraints will be satisfied at convergence
of the algorithm. However, if the value is set too small the algorithm may terminate with one or more constraints
being violated.

This specification is currently meaningful for the NPSOL, NLSSOL, DOT and CONMIN constrained opti-
mizers.

Defaults
Defaults can vary depending on the method.

• DOT constrained optimizers: 0.003

• NPSOL: dependent upon the machine precision, typically on the order of 1.e-8 for double precision
computations

6.2.8 scaling
• Keywords Area

• method

• scaling

Turn on scaling for variables, responses, and constraints

6.2. METHOD 193

Topics
This keyword is related to the topics:

• method independent controls

Specification
Alias: none

Argument(s): none
Default: no scaling

Description
Some of the optimization and calibration methods support scaling of continuous design variables, objective func-
tions, calibration terms, and constraints. This is activated by by providing the scaling keyword. Discrete
variable scaling is not supported.

When scaling is enabled, variables, functions, gradients, Hessians, etc., are transformed such that the method
iterates in scaled variable space, whereas evaluations of the computational model as specified in the interface are
performed on the original problem scale. Therefore using scaling does not require rewriting the interface to the
simulation code.

Scaling also requires the specification of additional keywords which are found in the method, variables, and
responses blocks. When the scaling keyword is omitted, all scale types and ∗ scales specifications
are ignored in the method, variables, and responses sections.

This page describes the usage of all scaling related keywords. The additional keywords come in pairs, one
pair for each set of quantities to be scaled. These quantities can be constraint equations, variables, or responses.

• a ∗scales keyword, which gives characteristic values

• a ∗scale type keyword, which determines how to use the characteristic values

The pair of keywords both take argument(s), and the length of the arguments can either be zero, one, or equal to
the number of quantities to be scaled. If one argument is given, it will apply to all quantities in the set. See the
examples below.

Scale Types
There are four scale types:

1. none (default) - no scaling, value of ∗scales keyword is ignored

2. value - multiplicative scaling

3. auto - automatic scaling

First the quantity is scaled by the characteristic value, then automatic scaling will be attempted according
to the following scheme:

• two-sided bounds scaled into the interval [0,1];

• one-sided bound or targets are scaled by the characteristic value, moving the bound or target to 1 and
changing the sense of inequalities where necessary;

• no bounds or targets: no automatic scaling possible, therefore no scaling for this component

Automatic scaling is not available for objective functions nor calibration terms since they lack bound con-
straints. Futher, when automatically scaled, linear constraints are scaled by characteristic values only, not
affinely scaled into [0,1].

194 CHAPTER 6. KEYWORDS AREA

4. log - logarithmic scaling

First, any characteristic values from the optional ∗ scales specification are applied. Then logarithm base
10 scaling is applied.

Logarithmic scaling is not available for linear constraints.

When continuous design variables are log scaled, linear constraints are not allowed.

Scales
The ∗scales keywords are used to specify the characteristic values. These must be non-zero real numbers.

The numbers are used according to the corresponding ∗scale type, as described above.
Depending on the scale type, the characteristic values may be required or optional.

• none, auto, log - optional

• value - required.

A warning is issued if scaling would result in division by a value smaller in magnitude than 1.0e10∗DBL MI-
N. User-provided values violating this lower bound are accepted unaltered, whereas for automatically calculated
scaling, the lower bound is enforced.

Examples
The two examples below are equivalent:

responses
objective_functions 3
sense "maximize"
primary_scale_types = "value"
primary_scales = 1 1 100

responses
objective_functions 3
sense "maximize"
primary_scale_types = "value" "value" "value"
primary_scales = 1 1 100

6.2.9 final solutions
• Keywords Area

• method

• final solutions

Number of designs returned as the best solutions

Topics
This keyword is related to the topics:

• method independent controls

Specification
Alias: none

Argument(s): INTEGER
Default: 1

6.2. METHOD 195

Description
The final solutions controls the number of final solutions returned by the iterator as the best solutions.

For most optimizers, this is one, but some optimizers can produce multiple solutions (e.g. genetic algorithms).
When using a hybrid strategy, the number of final solutions dictates how many solutions are passed from

one method to another.

Examples
In the case of sampling methods, if one specifies 100 samples (for example) but also specifies final solutions
= 5, the five best solutions (in order of lowest response function value) are returned.

6.2.10 hybrid
• Keywords Area

• method

• hybrid

Strategy in which a set of methods synergistically seek an optimal design

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1
sequential Methods are run

one at a time, in
sequence

embedded A subordinate
local method
provides periodic
refinements to a
top-level global
method

collaborative Multiple methods
run concurrently
and share
information

Optional iterator servers Specify the
number of iterator
servers when
Dakota is run in
parallel

196 CHAPTER 6. KEYWORDS AREA

Optional iterator scheduling Specify the
scheduling of
concurrent iterators
when Dakota is run
in parallel

Optional processors per -
iterator

Specify the
number of
processors per
iterator server
when Dakota is run
in parallel

Description
In a hybrid minimization method (hybrid), a set of methods synergistically seek an optimal design. The rela-
tionships among the methods are categorized as:

• collaborative

• embedded

• sequential

The goal in each case is to exploit the strengths of different optimization and nonlinear least squares algorithms
at different stages of the minimization process. Global + local hybrids (e.g., genetic algorithms combined with
nonlinear programming) are a common example in which the desire for identification of a global optimum is
balanced with the need for efficient navigation to a local optimum.

sequential

• Keywords Area

• method

• hybrid

• sequential

Methods are run one at a time, in sequence

Specification
Alias: uncoupled

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 method name list List of Dakota
methods to
sequentially or
collaboratively run

6.2. METHOD 197

method pointer list Pointers to
methods to execute
sequantially or
collaboratively

Description
In the sequential approach, methods are run one at a time, in sequence. The best solutions from one method
are used to initialize the next method.

The sequence of methods (i.e. iterators) to run are specified using either a method pointer list or a
method name list (with optional model pointer list). Any number of iterators may be specified.

Method switching is managed through the separate convergence controls of each method. The number of
solutions transferred between methods is specified by the particular method through its final solutions method
control.

For example, if one sets up a two-level study with a first method that generates multiple solutions such as a
genetic algorithm, followed by a second method that is initialized only at a single point such as a gradient-based
algorithm, it is possible to take the multiple solutions generated by the first method and create several instances
of the second method, each one with a different initial starting point.

The logic governing the transfer of multiple solutions between methods is as follows:

• if one solution is returned from method A, then one solution is transferred to method B.

• If multiple solutions are returned from method A, and method B can accept multiple solutions as input
(for example, as a genetic algorithm population), then one instance of method B is initialized with multiple
solutions.

• If multiple solutions are returned from method A but method B only can accept one initial starting point,
then method B is run several times, each one with a separate starting point from the results of method A.

method name list

• Keywords Area

• method

• hybrid

• sequential

• method name list

List of Dakota methods to sequentially or collaboratively run

Specification
Alias: none

Argument(s): STRINGLIST
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

198 CHAPTER 6. KEYWORDS AREA

Optional model pointer list Associate models
with method
names

Description
method name list specifies a list of Dakota methods (e.g. soga, conmin frcg) that will be run by a hybrid
sequential or hybrid collaborative method. The methods are executed with default options. The
optional model pointer list may be used to associate a model with each method.

model pointer list
• Keywords Area

• method

• hybrid

• sequential

• method name list

• model pointer list

Associate models with method names

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING

Description
Using the optional keyword model pointer list, models can be assigned to methods specified in the method-
name list. Models are referred to by name (i.e. by their id model labels). The length of the model -
pointer list must be either 1 or match the length of the method name list. If the former, the same
model will be used for all methods, and if the latter, methods and models will be paired in the order that they
appear in the two lists.

method pointer list
• Keywords Area

• method

• hybrid

• sequential

• method pointer list

Pointers to methods to execute sequantially or collaboratively

6.2. METHOD 199

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRINGLIST

Description
method pointer list specifies by name the methods that are to be executed by a hybrid sequential
or hybrid collaborative method. Its argument is a list of strings that refer to method blocks by name (i.e.
to their id method labels).

embedded

• Keywords Area

• method

• hybrid

• embedded

A subordinate local method provides periodic refinements to a top-level global method

Specification
Alias: coupled

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 global method -
name

Specify the global
method by Dakota
name

global method -
pointer

Pointer to global
method

Required(Choose
One)

Group 2 local method -
name

Specify the local
method by Dakota
name

200 CHAPTER 6. KEYWORDS AREA

local method -
pointer

Pointer to local
method

Optional local search -
probability

Probability of
executing local
searches

Description
In the embedded approach, a tightly-coupled hybrid is employed in which a subordinate local method provides
periodic refinements to a top-level global method.

Global and local method strings supplied with the global method pointer and local method -
pointer specifications identify the two methods to be used. Alternatively, Dakota method names (e.g. ’soga’)
can be supplied using the global method name and local method name keywords, which each have op-
tional model pointer specifications. The local search probability setting is an optional specification for
supplying the probability (between 0.0 and 1.0) of employing local search to improve estimates within the global
search.

global method name

• Keywords Area

• method

• hybrid

• embedded

• global method name

Specify the global method by Dakota name

Specification
Alias: none

Argument(s): STRING
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional global model -
pointer

Pointer to model
used by global
method

Description
global method name is used to specify the global method in a hybrid embedded optimization by Dakota
name (e.g. ’soga’). The name of the method is provided as a string. The method is executed with default options.

global model pointer

• Keywords Area

• method

• hybrid

6.2. METHOD 201

• embedded

• global method name

• global model pointer

Pointer to model used by global method

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING

Description
global model pointer can be used to specify a model for use with the Dakota method named by the
global method name specification. The argument is a string that refers to the id model label of the desired
model.

global method pointer

• Keywords Area

• method

• hybrid

• embedded

• global method pointer

Pointer to global method

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING

Description
The global method pointer identifies the method block to use as the global method in a hybrid embedded
optimization using its id method label.

202 CHAPTER 6. KEYWORDS AREA

local method name

• Keywords Area

• method

• hybrid

• embedded

• local method name

Specify the local method by Dakota name

Specification
Alias: none

Argument(s): STRING
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional local model -
pointer

Pointer to model
used by local
method

Description
local method name is used to specify the local method in a hybrid embedded optimization by Dakota
name (e.g. ’conmin mfd’). The name of the method is provided as a string. The method is executed with default
options.

local model pointer

• Keywords Area

• method

• hybrid

• embedded

• local method name

• local model pointer

Pointer to model used by local method

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING

6.2. METHOD 203

Description
local model pointer can be used to specify a model for use with the Dakota method named by the local-
method name specification. The argument is a string that refers to the id model label of the desired model.

local method pointer

• Keywords Area

• method

• hybrid

• embedded

• local method pointer

Pointer to local method

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING

Description
The local method pointer identifies the method block to use as the local method in a hybrid embedded
optimization using its id method

local search probability

• Keywords Area

• method

• hybrid

• embedded

• local search probability

Probability of executing local searches

Specification
Alias: none

Argument(s): REAL

204 CHAPTER 6. KEYWORDS AREA

Description
The local search probability setting is an optional specification for supplying the probability (between
0.0 and 1.0) of employing local search to improve estimates within the global search. Its default value is 0.1.

collaborative

• Keywords Area

• method

• hybrid

• collaborative

Multiple methods run concurrently and share information

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 method name list List of Dakota
methods to
sequentially or
collaboratively run

method pointer list Pointers to
methods to execute
sequantially or
collaboratively

Description
In the collaborative approach, multiple methods work together and share solutions while executing concurrently.
A list of method strings specifies the pool of iterators to be used. Any number of iterators may be specified.
The method collaboration logic follows that of either the Agent-Based Optimization or HOPSPACK codes and is
currently under development and not available at this time.

method name list

• Keywords Area

• method

• hybrid

• collaborative

• method name list

List of Dakota methods to sequentially or collaboratively run

6.2. METHOD 205

Specification
Alias: none

Argument(s): STRINGLIST

206 CHAPTER 6. KEYWORDS AREA

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional model pointer list Associate models
with method
names

Description

method name list specifies a list of Dakota methods (e.g. soga, conmin frcg) that will be run by a hybrid
sequential or hybrid collaborative method. The methods are executed with default options. The
optional model pointer list may be used to associate a model with each method.

model pointer list

• Keywords Area

• method

• hybrid

• collaborative

• method name list

• model pointer list

Associate models with method names

Topics

This keyword is related to the topics:

• block pointer

Specification

Alias: none
Argument(s): STRING

Description

Using the optional keyword model pointer list, models can be assigned to methods specified in the method-
name list. Models are referred to by name (i.e. by their id model labels). The length of the model -
pointer list must be either 1 or match the length of the method name list. If the former, the same
model will be used for all methods, and if the latter, methods and models will be paired in the order that they
appear in the two lists.

6.2. METHOD 207

method pointer list

• Keywords Area

• method

• hybrid

• collaborative

• method pointer list

Pointers to methods to execute sequantially or collaboratively

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRINGLIST

Description
method pointer list specifies by name the methods that are to be executed by a hybrid sequential
or hybrid collaborative method. Its argument is a list of strings that refer to method blocks by name (i.e.
to their id method labels).

iterator servers

• Keywords Area

• method

• hybrid

• iterator servers

Specify the number of iterator servers when Dakota is run in parallel

Topics
This keyword is related to the topics:

• concurrency and parallelism

Specification
Alias: none

Argument(s): INTEGER

208 CHAPTER 6. KEYWORDS AREA

Description
An important feature for component-based iterators is that execution of sub-iterator runs may be performed con-
currently. The optional iterator servers specification supports user override of the automatic parallel con-
figuration for the number of iterator servers. That is, if the automatic configuration is undesirable for some
reason, the user can enforce a desired number of partitions at the iterator parallelism level. Currently, hybrid,
multi start, and pareto set component-based iterators support concurrency in their sub-iterators. Refer
to ParallelLibrary and the Parallel Computing chapter of the Users Manual [4] for additional information.

iterator scheduling

• Keywords Area

• method

• hybrid

• iterator scheduling

Specify the scheduling of concurrent iterators when Dakota is run in parallel

Topics
This keyword is related to the topics:

• concurrency and parallelism

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 master Specify a
dedicated master
partition for
parallel iterator
scheduling

peer Specify a peer
partition for
parallel iterator
scheduling

Description
An important feature for component-based iterators is that execution of sub-iterator runs may be performed con-
currently. The optional iterator scheduling specification supports user override of the automatic parallel
configuration for the number of iterator servers. That is, if the automatic configuration is undesirable for some
reason, the user can enforce a desired number of partitions at the iterator parallelism level. Currently, hybrid,
multi start, and pareto set component-based iterators support concurrency in their sub-iterators. Refer
to ParallelLibrary and the Parallel Computing chapter of the Users Manual [4] for additional information.

6.2. METHOD 209

master

• Keywords Area

• method

• hybrid

• iterator scheduling

• master

Specify a dedicated master partition for parallel iterator scheduling

Topics
This keyword is related to the topics:

• concurrency and parallelism

Specification
Alias: none

Argument(s): none

Description
This option overrides the Dakota parallel automatic configuration, forcing the use of a dedicated master partition.
In a dedicated master partition, one processor (the ”master”) dynamically schedules work on the iterator servers.
This reduces the number of processors available to create servers by 1.

peer

• Keywords Area

• method

• hybrid

• iterator scheduling

• peer

Specify a peer partition for parallel iterator scheduling

Topics
This keyword is related to the topics:

• concurrency and parallelism

Specification
Alias: none

Argument(s): none

210 CHAPTER 6. KEYWORDS AREA

Description
This option overrides the Dakota parallel automatic configuration, forcing the use of a peer partition. In a peer par-
tition, all processors are available to be assigned to iterator servers. Note that unlike the case of evaluation -
scheduling, it is not possible to specify static or dynamic.

processors per iterator

• Keywords Area

• method

• hybrid

• processors per iterator

Specify the number of processors per iterator server when Dakota is run in parallel

Topics
This keyword is related to the topics:

• concurrency and parallelism

Specification
Alias: none

Argument(s): INTEGER

Description
An important feature for component-based iterators is that execution of sub-iterator runs may be performed con-
currently. The optional processors per iterator specification supports user override of the automatic
parallel configuration for the number of processors in each iterator server. That is, if the automatic configura-
tion is undesirable for some reason, the user can enforce a desired server size at the iterator parallelism level.
Currently, hybrid, multi start, and pareto set component-based iterators support concurrency in their
sub-iterators. Refer to ParallelLibrary and the Parallel Computing chapter of the Users Manual[4] for additional
information.

6.2.11 multi start
• Keywords Area

• method

• multi start

Multi-Start Optimization Method

Specification
Alias: none

Argument(s): none

6.2. METHOD 211

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 method name Specify
sub-method by
name

method pointer Pointer to
sub-method to run
from each starting
point

Optional random starts Number of random
starting points

Optional starting points List of
user-specified
starting points

Optional iterator servers Specify the
number of iterator
servers when
Dakota is run in
parallel

Optional iterator scheduling Specify the
scheduling of
concurrent iterators
when Dakota is run
in parallel

Optional processors per -
iterator

Specify the
number of
processors per
iterator server
when Dakota is run
in parallel

Description

In the multi-start iteration method (multi start), a series of iterator runs are performed for different values
of parameters in the model. A common use is for multi-start optimization (i.e., different local optimization runs
from different starting points for the design variables), but the concept and the code are more general. Multi-start
iteration is implemented within the MetaIterator branch of the Iterator hierarchy within the ConcurrentMeta-
Iterator class. Additional information on the multi-start algorithm is available in the Users Manual[4].

The multi startmeta-iterator must specify a sub-iterator using either a method pointer or a method-
name plus optional model pointer. This iterator is responsible for completing a series of iterative analyses

from a set of different starting points. These starting points can be specified as follows: (1) using random -
starts, for which the specified number of starting points are selected randomly within the variable bounds,
(2) using starting points, in which the starting values are provided in a list, or (3) using both random -
starts and starting points, for which the combined set of points will be used. In aggregate, at least one
starting point must be specified. The most common example of a multi-start algorithm is multi-start optimization,
in which a series of optimizations are performed from different starting values for the design variables. This can
be an effective approach for problems with multiple minima.

212 CHAPTER 6. KEYWORDS AREA

method name

• Keywords Area

• method

• multi start

• method name

Specify sub-method by name

Specification
Alias: none

Argument(s): STRING
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional model pointer Identifier for
model block to be
used by a method

Description
The method name keyword is used to specify a sub-method by Dakota method name (e.g. ’npsol sqp’) rather
than block pointer. The method will be executed using its default settings. The optional model pointer
specification can be used to associate a model block with the method.

model pointer

• Keywords Area

• method

• multi start

• method name

• model pointer

Identifier for model block to be used by a method

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

6.2. METHOD 213

Description

The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses

214 CHAPTER 6. KEYWORDS AREA

response_functions = 3
no_gradients
no_hessians

method pointer

• Keywords Area

• method

• multi start

• method pointer

Pointer to sub-method to run from each starting point

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING

Description
The method pointer keyword is used to specify a pointer to the sub-method block that will be run from each
starting point.

random starts

• Keywords Area

• method

• multi start

• random starts

Number of random starting points

Specification
Alias: none

Argument(s): INTEGER
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

6.2. METHOD 215

Optional seed Seed of the random
number generator

Description
The multi start meta-iterator must specify a sub-iterator using either a method pointer or a method-
name plus optional model pointer. This iterator is responsible for completing a series of iterative analyses

from a set of different starting points. These starting points can be specified as follows: (1) using random -
starts, for which the specified number of starting points are selected randomly within the variable bounds,
(2) using starting points, in which the starting values are provided in a list, or (3) using both random -
starts and starting points, for which the combined set of points will be used.

seed

• Keywords Area

• method

• multi start

• random starts

• seed

Seed of the random number generator

Specification
Alias: none

Argument(s): INTEGER
Default: system-generated (non-repeatable)

Description
The random seed control provides a mechanism for making a stochastic method repeatable. That is, the use of
the same random seed in identical studies will generate identical results.

Default Behavior
If not specified, the seed is randomly generated.
Expected Output
If seed is specified, a stochastic study will generate identical results when repeated using the same seed

value. Otherwise, results are not guaranteed to be the same.
Usage Tips
If a stochastic study was run without seed specified, and the user later wishes to repeat the study using the

same seed, the value of the seed used in the original study can be found in the output Dakota prints to the screen.
That value can then be added to the Dakota input file.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 15347

216 CHAPTER 6. KEYWORDS AREA

starting points

• Keywords Area

• method

• multi start

• starting points

List of user-specified starting points

Specification

Alias: none
Argument(s): REALLIST

Description

The multi start meta-iterator must specify a sub-iterator using either a method pointer or a method-
name plus optional model pointer. This iterator is responsible for completing a series of iterative analyses

from a set of different starting points. These starting points can be specified as follows: (1) using random -
starts, for which the specified number of starting points are selected randomly within the variable bounds,
(2) using starting points, in which the starting values are provided in a list, or (3) using both random -
starts and starting points, for which the combined set of points will be used.

iterator servers

• Keywords Area

• method

• multi start

• iterator servers

Specify the number of iterator servers when Dakota is run in parallel

Topics

This keyword is related to the topics:

• concurrency and parallelism

Specification

Alias: none
Argument(s): INTEGER

6.2. METHOD 217

Description
An important feature for component-based iterators is that execution of sub-iterator runs may be performed con-
currently. The optional iterator servers specification supports user override of the automatic parallel con-
figuration for the number of iterator servers. That is, if the automatic configuration is undesirable for some
reason, the user can enforce a desired number of partitions at the iterator parallelism level. Currently, hybrid,
multi start, and pareto set component-based iterators support concurrency in their sub-iterators. Refer
to ParallelLibrary and the Parallel Computing chapter of the Users Manual [4] for additional information.

iterator scheduling

• Keywords Area

• method

• multi start

• iterator scheduling

Specify the scheduling of concurrent iterators when Dakota is run in parallel

Topics
This keyword is related to the topics:

• concurrency and parallelism

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 master Specify a
dedicated master
partition for
parallel iterator
scheduling

peer Specify a peer
partition for
parallel iterator
scheduling

Description
An important feature for component-based iterators is that execution of sub-iterator runs may be performed con-
currently. The optional iterator scheduling specification supports user override of the automatic parallel
configuration for the number of iterator servers. That is, if the automatic configuration is undesirable for some
reason, the user can enforce a desired number of partitions at the iterator parallelism level. Currently, hybrid,
multi start, and pareto set component-based iterators support concurrency in their sub-iterators. Refer
to ParallelLibrary and the Parallel Computing chapter of the Users Manual [4] for additional information.

218 CHAPTER 6. KEYWORDS AREA

master

• Keywords Area

• method

• multi start

• iterator scheduling

• master

Specify a dedicated master partition for parallel iterator scheduling

Topics
This keyword is related to the topics:

• concurrency and parallelism

Specification
Alias: none

Argument(s): none

Description
This option overrides the Dakota parallel automatic configuration, forcing the use of a dedicated master partition.
In a dedicated master partition, one processor (the ”master”) dynamically schedules work on the iterator servers.
This reduces the number of processors available to create servers by 1.

peer

• Keywords Area

• method

• multi start

• iterator scheduling

• peer

Specify a peer partition for parallel iterator scheduling

Topics
This keyword is related to the topics:

• concurrency and parallelism

Specification
Alias: none

Argument(s): none

6.2. METHOD 219

Description
This option overrides the Dakota parallel automatic configuration, forcing the use of a peer partition. In a peer par-
tition, all processors are available to be assigned to iterator servers. Note that unlike the case of evaluation -
scheduling, it is not possible to specify static or dynamic.

processors per iterator

• Keywords Area

• method

• multi start

• processors per iterator

Specify the number of processors per iterator server when Dakota is run in parallel

Topics
This keyword is related to the topics:

• concurrency and parallelism

Specification
Alias: none

Argument(s): INTEGER

Description
An important feature for component-based iterators is that execution of sub-iterator runs may be performed con-
currently. The optional processors per iterator specification supports user override of the automatic
parallel configuration for the number of processors in each iterator server. That is, if the automatic configura-
tion is undesirable for some reason, the user can enforce a desired server size at the iterator parallelism level.
Currently, hybrid, multi start, and pareto set component-based iterators support concurrency in their
sub-iterators. Refer to ParallelLibrary and the Parallel Computing chapter of the Users Manual[4] for additional
information.

6.2.12 pareto set
• Keywords Area

• method

• pareto set

Pareto set optimization

Specification
Alias: none

Argument(s): none

220 CHAPTER 6. KEYWORDS AREA

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 method name Specify
sub-method by
name

method pointer Pointer to
optimization or
least-squares
sub-method

Optional random weight -
sets

Number of random
weighting sets

Optional weight sets List of
user-specified
weighting sets

Optional iterator servers Specify the
number of iterator
servers when
Dakota is run in
parallel

Optional iterator scheduling Specify the
scheduling of
concurrent iterators
when Dakota is run
in parallel

Optional processors per -
iterator

Specify the
number of
processors per
iterator server
when Dakota is run
in parallel

Description

In the pareto set minimization method (pareto set), a series of optimization or least squares calibration runs
are performed for different weightings applied to multiple objective functions. This set of optimal solutions
defines a ”Pareto set,” which is useful for investigating design trade-offs between competing objectives. The code
is similar enough to the multi start technique that both algorithms are implemented in the same Concurrent-
MetaIterator class.

The pareto set specification must identify an optimization or least squares calibration method using either
a method pointer or a method name plus optional model pointer. This minimizer is responsible for
computing a set of optimal solutions from a set of response weightings (multi-objective weights or least squares
term weights). These weightings can be specified as follows: (1) using random weight sets, in which case
weightings are selected randomly within [0,1] bounds, (2) using weight sets, in which the weighting sets are
specified in a list, or (3) using both random weight sets and weight sets, for which the combined set
of weights will be used. In aggregate, at least one set of weights must be specified. The set of optimal solutions
is called the ”pareto set,” which can provide valuable design trade-off information when there are competing
objectives.

6.2. METHOD 221

method name

• Keywords Area

• method

• pareto set

• method name

Specify sub-method by name

Specification
Alias: opt method name

Argument(s): STRING
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional model pointer Identifier for
model block to be
used by a method

Description
The method name keyword is used to specify a sub-method by Dakota method name (e.g. ’npsol sqp’) rather
than block pointer. The method will be executed using its default settings. The optional model pointer
specification can be used to associate a model block with the method.

model pointer

• Keywords Area

• method

• pareto set

• method name

• model pointer

Identifier for model block to be used by a method

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: opt model pointer

Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

222 CHAPTER 6. KEYWORDS AREA

Description

The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses

6.2. METHOD 223

response_functions = 3
no_gradients
no_hessians

method pointer

• Keywords Area

• method

• pareto set

• method pointer

Pointer to optimization or least-squares sub-method

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: opt method pointer

Argument(s): STRING

Description
The method pointer keyword is used to specify a pointer to an optimization or least-squares sub-method that
is responsible for computing a set of optimal solutions for a set of response weightings.

random weight sets

• Keywords Area

• method

• pareto set

• random weight sets

Number of random weighting sets

Specification
Alias: none

Argument(s): INTEGER
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

224 CHAPTER 6. KEYWORDS AREA

Optional seed Seed of the random
number generator

Description

The pareto set specification must identify an optimization or least squares calibration method using either
a method pointer or a method name plus optional model pointer. This minimizer is responsible for
computing a set of optimal solutions from a set of response weightings (multi-objective weights or least squares
term weights). These weightings can be specified as follows: (1) using random weight sets, in which case
weightings are selected randomly within [0,1] bounds, (2) using weight sets, in which the weighting sets are
specified in a list, or (3) using both random weight sets and weight sets, for which the combined set
of weights will be used. In aggregate, at least one set of weights must be specified. The set of optimal solutions
is called the ”pareto set,” which can provide valuable design trade-off information when there are competing
objectives.

seed

• Keywords Area

• method

• pareto set

• random weight sets

• seed

Seed of the random number generator

Specification

Alias: none
Argument(s): INTEGER
Default: system-generated (non-repeatable)

Description

The random seed control provides a mechanism for making a stochastic method repeatable. That is, the use of
the same random seed in identical studies will generate identical results.

Default Behavior
If not specified, the seed is randomly generated.
Expected Output
If seed is specified, a stochastic study will generate identical results when repeated using the same seed

value. Otherwise, results are not guaranteed to be the same.
Usage Tips
If a stochastic study was run without seed specified, and the user later wishes to repeat the study using the

same seed, the value of the seed used in the original study can be found in the output Dakota prints to the screen.
That value can then be added to the Dakota input file.

6.2. METHOD 225

Examples
method

sampling
sample_type lhs
samples = 10
seed = 15347

weight sets

• Keywords Area

• method

• pareto set

• weight sets

List of user-specified weighting sets

Specification
Alias: multi objective weight sets

Argument(s): REALLIST

Description
The pareto set specification must identify an optimization or least squares calibration method using either
a method pointer or a method name plus optional model pointer. This minimizer is responsible for
computing a set of optimal solutions from a set of response weightings (multi-objective weights or least squares
term weights). These weightings can be specified as follows: (1) using random weight sets, in which case
weightings are selected randomly within [0,1] bounds, (2) using weight sets, in which the weighting sets are
specified in a list, or (3) using both random weight sets and weight sets, for which the combined set
of weights will be used. In aggregate, at least one set of weights must be specified. The set of optimal solutions
is called the ”pareto set,” which can provide valuable design trade-off information when there are competing
objectives.

iterator servers

• Keywords Area

• method

• pareto set

• iterator servers

Specify the number of iterator servers when Dakota is run in parallel

Topics
This keyword is related to the topics:

• concurrency and parallelism

226 CHAPTER 6. KEYWORDS AREA

Specification

Alias: none
Argument(s): INTEGER

Description

An important feature for component-based iterators is that execution of sub-iterator runs may be performed con-
currently. The optional iterator servers specification supports user override of the automatic parallel con-
figuration for the number of iterator servers. That is, if the automatic configuration is undesirable for some
reason, the user can enforce a desired number of partitions at the iterator parallelism level. Currently, hybrid,
multi start, and pareto set component-based iterators support concurrency in their sub-iterators. Refer
to ParallelLibrary and the Parallel Computing chapter of the Users Manual [4] for additional information.

iterator scheduling

• Keywords Area

• method

• pareto set

• iterator scheduling

Specify the scheduling of concurrent iterators when Dakota is run in parallel

Topics

This keyword is related to the topics:

• concurrency and parallelism

Specification

Alias: none
Argument(s): none

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 master Specify a
dedicated master
partition for
parallel iterator
scheduling

peer Specify a peer
partition for
parallel iterator
scheduling

6.2. METHOD 227

Description
An important feature for component-based iterators is that execution of sub-iterator runs may be performed con-
currently. The optional iterator scheduling specification supports user override of the automatic parallel
configuration for the number of iterator servers. That is, if the automatic configuration is undesirable for some
reason, the user can enforce a desired number of partitions at the iterator parallelism level. Currently, hybrid,
multi start, and pareto set component-based iterators support concurrency in their sub-iterators. Refer
to ParallelLibrary and the Parallel Computing chapter of the Users Manual [4] for additional information.

master

• Keywords Area

• method

• pareto set

• iterator scheduling

• master

Specify a dedicated master partition for parallel iterator scheduling

Topics
This keyword is related to the topics:

• concurrency and parallelism

Specification
Alias: none

Argument(s): none

Description
This option overrides the Dakota parallel automatic configuration, forcing the use of a dedicated master partition.
In a dedicated master partition, one processor (the ”master”) dynamically schedules work on the iterator servers.
This reduces the number of processors available to create servers by 1.

peer

• Keywords Area

• method

• pareto set

• iterator scheduling

• peer

Specify a peer partition for parallel iterator scheduling

228 CHAPTER 6. KEYWORDS AREA

Topics

This keyword is related to the topics:

• concurrency and parallelism

Specification

Alias: none
Argument(s): none

Description

This option overrides the Dakota parallel automatic configuration, forcing the use of a peer partition. In a peer par-
tition, all processors are available to be assigned to iterator servers. Note that unlike the case of evaluation -
scheduling, it is not possible to specify static or dynamic.

processors per iterator

• Keywords Area

• method

• pareto set

• processors per iterator

Specify the number of processors per iterator server when Dakota is run in parallel

Topics

This keyword is related to the topics:

• concurrency and parallelism

Specification

Alias: none
Argument(s): INTEGER

Description

An important feature for component-based iterators is that execution of sub-iterator runs may be performed con-
currently. The optional processors per iterator specification supports user override of the automatic
parallel configuration for the number of processors in each iterator server. That is, if the automatic configura-
tion is undesirable for some reason, the user can enforce a desired server size at the iterator parallelism level.
Currently, hybrid, multi start, and pareto set component-based iterators support concurrency in their
sub-iterators. Refer to ParallelLibrary and the Parallel Computing chapter of the Users Manual[4] for additional
information.

6.2. METHOD 229

6.2.13 surrogate based local
• Keywords Area

• method

• surrogate based local

Local Surrogate Based Optimization

Topics
This keyword is related to the topics:

• surrogate based optimization methods

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 method pointer Pointer to
sub-method to
apply to surrogate

method name Specify
sub-method by
name

Required model pointer Identifier for
model block to be
used by a method

Optional soft convergence -
limit

Limit number of
iterations w/ little
improvement

Optional truth surrogate -
bypass

Bypass lower level
surrogates when
performing truth
verifications on a
top level surrogate

Optional trust region Use trust region
search method

Optional approx -
subproblem

Identify functions
to be included in
surrogate merit
function

230 CHAPTER 6. KEYWORDS AREA

Optional merit function Select type of
penalty or merit
function

Optional acceptance logic Set criteria for
trusted surrogate

Optional constraint relax Enable constraint
relaxation

Description
In surrogate-based optimization (SBO) and surrogate-based nonlinear least squares (SBNLS), minimization oc-
curs using a set of one or more approximations, defined from a surrogate model, that are built and periodically
updated using data from a ”truth” model. The surrogate model can be a global data fit (e.g., regression or inter-
polation of data generated from a design of computer experiments), a multipoint approximation, a local Taylor
Series expansion, or a model hierarchy approximation (e.g., a low-fidelity simulation model), whereas the truth
model involves a high-fidelity simulation model. The goals of surrogate-based methods are to reduce the total
number of truth model simulations and, in the case of global data fit surrogates, to smooth noisy data with an
easily navigated analytic function.

In the surrogate-based local method, a trust region approach is used to manage the minimization process to
maintain acceptable accuracy between the surrogate model and the truth model (by limiting the range over which
the surrogate model is trusted). The process involves a sequence of minimizations performed on the surrogate
model and bounded by the trust region. At the end of each approximate minimization, the candidate optimum
point is validated using the truth model. If sufficient decrease has been obtained in the truth model, the trust region
is re-centered around the candidate optimum point and the trust region will either shrink, expand, or remain the
same size depending on the accuracy with which the surrogate model predicted the truth model decrease. If
sufficient decrease has not been attained, the trust region center is not updated and the entire trust region shrinks
by a user-specified factor. The cycle then repeats with the construction of a new surrogate model, a minimization,
and another test for sufficient decrease in the truth model. This cycle continues until convergence is attained.

Theory
For surrogate based local problems with nonlinear constraints, a number of algorithm formulations exist as
described in[23] and as summarized in the Advanced Examples section of the Models chapter of the Users
Manual[4].

See Also
These keywords may also be of interest:

• efficient global

• surrogate based global

method pointer

• Keywords Area

• method

• surrogate based local

• method pointer

Pointer to sub-method to apply to surrogate

6.2. METHOD 231

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: approx method pointer

Argument(s): STRING

Description
The method pointer keyword is used to specify a pointer to an optimization or least-squares sub-method to
apply to the surrogate model.

Any model pointer identified in the sub-method specification is ignored. Instead, the parent method is
responsible for selecting a surrogate model using its model pointer.

method name

• Keywords Area

• method

• surrogate based local

• method name

Specify sub-method by name

Specification
Alias: approx method name

Argument(s): STRING

Description
The method name keyword is used to specify a sub-method by Dakota method name (e.g. ’npsol sqp’) rather
than block pointer. The method will be executed using its default settings. The optional model pointer
specification can be used to associate a model block with the method.

model pointer

• Keywords Area

• method

• surrogate based local

• model pointer

Identifier for model block to be used by a method

232 CHAPTER 6. KEYWORDS AREA

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: approx model pointer

Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

Description
The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single

6.2. METHOD 233

interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses
response_functions = 3
no_gradients
no_hessians

soft convergence limit

• Keywords Area

• method

• surrogate based local

• soft convergence limit

Limit number of iterations w/ little improvement

Specification

Alias: none
Argument(s): INTEGER
Default: 5

Description

soft convergence limit (a soft convergence control for the surrogate based local iterations which limits
the number of consecutive iterations with improvement less than the convergence tolerance)

truth surrogate bypass

• Keywords Area

• method

• surrogate based local

• truth surrogate bypass

Bypass lower level surrogates when performing truth verifications on a top level surrogate

234 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): none
Default: no bypass

Description
truth surrogate bypass (a flag for bypassing all lower level surrogates when performing truth verifica-
tions on a top level surrogate).

trust region

• Keywords Area

• method

• surrogate based local

• trust region

Use trust region search method

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional initial size Trust region initial
size (relative to
bounds)

Optional minimum size Trust region
minimum size

Optional contract threshold Shrink trust region
if trust region ratio
is below this value

Optional expand threshold Expand trust
region if trust
region ratio is
above this value

Optional contraction factor Amount by which
step length is
rescaled

Optional expansion factor Trust region
expansion factor

Description
The trust region optional group specification can be used to specify the initial size of the trust region (using
initial size) relative to the total variable bounds, the minimum size of the trust region (using minimum -
size), the contraction factor for the trust region size (using contraction factor) used when the surrogate

6.2. METHOD 235

model is performing poorly, and the expansion factor for the trust region size (using expansion factor) used
when the the surrogate model is performing well. Two additional commands are the trust region size contrac-
tion threshold (using contract threshold) and the trust region size expansion threshold (using expand-
threshold). These two commands are related to what is called the trust region ratio, which is the actual

decrease in the truth model divided by the predicted decrease in the truth model in the current trust region. The
command contract threshold sets the minimum acceptable value for the trust region ratio, i.e., values
below this threshold cause the trust region to shrink for the next surrogate based local iteration. The command
expand threshold determines the trust region value above which the trust region will expand for the next
surrogate based local iteration.

initial size

• Keywords Area

• method

• surrogate based local

• trust region

• initial size

Trust region initial size (relative to bounds)

Specification
Alias: none

Argument(s): REAL
Default: 0.4

Description
The trust region optional group specification can be used to specify the initial size of the trust region (using
initial size) relative to the total variable bounds, the minimum size of the trust region (using minimum -
size), the contraction factor for the trust region size (using contraction factor) used when the surrogate
model is performing poorly, and the expansion factor for the trust region size (using expansion factor) used
when the the surrogate model is performing well. Two additional commands are the trust region size contrac-
tion threshold (using contract threshold) and the trust region size expansion threshold (using expand-
threshold). These two commands are related to what is called the trust region ratio, which is the actual de-

crease in the truth model divided by the predicted decrease in the truth model in the current trust region. The com-
mand contract threshold sets the minimum acceptable value for the trust region ratio, i.e., values below
this threshold cause the trust region to shrink for the next SBL iteration. The command expand threshold
determines the trust region value above which the trust region will expand for the next SBL iteration.

minimum size

• Keywords Area

• method

• surrogate based local

• trust region

236 CHAPTER 6. KEYWORDS AREA

• minimum size

Trust region minimum size

Specification

Alias: none
Argument(s): REAL
Default: 1.e-6

Description

The trust region optional group specification can be used to specify the initial size of the trust region (using
initial size) relative to the total variable bounds, the minimum size of the trust region (using minimum -
size), the contraction factor for the trust region size (using contraction factor) used when the surrogate
model is performing poorly, and the expansion factor for the trust region size (using expansion factor) used
when the the surrogate model is performing well. Two additional commands are the trust region size contrac-
tion threshold (using contract threshold) and the trust region size expansion threshold (using expand-
threshold). These two commands are related to what is called the trust region ratio, which is the actual de-

crease in the truth model divided by the predicted decrease in the truth model in the current trust region. The com-
mand contract threshold sets the minimum acceptable value for the trust region ratio, i.e., values below
this threshold cause the trust region to shrink for the next SBL iteration. The command expand threshold
determines the trust region value above which the trust region will expand for the next SBL iteration.

contract threshold

• Keywords Area

• method

• surrogate based local

• trust region

• contract threshold

Shrink trust region if trust region ratio is below this value

Specification

Alias: none
Argument(s): REAL
Default: 0.25

Description

The trust region optional group specification can be used to specify the initial size of the trust region (using
initial size) relative to the total variable bounds, the minimum size of the trust region (using minimum -
size), the contraction factor for the trust region size (using contraction factor) used when the surrogate
model is performing poorly, and the expansion factor for the trust region size (using expansion factor) used

6.2. METHOD 237

when the the surrogate model is performing well. Two additional commands are the trust region size contrac-
tion threshold (using contract threshold) and the trust region size expansion threshold (using expand-
threshold). These two commands are related to what is called the trust region ratio, which is the actual de-

crease in the truth model divided by the predicted decrease in the truth model in the current trust region. The com-
mand contract threshold sets the minimum acceptable value for the trust region ratio, i.e., values below
this threshold cause the trust region to shrink for the next SBL iteration. The command expand threshold
determines the trust region value above which the trust region will expand for the next SBL iteration.

expand threshold

• Keywords Area

• method

• surrogate based local

• trust region

• expand threshold

Expand trust region if trust region ratio is above this value

Specification
Alias: none

Argument(s): REAL
Default: 0.75

Description
The trust region optional group specification can be used to specify the initial size of the trust region (using
initial size) relative to the total variable bounds, the minimum size of the trust region (using minimum -
size), the contraction factor for the trust region size (using contraction factor) used when the surrogate
model is performing poorly, and the expansion factor for the trust region size (using expansion factor) used
when the the surrogate model is performing well. Two additional commands are the trust region size contrac-
tion threshold (using contract threshold) and the trust region size expansion threshold (using expand-
threshold). These two commands are related to what is called the trust region ratio, which is the actual de-

crease in the truth model divided by the predicted decrease in the truth model in the current trust region. The com-
mand contract threshold sets the minimum acceptable value for the trust region ratio, i.e., values below
this threshold cause the trust region to shrink for the next SBL iteration. The command expand threshold
determines the trust region value above which the trust region will expand for the next SBL iteration.

contraction factor

• Keywords Area

• method

• surrogate based local

• trust region

• contraction factor

Amount by which step length is rescaled

238 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): REAL
Default: 0.25

Description
For pattern search methods, contraction factor specifies the amount by which step length is rescaled after
unsuccesful iterates, must be strictly between 0 and 1.

For methods that can expand the step length, the expansion is 1/ contraction factor

expansion factor

• Keywords Area

• method

• surrogate based local

• trust region

• expansion factor

Trust region expansion factor

Specification
Alias: none

Argument(s): REAL
Default: 2.0

Description
The trust region optional group specification can be used to specify the initial size of the trust region (using
initial size) relative to the total variable bounds, the minimum size of the trust region (using minimum -
size), the contraction factor for the trust region size (using contraction factor) used when the surrogate
model is performing poorly, and the expansion factor for the trust region size (using expansion factor) used
when the the surrogate model is performing well. Two additional commands are the trust region size contrac-
tion threshold (using contract threshold) and the trust region size expansion threshold (using expand-
threshold). These two commands are related to what is called the trust region ratio, which is the actual de-

crease in the truth model divided by the predicted decrease in the truth model in the current trust region. The com-
mand contract threshold sets the minimum acceptable value for the trust region ratio, i.e., values below
this threshold cause the trust region to shrink for the next SBL iteration. The command expand threshold
determines the trust region value above which the trust region will expand for the next SBL iteration.

approx subproblem

• Keywords Area

• method

• surrogate based local

6.2. METHOD 239

• approx subproblem

Identify functions to be included in surrogate merit function

Specification

Alias: none
Argument(s): none
Default: original primary original constraints

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

objective
formulation
(Group 1)

original primary Construct
approximations of
all primary
functions

single objective Construct
approximation a
single objective
functions only

augmented -
lagrangian -
objective

Augmented
Lagrangian
approximate
subproblem
formulation

lagrangian -
objective

Lagrangian
approximate
subproblem
formulation

Required(Choose
One)

constraint
formulation
(Group 2)

original -
constraints

Use the constraints
directly

linearized -
constraints

Use linearized
approximations to
the constraints

no constraints Don’t use
constraints

Description

First, the ”primary” functions (that is, the objective functions or calibration terms) in the approximate subproblem
can be selected to be surrogates of the original primary functions (original primary), a single objective func-
tion (single objective) formed from the primary function surrogates, or either an augmented Lagrangian
merit function (augmented lagrangian objective) or a Lagrangian merit function (lagrangian -
objective) formed from the primary and secondary function surrogates. The former option may imply the
use of a nonlinear least squares method, a multiobjective optimization method, or a single objective optimiza-
tion method to solve the approximate subproblem, depending on the definition of the primary functions. The
latter three options all imply the use of a single objective optimization method regardless of primary function
definition. Second, the surrogate constraints in the approximate subproblem can be selected to be surrogates of
the original constraints (original constraints) or linearized approximations to the surrogate constraints
(linearized constraints), or constraints can be omitted from the subproblem (no constraints).

240 CHAPTER 6. KEYWORDS AREA

original primary

• Keywords Area

• method

• surrogate based local

• approx subproblem

• original primary

Construct approximations of all primary functions

Specification

Alias: none
Argument(s): none

Description

For SBL problems with nonlinear constraints, a number of algorithm formulations exist as described in[23] and
as summarized in the Advanced Examples section of the Models chapter of the Users Manual[4]. First, the
”primary” functions (that is, the objective functions or calibration terms) in the approximate subproblem can
be selected to be surrogates of the original primary functions (original primary), a single objective func-
tion (single objective) formed from the primary function surrogates, or either an augmented Lagrangian
merit function (augmented lagrangian objective) or a Lagrangian merit function (lagrangian -
objective) formed from the primary and secondary function surrogates. The former option may imply the
use of a nonlinear least squares method, a multiobjective optimization method, or a single objective optimization
method to solve the approximate subproblem, depending on the definition of the primary functions. The latter
three options all imply the use of a single objective optimization method regardless of primary function definition.

single objective

• Keywords Area

• method

• surrogate based local

• approx subproblem

• single objective

Construct approximation a single objective functions only

Specification

Alias: none
Argument(s): none

6.2. METHOD 241

Description
For SBL problems with nonlinear constraints, a number of algorithm formulations exist as described in[23] and
as summarized in the Advanced Examples section of the Models chapter of the Users Manual[4]. First, the
”primary” functions (that is, the objective functions or calibration terms) in the approximate subproblem can
be selected to be surrogates of the original primary functions (original primary), a single objective func-
tion (single objective) formed from the primary function surrogates, or either an augmented Lagrangian
merit function (augmented lagrangian objective) or a Lagrangian merit function (lagrangian -
objective) formed from the primary and secondary function surrogates. The former option may imply the
use of a nonlinear least squares method, a multiobjective optimization method, or a single objective optimization
method to solve the approximate subproblem, depending on the definition of the primary functions. The latter
three options all imply the use of a single objective optimization method regardless of primary function definition.

augmented lagrangian objective

• Keywords Area

• method

• surrogate based local

• approx subproblem

• augmented lagrangian objective

Augmented Lagrangian approximate subproblem formulation

Specification
Alias: none

Argument(s): none

Description
For SBL problems with nonlinear constraints, a number of algorithm formulations exist as described in[23] and
as summarized in the Advanced Examples section of the Models chapter of the Users Manual[4]. First, the
”primary” functions (that is, the objective functions or calibration terms) in the approximate subproblem can
be selected to be surrogates of the original primary functions (original primary), a single objective func-
tion (single objective) formed from the primary function surrogates, or either an augmented Lagrangian
merit function (augmented lagrangian objective) or a Lagrangian merit function (lagrangian -
objective) formed from the primary and secondary function surrogates. The former option may imply the
use of a nonlinear least squares method, a multiobjective optimization method, or a single objective optimization
method to solve the approximate subproblem, depending on the definition of the primary functions. The latter
three options all imply the use of a single objective optimization method regardless of primary function definition.

lagrangian objective

• Keywords Area

• method

• surrogate based local

242 CHAPTER 6. KEYWORDS AREA

• approx subproblem

• lagrangian objective

Lagrangian approximate subproblem formulation

Specification

Alias: none
Argument(s): none

Description

For SBL problems with nonlinear constraints, a number of algorithm formulations exist as described in[23] and
as summarized in the Advanced Examples section of the Models chapter of the Users Manual[4]. First, the
”primary” functions (that is, the objective functions or calibration terms) in the approximate subproblem can
be selected to be surrogates of the original primary functions (original primary), a single objective func-
tion (single objective) formed from the primary function surrogates, or either an augmented Lagrangian
merit function (augmented lagrangian objective) or a Lagrangian merit function (lagrangian -
objective) formed from the primary and secondary function surrogates. The former option may imply the
use of a nonlinear least squares method, a multiobjective optimization method, or a single objective optimization
method to solve the approximate subproblem, depending on the definition of the primary functions. The latter
three options all imply the use of a single objective optimization method regardless of primary function definition.

original constraints

• Keywords Area

• method

• surrogate based local

• approx subproblem

• original constraints

Use the constraints directly

Specification

Alias: none
Argument(s): none

Description

The surrogate constraints in the approximate subproblem can be selected to be surrogates of the original con-
straints (original constraints) or linearized approximations to the surrogate constraints (linearized-
constraints), or constraints can be omitted from the subproblem (no constraints).

6.2. METHOD 243

linearized constraints

• Keywords Area

• method

• surrogate based local

• approx subproblem

• linearized constraints

Use linearized approximations to the constraints

Specification

Alias: none
Argument(s): none

Description

The surrogate constraints in the approximate subproblem can be selected to be surrogates of the original con-
straints (original constraints) or linearized approximations to the surrogate constraints (linearized-
constraints), or constraints can be omitted from the subproblem (no constraints).

no constraints

• Keywords Area

• method

• surrogate based local

• approx subproblem

• no constraints

Don’t use constraints

Specification

Alias: none
Argument(s): none

Description

The surrogate constraints in the approximate subproblem can be selected to be surrogates of the original con-
straints (original constraints) or linearized approximations to the surrogate constraints (linearized-
constraints), or constraints can be omitted from the subproblem (no constraints).

244 CHAPTER 6. KEYWORDS AREA

merit function

• Keywords Area

• method

• surrogate based local

• merit function

Select type of penalty or merit function

Specification
Alias: none

Argument(s): none
Default: augmented lagrangian merit

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

merit function
(Group 1)

penalty merit Use penalty merit
function

adaptive penalty -
merit

Use adaptive
penalty merit
function

lagrangian merit Use first-order
Lagrangian merit
function

augmented -
lagrangian merit

Use combined
penalty and
zeroth-order
Lagrangian merit
function

Description
Following optimization of the approximate subproblem, the candidate iterate is evaluated using a merit function,
which can be selected to be a simple penalty function with penalty ramped by surrogate based local iteration
number (penalty merit), an adaptive penalty function where the penalty ramping may be accelerated in or-
der to avoid rejecting good iterates which decrease the constraint violation (adaptive penalty merit), a
Lagrangian merit function which employs first-order Lagrange multiplier updates (lagrangian merit), or an
augmented Lagrangian merit function which employs both a penalty parameter and zeroth-order Lagrange mul-
tiplier updates (augmented lagrangian merit). When an augmented Lagrangian is selected for either the
subproblem objective or the merit function (or both), updating of penalties and multipliers follows the approach
described in[16].

penalty merit

• Keywords Area

• method

• surrogate based local

6.2. METHOD 245

• merit function

• penalty merit

Use penalty merit function

Specification
Alias: none

Argument(s): none

Description
Second, the surrogate constraints in the approximate subproblem can be selected to be surrogates of the original
constraints (original constraints) or linearized approximations to the surrogate constraints (linearized-
constraints), or constraints can be omitted from the subproblem (no constraints). Following opti-

mization of the approximate subproblem, the candidate iterate is evaluated using a merit function, which can be
selected to be a simple penalty function with penalty ramped by SBL iteration number (penalty merit), an
adaptive penalty function where the penalty ramping may be accelerated in order to avoid rejecting good iter-
ates which decrease the constraint violation (adaptive penalty merit), a Lagrangian merit function which
employs first-order Lagrange multiplier updates (lagrangian merit), or an augmented Lagrangian merit
function which employs both a penalty parameter and zeroth-order Lagrange multiplier updates (augmented-
lagrangian merit). When an augmented Lagrangian is selected for either the subproblem objective or the

merit function (or both), updating of penalties and multipliers follows the approach described in[16].

adaptive penalty merit

• Keywords Area

• method

• surrogate based local

• merit function

• adaptive penalty merit

Use adaptive penalty merit function

Specification
Alias: none

Argument(s): none

Description
Second, the surrogate constraints in the approximate subproblem can be selected to be surrogates of the original
constraints (original constraints) or linearized approximations to the surrogate constraints (linearized-
constraints), or constraints can be omitted from the subproblem (no constraints). Following opti-

mization of the approximate subproblem, the candidate iterate is evaluated using a merit function, which can be
selected to be a simple penalty function with penalty ramped by SBL iteration number (penalty merit), an
adaptive penalty function where the penalty ramping may be accelerated in order to avoid rejecting good iter-
ates which decrease the constraint violation (adaptive penalty merit), a Lagrangian merit function which

246 CHAPTER 6. KEYWORDS AREA

employs first-order Lagrange multiplier updates (lagrangian merit), or an augmented Lagrangian merit
function which employs both a penalty parameter and zeroth-order Lagrange multiplier updates (augmented-
lagrangian merit). When an augmented Lagrangian is selected for either the subproblem objective or the

merit function (or both), updating of penalties and multipliers follows the approach described in[16].

lagrangian merit

• Keywords Area

• method

• surrogate based local

• merit function

• lagrangian merit

Use first-order Lagrangian merit function

Specification

Alias: none
Argument(s): none

Description

Second, the surrogate constraints in the approximate subproblem can be selected to be surrogates of the original
constraints (original constraints) or linearized approximations to the surrogate constraints (linearized-
constraints), or constraints can be omitted from the subproblem (no constraints). Following opti-

mization of the approximate subproblem, the candidate iterate is evaluated using a merit function, which can be
selected to be a simple penalty function with penalty ramped by SBL iteration number (penalty merit), an
adaptive penalty function where the penalty ramping may be accelerated in order to avoid rejecting good iter-
ates which decrease the constraint violation (adaptive penalty merit), a Lagrangian merit function which
employs first-order Lagrange multiplier updates (lagrangian merit), or an augmented Lagrangian merit
function which employs both a penalty parameter and zeroth-order Lagrange multiplier updates (augmented-
lagrangian merit). When an augmented Lagrangian is selected for either the subproblem objective or the

merit function (or both), updating of penalties and multipliers follows the approach described in[16].

augmented lagrangian merit

• Keywords Area

• method

• surrogate based local

• merit function

• augmented lagrangian merit

Use combined penalty and zeroth-order Lagrangian merit function

6.2. METHOD 247

Specification
Alias: none

Argument(s): none

Description
Second, the surrogate constraints in the approximate subproblem can be selected to be surrogates of the original
constraints (original constraints) or linearized approximations to the surrogate constraints (linearized-
constraints), or constraints can be omitted from the subproblem (no constraints). Following opti-

mization of the approximate subproblem, the candidate iterate is evaluated using a merit function, which can be
selected to be a simple penalty function with penalty ramped by SBL iteration number (penalty merit), an
adaptive penalty function where the penalty ramping may be accelerated in order to avoid rejecting good iter-
ates which decrease the constraint violation (adaptive penalty merit), a Lagrangian merit function which
employs first-order Lagrange multiplier updates (lagrangian merit), or an augmented Lagrangian merit
function which employs both a penalty parameter and zeroth-order Lagrange multiplier updates (augmented-
lagrangian merit). When an augmented Lagrangian is selected for either the subproblem objective or the

merit function (or both), updating of penalties and multipliers follows the approach described in[16].

acceptance logic

• Keywords Area

• method

• surrogate based local

• acceptance logic

Set criteria for trusted surrogate

Specification
Alias: none

Argument(s): none
Default: filter

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

acceptance logic
(Group 1)

tr ratio Surrogate-Based
Local iterate
acceptance logic

filter Surrogate-Based
Local iterate
acceptance logic

Description
Following calculation of the merit function for the new iterate, the iterate is accepted or rejected and the trust
region size is adjusted for the next surrogate based local iteration. Iterate acceptance is governed either by a trust
region ratio (tr ratio) formed from the merit function values or by a filter method (filter); however, trust
region resizing logic is currently based only on the trust region ratio. For infeasible iterates, constraint relaxation
can be used for balancing constraint satisfaction and progress made toward an optimum.

248 CHAPTER 6. KEYWORDS AREA

tr ratio

• Keywords Area

• method

• surrogate based local

• acceptance logic

• tr ratio

Surrogate-Based Local iterate acceptance logic

Specification

Alias: none
Argument(s): none

Description

Following calculation of the merit function for the new iterate, the iterate is accepted or rejected and the trust
region size is adjusted for the next SBL iteration. Iterate acceptance is governed either by a trust region ratio (tr-
ratio) formed from the merit function values or by a filter method (filter); however, trust region resizing

logic is currently based only on the trust region ratio. For infeasible iterates, constraint relaxation can be used for
balancing constraint satisfaction and progress made toward an optimum. The command constraint relax
followed by a method name specifies the type of relaxation to be used. Currently, homotopy[68] is the only
available method for constraint relaxation, and this method is dependent on the presence of the NPSOL library
within the Dakota executable.

filter

• Keywords Area

• method

• surrogate based local

• acceptance logic

• filter

Surrogate-Based Local iterate acceptance logic

Specification

Alias: none
Argument(s): none

6.2. METHOD 249

Description
Following calculation of the merit function for the new iterate, the iterate is accepted or rejected and the trust
region size is adjusted for the next SBL iteration. Iterate acceptance is governed either by a trust region ratio (tr-
ratio) formed from the merit function values or by a filter method (filter); however, trust region resizing

logic is currently based only on the trust region ratio. For infeasible iterates, constraint relaxation can be used for
balancing constraint satisfaction and progress made toward an optimum. The command constraint relax
followed by a method name specifies the type of relaxation to be used. Currently, homotopy[68] is the only
available method for constraint relaxation, and this method is dependent on the presence of the NPSOL library
within the Dakota executable.

constraint relax

• Keywords Area

• method

• surrogate based local

• constraint relax

Enable constraint relaxation

Specification
Alias: none

Argument(s): none
Default: no relaxation

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required homotopy Surrogate-Based
local constraint
relaxation method
for infeasible
iterates

Description
The command constraint relax followed by a method name specifies the type of relaxation to be used.
Currently, homotopy [68] is the only available method for constraint relaxation, and this method is dependent
on the presence of the NPSOL library within the Dakota executable.

homotopy

• Keywords Area

• method

• surrogate based local

• constraint relax

• homotopy

Surrogate-Based local constraint relaxation method for infeasible iterates

250 CHAPTER 6. KEYWORDS AREA

Specification

Alias: none
Argument(s): none

Description

Currently, homotopy[68] is the only available method for constraint relaxation, and this method is dependent on
the presence of the NPSOL library within the Dakota executable.

6.2.14 surrogate based global

• Keywords Area

• method

• surrogate based global

Global Surrogate Based Optimization

Topics

This keyword is related to the topics:

• surrogate based optimization methods

Specification

Alias: none
Argument(s): none

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 method pointer Pointer to
sub-method to
apply to surrogate

method name Specify
sub-method by
name

Required model pointer Identifier for
model block to be
used by a method

Optional replace points (Recommended)
Replace points in
the surrogate
training set, instead
of appending

6.2. METHOD 251

Description
The surrogate based global specification must identify:

• a sub-method, using either method pointer or method name

• model pointer must be used to identify a surrogate model

surrogate based global works in an iterative scheme where optimization is performed on a global surro-
gate using the same bounds during each iteration.

• In one iteration, the optimal solutions of the surrogate model are found, and then a selected set of these
optimal surrogate solutions are passed to the next iteration.

• At the next iteration, these surrogate points are evaluated with the ”truth” model, and then these points are
added back to the set of points upon which the next surrogate is constructed.

In this way, the optimization acts on a more accurate surrogate during each iteration, presumably driving to
optimality quickly.

Method Independent Controls

• max iterations is used as a stopping critierion (see note below)

Notes
We have some cautionary notes before using the surrogate-based global method:

• This approach has no guarantee of convergence.

• One might first try a single minimization method coupled with a surrogate model prior to using the surrogate-
based global method. This is essentially equivalent to setting max iterations to 1 and will allow one
to get a sense of what surrogate types are the most accurate to use for the problem.

• Also note that one can specify that surrogates be built for all primary functions and constraints or for only
a subset of these functions and constraints. This allows one to use a ”truth” model directly for some of the
response functions, perhaps due to them being much less expensive than other functions.

• We initially recommend a small number of maximum iterations, such as 3-5, to get a sense of how the
optimization is evolving as the surrogate gets updated. If it appears to be changing significantly, then a
larger number (used in combination with restart) may be needed.

Theory
In surrogate-based optimization (SBO) and surrogate-based nonlinear least squares (SBNLS), minimization oc-
curs using a set of one or more approximations, defined from a surrogate model, that are built and periodically
updated using data from a ”truth” model. The surrogate model can be a global data fit (e.g., regression or inter-
polation of data generated from a design of computer experiments), a multipoint approximation, a local Taylor
Series expansion, or a model hierarchy approximation (e.g., a low-fidelity simulation model), whereas the truth
model involves a high-fidelity simulation model. The goals of surrogate-based methods are to reduce the total
number of truth model simulations and, in the case of global data fit surrogates, to smooth noisy data with an
easily navigated analytic function.

It was originally designed for MOGA (a multi-objective genetic algorithm). Since genetic algorithms often
need thousands or tens of thousands of points to produce optimal or near-optimal solutions, the use of surrogates
can be helpful for reducing the truth model evaluations. Instead of creating one set of surrogates for the individual
objectives and running the optimization algorithm on the surrogate once, the idea is to select points along the
(surrogate) Pareto frontier, which can be used to supplement the existing points.

In this way, one does not need to use many points initially to get a very accurate surrogate. The surrogate
becomes more accurate as the iterations progress.

252 CHAPTER 6. KEYWORDS AREA

See Also
These keywords may also be of interest:

• efficient global

• surrogate based local

method pointer

• Keywords Area

• method

• surrogate based global

• method pointer

Pointer to sub-method to apply to surrogate

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: approx method pointer

Argument(s): STRING

Description
The method pointer keyword is used to specify a pointer to an optimization or least-squares sub-method to
apply to the surrogate model.

Any model pointer identified in the sub-method specification is ignored. Instead, the parent method is
responsible for selecting a surrogate model using its model pointer.

method name

• Keywords Area

• method

• surrogate based global

• method name

Specify sub-method by name

Specification
Alias: approx method name

Argument(s): STRING

6.2. METHOD 253

Description
The method name keyword is used to specify a sub-method by Dakota method name (e.g. ’npsol sqp’) rather
than block pointer. The method will be executed using its default settings. The optional model pointer
specification can be used to associate a model block with the method.

model pointer

• Keywords Area

• method

• surrogate based global

• model pointer

Identifier for model block to be used by a method

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: approx model pointer

Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

Description
The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2

254 CHAPTER 6. KEYWORDS AREA

response_levels = 0.1 0.2 0.6
0.1 0.2 0.6

0.1 0.2 0.6
sample_type lhs
distribution cumulative

model
id_model = ’SURR’

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses
response_functions = 3
no_gradients
no_hessians

replace points

• Keywords Area

• method

• surrogate based global

• replace points

(Recommended) Replace points in the surrogate training set, instead of appending

Specification

Alias: none
Argument(s): none
Default: Points appended, not replaced

6.2. METHOD 255

Description
The user has the option of appending the optimal points from the surrogate model to the current set of truth
points or using the optimal points from the surrogate model to replace the optimal set of points from the previous
iteration. Although appending to the set is the default behavior, at this time we strongly recommend using the
option replace points because it appears to be more accurate and robust.

6.2.15 dot frcg
• Keywords Area

• method

• dot frcg

A conjugate gradient optimization method

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional linear inequality -
constraint matrix

Define coefficients
of the linear
inequality
constraints

Optional linear inequality -
lower bounds

Define lower
bounds for the
linear inequality
constraint

Optional linear inequality -
upper bounds

Define upper
bounds for the
linear inequality
constraint

Optional linear inequality -
scale types

Specify how each
linear inequality
constraint is scaled

Optional linear inequality -
scales

Define the
characteristic
values to scale
linear inequalities

Optional linear equality -
constraint matrix

Define coefficients
of the linear
equalities

256 CHAPTER 6. KEYWORDS AREA

Optional linear equality -
targets

Define target
values for the
linear equality
constraints

Optional linear equality -
scale types

Specify how each
linear equality
constraint is scaled

Optional linear equality -
scales

Define the
characteristic
values to scale
linear equalities

Optional model pointer Identifier for
model block to be
used by a method

Description
This is a duplicated keyword. Please use dot instead.

We here provide a caution regarding dot frcg. In DOT Version 4.20, we have noticed inconsistent behavior
of this algorithm across different versions of Linux. Our best assessment is that it is due to different treatments of
uninitialized variables. As we do not know the intention of the code authors and maintaining DOT source code
is outside of the Dakota project scope, we have not made nor are we recommending any code changes to address
this. However, all users who use dot frcg in DOT Version 4.20 should be aware that results may not be reliable.

See Also
These keywords may also be of interest:

• frcg

linear inequality constraint matrix

• Keywords Area

• method

• dot frcg

• linear inequality constraint matrix

Define coefficients of the linear inequality constraints

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: no linear inequality constraints

6.2. METHOD 257

Description
In the inequality case, the constraint matrix A provides coefficients for the variables in the two-sided formulation:

al ≤ Ax ≤ au

Where the bounds are optionally specified by linear inequality lower bounds, and linear -
inequality upper bounds. The bounds, if not specified, will default to -infinity, and 0, respectively, re-
sulting in one-sided inequalities of the form

Ax ≤ 0.0

.

linear inequality lower bounds

• Keywords Area

• method

• dot frcg

• linear inequality lower bounds

Define lower bounds for the linear inequality constraint

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = -infinity

Description
In the inequality case, the lower al and upper au bounds provide constraint limits for the two-sided formulation:

al ≤ Ax ≤ au

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective functions), the default linear inequality constraint

bounds are selected so that one-sided inequalities of the form

Ax ≤ 0.0

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since -DBL MAX < -bigRealBoundSize).

258 CHAPTER 6. KEYWORDS AREA

linear inequality upper bounds

• Keywords Area

• method

• dot frcg

• linear inequality upper bounds

Define upper bounds for the linear inequality constraint

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 0 .

Description
In the inequality case, the lower al and upper au bounds provide constraint limits for the two-sided formulation:

al ≤ Ax ≤ au

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective functions), the default linear inequality constraint

bounds are selected so that one-sided inequalities of the form

Ax ≤ 0.0

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since -DBL MAX < -bigRealBoundSize).

linear inequality scale types

• Keywords Area

• method

• dot frcg

• linear inequality scale types

Specify how each linear inequality constraint is scaled

6.2. METHOD 259

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): STRINGLIST
Default: vector values = ’none’

Description
linear inequality scale types provide strings specifying the scaling type for each linear inequality
constraint, in methods that support scaling.

An entry may be selected for each constraint. The options are:

• ’none’ - no scaling

• ’value’ - characteristic value if this is chosen, then linear inequality scales must be specified

• ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling
on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU

aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU

and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear inequality scales

• Keywords Area

• method

• dot frcg

• linear inequality scales

Define the characteristic values to scale linear inequalities

260 CHAPTER 6. KEYWORDS AREA

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

Description
Each entry in linear inequality scales may be a user-specified, nonzero characteristic value to be used
in scaling each constraint.

Behavior depends on the choice of linear inequality scale type :

• scale type - behavior of linear inequality scales

• ’none’ - ignored

• ’value’ - required

• ’auto’ - optional

If a single real value is specified it will apply to all components of the constraint.
Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling

on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear equality constraint matrix

• Keywords Area

• method

• dot frcg

• linear equality constraint matrix

Define coefficients of the linear equalities

6.2. METHOD 261

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: no linear equality constraints

Description
In the equality case, the constraint matrix A provides coefficients for the variables on the left hand side of:

Ax = at

linear equality targets

• Keywords Area

• method

• dot frcg

• linear equality targets

Define target values for the linear equality constraints

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 0 .

Description
In the equality case, the targets at provide the equality constraint right hand sides:

Ax = at

.
If this is not specified, the defaults for the equality constraint targets enforce a value of 0. for each constraint:

Ax = 0.0

262 CHAPTER 6. KEYWORDS AREA

linear equality scale types

• Keywords Area

• method

• dot frcg

• linear equality scale types

Specify how each linear equality constraint is scaled

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): STRINGLIST
Default: vector values = ’none’

Description
linear equality scale types provide strings specifying the scaling type for each linear equality con-
straint, in methods that support scaling.

An entry may be selected for each constraint. The options are:

• ’none’ - no scaling

• ’value’ - characteristic value if this is chosen, then linear equality scales must be specified

• ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear equality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

6.2. METHOD 263

linear equality scales

• Keywords Area

• method

• dot frcg

• linear equality scales

Define the characteristic values to scale linear equalities

Topics

This keyword is related to the topics:

• linear constraints

Specification

Alias: none
Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

Description

Each entry in linear equality scales may be a user-specified, nonzero characteristic value to be used in
scaling each constraint.

See the scaling page for details on how to use this keyword.
Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU

aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU

and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

264 CHAPTER 6. KEYWORDS AREA

model pointer

• Keywords Area

• method

• dot frcg

• model pointer

Identifier for model block to be used by a method

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

Description
The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

6.2. METHOD 265

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses
response_functions = 3
no_gradients
no_hessians

6.2.16 dot mmfd
• Keywords Area

• method

• dot mmfd

Method of feasible directions

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional linear inequality -
constraint matrix

Define coefficients
of the linear
inequality
constraints

266 CHAPTER 6. KEYWORDS AREA

Optional linear inequality -
lower bounds

Define lower
bounds for the
linear inequality
constraint

Optional linear inequality -
upper bounds

Define upper
bounds for the
linear inequality
constraint

Optional linear inequality -
scale types

Specify how each
linear inequality
constraint is scaled

Optional linear inequality -
scales

Define the
characteristic
values to scale
linear inequalities

Optional linear equality -
constraint matrix

Define coefficients
of the linear
equalities

Optional linear equality -
targets

Define target
values for the
linear equality
constraints

Optional linear equality -
scale types

Specify how each
linear equality
constraint is scaled

Optional linear equality -
scales

Define the
characteristic
values to scale
linear equalities

Optional model pointer Identifier for
model block to be
used by a method

Description
This is a duplicated keyword. Please use dot instead.

See Also
These keywords may also be of interest:

• mmfd

linear inequality constraint matrix

• Keywords Area

• method

• dot mmfd

6.2. METHOD 267

• linear inequality constraint matrix

Define coefficients of the linear inequality constraints

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: no linear inequality constraints

Description
In the inequality case, the constraint matrix A provides coefficients for the variables in the two-sided formulation:

al ≤ Ax ≤ au

Where the bounds are optionally specified by linear inequality lower bounds, and linear -
inequality upper bounds. The bounds, if not specified, will default to -infinity, and 0, respectively, re-
sulting in one-sided inequalities of the form

Ax ≤ 0.0

.

linear inequality lower bounds

• Keywords Area

• method

• dot mmfd

• linear inequality lower bounds

Define lower bounds for the linear inequality constraint

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = -infinity

268 CHAPTER 6. KEYWORDS AREA

Description
In the inequality case, the lower al and upper au bounds provide constraint limits for the two-sided formulation:

al ≤ Ax ≤ au

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective functions), the default linear inequality constraint

bounds are selected so that one-sided inequalities of the form

Ax ≤ 0.0

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since -DBL MAX < -bigRealBoundSize).

linear inequality upper bounds

• Keywords Area

• method

• dot mmfd

• linear inequality upper bounds

Define upper bounds for the linear inequality constraint

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 0 .

Description
In the inequality case, the lower al and upper au bounds provide constraint limits for the two-sided formulation:

al ≤ Ax ≤ au

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective functions), the default linear inequality constraint

bounds are selected so that one-sided inequalities of the form

Ax ≤ 0.0

6.2. METHOD 269

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since -DBL MAX < -bigRealBoundSize).

linear inequality scale types

• Keywords Area

• method

• dot mmfd

• linear inequality scale types

Specify how each linear inequality constraint is scaled

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): STRINGLIST
Default: vector values = ’none’

Description
linear inequality scale types provide strings specifying the scaling type for each linear inequality
constraint, in methods that support scaling.

An entry may be selected for each constraint. The options are:

• ’none’ - no scaling

• ’value’ - characteristic value if this is chosen, then linear inequality scales must be specified

• ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling
on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU

270 CHAPTER 6. KEYWORDS AREA

aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO
ãL ≤ Ãix̃ ≤ ãU

and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear inequality scales

• Keywords Area

• method

• dot mmfd

• linear inequality scales

Define the characteristic values to scale linear inequalities

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

Description
Each entry in linear inequality scales may be a user-specified, nonzero characteristic value to be used
in scaling each constraint.

Behavior depends on the choice of linear inequality scale type :

• scale type - behavior of linear inequality scales

• ’none’ - ignored

• ’value’ - required

• ’auto’ - optional

If a single real value is specified it will apply to all components of the constraint.
Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling

on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

6.2. METHOD 271

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU

aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU

and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear equality constraint matrix

• Keywords Area

• method

• dot mmfd

• linear equality constraint matrix

Define coefficients of the linear equalities

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: no linear equality constraints

Description
In the equality case, the constraint matrix A provides coefficients for the variables on the left hand side of:

Ax = at

linear equality targets

• Keywords Area

• method

• dot mmfd

• linear equality targets

Define target values for the linear equality constraints

272 CHAPTER 6. KEYWORDS AREA

Topics

This keyword is related to the topics:

• linear constraints

Specification

Alias: none
Argument(s): REALLIST
Default: vector values = 0 .

Description

In the equality case, the targets at provide the equality constraint right hand sides:

Ax = at

.
If this is not specified, the defaults for the equality constraint targets enforce a value of 0. for each constraint:

Ax = 0.0

linear equality scale types

• Keywords Area

• method

• dot mmfd

• linear equality scale types

Specify how each linear equality constraint is scaled

Topics

This keyword is related to the topics:

• linear constraints

Specification

Alias: none
Argument(s): STRINGLIST
Default: vector values = ’none’

6.2. METHOD 273

Description
linear equality scale types provide strings specifying the scaling type for each linear equality con-
straint, in methods that support scaling.

An entry may be selected for each constraint. The options are:

• ’none’ - no scaling

• ’value’ - characteristic value if this is chosen, then linear equality scales must be specified

• ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear equality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear equality scales

• Keywords Area

• method

• dot mmfd

• linear equality scales

Define the characteristic values to scale linear equalities

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

274 CHAPTER 6. KEYWORDS AREA

Description

Each entry in linear equality scales may be a user-specified, nonzero characteristic value to be used in
scaling each constraint.

See the scaling page for details on how to use this keyword.
Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU

aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU

and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

model pointer

• Keywords Area

• method

• dot mmfd

• model pointer

Identifier for model block to be used by a method

Topics

This keyword is related to the topics:

• block pointer

Specification

Alias: none
Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

6.2. METHOD 275

Description

The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses

276 CHAPTER 6. KEYWORDS AREA

response_functions = 3
no_gradients
no_hessians

6.2.17 dot bfgs
• Keywords Area

• method

• dot bfgs

A conjugate gradient optimization method

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional linear inequality -
constraint matrix

Define coefficients
of the linear
inequality
constraints

Optional linear inequality -
lower bounds

Define lower
bounds for the
linear inequality
constraint

Optional linear inequality -
upper bounds

Define upper
bounds for the
linear inequality
constraint

Optional linear inequality -
scale types

Specify how each
linear inequality
constraint is scaled

Optional linear inequality -
scales

Define the
characteristic
values to scale
linear inequalities

Optional linear equality -
constraint matrix

Define coefficients
of the linear
equalities

Optional linear equality -
targets

Define target
values for the
linear equality
constraints

6.2. METHOD 277

Optional linear equality -
scale types

Specify how each
linear equality
constraint is scaled

Optional linear equality -
scales

Define the
characteristic
values to scale
linear equalities

Optional model pointer Identifier for
model block to be
used by a method

Description

This is a duplicated keyword. Please use dot instead.

See Also

These keywords may also be of interest:

• bfgs

linear inequality constraint matrix

• Keywords Area

• method

• dot bfgs

• linear inequality constraint matrix

Define coefficients of the linear inequality constraints

Topics

This keyword is related to the topics:

• linear constraints

Specification

Alias: none
Argument(s): REALLIST
Default: no linear inequality constraints

278 CHAPTER 6. KEYWORDS AREA

Description
In the inequality case, the constraint matrix A provides coefficients for the variables in the two-sided formulation:

al ≤ Ax ≤ au

Where the bounds are optionally specified by linear inequality lower bounds, and linear -
inequality upper bounds. The bounds, if not specified, will default to -infinity, and 0, respectively, re-
sulting in one-sided inequalities of the form

Ax ≤ 0.0

.

linear inequality lower bounds

• Keywords Area

• method

• dot bfgs

• linear inequality lower bounds

Define lower bounds for the linear inequality constraint

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = -infinity

Description
In the inequality case, the lower al and upper au bounds provide constraint limits for the two-sided formulation:

al ≤ Ax ≤ au

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective functions), the default linear inequality constraint

bounds are selected so that one-sided inequalities of the form

Ax ≤ 0.0

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since -DBL MAX < -bigRealBoundSize).

6.2. METHOD 279

linear inequality upper bounds

• Keywords Area

• method

• dot bfgs

• linear inequality upper bounds

Define upper bounds for the linear inequality constraint

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 0 .

Description
In the inequality case, the lower al and upper au bounds provide constraint limits for the two-sided formulation:

al ≤ Ax ≤ au

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective functions), the default linear inequality constraint

bounds are selected so that one-sided inequalities of the form

Ax ≤ 0.0

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since -DBL MAX < -bigRealBoundSize).

linear inequality scale types

• Keywords Area

• method

• dot bfgs

• linear inequality scale types

Specify how each linear inequality constraint is scaled

280 CHAPTER 6. KEYWORDS AREA

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): STRINGLIST
Default: vector values = ’none’

Description
linear inequality scale types provide strings specifying the scaling type for each linear inequality
constraint, in methods that support scaling.

An entry may be selected for each constraint. The options are:

• ’none’ - no scaling

• ’value’ - characteristic value if this is chosen, then linear inequality scales must be specified

• ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling
on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU

aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU

and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear inequality scales

• Keywords Area

• method

• dot bfgs

• linear inequality scales

Define the characteristic values to scale linear inequalities

6.2. METHOD 281

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

Description
Each entry in linear inequality scales may be a user-specified, nonzero characteristic value to be used
in scaling each constraint.

Behavior depends on the choice of linear inequality scale type :

• scale type - behavior of linear inequality scales

• ’none’ - ignored

• ’value’ - required

• ’auto’ - optional

If a single real value is specified it will apply to all components of the constraint.
Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling

on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear equality constraint matrix

• Keywords Area

• method

• dot bfgs

• linear equality constraint matrix

Define coefficients of the linear equalities

282 CHAPTER 6. KEYWORDS AREA

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: no linear equality constraints

Description
In the equality case, the constraint matrix A provides coefficients for the variables on the left hand side of:

Ax = at

linear equality targets

• Keywords Area

• method

• dot bfgs

• linear equality targets

Define target values for the linear equality constraints

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 0 .

Description
In the equality case, the targets at provide the equality constraint right hand sides:

Ax = at

.
If this is not specified, the defaults for the equality constraint targets enforce a value of 0. for each constraint:

Ax = 0.0

6.2. METHOD 283

linear equality scale types

• Keywords Area

• method

• dot bfgs

• linear equality scale types

Specify how each linear equality constraint is scaled

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): STRINGLIST
Default: vector values = ’none’

Description
linear equality scale types provide strings specifying the scaling type for each linear equality con-
straint, in methods that support scaling.

An entry may be selected for each constraint. The options are:

• ’none’ - no scaling

• ’value’ - characteristic value if this is chosen, then linear equality scales must be specified

• ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear equality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

284 CHAPTER 6. KEYWORDS AREA

linear equality scales

• Keywords Area

• method

• dot bfgs

• linear equality scales

Define the characteristic values to scale linear equalities

Topics

This keyword is related to the topics:

• linear constraints

Specification

Alias: none
Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

Description

Each entry in linear equality scales may be a user-specified, nonzero characteristic value to be used in
scaling each constraint.

See the scaling page for details on how to use this keyword.
Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU

aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU

and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

6.2. METHOD 285

model pointer

• Keywords Area

• method

• dot bfgs

• model pointer

Identifier for model block to be used by a method

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

Description
The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

286 CHAPTER 6. KEYWORDS AREA

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses
response_functions = 3
no_gradients
no_hessians

6.2.18 dot slp
• Keywords Area

• method

• dot slp

Sequential Linear Programming

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional linear inequality -
constraint matrix

Define coefficients
of the linear
inequality
constraints

6.2. METHOD 287

Optional linear inequality -
lower bounds

Define lower
bounds for the
linear inequality
constraint

Optional linear inequality -
upper bounds

Define upper
bounds for the
linear inequality
constraint

Optional linear inequality -
scale types

Specify how each
linear inequality
constraint is scaled

Optional linear inequality -
scales

Define the
characteristic
values to scale
linear inequalities

Optional linear equality -
constraint matrix

Define coefficients
of the linear
equalities

Optional linear equality -
targets

Define target
values for the
linear equality
constraints

Optional linear equality -
scale types

Specify how each
linear equality
constraint is scaled

Optional linear equality -
scales

Define the
characteristic
values to scale
linear equalities

Optional model pointer Identifier for
model block to be
used by a method

Description
This is a duplicated keyword. Please use dot instead.

See Also
These keywords may also be of interest:

• slp

linear inequality constraint matrix

• Keywords Area

• method

• dot slp

288 CHAPTER 6. KEYWORDS AREA

• linear inequality constraint matrix

Define coefficients of the linear inequality constraints

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: no linear inequality constraints

Description
In the inequality case, the constraint matrix A provides coefficients for the variables in the two-sided formulation:

al ≤ Ax ≤ au

Where the bounds are optionally specified by linear inequality lower bounds, and linear -
inequality upper bounds. The bounds, if not specified, will default to -infinity, and 0, respectively, re-
sulting in one-sided inequalities of the form

Ax ≤ 0.0

.

linear inequality lower bounds

• Keywords Area

• method

• dot slp

• linear inequality lower bounds

Define lower bounds for the linear inequality constraint

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = -infinity

6.2. METHOD 289

Description
In the inequality case, the lower al and upper au bounds provide constraint limits for the two-sided formulation:

al ≤ Ax ≤ au

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective functions), the default linear inequality constraint

bounds are selected so that one-sided inequalities of the form

Ax ≤ 0.0

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since -DBL MAX < -bigRealBoundSize).

linear inequality upper bounds

• Keywords Area

• method

• dot slp

• linear inequality upper bounds

Define upper bounds for the linear inequality constraint

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 0 .

Description
In the inequality case, the lower al and upper au bounds provide constraint limits for the two-sided formulation:

al ≤ Ax ≤ au

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective functions), the default linear inequality constraint

bounds are selected so that one-sided inequalities of the form

Ax ≤ 0.0

290 CHAPTER 6. KEYWORDS AREA

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since -DBL MAX < -bigRealBoundSize).

linear inequality scale types

• Keywords Area

• method

• dot slp

• linear inequality scale types

Specify how each linear inequality constraint is scaled

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): STRINGLIST
Default: vector values = ’none’

Description
linear inequality scale types provide strings specifying the scaling type for each linear inequality
constraint, in methods that support scaling.

An entry may be selected for each constraint. The options are:

• ’none’ - no scaling

• ’value’ - characteristic value if this is chosen, then linear inequality scales must be specified

• ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling
on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU

6.2. METHOD 291

aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO
ãL ≤ Ãix̃ ≤ ãU

and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear inequality scales

• Keywords Area

• method

• dot slp

• linear inequality scales

Define the characteristic values to scale linear inequalities

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

Description
Each entry in linear inequality scales may be a user-specified, nonzero characteristic value to be used
in scaling each constraint.

Behavior depends on the choice of linear inequality scale type :

• scale type - behavior of linear inequality scales

• ’none’ - ignored

• ’value’ - required

• ’auto’ - optional

If a single real value is specified it will apply to all components of the constraint.
Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling

on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

292 CHAPTER 6. KEYWORDS AREA

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU

aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU

and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear equality constraint matrix

• Keywords Area

• method

• dot slp

• linear equality constraint matrix

Define coefficients of the linear equalities

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: no linear equality constraints

Description
In the equality case, the constraint matrix A provides coefficients for the variables on the left hand side of:

Ax = at

linear equality targets

• Keywords Area

• method

• dot slp

• linear equality targets

Define target values for the linear equality constraints

6.2. METHOD 293

Topics

This keyword is related to the topics:

• linear constraints

Specification

Alias: none
Argument(s): REALLIST
Default: vector values = 0 .

Description

In the equality case, the targets at provide the equality constraint right hand sides:

Ax = at

.
If this is not specified, the defaults for the equality constraint targets enforce a value of 0. for each constraint:

Ax = 0.0

linear equality scale types

• Keywords Area

• method

• dot slp

• linear equality scale types

Specify how each linear equality constraint is scaled

Topics

This keyword is related to the topics:

• linear constraints

Specification

Alias: none
Argument(s): STRINGLIST
Default: vector values = ’none’

294 CHAPTER 6. KEYWORDS AREA

Description
linear equality scale types provide strings specifying the scaling type for each linear equality con-
straint, in methods that support scaling.

An entry may be selected for each constraint. The options are:

• ’none’ - no scaling

• ’value’ - characteristic value if this is chosen, then linear equality scales must be specified

• ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear equality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear equality scales

• Keywords Area

• method

• dot slp

• linear equality scales

Define the characteristic values to scale linear equalities

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

6.2. METHOD 295

Description

Each entry in linear equality scales may be a user-specified, nonzero characteristic value to be used in
scaling each constraint.

See the scaling page for details on how to use this keyword.
Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU

aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU

and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

model pointer

• Keywords Area

• method

• dot slp

• model pointer

Identifier for model block to be used by a method

Topics

This keyword is related to the topics:

• block pointer

Specification

Alias: none
Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

296 CHAPTER 6. KEYWORDS AREA

Description

The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses

6.2. METHOD 297

response_functions = 3
no_gradients
no_hessians

6.2.19 dot sqp
• Keywords Area

• method

• dot sqp

Sequential Quadratic Program

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional linear inequality -
constraint matrix

Define coefficients
of the linear
inequality
constraints

Optional linear inequality -
lower bounds

Define lower
bounds for the
linear inequality
constraint

Optional linear inequality -
upper bounds

Define upper
bounds for the
linear inequality
constraint

Optional linear inequality -
scale types

Specify how each
linear inequality
constraint is scaled

Optional linear inequality -
scales

Define the
characteristic
values to scale
linear inequalities

Optional linear equality -
constraint matrix

Define coefficients
of the linear
equalities

Optional linear equality -
targets

Define target
values for the
linear equality
constraints

298 CHAPTER 6. KEYWORDS AREA

Optional linear equality -
scale types

Specify how each
linear equality
constraint is scaled

Optional linear equality -
scales

Define the
characteristic
values to scale
linear equalities

Optional model pointer Identifier for
model block to be
used by a method

Description

This is a duplicated keyword. Please use dot instead.

See Also

These keywords may also be of interest:

• sqp

linear inequality constraint matrix

• Keywords Area

• method

• dot sqp

• linear inequality constraint matrix

Define coefficients of the linear inequality constraints

Topics

This keyword is related to the topics:

• linear constraints

Specification

Alias: none
Argument(s): REALLIST
Default: no linear inequality constraints

6.2. METHOD 299

Description
In the inequality case, the constraint matrix A provides coefficients for the variables in the two-sided formulation:

al ≤ Ax ≤ au

Where the bounds are optionally specified by linear inequality lower bounds, and linear -
inequality upper bounds. The bounds, if not specified, will default to -infinity, and 0, respectively, re-
sulting in one-sided inequalities of the form

Ax ≤ 0.0

.

linear inequality lower bounds

• Keywords Area

• method

• dot sqp

• linear inequality lower bounds

Define lower bounds for the linear inequality constraint

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = -infinity

Description
In the inequality case, the lower al and upper au bounds provide constraint limits for the two-sided formulation:

al ≤ Ax ≤ au

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective functions), the default linear inequality constraint

bounds are selected so that one-sided inequalities of the form

Ax ≤ 0.0

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since -DBL MAX < -bigRealBoundSize).

300 CHAPTER 6. KEYWORDS AREA

linear inequality upper bounds

• Keywords Area

• method

• dot sqp

• linear inequality upper bounds

Define upper bounds for the linear inequality constraint

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 0 .

Description
In the inequality case, the lower al and upper au bounds provide constraint limits for the two-sided formulation:

al ≤ Ax ≤ au

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective functions), the default linear inequality constraint

bounds are selected so that one-sided inequalities of the form

Ax ≤ 0.0

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since -DBL MAX < -bigRealBoundSize).

linear inequality scale types

• Keywords Area

• method

• dot sqp

• linear inequality scale types

Specify how each linear inequality constraint is scaled

6.2. METHOD 301

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): STRINGLIST
Default: vector values = ’none’

Description
linear inequality scale types provide strings specifying the scaling type for each linear inequality
constraint, in methods that support scaling.

An entry may be selected for each constraint. The options are:

• ’none’ - no scaling

• ’value’ - characteristic value if this is chosen, then linear inequality scales must be specified

• ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling
on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU

aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU

and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear inequality scales

• Keywords Area

• method

• dot sqp

• linear inequality scales

Define the characteristic values to scale linear inequalities

302 CHAPTER 6. KEYWORDS AREA

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

Description
Each entry in linear inequality scales may be a user-specified, nonzero characteristic value to be used
in scaling each constraint.

Behavior depends on the choice of linear inequality scale type :

• scale type - behavior of linear inequality scales

• ’none’ - ignored

• ’value’ - required

• ’auto’ - optional

If a single real value is specified it will apply to all components of the constraint.
Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling

on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear equality constraint matrix

• Keywords Area

• method

• dot sqp

• linear equality constraint matrix

Define coefficients of the linear equalities

6.2. METHOD 303

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: no linear equality constraints

Description
In the equality case, the constraint matrix A provides coefficients for the variables on the left hand side of:

Ax = at

linear equality targets

• Keywords Area

• method

• dot sqp

• linear equality targets

Define target values for the linear equality constraints

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 0 .

Description
In the equality case, the targets at provide the equality constraint right hand sides:

Ax = at

.
If this is not specified, the defaults for the equality constraint targets enforce a value of 0. for each constraint:

Ax = 0.0

304 CHAPTER 6. KEYWORDS AREA

linear equality scale types

• Keywords Area

• method

• dot sqp

• linear equality scale types

Specify how each linear equality constraint is scaled

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): STRINGLIST
Default: vector values = ’none’

Description
linear equality scale types provide strings specifying the scaling type for each linear equality con-
straint, in methods that support scaling.

An entry may be selected for each constraint. The options are:

• ’none’ - no scaling

• ’value’ - characteristic value if this is chosen, then linear equality scales must be specified

• ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear equality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

6.2. METHOD 305

linear equality scales

• Keywords Area

• method

• dot sqp

• linear equality scales

Define the characteristic values to scale linear equalities

Topics

This keyword is related to the topics:

• linear constraints

Specification

Alias: none
Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

Description

Each entry in linear equality scales may be a user-specified, nonzero characteristic value to be used in
scaling each constraint.

See the scaling page for details on how to use this keyword.
Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU

aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU

and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

306 CHAPTER 6. KEYWORDS AREA

model pointer

• Keywords Area

• method

• dot sqp

• model pointer

Identifier for model block to be used by a method

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

Description
The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

6.2. METHOD 307

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses
response_functions = 3
no_gradients
no_hessians

6.2.20 dot
• Keywords Area

• method

• dot

Access to methods in the DOT package

Topics
This keyword is related to the topics:

• package dot

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

308 CHAPTER 6. KEYWORDS AREA

Required(Choose
One)

Group 1

frcg A conjugate
gradient
optimization
method

mmfd Method of feasible
directions

bfgs A conjugate
gradient
optimization
method

slp Sequential Linear
Programming

sqp Sequential
Quadratic Program

Optional linear inequality -
constraint matrix

Define coefficients
of the linear
inequality
constraints

Optional linear inequality -
lower bounds

Define lower
bounds for the
linear inequality
constraint

Optional linear inequality -
upper bounds

Define upper
bounds for the
linear inequality
constraint

Optional linear inequality -
scale types

Specify how each
linear inequality
constraint is scaled

Optional linear inequality -
scales

Define the
characteristic
values to scale
linear inequalities

Optional linear equality -
constraint matrix

Define coefficients
of the linear
equalities

Optional linear equality -
targets

Define target
values for the
linear equality
constraints

Optional linear equality -
scale types

Specify how each
linear equality
constraint is scaled

6.2. METHOD 309

Optional linear equality -
scales

Define the
characteristic
values to scale
linear equalities

Optional model pointer Identifier for
model block to be
used by a method

Description
The DOT library [85] contains nonlinear programming optimizers, specifically the Broyden-Fletcher-Goldfarb--
Shanno (Dakota’s dot bfgs method) and Fletcher-Reeves conjugate gradient (Dakota’s dot frcg method)
methods for unconstrained optimization, and the modified method of feasible directions (Dakota’s dot mmfd
method), sequential linear programming (Dakota’s dot slp method), and sequential quadratic programming
(Dakota’s dot sqp method) methods for constrained optimization.

Specialized handling of linear constraints is supported with DOT; linear constraint coefficients, bounds, and
targets can be provided to DOT at start-up and tracked internally.

One of the five available methods in Group 1 must be specified.
All these methods take the same Optional Keywords , dealing with linear equality and inequality constraints.
Method Independent Controls - Stopping Critiera
Stopping critiera are set by:

• max iterations

• max function evaluations

• convergence tolerance

• constraint tolerance

Note: The convergence tolerance criterion must be satisfied for two consecutive iterations before DOT
will terminate.

Method Independent Controls - Output
The output verbosity specification controls the amount of information generated by DOT: the silent and

quiet settings result in header information, final results, and objective function, constraint, and parameter in-
formation on each iteration; whereas the verbose and debug settings add additional information on gradients,
search direction, one-dimensional search results, and parameter scaling factors.

Concurrency
DOT contains no parallel algorithms which can directly take advantage of concurrent evaluations. However,

if numerical gradients with method source dakota is specified, then the finite difference function
evaluations can be performed concurrently (using any of the parallel modes described in the Users Manual[4]).
In addition, if speculative is specified, then gradients (dakota numerical or analytic gradients) will
be computed on each line search evaluation in order to balance the load and lower the total run time in parallel
optimization studies.

frcg

• Keywords Area

• method

• dot

310 CHAPTER 6. KEYWORDS AREA

• frcg

A conjugate gradient optimization method

Topics
This keyword is related to the topics:

• package dot

Specification
Alias: none

Argument(s): none

Description
We here provide a caution regarding dot frcg. In DOT Version 4.20, we have noticed inconsistent behavior of
this algorithm across different versions of Linux. Our best assessment is that it is due to different treatments of
uninitialized variables. As we do not know the intention of the code authors and maintaining DOT source code
is outside of the Dakota project scope, we have not made nor are we recommending any code changes to address
this. However, all users who use dot frcg in DOT Version 4.20 should be aware that results may not be reliable.

See package dot for information related to all DOT methods.

See Also
These keywords may also be of interest:

• bfgs

• mmfd

• slp

• sqp

mmfd

• Keywords Area

• method

• dot

• mmfd

Method of feasible directions

Topics
This keyword is related to the topics:

• package dot

6.2. METHOD 311

Specification

Alias: none
Argument(s): none

Description

See package dot for information related to all DOT methods.

See Also

These keywords may also be of interest:

• bfgs

• frcg

• slp

• sqp

bfgs

• Keywords Area

• method

• dot

• bfgs

A conjugate gradient optimization method

Topics

This keyword is related to the topics:

• package dot

Specification

Alias: none
Argument(s): none

Description

See package dot for information related to all DOT methods.

312 CHAPTER 6. KEYWORDS AREA

See Also

These keywords may also be of interest:

• frcg

• mmfd

• slp

• sqp

slp

• Keywords Area

• method

• dot

• slp

Sequential Linear Programming

Topics

This keyword is related to the topics:

• package dot

Specification

Alias: none
Argument(s): none

Description

See package dot for information related to all DOT methods.

See Also

These keywords may also be of interest:

• bfgs

• frcg

• mmfd

• sqp

6.2. METHOD 313

sqp

• Keywords Area

• method

• dot

• sqp

Sequential Quadratic Program

Topics
This keyword is related to the topics:

• package dot

Specification
Alias: none

Argument(s): none

Description
See package dot for information related to all DOT methods.

See Also
These keywords may also be of interest:

• bfgs

• frcg

• mmfd

• slp

linear inequality constraint matrix

• Keywords Area

• method

• dot

• linear inequality constraint matrix

Define coefficients of the linear inequality constraints

Topics
This keyword is related to the topics:

• linear constraints

314 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): REALLIST
Default: no linear inequality constraints

Description
In the inequality case, the constraint matrix A provides coefficients for the variables in the two-sided formulation:

al ≤ Ax ≤ au

Where the bounds are optionally specified by linear inequality lower bounds, and linear -
inequality upper bounds. The bounds, if not specified, will default to -infinity, and 0, respectively, re-
sulting in one-sided inequalities of the form

Ax ≤ 0.0

.

linear inequality lower bounds

• Keywords Area

• method

• dot

• linear inequality lower bounds

Define lower bounds for the linear inequality constraint

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = -infinity

Description
In the inequality case, the lower al and upper au bounds provide constraint limits for the two-sided formulation:

al ≤ Ax ≤ au

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective functions), the default linear inequality constraint

bounds are selected so that one-sided inequalities of the form

Ax ≤ 0.0

6.2. METHOD 315

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since -DBL MAX < -bigRealBoundSize).

linear inequality upper bounds

• Keywords Area

• method

• dot

• linear inequality upper bounds

Define upper bounds for the linear inequality constraint

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 0 .

Description
In the inequality case, the lower al and upper au bounds provide constraint limits for the two-sided formulation:

al ≤ Ax ≤ au

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective functions), the default linear inequality constraint

bounds are selected so that one-sided inequalities of the form

Ax ≤ 0.0

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since -DBL MAX < -bigRealBoundSize).

316 CHAPTER 6. KEYWORDS AREA

linear inequality scale types

• Keywords Area

• method

• dot

• linear inequality scale types

Specify how each linear inequality constraint is scaled

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): STRINGLIST
Default: vector values = ’none’

Description
linear inequality scale types provide strings specifying the scaling type for each linear inequality
constraint, in methods that support scaling.

An entry may be selected for each constraint. The options are:

• ’none’ - no scaling

• ’value’ - characteristic value if this is chosen, then linear inequality scales must be specified

• ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling
on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU

aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

6.2. METHOD 317

linear inequality scales

• Keywords Area

• method

• dot

• linear inequality scales

Define the characteristic values to scale linear inequalities

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

Description
Each entry in linear inequality scales may be a user-specified, nonzero characteristic value to be used
in scaling each constraint.

Behavior depends on the choice of linear inequality scale type :

• scale type - behavior of linear inequality scales

• ’none’ - ignored

• ’value’ - required

• ’auto’ - optional

If a single real value is specified it will apply to all components of the constraint.
Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling

on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

318 CHAPTER 6. KEYWORDS AREA

linear equality constraint matrix

• Keywords Area

• method

• dot

• linear equality constraint matrix

Define coefficients of the linear equalities

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: no linear equality constraints

Description
In the equality case, the constraint matrix A provides coefficients for the variables on the left hand side of:

Ax = at

linear equality targets

• Keywords Area

• method

• dot

• linear equality targets

Define target values for the linear equality constraints

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 0 .

6.2. METHOD 319

Description
In the equality case, the targets at provide the equality constraint right hand sides:

Ax = at

.
If this is not specified, the defaults for the equality constraint targets enforce a value of 0. for each constraint:

Ax = 0.0

linear equality scale types

• Keywords Area

• method

• dot

• linear equality scale types

Specify how each linear equality constraint is scaled

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): STRINGLIST
Default: vector values = ’none’

Description
linear equality scale types provide strings specifying the scaling type for each linear equality con-
straint, in methods that support scaling.

An entry may be selected for each constraint. The options are:

• ’none’ - no scaling

• ’value’ - characteristic value if this is chosen, then linear equality scales must be specified

• ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear equality constraints

aL ≤ Aix ≤ aU

320 CHAPTER 6. KEYWORDS AREA

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear equality scales

• Keywords Area

• method

• dot

• linear equality scales

Define the characteristic values to scale linear equalities

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

Description
Each entry in linear equality scales may be a user-specified, nonzero characteristic value to be used in
scaling each constraint.

See the scaling page for details on how to use this keyword.
Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

6.2. METHOD 321

model pointer

• Keywords Area

• method

• dot

• model pointer

Identifier for model block to be used by a method

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

Description
The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

322 CHAPTER 6. KEYWORDS AREA

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses
response_functions = 3
no_gradients
no_hessians

6.2.21 conmin frcg
• Keywords Area

• method

• conmin frcg

A conjugate gradient optimization method

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional linear inequality -
constraint matrix

Define coefficients
of the linear
inequality
constraints

6.2. METHOD 323

Optional linear inequality -
lower bounds

Define lower
bounds for the
linear inequality
constraint

Optional linear inequality -
upper bounds

Define upper
bounds for the
linear inequality
constraint

Optional linear inequality -
scale types

Specify how each
linear inequality
constraint is scaled

Optional linear inequality -
scales

Define the
characteristic
values to scale
linear inequalities

Optional linear equality -
constraint matrix

Define coefficients
of the linear
equalities

Optional linear equality -
targets

Define target
values for the
linear equality
constraints

Optional linear equality -
scale types

Specify how each
linear equality
constraint is scaled

Optional linear equality -
scales

Define the
characteristic
values to scale
linear equalities

Optional model pointer Identifier for
model block to be
used by a method

Description
This is a duplicated keyword. Please use conmin instead.

See Also
These keywords may also be of interest:

• frcg

linear inequality constraint matrix

• Keywords Area

• method

• conmin frcg

324 CHAPTER 6. KEYWORDS AREA

• linear inequality constraint matrix

Define coefficients of the linear inequality constraints

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: no linear inequality constraints

Description
In the inequality case, the constraint matrix A provides coefficients for the variables in the two-sided formulation:

al ≤ Ax ≤ au

Where the bounds are optionally specified by linear inequality lower bounds, and linear -
inequality upper bounds. The bounds, if not specified, will default to -infinity, and 0, respectively, re-
sulting in one-sided inequalities of the form

Ax ≤ 0.0

.

linear inequality lower bounds

• Keywords Area

• method

• conmin frcg

• linear inequality lower bounds

Define lower bounds for the linear inequality constraint

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = -infinity

6.2. METHOD 325

Description
In the inequality case, the lower al and upper au bounds provide constraint limits for the two-sided formulation:

al ≤ Ax ≤ au

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective functions), the default linear inequality constraint

bounds are selected so that one-sided inequalities of the form

Ax ≤ 0.0

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since -DBL MAX < -bigRealBoundSize).

linear inequality upper bounds

• Keywords Area

• method

• conmin frcg

• linear inequality upper bounds

Define upper bounds for the linear inequality constraint

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 0 .

Description
In the inequality case, the lower al and upper au bounds provide constraint limits for the two-sided formulation:

al ≤ Ax ≤ au

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective functions), the default linear inequality constraint

bounds are selected so that one-sided inequalities of the form

Ax ≤ 0.0

326 CHAPTER 6. KEYWORDS AREA

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since -DBL MAX < -bigRealBoundSize).

linear inequality scale types

• Keywords Area

• method

• conmin frcg

• linear inequality scale types

Specify how each linear inequality constraint is scaled

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): STRINGLIST
Default: vector values = ’none’

Description
linear inequality scale types provide strings specifying the scaling type for each linear inequality
constraint, in methods that support scaling.

An entry may be selected for each constraint. The options are:

• ’none’ - no scaling

• ’value’ - characteristic value if this is chosen, then linear inequality scales must be specified

• ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling
on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU

6.2. METHOD 327

aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO
ãL ≤ Ãix̃ ≤ ãU

and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear inequality scales

• Keywords Area

• method

• conmin frcg

• linear inequality scales

Define the characteristic values to scale linear inequalities

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

Description
Each entry in linear inequality scales may be a user-specified, nonzero characteristic value to be used
in scaling each constraint.

Behavior depends on the choice of linear inequality scale type :

• scale type - behavior of linear inequality scales

• ’none’ - ignored

• ’value’ - required

• ’auto’ - optional

If a single real value is specified it will apply to all components of the constraint.
Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling

on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

328 CHAPTER 6. KEYWORDS AREA

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU

aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU

and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear equality constraint matrix

• Keywords Area

• method

• conmin frcg

• linear equality constraint matrix

Define coefficients of the linear equalities

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: no linear equality constraints

Description
In the equality case, the constraint matrix A provides coefficients for the variables on the left hand side of:

Ax = at

linear equality targets

• Keywords Area

• method

• conmin frcg

• linear equality targets

Define target values for the linear equality constraints

6.2. METHOD 329

Topics

This keyword is related to the topics:

• linear constraints

Specification

Alias: none
Argument(s): REALLIST
Default: vector values = 0 .

Description

In the equality case, the targets at provide the equality constraint right hand sides:

Ax = at

.
If this is not specified, the defaults for the equality constraint targets enforce a value of 0. for each constraint:

Ax = 0.0

linear equality scale types

• Keywords Area

• method

• conmin frcg

• linear equality scale types

Specify how each linear equality constraint is scaled

Topics

This keyword is related to the topics:

• linear constraints

Specification

Alias: none
Argument(s): STRINGLIST
Default: vector values = ’none’

330 CHAPTER 6. KEYWORDS AREA

Description
linear equality scale types provide strings specifying the scaling type for each linear equality con-
straint, in methods that support scaling.

An entry may be selected for each constraint. The options are:

• ’none’ - no scaling

• ’value’ - characteristic value if this is chosen, then linear equality scales must be specified

• ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear equality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear equality scales

• Keywords Area

• method

• conmin frcg

• linear equality scales

Define the characteristic values to scale linear equalities

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

6.2. METHOD 331

Description

Each entry in linear equality scales may be a user-specified, nonzero characteristic value to be used in
scaling each constraint.

See the scaling page for details on how to use this keyword.
Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU

aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU

and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

model pointer

• Keywords Area

• method

• conmin frcg

• model pointer

Identifier for model block to be used by a method

Topics

This keyword is related to the topics:

• block pointer

Specification

Alias: none
Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

332 CHAPTER 6. KEYWORDS AREA

Description

The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses

6.2. METHOD 333

response_functions = 3
no_gradients
no_hessians

6.2.22 conmin mfd
• Keywords Area

• method

• conmin mfd

Method of feasible directions

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional linear inequality -
constraint matrix

Define coefficients
of the linear
inequality
constraints

Optional linear inequality -
lower bounds

Define lower
bounds for the
linear inequality
constraint

Optional linear inequality -
upper bounds

Define upper
bounds for the
linear inequality
constraint

Optional linear inequality -
scale types

Specify how each
linear inequality
constraint is scaled

Optional linear inequality -
scales

Define the
characteristic
values to scale
linear inequalities

Optional linear equality -
constraint matrix

Define coefficients
of the linear
equalities

Optional linear equality -
targets

Define target
values for the
linear equality
constraints

334 CHAPTER 6. KEYWORDS AREA

Optional linear equality -
scale types

Specify how each
linear equality
constraint is scaled

Optional linear equality -
scales

Define the
characteristic
values to scale
linear equalities

Optional model pointer Identifier for
model block to be
used by a method

Description

This is a duplicated keyword. Please use conmin instead.

See Also

These keywords may also be of interest:

• mfd

linear inequality constraint matrix

• Keywords Area

• method

• conmin mfd

• linear inequality constraint matrix

Define coefficients of the linear inequality constraints

Topics

This keyword is related to the topics:

• linear constraints

Specification

Alias: none
Argument(s): REALLIST
Default: no linear inequality constraints

6.2. METHOD 335

Description
In the inequality case, the constraint matrix A provides coefficients for the variables in the two-sided formulation:

al ≤ Ax ≤ au

Where the bounds are optionally specified by linear inequality lower bounds, and linear -
inequality upper bounds. The bounds, if not specified, will default to -infinity, and 0, respectively, re-
sulting in one-sided inequalities of the form

Ax ≤ 0.0

.

linear inequality lower bounds

• Keywords Area

• method

• conmin mfd

• linear inequality lower bounds

Define lower bounds for the linear inequality constraint

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = -infinity

Description
In the inequality case, the lower al and upper au bounds provide constraint limits for the two-sided formulation:

al ≤ Ax ≤ au

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective functions), the default linear inequality constraint

bounds are selected so that one-sided inequalities of the form

Ax ≤ 0.0

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since -DBL MAX < -bigRealBoundSize).

336 CHAPTER 6. KEYWORDS AREA

linear inequality upper bounds

• Keywords Area

• method

• conmin mfd

• linear inequality upper bounds

Define upper bounds for the linear inequality constraint

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 0 .

Description
In the inequality case, the lower al and upper au bounds provide constraint limits for the two-sided formulation:

al ≤ Ax ≤ au

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective functions), the default linear inequality constraint

bounds are selected so that one-sided inequalities of the form

Ax ≤ 0.0

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since -DBL MAX < -bigRealBoundSize).

linear inequality scale types

• Keywords Area

• method

• conmin mfd

• linear inequality scale types

Specify how each linear inequality constraint is scaled

6.2. METHOD 337

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): STRINGLIST
Default: vector values = ’none’

Description
linear inequality scale types provide strings specifying the scaling type for each linear inequality
constraint, in methods that support scaling.

An entry may be selected for each constraint. The options are:

• ’none’ - no scaling

• ’value’ - characteristic value if this is chosen, then linear inequality scales must be specified

• ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling
on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU

aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU

and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear inequality scales

• Keywords Area

• method

• conmin mfd

• linear inequality scales

Define the characteristic values to scale linear inequalities

338 CHAPTER 6. KEYWORDS AREA

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

Description
Each entry in linear inequality scales may be a user-specified, nonzero characteristic value to be used
in scaling each constraint.

Behavior depends on the choice of linear inequality scale type :

• scale type - behavior of linear inequality scales

• ’none’ - ignored

• ’value’ - required

• ’auto’ - optional

If a single real value is specified it will apply to all components of the constraint.
Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling

on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear equality constraint matrix

• Keywords Area

• method

• conmin mfd

• linear equality constraint matrix

Define coefficients of the linear equalities

6.2. METHOD 339

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: no linear equality constraints

Description
In the equality case, the constraint matrix A provides coefficients for the variables on the left hand side of:

Ax = at

linear equality targets

• Keywords Area

• method

• conmin mfd

• linear equality targets

Define target values for the linear equality constraints

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 0 .

Description
In the equality case, the targets at provide the equality constraint right hand sides:

Ax = at

.
If this is not specified, the defaults for the equality constraint targets enforce a value of 0. for each constraint:

Ax = 0.0

340 CHAPTER 6. KEYWORDS AREA

linear equality scale types

• Keywords Area

• method

• conmin mfd

• linear equality scale types

Specify how each linear equality constraint is scaled

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): STRINGLIST
Default: vector values = ’none’

Description
linear equality scale types provide strings specifying the scaling type for each linear equality con-
straint, in methods that support scaling.

An entry may be selected for each constraint. The options are:

• ’none’ - no scaling

• ’value’ - characteristic value if this is chosen, then linear equality scales must be specified

• ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear equality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

6.2. METHOD 341

linear equality scales

• Keywords Area

• method

• conmin mfd

• linear equality scales

Define the characteristic values to scale linear equalities

Topics

This keyword is related to the topics:

• linear constraints

Specification

Alias: none
Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

Description

Each entry in linear equality scales may be a user-specified, nonzero characteristic value to be used in
scaling each constraint.

See the scaling page for details on how to use this keyword.
Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU

aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU

and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

342 CHAPTER 6. KEYWORDS AREA

model pointer

• Keywords Area

• method

• conmin mfd

• model pointer

Identifier for model block to be used by a method

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

Description
The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

6.2. METHOD 343

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses
response_functions = 3
no_gradients
no_hessians

6.2.23 conmin
• Keywords Area

• method

• conmin

Access to methods in the CONMIN library

Topics
This keyword is related to the topics:

• package conmin

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

344 CHAPTER 6. KEYWORDS AREA

Required(Choose
One)

Group 1 frcg A conjugate
gradient
optimization
method

mfd Method of feasible
directions

Optional linear inequality -
constraint matrix

Define coefficients
of the linear
inequality
constraints

Optional linear inequality -
lower bounds

Define lower
bounds for the
linear inequality
constraint

Optional linear inequality -
upper bounds

Define upper
bounds for the
linear inequality
constraint

Optional linear inequality -
scale types

Specify how each
linear inequality
constraint is scaled

Optional linear inequality -
scales

Define the
characteristic
values to scale
linear inequalities

Optional linear equality -
constraint matrix

Define coefficients
of the linear
equalities

Optional linear equality -
targets

Define target
values for the
linear equality
constraints

Optional linear equality -
scale types

Specify how each
linear equality
constraint is scaled

Optional linear equality -
scales

Define the
characteristic
values to scale
linear equalities

Optional model pointer Identifier for
model block to be
used by a method

Description
The CONMIN library[83] is a public domain library of nonlinear programming optimizers, specifically the
Fletcher-Reeves conjugate gradient (Dakota’s conmin frcg method) method for unconstrained optimization,
and the method of feasible directions (Dakota’s conmin mfd method) for constrained optimization. As CONM-
IN was a predecessor to the DOT commercial library, the algorithm controls are very similar.

6.2. METHOD 345

One of the two available methods in Group 1 must be specified.
All these methods take the same Optional Keywords , dealing with linear equality and inequality constraints.

See Also
These keywords may also be of interest:

• dot

frcg

• Keywords Area

• method

• conmin

• frcg

A conjugate gradient optimization method

Topics
This keyword is related to the topics:

• package conmin

Specification
Alias: none

Argument(s): none

Description
The interpretations of the method independent controls for CONMIN are essentially identical to those for DOT.

See package dot for information related to CONMIN methods.

See Also
These keywords may also be of interest:

• mfd

• frcg

mfd

• Keywords Area

• method

• conmin

• mfd

Method of feasible directions

346 CHAPTER 6. KEYWORDS AREA

Topics

This keyword is related to the topics:

• package conmin

Specification

Alias: none
Argument(s): none

Description

The interpretations of the method independent controls for CONMIN are essentially identical to those for DOT.
See package dot for information related to CONMIN methods.

See Also

These keywords may also be of interest:

• frcg

• mmfd

linear inequality constraint matrix

• Keywords Area

• method

• conmin

• linear inequality constraint matrix

Define coefficients of the linear inequality constraints

Topics

This keyword is related to the topics:

• linear constraints

Specification

Alias: none
Argument(s): REALLIST
Default: no linear inequality constraints

6.2. METHOD 347

Description
In the inequality case, the constraint matrix A provides coefficients for the variables in the two-sided formulation:

al ≤ Ax ≤ au

Where the bounds are optionally specified by linear inequality lower bounds, and linear -
inequality upper bounds. The bounds, if not specified, will default to -infinity, and 0, respectively, re-
sulting in one-sided inequalities of the form

Ax ≤ 0.0

.

linear inequality lower bounds

• Keywords Area

• method

• conmin

• linear inequality lower bounds

Define lower bounds for the linear inequality constraint

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = -infinity

Description
In the inequality case, the lower al and upper au bounds provide constraint limits for the two-sided formulation:

al ≤ Ax ≤ au

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective functions), the default linear inequality constraint

bounds are selected so that one-sided inequalities of the form

Ax ≤ 0.0

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since -DBL MAX < -bigRealBoundSize).

348 CHAPTER 6. KEYWORDS AREA

linear inequality upper bounds

• Keywords Area

• method

• conmin

• linear inequality upper bounds

Define upper bounds for the linear inequality constraint

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 0 .

Description
In the inequality case, the lower al and upper au bounds provide constraint limits for the two-sided formulation:

al ≤ Ax ≤ au

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective functions), the default linear inequality constraint

bounds are selected so that one-sided inequalities of the form

Ax ≤ 0.0

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since -DBL MAX < -bigRealBoundSize).

linear inequality scale types

• Keywords Area

• method

• conmin

• linear inequality scale types

Specify how each linear inequality constraint is scaled

6.2. METHOD 349

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): STRINGLIST
Default: vector values = ’none’

Description
linear inequality scale types provide strings specifying the scaling type for each linear inequality
constraint, in methods that support scaling.

An entry may be selected for each constraint. The options are:

• ’none’ - no scaling

• ’value’ - characteristic value if this is chosen, then linear inequality scales must be specified

• ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling
on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU

aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU

and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear inequality scales

• Keywords Area

• method

• conmin

• linear inequality scales

Define the characteristic values to scale linear inequalities

350 CHAPTER 6. KEYWORDS AREA

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

Description
Each entry in linear inequality scales may be a user-specified, nonzero characteristic value to be used
in scaling each constraint.

Behavior depends on the choice of linear inequality scale type :

• scale type - behavior of linear inequality scales

• ’none’ - ignored

• ’value’ - required

• ’auto’ - optional

If a single real value is specified it will apply to all components of the constraint.
Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling

on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear equality constraint matrix

• Keywords Area

• method

• conmin

• linear equality constraint matrix

Define coefficients of the linear equalities

6.2. METHOD 351

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: no linear equality constraints

Description
In the equality case, the constraint matrix A provides coefficients for the variables on the left hand side of:

Ax = at

linear equality targets

• Keywords Area

• method

• conmin

• linear equality targets

Define target values for the linear equality constraints

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 0 .

Description
In the equality case, the targets at provide the equality constraint right hand sides:

Ax = at

.
If this is not specified, the defaults for the equality constraint targets enforce a value of 0. for each constraint:

Ax = 0.0

352 CHAPTER 6. KEYWORDS AREA

linear equality scale types

• Keywords Area

• method

• conmin

• linear equality scale types

Specify how each linear equality constraint is scaled

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): STRINGLIST
Default: vector values = ’none’

Description
linear equality scale types provide strings specifying the scaling type for each linear equality con-
straint, in methods that support scaling.

An entry may be selected for each constraint. The options are:

• ’none’ - no scaling

• ’value’ - characteristic value if this is chosen, then linear equality scales must be specified

• ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear equality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

6.2. METHOD 353

linear equality scales

• Keywords Area

• method

• conmin

• linear equality scales

Define the characteristic values to scale linear equalities

Topics

This keyword is related to the topics:

• linear constraints

Specification

Alias: none
Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

Description

Each entry in linear equality scales may be a user-specified, nonzero characteristic value to be used in
scaling each constraint.

See the scaling page for details on how to use this keyword.
Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU

aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU

and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

354 CHAPTER 6. KEYWORDS AREA

model pointer

• Keywords Area

• method

• conmin

• model pointer

Identifier for model block to be used by a method

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

Description
The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

6.2. METHOD 355

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses
response_functions = 3
no_gradients
no_hessians

6.2.24 dl solver
• Keywords Area

• method

• dl solver

(Experimental) Dynamically-loaded solver

Topics
This keyword is related to the topics:

• optimization and calibration

Specification
Alias: none

Argument(s): STRING
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

356 CHAPTER 6. KEYWORDS AREA

Optional linear inequality -
constraint matrix

Define coefficients
of the linear
inequality
constraints

Optional linear inequality -
lower bounds

Define lower
bounds for the
linear inequality
constraint

Optional linear inequality -
upper bounds

Define upper
bounds for the
linear inequality
constraint

Optional linear inequality -
scale types

Specify how each
linear inequality
constraint is scaled

Optional linear inequality -
scales

Define the
characteristic
values to scale
linear inequalities

Optional linear equality -
constraint matrix

Define coefficients
of the linear
equalities

Optional linear equality -
targets

Define target
values for the
linear equality
constraints

Optional linear equality -
scale types

Specify how each
linear equality
constraint is scaled

Optional linear equality -
scales

Define the
characteristic
values to scale
linear equalities

Optional model pointer Identifier for
model block to be
used by a method

Description

This keyword specifies a dynamically-loaded optimization solver library, an experimental Dakota feature that is
not enabled by default.

linear inequality constraint matrix

• Keywords Area

• method

• dl solver

6.2. METHOD 357

• linear inequality constraint matrix

Define coefficients of the linear inequality constraints

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: no linear inequality constraints

Description
In the inequality case, the constraint matrix A provides coefficients for the variables in the two-sided formulation:

al ≤ Ax ≤ au

Where the bounds are optionally specified by linear inequality lower bounds, and linear -
inequality upper bounds. The bounds, if not specified, will default to -infinity, and 0, respectively, re-
sulting in one-sided inequalities of the form

Ax ≤ 0.0

.

linear inequality lower bounds

• Keywords Area

• method

• dl solver

• linear inequality lower bounds

Define lower bounds for the linear inequality constraint

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = -infinity

358 CHAPTER 6. KEYWORDS AREA

Description
In the inequality case, the lower al and upper au bounds provide constraint limits for the two-sided formulation:

al ≤ Ax ≤ au

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective functions), the default linear inequality constraint

bounds are selected so that one-sided inequalities of the form

Ax ≤ 0.0

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since -DBL MAX < -bigRealBoundSize).

linear inequality upper bounds

• Keywords Area

• method

• dl solver

• linear inequality upper bounds

Define upper bounds for the linear inequality constraint

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 0 .

Description
In the inequality case, the lower al and upper au bounds provide constraint limits for the two-sided formulation:

al ≤ Ax ≤ au

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective functions), the default linear inequality constraint

bounds are selected so that one-sided inequalities of the form

Ax ≤ 0.0

6.2. METHOD 359

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since -DBL MAX < -bigRealBoundSize).

linear inequality scale types

• Keywords Area

• method

• dl solver

• linear inequality scale types

Specify how each linear inequality constraint is scaled

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): STRINGLIST
Default: vector values = ’none’

Description
linear inequality scale types provide strings specifying the scaling type for each linear inequality
constraint, in methods that support scaling.

An entry may be selected for each constraint. The options are:

• ’none’ - no scaling

• ’value’ - characteristic value if this is chosen, then linear inequality scales must be specified

• ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling
on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU

360 CHAPTER 6. KEYWORDS AREA

aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO
ãL ≤ Ãix̃ ≤ ãU

and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear inequality scales

• Keywords Area

• method

• dl solver

• linear inequality scales

Define the characteristic values to scale linear inequalities

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

Description
Each entry in linear inequality scales may be a user-specified, nonzero characteristic value to be used
in scaling each constraint.

Behavior depends on the choice of linear inequality scale type :

• scale type - behavior of linear inequality scales

• ’none’ - ignored

• ’value’ - required

• ’auto’ - optional

If a single real value is specified it will apply to all components of the constraint.
Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling

on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

6.2. METHOD 361

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU

aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU

and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear equality constraint matrix

• Keywords Area

• method

• dl solver

• linear equality constraint matrix

Define coefficients of the linear equalities

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: no linear equality constraints

Description
In the equality case, the constraint matrix A provides coefficients for the variables on the left hand side of:

Ax = at

linear equality targets

• Keywords Area

• method

• dl solver

• linear equality targets

Define target values for the linear equality constraints

362 CHAPTER 6. KEYWORDS AREA

Topics

This keyword is related to the topics:

• linear constraints

Specification

Alias: none
Argument(s): REALLIST
Default: vector values = 0 .

Description

In the equality case, the targets at provide the equality constraint right hand sides:

Ax = at

.
If this is not specified, the defaults for the equality constraint targets enforce a value of 0. for each constraint:

Ax = 0.0

linear equality scale types

• Keywords Area

• method

• dl solver

• linear equality scale types

Specify how each linear equality constraint is scaled

Topics

This keyword is related to the topics:

• linear constraints

Specification

Alias: none
Argument(s): STRINGLIST
Default: vector values = ’none’

6.2. METHOD 363

Description
linear equality scale types provide strings specifying the scaling type for each linear equality con-
straint, in methods that support scaling.

An entry may be selected for each constraint. The options are:

• ’none’ - no scaling

• ’value’ - characteristic value if this is chosen, then linear equality scales must be specified

• ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear equality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear equality scales

• Keywords Area

• method

• dl solver

• linear equality scales

Define the characteristic values to scale linear equalities

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

364 CHAPTER 6. KEYWORDS AREA

Description

Each entry in linear equality scales may be a user-specified, nonzero characteristic value to be used in
scaling each constraint.

See the scaling page for details on how to use this keyword.
Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU

aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU

and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

model pointer

• Keywords Area

• method

• dl solver

• model pointer

Identifier for model block to be used by a method

Topics

This keyword is related to the topics:

• block pointer

Specification

Alias: none
Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

6.2. METHOD 365

Description

The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses

366 CHAPTER 6. KEYWORDS AREA

response_functions = 3
no_gradients
no_hessians

6.2.25 npsol sqp
• Keywords Area

• method

• npsol sqp

Sequential Quadratic Program

Topics
This keyword is related to the topics:

• package npsol

• sequential quadratic programming

• local optimization methods

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional verify level Verify the quality
of analytic
gradients

Optional function precision Specify the
maximum
precision of the
analysis code
responses

Optional linesearch -
tolerance

Choose how
accurately the
algorithm will
compute the
minimum in a line
search

6.2. METHOD 367

Optional linear inequality -
constraint matrix

Define coefficients
of the linear
inequality
constraints

Optional linear inequality -
lower bounds

Define lower
bounds for the
linear inequality
constraint

Optional linear inequality -
upper bounds

Define upper
bounds for the
linear inequality
constraint

Optional linear inequality -
scale types

Specify how each
linear inequality
constraint is scaled

Optional linear inequality -
scales

Define the
characteristic
values to scale
linear inequalities

Optional linear equality -
constraint matrix

Define coefficients
of the linear
equalities

Optional linear equality -
targets

Define target
values for the
linear equality
constraints

Optional linear equality -
scale types

Specify how each
linear equality
constraint is scaled

Optional linear equality -
scales

Define the
characteristic
values to scale
linear equalities

Optional model pointer Identifier for
model block to be
used by a method

Description
NPSOL provides an implementation of sequential quadratic programming that can be accessed with npsol sqp.

Stopping Criteria
The method independent controls for max iterations and max function evaluations limit the

number of major SQP iterations and the number of function evaluations that can be performed during an NPSOL
optimization. The convergence tolerance control defines NPSOL’s internal optimality tolerance which is
used in evaluating if an iterate satisfies the first-order Kuhn-Tucker conditions for a minimum. The magnitude
of convergence tolerance approximately specifies the number of significant digits of accuracy desired in
the final objective function (e.g., convergence tolerance = 1.e-6 will result in approximately six digits
of accuracy in the final objective function). The constraint tolerance control defines how tightly the
constraint functions are satisfied at convergence. The default value is dependent upon the machine precision

368 CHAPTER 6. KEYWORDS AREA

of the platform in use, but is typically on the order of 1.e-8 for double precision computations. Extremely
small values for constraint tolerance may not be attainable. The output verbosity setting controls the
amount of information generated at each major SQP iteration: the silent and quiet settings result in only one
line of diagnostic output for each major iteration and print the final optimization solution, whereas the verbose
and debug settings add additional information on the objective function, constraints, and variables at each major
iteration.

Concurrency
NPSOL is not a parallel algorithm and cannot directly take advantage of concurrent evaluations. However,

if numerical gradients with method source dakota is specified, then the finite difference function
evaluations can be performed concurrently (using any of the parallel modes described in the Users Manual [4]).

An important related observation is the fact that NPSOL uses two different line searches depending on how
gradients are computed. For either analytic gradients or numerical gradients with method -
source dakota, NPSOL is placed in user-supplied gradient mode (NPSOL’s ”Derivative Level” is set to 3) and
it uses a gradient-based line search (the assumption is that user-supplied gradients are inexpensive). On the other
hand, if numerical gradients are selected with method source vendor, then NPSOL is computing
finite differences internally and it will use a value-based line search (the assumption is that finite differencing on
each line search evaluation is too expensive). The ramifications of this are: (1) performance will vary between
method source dakota and method source vendor for numerical gradients, and (2) gradient
speculation is unnecessary when performing optimization in parallel since the gradient-based line search in user-
supplied gradient mode is already load balanced for parallel execution. Therefore, a speculative specification
will be ignored by NPSOL, and optimization with numerical gradients should select method source dakota
for load balanced parallel operation and method source vendor for efficient serial operation.

Linear constraints
Lastly, NPSOL supports specialized handling of linear inequality and equality constraints. By specifying the

coefficients and bounds of the linear inequality constraints and the coefficients and targets of the linear equality
constraints, this information can be provided to NPSOL at initialization and tracked internally, removing the need
for the user to provide the values of the linear constraints on every function evaluation.

verify level

• Keywords Area

• method

• npsol sqp

• verify level

Verify the quality of analytic gradients

Specification
Alias: none

Argument(s): INTEGER
Default: -1 (no gradient verification)

Description
verify level instructs the NPSOL and NLSSOL algorithms to perform their own finite difference verification
of the gradients provided by Dakota. Typically these are used to verify analytic gradients produced by a

6.2. METHOD 369

simulation code, though the option can be used with other Dakota-supplied gradient types including numerical or
mixed.

Level 1 will verify the objective gradients, level 2, the nonlinear constraint gradients, and level 3, both. See
the Optional Input Parameters section of the NPSOL manual[33] for additional information, including options to
verify at the user-supplied initial point vs. first feasible point.

function precision

• Keywords Area

• method

• npsol sqp

• function precision

Specify the maximum precision of the analysis code responses

Specification
Alias: none

Argument(s): REAL
Default: 1.0e-10

Description
The function precision control provides the algorithm with an estimate of the accuracy to which the
problem functions can be computed. This is used to prevent the algorithm from trying to distinguish between
function values that differ by less than the inherent error in the calculation.

linesearch tolerance

• Keywords Area

• method

• npsol sqp

• linesearch tolerance

Choose how accurately the algorithm will compute the minimum in a line search

Specification
Alias: none

Argument(s): REAL
Default: 0.9 (inaccurate line search)

Description
The linesearch tolerance setting controls the accuracy of the line search. The smaller the value (between
0 and 1), the more accurately the algorithm will attempt to compute a precise minimum along the search direction.

370 CHAPTER 6. KEYWORDS AREA

linear inequality constraint matrix

• Keywords Area

• method

• npsol sqp

• linear inequality constraint matrix

Define coefficients of the linear inequality constraints

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: no linear inequality constraints

Description
In the inequality case, the constraint matrix A provides coefficients for the variables in the two-sided formulation:

al ≤ Ax ≤ au

Where the bounds are optionally specified by linear inequality lower bounds, and linear -
inequality upper bounds. The bounds, if not specified, will default to -infinity, and 0, respectively, re-
sulting in one-sided inequalities of the form

Ax ≤ 0.0

.

linear inequality lower bounds

• Keywords Area

• method

• npsol sqp

• linear inequality lower bounds

Define lower bounds for the linear inequality constraint

Topics
This keyword is related to the topics:

• linear constraints

6.2. METHOD 371

Specification

Alias: none
Argument(s): REALLIST
Default: vector values = -infinity

Description

In the inequality case, the lower al and upper au bounds provide constraint limits for the two-sided formulation:

al ≤ Ax ≤ au

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective functions), the default linear inequality constraint

bounds are selected so that one-sided inequalities of the form

Ax ≤ 0.0

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since -DBL MAX < -bigRealBoundSize).

linear inequality upper bounds

• Keywords Area

• method

• npsol sqp

• linear inequality upper bounds

Define upper bounds for the linear inequality constraint

Topics

This keyword is related to the topics:

• linear constraints

Specification

Alias: none
Argument(s): REALLIST
Default: vector values = 0 .

372 CHAPTER 6. KEYWORDS AREA

Description
In the inequality case, the lower al and upper au bounds provide constraint limits for the two-sided formulation:

al ≤ Ax ≤ au

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective functions), the default linear inequality constraint

bounds are selected so that one-sided inequalities of the form

Ax ≤ 0.0

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since -DBL MAX < -bigRealBoundSize).

linear inequality scale types

• Keywords Area

• method

• npsol sqp

• linear inequality scale types

Specify how each linear inequality constraint is scaled

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): STRINGLIST
Default: vector values = ’none’

Description
linear inequality scale types provide strings specifying the scaling type for each linear inequality
constraint, in methods that support scaling.

An entry may be selected for each constraint. The options are:

• ’none’ - no scaling

• ’value’ - characteristic value if this is chosen, then linear inequality scales must be specified

6.2. METHOD 373

• ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling
on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU

aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear inequality scales

• Keywords Area

• method

• npsol sqp

• linear inequality scales

Define the characteristic values to scale linear inequalities

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

Description
Each entry in linear inequality scales may be a user-specified, nonzero characteristic value to be used
in scaling each constraint.

Behavior depends on the choice of linear inequality scale type :

• scale type - behavior of linear inequality scales

• ’none’ - ignored

374 CHAPTER 6. KEYWORDS AREA

• ’value’ - required

• ’auto’ - optional

If a single real value is specified it will apply to all components of the constraint.
Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling

on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear equality constraint matrix

• Keywords Area

• method

• npsol sqp

• linear equality constraint matrix

Define coefficients of the linear equalities

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: no linear equality constraints

Description
In the equality case, the constraint matrix A provides coefficients for the variables on the left hand side of:

Ax = at

6.2. METHOD 375

linear equality targets

• Keywords Area

• method

• npsol sqp

• linear equality targets

Define target values for the linear equality constraints

Topics

This keyword is related to the topics:

• linear constraints

Specification

Alias: none
Argument(s): REALLIST
Default: vector values = 0 .

Description

In the equality case, the targets at provide the equality constraint right hand sides:

Ax = at

.
If this is not specified, the defaults for the equality constraint targets enforce a value of 0. for each constraint:

Ax = 0.0

linear equality scale types

• Keywords Area

• method

• npsol sqp

• linear equality scale types

Specify how each linear equality constraint is scaled

Topics

This keyword is related to the topics:

• linear constraints

376 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): STRINGLIST
Default: vector values = ’none’

Description
linear equality scale types provide strings specifying the scaling type for each linear equality con-
straint, in methods that support scaling.

An entry may be selected for each constraint. The options are:

• ’none’ - no scaling

• ’value’ - characteristic value if this is chosen, then linear equality scales must be specified

• ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear equality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear equality scales

• Keywords Area

• method

• npsol sqp

• linear equality scales

Define the characteristic values to scale linear equalities

Topics
This keyword is related to the topics:

• linear constraints

6.2. METHOD 377

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

Description
Each entry in linear equality scales may be a user-specified, nonzero characteristic value to be used in
scaling each constraint.

See the scaling page for details on how to use this keyword.
Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

model pointer

• Keywords Area

• method

• npsol sqp

• model pointer

Identifier for model block to be used by a method

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

378 CHAPTER 6. KEYWORDS AREA

Description

The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses

6.2. METHOD 379

response_functions = 3
no_gradients
no_hessians

6.2.26 nlssol sqp
• Keywords Area

• method

• nlssol sqp

Sequential Quadratic Program for nonlinear least squares

Topics
This keyword is related to the topics:

• sequential quadratic programming

• nonlinear least squares

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional verify level Verify the quality
of analytic
gradients

Optional function precision Specify the
maximum
precision of the
analysis code
responses

Optional linesearch -
tolerance

Choose how
accurately the
algorithm will
compute the
minimum in a line
search

380 CHAPTER 6. KEYWORDS AREA

Optional linear inequality -
constraint matrix

Define coefficients
of the linear
inequality
constraints

Optional linear inequality -
lower bounds

Define lower
bounds for the
linear inequality
constraint

Optional linear inequality -
upper bounds

Define upper
bounds for the
linear inequality
constraint

Optional linear inequality -
scale types

Specify how each
linear inequality
constraint is scaled

Optional linear inequality -
scales

Define the
characteristic
values to scale
linear inequalities

Optional linear equality -
constraint matrix

Define coefficients
of the linear
equalities

Optional linear equality -
targets

Define target
values for the
linear equality
constraints

Optional linear equality -
scale types

Specify how each
linear equality
constraint is scaled

Optional linear equality -
scales

Define the
characteristic
values to scale
linear equalities

Optional model pointer Identifier for
model block to be
used by a method

Description
NLSSOL is available as nlssol sqp and supports unconstrained, bound-constrained, and generally-constrained
problems. It exploits the structure of a least squares objective function through the periodic use of Gauss-Newton
Hessian approximations to accelerate the SQP algorithm.

Stopping Criteria
The method independent controls for max iterations and max function evaluations limit the

number of major SQP iterations and the number of function evaluations that can be performed during an NPSOL
optimization. The convergence tolerance control defines NPSOL’s internal optimality tolerance which is
used in evaluating if an iterate satisfies the first-order Kuhn-Tucker conditions for a minimum. The magnitude
of convergence tolerance approximately specifies the number of significant digits of accuracy desired in
the final objective function (e.g., convergence tolerance = 1.e-6 will result in approximately six digits

6.2. METHOD 381

of accuracy in the final objective function). The constraint tolerance control defines how tightly the
constraint functions are satisfied at convergence. The default value is dependent upon the machine precision of
the platform in use, but is typically on the order of 1.e-8 for double precision computations. Extremely small
values for constraint tolerance may not be attainable.

See Also
These keywords may also be of interest:

• npsol sqp

• nl2sol

• optpp g newton

• field calibration terms

verify level

• Keywords Area

• method

• nlssol sqp

• verify level

Verify the quality of analytic gradients

Specification
Alias: none

Argument(s): INTEGER
Default: -1 (no gradient verification)

Description
verify level instructs the NPSOL and NLSSOL algorithms to perform their own finite difference verification
of the gradients provided by Dakota. Typically these are used to verify analytic gradients produced by a
simulation code, though the option can be used with other Dakota-supplied gradient types including numerical or
mixed.

Level 1 will verify the objective gradients, level 2, the nonlinear constraint gradients, and level 3, both. See
the Optional Input Parameters section of the NPSOL manual[33] for additional information, including options to
verify at the user-supplied initial point vs. first feasible point.

function precision

• Keywords Area

• method

• nlssol sqp

• function precision

Specify the maximum precision of the analysis code responses

382 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): REAL
Default: 1.0e-10

Description
The function precision control provides the algorithm with an estimate of the accuracy to which the
problem functions can be computed. This is used to prevent the algorithm from trying to distinguish between
function values that differ by less than the inherent error in the calculation.

linesearch tolerance

• Keywords Area

• method

• nlssol sqp

• linesearch tolerance

Choose how accurately the algorithm will compute the minimum in a line search

Specification
Alias: none

Argument(s): REAL
Default: 0.9 (inaccurate line search)

Description
The linesearch tolerance setting controls the accuracy of the line search. The smaller the value (between
0 and 1), the more accurately the algorithm will attempt to compute a precise minimum along the search direction.

linear inequality constraint matrix

• Keywords Area

• method

• nlssol sqp

• linear inequality constraint matrix

Define coefficients of the linear inequality constraints

Topics
This keyword is related to the topics:

• linear constraints

6.2. METHOD 383

Specification
Alias: none

Argument(s): REALLIST
Default: no linear inequality constraints

Description
In the inequality case, the constraint matrix A provides coefficients for the variables in the two-sided formulation:

al ≤ Ax ≤ au

Where the bounds are optionally specified by linear inequality lower bounds, and linear -
inequality upper bounds. The bounds, if not specified, will default to -infinity, and 0, respectively, re-
sulting in one-sided inequalities of the form

Ax ≤ 0.0

.

linear inequality lower bounds

• Keywords Area

• method

• nlssol sqp

• linear inequality lower bounds

Define lower bounds for the linear inequality constraint

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = -infinity

Description
In the inequality case, the lower al and upper au bounds provide constraint limits for the two-sided formulation:

al ≤ Ax ≤ au

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective functions), the default linear inequality constraint

bounds are selected so that one-sided inequalities of the form

Ax ≤ 0.0

384 CHAPTER 6. KEYWORDS AREA

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since -DBL MAX < -bigRealBoundSize).

linear inequality upper bounds

• Keywords Area

• method

• nlssol sqp

• linear inequality upper bounds

Define upper bounds for the linear inequality constraint

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 0 .

Description
In the inequality case, the lower al and upper au bounds provide constraint limits for the two-sided formulation:

al ≤ Ax ≤ au

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective functions), the default linear inequality constraint

bounds are selected so that one-sided inequalities of the form

Ax ≤ 0.0

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since -DBL MAX < -bigRealBoundSize).

6.2. METHOD 385

linear inequality scale types

• Keywords Area

• method

• nlssol sqp

• linear inequality scale types

Specify how each linear inequality constraint is scaled

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): STRINGLIST
Default: vector values = ’none’

Description
linear inequality scale types provide strings specifying the scaling type for each linear inequality
constraint, in methods that support scaling.

An entry may be selected for each constraint. The options are:

• ’none’ - no scaling

• ’value’ - characteristic value if this is chosen, then linear inequality scales must be specified

• ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling
on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU

aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

386 CHAPTER 6. KEYWORDS AREA

linear inequality scales

• Keywords Area

• method

• nlssol sqp

• linear inequality scales

Define the characteristic values to scale linear inequalities

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

Description
Each entry in linear inequality scales may be a user-specified, nonzero characteristic value to be used
in scaling each constraint.

Behavior depends on the choice of linear inequality scale type :

• scale type - behavior of linear inequality scales

• ’none’ - ignored

• ’value’ - required

• ’auto’ - optional

If a single real value is specified it will apply to all components of the constraint.
Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling

on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

6.2. METHOD 387

linear equality constraint matrix

• Keywords Area

• method

• nlssol sqp

• linear equality constraint matrix

Define coefficients of the linear equalities

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: no linear equality constraints

Description
In the equality case, the constraint matrix A provides coefficients for the variables on the left hand side of:

Ax = at

linear equality targets

• Keywords Area

• method

• nlssol sqp

• linear equality targets

Define target values for the linear equality constraints

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 0 .

388 CHAPTER 6. KEYWORDS AREA

Description
In the equality case, the targets at provide the equality constraint right hand sides:

Ax = at

.
If this is not specified, the defaults for the equality constraint targets enforce a value of 0. for each constraint:

Ax = 0.0

linear equality scale types

• Keywords Area

• method

• nlssol sqp

• linear equality scale types

Specify how each linear equality constraint is scaled

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): STRINGLIST
Default: vector values = ’none’

Description
linear equality scale types provide strings specifying the scaling type for each linear equality con-
straint, in methods that support scaling.

An entry may be selected for each constraint. The options are:

• ’none’ - no scaling

• ’value’ - characteristic value if this is chosen, then linear equality scales must be specified

• ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear equality constraints

aL ≤ Aix ≤ aU

6.2. METHOD 389

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear equality scales

• Keywords Area

• method

• nlssol sqp

• linear equality scales

Define the characteristic values to scale linear equalities

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

Description
Each entry in linear equality scales may be a user-specified, nonzero characteristic value to be used in
scaling each constraint.

See the scaling page for details on how to use this keyword.
Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

390 CHAPTER 6. KEYWORDS AREA

model pointer

• Keywords Area

• method

• nlssol sqp

• model pointer

Identifier for model block to be used by a method

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

Description
The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

6.2. METHOD 391

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses
response_functions = 3
no_gradients
no_hessians

6.2.27 stanford
• Keywords Area

• method

• stanford

Select methods from the Stanford package

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 npsol Duplicate of
method-npsol-
sqp

nlssol Duplicate of
method-nlssol-
sqp

392 CHAPTER 6. KEYWORDS AREA

Optional verify level Verify the quality
of analytic
gradients

Optional function precision Specify the
maximum
precision of the
analysis code
responses

Optional linesearch -
tolerance

Choose how
accurately the
algorithm will
compute the
minimum in a line
search

Optional linear inequality -
constraint matrix

Define coefficients
of the linear
inequality
constraints

Optional linear inequality -
lower bounds

Define lower
bounds for the
linear inequality
constraint

Optional linear inequality -
upper bounds

Define upper
bounds for the
linear inequality
constraint

Optional linear inequality -
scale types

Specify how each
linear inequality
constraint is scaled

Optional linear inequality -
scales

Define the
characteristic
values to scale
linear inequalities

Optional linear equality -
constraint matrix

Define coefficients
of the linear
equalities

Optional linear equality -
targets

Define target
values for the
linear equality
constraints

Optional linear equality -
scale types

Specify how each
linear equality
constraint is scaled

Optional linear equality -
scales

Define the
characteristic
values to scale
linear equalities

Optional model pointer Identifier for
model block to be
used by a method

6.2. METHOD 393

Description

This is a duplicate. See the method pages here:

• nlssol sqp

• npsol sqp

npsol

• Keywords Area

• method

• stanford

• npsol

Duplicate of method-npsol sqp

Specification

Alias: none
Argument(s): none

Description

See the page for npsol sqp

nlssol

• Keywords Area

• method

• stanford

• nlssol

Duplicate of method-nlssol sqp

Specification

Alias: none
Argument(s): none

Description

See the page for nlssol sqp

394 CHAPTER 6. KEYWORDS AREA

verify level

• Keywords Area

• method

• stanford

• verify level

Verify the quality of analytic gradients

Specification
Alias: none

Argument(s): INTEGER
Default: -1 (no gradient verification)

Description
verify level instructs the NPSOL and NLSSOL algorithms to perform their own finite difference verification
of the gradients provided by Dakota. Typically these are used to verify analytic gradients produced by a
simulation code, though the option can be used with other Dakota-supplied gradient types including numerical or
mixed.

Level 1 will verify the objective gradients, level 2, the nonlinear constraint gradients, and level 3, both. See
the Optional Input Parameters section of the NPSOL manual[33] for additional information, including options to
verify at the user-supplied initial point vs. first feasible point.

function precision

• Keywords Area

• method

• stanford

• function precision

Specify the maximum precision of the analysis code responses

Specification
Alias: none

Argument(s): REAL
Default: 1.0e-10

Description
The function precision control provides the algorithm with an estimate of the accuracy to which the
problem functions can be computed. This is used to prevent the algorithm from trying to distinguish between
function values that differ by less than the inherent error in the calculation.

6.2. METHOD 395

linesearch tolerance

• Keywords Area

• method

• stanford

• linesearch tolerance

Choose how accurately the algorithm will compute the minimum in a line search

Specification

Alias: none
Argument(s): REAL
Default: 0.9 (inaccurate line search)

Description

The linesearch tolerance setting controls the accuracy of the line search. The smaller the value (between
0 and 1), the more accurately the algorithm will attempt to compute a precise minimum along the search direction.

linear inequality constraint matrix

• Keywords Area

• method

• stanford

• linear inequality constraint matrix

Define coefficients of the linear inequality constraints

Topics

This keyword is related to the topics:

• linear constraints

Specification

Alias: none
Argument(s): REALLIST
Default: no linear inequality constraints

396 CHAPTER 6. KEYWORDS AREA

Description
In the inequality case, the constraint matrix A provides coefficients for the variables in the two-sided formulation:

al ≤ Ax ≤ au

Where the bounds are optionally specified by linear inequality lower bounds, and linear -
inequality upper bounds. The bounds, if not specified, will default to -infinity, and 0, respectively, re-
sulting in one-sided inequalities of the form

Ax ≤ 0.0

.

linear inequality lower bounds

• Keywords Area

• method

• stanford

• linear inequality lower bounds

Define lower bounds for the linear inequality constraint

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = -infinity

Description
In the inequality case, the lower al and upper au bounds provide constraint limits for the two-sided formulation:

al ≤ Ax ≤ au

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective functions), the default linear inequality constraint

bounds are selected so that one-sided inequalities of the form

Ax ≤ 0.0

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since -DBL MAX < -bigRealBoundSize).

6.2. METHOD 397

linear inequality upper bounds

• Keywords Area

• method

• stanford

• linear inequality upper bounds

Define upper bounds for the linear inequality constraint

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 0 .

Description
In the inequality case, the lower al and upper au bounds provide constraint limits for the two-sided formulation:

al ≤ Ax ≤ au

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective functions), the default linear inequality constraint

bounds are selected so that one-sided inequalities of the form

Ax ≤ 0.0

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since -DBL MAX < -bigRealBoundSize).

linear inequality scale types

• Keywords Area

• method

• stanford

• linear inequality scale types

Specify how each linear inequality constraint is scaled

398 CHAPTER 6. KEYWORDS AREA

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): STRINGLIST
Default: vector values = ’none’

Description
linear inequality scale types provide strings specifying the scaling type for each linear inequality
constraint, in methods that support scaling.

An entry may be selected for each constraint. The options are:

• ’none’ - no scaling

• ’value’ - characteristic value if this is chosen, then linear inequality scales must be specified

• ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling
on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU

aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU

and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear inequality scales

• Keywords Area

• method

• stanford

• linear inequality scales

Define the characteristic values to scale linear inequalities

6.2. METHOD 399

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

Description
Each entry in linear inequality scales may be a user-specified, nonzero characteristic value to be used
in scaling each constraint.

Behavior depends on the choice of linear inequality scale type :

• scale type - behavior of linear inequality scales

• ’none’ - ignored

• ’value’ - required

• ’auto’ - optional

If a single real value is specified it will apply to all components of the constraint.
Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling

on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear equality constraint matrix

• Keywords Area

• method

• stanford

• linear equality constraint matrix

Define coefficients of the linear equalities

400 CHAPTER 6. KEYWORDS AREA

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: no linear equality constraints

Description
In the equality case, the constraint matrix A provides coefficients for the variables on the left hand side of:

Ax = at

linear equality targets

• Keywords Area

• method

• stanford

• linear equality targets

Define target values for the linear equality constraints

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 0 .

Description
In the equality case, the targets at provide the equality constraint right hand sides:

Ax = at

.
If this is not specified, the defaults for the equality constraint targets enforce a value of 0. for each constraint:

Ax = 0.0

6.2. METHOD 401

linear equality scale types

• Keywords Area

• method

• stanford

• linear equality scale types

Specify how each linear equality constraint is scaled

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): STRINGLIST
Default: vector values = ’none’

Description
linear equality scale types provide strings specifying the scaling type for each linear equality con-
straint, in methods that support scaling.

An entry may be selected for each constraint. The options are:

• ’none’ - no scaling

• ’value’ - characteristic value if this is chosen, then linear equality scales must be specified

• ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear equality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

402 CHAPTER 6. KEYWORDS AREA

linear equality scales

• Keywords Area

• method

• stanford

• linear equality scales

Define the characteristic values to scale linear equalities

Topics

This keyword is related to the topics:

• linear constraints

Specification

Alias: none
Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

Description

Each entry in linear equality scales may be a user-specified, nonzero characteristic value to be used in
scaling each constraint.

See the scaling page for details on how to use this keyword.
Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU

aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU

and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

6.2. METHOD 403

model pointer

• Keywords Area

• method

• stanford

• model pointer

Identifier for model block to be used by a method

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

Description
The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

404 CHAPTER 6. KEYWORDS AREA

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses
response_functions = 3
no_gradients
no_hessians

6.2.28 nlpql sqp
• Keywords Area

• method

• nlpql sqp

Sequential Quadratic Program

Topics
This keyword is related to the topics:

• package nlpql

• sequential quadratic programming

• local optimization methods

Specification
Alias: none

Argument(s): none

6.2. METHOD 405

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional linear inequality -
constraint matrix

Define coefficients
of the linear
inequality
constraints

Optional linear inequality -
lower bounds

Define lower
bounds for the
linear inequality
constraint

Optional linear inequality -
upper bounds

Define upper
bounds for the
linear inequality
constraint

Optional linear inequality -
scale types

Specify how each
linear inequality
constraint is scaled

Optional linear inequality -
scales

Define the
characteristic
values to scale
linear inequalities

Optional linear equality -
constraint matrix

Define coefficients
of the linear
equalities

Optional linear equality -
targets

Define target
values for the
linear equality
constraints

Optional linear equality -
scale types

Specify how each
linear equality
constraint is scaled

Optional linear equality -
scales

Define the
characteristic
values to scale
linear equalities

Optional model pointer Identifier for
model block to be
used by a method

406 CHAPTER 6. KEYWORDS AREA

Description

NLPQL provides an implementation of sequential quadratic programming through nlpqp sqp. The particular
SQP implementation in nlpql sqp uses a variant with distributed and non-monotone line search. Thus, this
variant is designed to be more robust in the presence of inaccurate or noisy gradients common in many engineering
applications.

The method independent controls for maximum iterations and output verbosity are mapped to NLPQL controls
MAXIT and IPRINT, respectively. The maximum number of function evaluations is enforced within the NLPQ-
LPOptimizer class.

linear inequality constraint matrix

• Keywords Area

• method

• nlpql sqp

• linear inequality constraint matrix

Define coefficients of the linear inequality constraints

Topics

This keyword is related to the topics:

• linear constraints

Specification

Alias: none
Argument(s): REALLIST
Default: no linear inequality constraints

Description

In the inequality case, the constraint matrix A provides coefficients for the variables in the two-sided formulation:

al ≤ Ax ≤ au

Where the bounds are optionally specified by linear inequality lower bounds, and linear -
inequality upper bounds. The bounds, if not specified, will default to -infinity, and 0, respectively, re-
sulting in one-sided inequalities of the form

Ax ≤ 0.0

.

6.2. METHOD 407

linear inequality lower bounds

• Keywords Area

• method

• nlpql sqp

• linear inequality lower bounds

Define lower bounds for the linear inequality constraint

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = -infinity

Description
In the inequality case, the lower al and upper au bounds provide constraint limits for the two-sided formulation:

al ≤ Ax ≤ au

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective functions), the default linear inequality constraint

bounds are selected so that one-sided inequalities of the form

Ax ≤ 0.0

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since -DBL MAX < -bigRealBoundSize).

linear inequality upper bounds

• Keywords Area

• method

• nlpql sqp

• linear inequality upper bounds

Define upper bounds for the linear inequality constraint

408 CHAPTER 6. KEYWORDS AREA

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 0 .

Description
In the inequality case, the lower al and upper au bounds provide constraint limits for the two-sided formulation:

al ≤ Ax ≤ au

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective functions), the default linear inequality constraint

bounds are selected so that one-sided inequalities of the form

Ax ≤ 0.0

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since -DBL MAX < -bigRealBoundSize).

linear inequality scale types

• Keywords Area

• method

• nlpql sqp

• linear inequality scale types

Specify how each linear inequality constraint is scaled

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): STRINGLIST
Default: vector values = ’none’

6.2. METHOD 409

Description
linear inequality scale types provide strings specifying the scaling type for each linear inequality
constraint, in methods that support scaling.

An entry may be selected for each constraint. The options are:

• ’none’ - no scaling

• ’value’ - characteristic value if this is chosen, then linear inequality scales must be specified

• ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling
on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU

aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU

and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear inequality scales

• Keywords Area

• method

• nlpql sqp

• linear inequality scales

Define the characteristic values to scale linear inequalities

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

410 CHAPTER 6. KEYWORDS AREA

Description
Each entry in linear inequality scales may be a user-specified, nonzero characteristic value to be used
in scaling each constraint.

Behavior depends on the choice of linear inequality scale type :

• scale type - behavior of linear inequality scales

• ’none’ - ignored

• ’value’ - required

• ’auto’ - optional

If a single real value is specified it will apply to all components of the constraint.
Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling

on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear equality constraint matrix

• Keywords Area

• method

• nlpql sqp

• linear equality constraint matrix

Define coefficients of the linear equalities

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: no linear equality constraints

6.2. METHOD 411

Description
In the equality case, the constraint matrix A provides coefficients for the variables on the left hand side of:

Ax = at

linear equality targets

• Keywords Area

• method

• nlpql sqp

• linear equality targets

Define target values for the linear equality constraints

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 0 .

Description
In the equality case, the targets at provide the equality constraint right hand sides:

Ax = at

.
If this is not specified, the defaults for the equality constraint targets enforce a value of 0. for each constraint:

Ax = 0.0

linear equality scale types

• Keywords Area

• method

• nlpql sqp

• linear equality scale types

Specify how each linear equality constraint is scaled

412 CHAPTER 6. KEYWORDS AREA

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): STRINGLIST
Default: vector values = ’none’

Description
linear equality scale types provide strings specifying the scaling type for each linear equality con-
straint, in methods that support scaling.

An entry may be selected for each constraint. The options are:

• ’none’ - no scaling

• ’value’ - characteristic value if this is chosen, then linear equality scales must be specified

• ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear equality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear equality scales

• Keywords Area

• method

• nlpql sqp

• linear equality scales

Define the characteristic values to scale linear equalities

6.2. METHOD 413

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

Description
Each entry in linear equality scales may be a user-specified, nonzero characteristic value to be used in
scaling each constraint.

See the scaling page for details on how to use this keyword.
Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

model pointer

• Keywords Area

• method

• nlpql sqp

• model pointer

Identifier for model block to be used by a method

Topics
This keyword is related to the topics:

• block pointer

414 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

Description
The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

6.2. METHOD 415

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses
response_functions = 3
no_gradients
no_hessians

6.2.29 optpp cg
• Keywords Area

• method

• optpp cg

A conjugate gradient optimization method

Topics
This keyword is related to the topics:

• package optpp

• local optimization methods

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional max step Max change in
design point

Optional gradient tolerance Stopping critiera
based on L2 norm
of gradient

Optional linear inequality -
constraint matrix

Define coefficients
of the linear
inequality
constraints

Optional linear inequality -
lower bounds

Define lower
bounds for the
linear inequality
constraint

416 CHAPTER 6. KEYWORDS AREA

Optional linear inequality -
upper bounds

Define upper
bounds for the
linear inequality
constraint

Optional linear inequality -
scale types

Specify how each
linear inequality
constraint is scaled

Optional linear inequality -
scales

Define the
characteristic
values to scale
linear inequalities

Optional linear equality -
constraint matrix

Define coefficients
of the linear
equalities

Optional linear equality -
targets

Define target
values for the
linear equality
constraints

Optional linear equality -
scale types

Specify how each
linear equality
constraint is scaled

Optional linear equality -
scales

Define the
characteristic
values to scale
linear equalities

Optional model pointer Identifier for
model block to be
used by a method

Description

The conjugate gradient method is an implementation of the Polak-Ribiere approach and handles only uncon-
strained problems.

See package optpp for info related to all optpp methods.

See Also

These keywords may also be of interest:

• optpp g newton

• optpp pds

• optpp fd newton

• optpp newton

• optpp g newton

6.2. METHOD 417

max step

• Keywords Area

• method

• optpp cg

• max step

Max change in design point

Specification

Alias: none
Argument(s): REAL
Default: 1000.

Description

The max step control specifies the maximum step that can be taken when computing a change in the current
design point (e.g., limiting the Newton step computed from current gradient and Hessian information). It is equiv-
alent to a move limit or a maximum trust region size. The gradient tolerance control defines the threshold
value on the L2 norm of the objective function gradient that indicates convergence to an unconstrained minimum
(no active constraints). The gradient tolerance control is defined for all gradient-based optimizers.

gradient tolerance

• Keywords Area

• method

• optpp cg

• gradient tolerance

Stopping critiera based on L2 norm of gradient

Specification

Alias: none
Argument(s): REAL
Default: 1.e-4

Description

The gradient tolerance control defines the threshold value on the L2 norm of the objective function
gradient that indicates convergence to an unconstrained minimum (no active constraints). The gradient -
tolerance control is defined for all gradient-based optimizers.

418 CHAPTER 6. KEYWORDS AREA

linear inequality constraint matrix

• Keywords Area

• method

• optpp cg

• linear inequality constraint matrix

Define coefficients of the linear inequality constraints

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: no linear inequality constraints

Description
In the inequality case, the constraint matrix A provides coefficients for the variables in the two-sided formulation:

al ≤ Ax ≤ au

Where the bounds are optionally specified by linear inequality lower bounds, and linear -
inequality upper bounds. The bounds, if not specified, will default to -infinity, and 0, respectively, re-
sulting in one-sided inequalities of the form

Ax ≤ 0.0

.

linear inequality lower bounds

• Keywords Area

• method

• optpp cg

• linear inequality lower bounds

Define lower bounds for the linear inequality constraint

Topics
This keyword is related to the topics:

• linear constraints

6.2. METHOD 419

Specification

Alias: none
Argument(s): REALLIST
Default: vector values = -infinity

Description

In the inequality case, the lower al and upper au bounds provide constraint limits for the two-sided formulation:

al ≤ Ax ≤ au

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective functions), the default linear inequality constraint

bounds are selected so that one-sided inequalities of the form

Ax ≤ 0.0

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since -DBL MAX < -bigRealBoundSize).

linear inequality upper bounds

• Keywords Area

• method

• optpp cg

• linear inequality upper bounds

Define upper bounds for the linear inequality constraint

Topics

This keyword is related to the topics:

• linear constraints

Specification

Alias: none
Argument(s): REALLIST
Default: vector values = 0 .

420 CHAPTER 6. KEYWORDS AREA

Description
In the inequality case, the lower al and upper au bounds provide constraint limits for the two-sided formulation:

al ≤ Ax ≤ au

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective functions), the default linear inequality constraint

bounds are selected so that one-sided inequalities of the form

Ax ≤ 0.0

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since -DBL MAX < -bigRealBoundSize).

linear inequality scale types

• Keywords Area

• method

• optpp cg

• linear inequality scale types

Specify how each linear inequality constraint is scaled

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): STRINGLIST
Default: vector values = ’none’

Description
linear inequality scale types provide strings specifying the scaling type for each linear inequality
constraint, in methods that support scaling.

An entry may be selected for each constraint. The options are:

• ’none’ - no scaling

• ’value’ - characteristic value if this is chosen, then linear inequality scales must be specified

6.2. METHOD 421

• ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling
on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU

aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear inequality scales

• Keywords Area

• method

• optpp cg

• linear inequality scales

Define the characteristic values to scale linear inequalities

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

Description
Each entry in linear inequality scales may be a user-specified, nonzero characteristic value to be used
in scaling each constraint.

Behavior depends on the choice of linear inequality scale type :

• scale type - behavior of linear inequality scales

• ’none’ - ignored

422 CHAPTER 6. KEYWORDS AREA

• ’value’ - required

• ’auto’ - optional

If a single real value is specified it will apply to all components of the constraint.
Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling

on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear equality constraint matrix

• Keywords Area

• method

• optpp cg

• linear equality constraint matrix

Define coefficients of the linear equalities

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: no linear equality constraints

Description
In the equality case, the constraint matrix A provides coefficients for the variables on the left hand side of:

Ax = at

6.2. METHOD 423

linear equality targets

• Keywords Area

• method

• optpp cg

• linear equality targets

Define target values for the linear equality constraints

Topics

This keyword is related to the topics:

• linear constraints

Specification

Alias: none
Argument(s): REALLIST
Default: vector values = 0 .

Description

In the equality case, the targets at provide the equality constraint right hand sides:

Ax = at

.
If this is not specified, the defaults for the equality constraint targets enforce a value of 0. for each constraint:

Ax = 0.0

linear equality scale types

• Keywords Area

• method

• optpp cg

• linear equality scale types

Specify how each linear equality constraint is scaled

Topics

This keyword is related to the topics:

• linear constraints

424 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): STRINGLIST
Default: vector values = ’none’

Description
linear equality scale types provide strings specifying the scaling type for each linear equality con-
straint, in methods that support scaling.

An entry may be selected for each constraint. The options are:

• ’none’ - no scaling

• ’value’ - characteristic value if this is chosen, then linear equality scales must be specified

• ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear equality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear equality scales

• Keywords Area

• method

• optpp cg

• linear equality scales

Define the characteristic values to scale linear equalities

Topics
This keyword is related to the topics:

• linear constraints

6.2. METHOD 425

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

Description
Each entry in linear equality scales may be a user-specified, nonzero characteristic value to be used in
scaling each constraint.

See the scaling page for details on how to use this keyword.
Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

model pointer

• Keywords Area

• method

• optpp cg

• model pointer

Identifier for model block to be used by a method

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

426 CHAPTER 6. KEYWORDS AREA

Description

The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses

6.2. METHOD 427

response_functions = 3
no_gradients
no_hessians

6.2.30 optpp q newton
• Keywords Area

• method

• optpp q newton

Quasi-Newton optimization method

Topics
This keyword is related to the topics:

• package optpp

• local optimization methods

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional search method Select a search
method for
Newton-based
optimizers

Optional merit function Balance goals of
reducing objective
function and
satisfying
constraints

Optional steplength to -
boundary

Controls how close
to the boundary of
the feasible region
the algorithm is
allowed to move

Optional centering -
parameter

Controls how
closely the
algorithm should
follow the ”central
path”

428 CHAPTER 6. KEYWORDS AREA

Optional max step Max change in
design point

Optional gradient tolerance Stopping critiera
based on L2 norm
of gradient

Optional linear inequality -
constraint matrix

Define coefficients
of the linear
inequality
constraints

Optional linear inequality -
lower bounds

Define lower
bounds for the
linear inequality
constraint

Optional linear inequality -
upper bounds

Define upper
bounds for the
linear inequality
constraint

Optional linear inequality -
scale types

Specify how each
linear inequality
constraint is scaled

Optional linear inequality -
scales

Define the
characteristic
values to scale
linear inequalities

Optional linear equality -
constraint matrix

Define coefficients
of the linear
equalities

Optional linear equality -
targets

Define target
values for the
linear equality
constraints

Optional linear equality -
scale types

Specify how each
linear equality
constraint is scaled

Optional linear equality -
scales

Define the
characteristic
values to scale
linear equalities

Optional model pointer Identifier for
model block to be
used by a method

6.2. METHOD 429

Description
This is a Newton method that expects a gradient and computes a low-rank approximation to the Hessian. Each of
the Newton-based methods are automatically bound to the appropriate OPT++ algorithm based on the user con-
straint specification (unconstrained, bound-constrained, or generally-constrained). In the generally-constrained
case, the Newton methods use a nonlinear interior-point approach to manage the constraints.

See package optpp for info related to all optpp methods.

search method

• Keywords Area

• method

• optpp q newton

• search method

Select a search method for Newton-based optimizers

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1

value based line -
search

Use only function
values for line
search

gradient based -
line search

Set the search
method to use the
gradient

trust region Use trust region as
the globalization
strategy.

tr pds Use direct search
as the local search
in a trust region
method

Description
The search method control is defined for all Newton-based optimizers and is used to select between trust -
region, gradient based line search, and value based line searchmethods. The gradient-
based line search option uses the line search method proposed by[61]. This option satisfies sufficient

decrease and curvature conditions; whereas, value base line search only satisfies the sufficient decrease
condition. At each line search iteration, the gradient based line search method computes the function
and gradient at the trial point. Consequently, given expensive function evaluations, the value based line -
search method is preferred to the gradient based line search method. Each of these Newton methods

430 CHAPTER 6. KEYWORDS AREA

additionally supports the tr pds selection for unconstrained problems. This option performs a robust trust region
search using pattern search techniques. Use of a line search is the default for bound-constrained and generally-
constrained problems, and use of a trust region search method is the default for unconstrained problems.

value based line search

• Keywords Area

• method

• optpp q newton

• search method

• value based line search

Use only function values for line search

Specification
Alias: none

Argument(s): none
Default: trust region (unconstrained), value based line search (bound/general constraints)

Description
The search method control is defined for all Newton-based optimizers and is used to select between trust -
region, gradient based line search, and value based line searchmethods. The gradient-
based line search option uses the line search method proposed by[61]. This option satisfies sufficient

decrease and curvature conditions; whereas, value base line search only satisfies the sufficient decrease
condition. At each line search iteration, the gradient based line search method computes the function
and gradient at the trial point. Consequently, given expensive function evaluations, the value based line -
search method is preferred to the gradient based line search method. Each of these Newton methods
additionally supports the tr pds selection for unconstrained problems. This option performs a robust trust region
search using pattern search techniques. Use of a line search is the default for bound-constrained and generally-
constrained problems, and use of a trust region search method is the default for unconstrained problems.

gradient based line search

• Keywords Area

• method

• optpp q newton

• search method

• gradient based line search

Set the search method to use the gradient

6.2. METHOD 431

Specification
Alias: none

Argument(s): none

Description
The search method control is defined for all Newton-based optimizers and is used to select between trust -
region, gradient based line search, and value based line searchmethods. The gradient-
based line search option uses the line search method proposed by[61]. This option satisfies sufficient

decrease and curvature conditions; whereas, value base line search only satisfies the sufficient decrease
condition. At each line search iteration, the gradient based line search method computes the function
and gradient at the trial point. Consequently, given expensive function evaluations, the value based line -
search method is preferred to the gradient based line search method. Each of these Newton methods
additionally supports the tr pds selection for unconstrained problems. This option performs a robust trust region
search using pattern search techniques. Use of a line search is the default for bound-constrained and generally-
constrained problems, and use of a trust region search method is the default for unconstrained problems.

trust region

• Keywords Area

• method

• optpp q newton

• search method

• trust region

Use trust region as the globalization strategy.

Specification
Alias: none

Argument(s): none

Description
The trust region optional group specification can be used to specify the initial size of the trust region (using
initial size) relative to the total variable bounds, the minimum size of the trust region (using minimum -
size), the contraction factor for the trust region size (using contraction factor) used when the surrogate
model is performing poorly, and the expansion factor for the trust region size (using expansion factor) used
when the the surrogate model is performing well. Two additional commands are the trust region size contrac-
tion threshold (using contract threshold) and the trust region size expansion threshold (using expand-
threshold). These two commands are related to what is called the trust region ratio, which is the actual de-

crease in the truth model divided by the predicted decrease in the truth model in the current trust region. The com-
mand contract threshold sets the minimum acceptable value for the trust region ratio, i.e., values below
this threshold cause the trust region to shrink for the next SBL iteration. The command expand threshold
determines the trust region value above which the trust region will expand for the next SBL iteration.

432 CHAPTER 6. KEYWORDS AREA

tr pds

• Keywords Area

• method

• optpp q newton

• search method

• tr pds

Use direct search as the local search in a trust region method

Specification
Alias: none

Argument(s): none

Description
The search method control is defined for all Newton-based optimizers and is used to select between trust -
region, gradient based line search, and value based line searchmethods. The gradient-
based line search option uses the line search method proposed by[61]. This option satisfies sufficient

decrease and curvature conditions; whereas, value base line search only satisfies the sufficient decrease
condition. At each line search iteration, the gradient based line search method computes the function
and gradient at the trial point. Consequently, given expensive function evaluations, the value based line -
search method is preferred to the gradient based line search method. Each of these Newton methods
additionally supports the tr pds selection for unconstrained problems. This option performs a robust trust region
search using pattern search techniques. Use of a line search is the default for bound-constrained and generally-
constrained problems, and use of a trust region search method is the default for unconstrained problems.

merit function

• Keywords Area

• method

• optpp q newton

• merit function

Balance goals of reducing objective function and satisfying constraints

Specification
Alias: none

Argument(s): none
Default: argaez tapia

6.2. METHOD 433

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1
el bakry El-Bakry merit

function
argaez tapia The merit function

by Tapia and
Argaez

van shanno The merit function
by Vanderbei and
Shanno

Description
A merit function is a function in constrained optimization that attempts to provide joint progress toward
reducing the objective function and satisfying the constraints.

el bakry

• Keywords Area

• method

• optpp q newton

• merit function

• el bakry

El-Bakry merit function

Specification
Alias: none

Argument(s): none

Description
The ”el bakry” merit function is the L2-norm of the first order optimality conditions for the nonlinear program-
ming problem. The cost per linesearch iteration is n+1 function evaluations. For more information, see[20].

argaez tapia

• Keywords Area

• method

• optpp q newton

• merit function

• argaez tapia

The merit function by Tapia and Argaez

434 CHAPTER 6. KEYWORDS AREA

Specification

Alias: none
Argument(s): none

Description

The ”argaez tapia” merit function can be classified as a modified augmented Lagrangian function. The augmented
Lagrangian is modified by adding to its penalty term a potential reduction function to handle the perturbed com-
plementarity condition. The cost per linesearch iteration is one function evaluation. For more information, see
[80].

If the function evaluation is expensive or noisy, set the merit function to ”argaez tapia” or ”van shanno”.

van shanno

• Keywords Area

• method

• optpp q newton

• merit function

• van shanno

The merit function by Vanderbei and Shanno

Specification

Alias: none
Argument(s): none

Description

The ”van shanno” merit function can be classified as a penalty function for the logarithmic barrier formulation
of the nonlinear programming problem. The cost per linesearch iteration is one function evaluation. For more
information see[82].

If the function evaluation is expensive or noisy, set the merit function to ”argaez tapia” or ”van shanno”.

steplength to boundary

• Keywords Area

• method

• optpp q newton

• steplength to boundary

Controls how close to the boundary of the feasible region the algorithm is allowed to move

6.2. METHOD 435

Specification
Alias: none

Argument(s): REAL
Default: Merit function dependent: 0.8 (el bakry), 0.99995 (argaez tapia), 0.95 (van shanno)

Description
The steplength to boundary specification is a parameter (between 0 and 1) that controls how close to the
boundary of the feasible region the algorithm is allowed to move. A value of 1 means that the algorithm is allowed
to take steps that may reach the boundary of the feasible region. If the user wishes to maintain strict feasibility of
the design parameters this value should be less than 1. Default values are .8, .99995, and .95 for the el bakry,
argaez tapia, and van shanno merit functions, respectively.

centering parameter

• Keywords Area

• method

• optpp q newton

• centering parameter

Controls how closely the algorithm should follow the ”central path”

Specification
Alias: none

Argument(s): REAL
Default: Merit function dependent: 0.2 (el bakry), 0.2 (argaez tapia), 0.1 (van shanno)

Description
The centering parameter specification is a parameter (between 0 and 1) that controls how closely the
algorithm should follow the ”central path”. See[88] for the definition of central path. The larger the value, the
more closely the algorithm follows the central path, which results in small steps. A value of 0 indicates that the
algorithm will take a pure Newton step. Default values are .2, .2, and .1 for the el bakry, argaez tapia,
and van shanno merit functions, respectively.

max step

• Keywords Area

• method

• optpp q newton

• max step

Max change in design point

436 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): REAL
Default: 1000.

Description
The max step control specifies the maximum step that can be taken when computing a change in the current
design point (e.g., limiting the Newton step computed from current gradient and Hessian information). It is equiv-
alent to a move limit or a maximum trust region size. The gradient tolerance control defines the threshold
value on the L2 norm of the objective function gradient that indicates convergence to an unconstrained minimum
(no active constraints). The gradient tolerance control is defined for all gradient-based optimizers.

gradient tolerance

• Keywords Area

• method

• optpp q newton

• gradient tolerance

Stopping critiera based on L2 norm of gradient

Specification
Alias: none

Argument(s): REAL
Default: 1.e-4

Description
The gradient tolerance control defines the threshold value on the L2 norm of the objective function
gradient that indicates convergence to an unconstrained minimum (no active constraints). The gradient -
tolerance control is defined for all gradient-based optimizers.

linear inequality constraint matrix

• Keywords Area

• method

• optpp q newton

• linear inequality constraint matrix

Define coefficients of the linear inequality constraints

Topics
This keyword is related to the topics:

• linear constraints

6.2. METHOD 437

Specification
Alias: none

Argument(s): REALLIST
Default: no linear inequality constraints

Description
In the inequality case, the constraint matrix A provides coefficients for the variables in the two-sided formulation:

al ≤ Ax ≤ au

Where the bounds are optionally specified by linear inequality lower bounds, and linear -
inequality upper bounds. The bounds, if not specified, will default to -infinity, and 0, respectively, re-
sulting in one-sided inequalities of the form

Ax ≤ 0.0

.

linear inequality lower bounds

• Keywords Area

• method

• optpp q newton

• linear inequality lower bounds

Define lower bounds for the linear inequality constraint

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = -infinity

Description
In the inequality case, the lower al and upper au bounds provide constraint limits for the two-sided formulation:

al ≤ Ax ≤ au

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective functions), the default linear inequality constraint

bounds are selected so that one-sided inequalities of the form

Ax ≤ 0.0

438 CHAPTER 6. KEYWORDS AREA

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since -DBL MAX < -bigRealBoundSize).

linear inequality upper bounds

• Keywords Area

• method

• optpp q newton

• linear inequality upper bounds

Define upper bounds for the linear inequality constraint

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 0 .

Description
In the inequality case, the lower al and upper au bounds provide constraint limits for the two-sided formulation:

al ≤ Ax ≤ au

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective functions), the default linear inequality constraint

bounds are selected so that one-sided inequalities of the form

Ax ≤ 0.0

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since -DBL MAX < -bigRealBoundSize).

6.2. METHOD 439

linear inequality scale types

• Keywords Area

• method

• optpp q newton

• linear inequality scale types

Specify how each linear inequality constraint is scaled

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): STRINGLIST
Default: vector values = ’none’

Description
linear inequality scale types provide strings specifying the scaling type for each linear inequality
constraint, in methods that support scaling.

An entry may be selected for each constraint. The options are:

• ’none’ - no scaling

• ’value’ - characteristic value if this is chosen, then linear inequality scales must be specified

• ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling
on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU

aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

440 CHAPTER 6. KEYWORDS AREA

linear inequality scales

• Keywords Area

• method

• optpp q newton

• linear inequality scales

Define the characteristic values to scale linear inequalities

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

Description
Each entry in linear inequality scales may be a user-specified, nonzero characteristic value to be used
in scaling each constraint.

Behavior depends on the choice of linear inequality scale type :

• scale type - behavior of linear inequality scales

• ’none’ - ignored

• ’value’ - required

• ’auto’ - optional

If a single real value is specified it will apply to all components of the constraint.
Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling

on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

6.2. METHOD 441

linear equality constraint matrix

• Keywords Area

• method

• optpp q newton

• linear equality constraint matrix

Define coefficients of the linear equalities

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: no linear equality constraints

Description
In the equality case, the constraint matrix A provides coefficients for the variables on the left hand side of:

Ax = at

linear equality targets

• Keywords Area

• method

• optpp q newton

• linear equality targets

Define target values for the linear equality constraints

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 0 .

442 CHAPTER 6. KEYWORDS AREA

Description
In the equality case, the targets at provide the equality constraint right hand sides:

Ax = at

.
If this is not specified, the defaults for the equality constraint targets enforce a value of 0. for each constraint:

Ax = 0.0

linear equality scale types

• Keywords Area

• method

• optpp q newton

• linear equality scale types

Specify how each linear equality constraint is scaled

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): STRINGLIST
Default: vector values = ’none’

Description
linear equality scale types provide strings specifying the scaling type for each linear equality con-
straint, in methods that support scaling.

An entry may be selected for each constraint. The options are:

• ’none’ - no scaling

• ’value’ - characteristic value if this is chosen, then linear equality scales must be specified

• ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear equality constraints

aL ≤ Aix ≤ aU

6.2. METHOD 443

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear equality scales

• Keywords Area

• method

• optpp q newton

• linear equality scales

Define the characteristic values to scale linear equalities

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

Description
Each entry in linear equality scales may be a user-specified, nonzero characteristic value to be used in
scaling each constraint.

See the scaling page for details on how to use this keyword.
Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

444 CHAPTER 6. KEYWORDS AREA

model pointer

• Keywords Area

• method

• optpp q newton

• model pointer

Identifier for model block to be used by a method

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

Description
The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

6.2. METHOD 445

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses
response_functions = 3
no_gradients
no_hessians

6.2.31 optpp fd newton
• Keywords Area

• method

• optpp fd newton

Finite Difference Newton optimization method

Topics
This keyword is related to the topics:

• package optpp

• local optimization methods

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

446 CHAPTER 6. KEYWORDS AREA

Optional search method Select a search
method for
Newton-based
optimizers

Optional merit function Balance goals of
reducing objective
function and
satisfying
constraints

Optional steplength to -
boundary

Controls how close
to the boundary of
the feasible region
the algorithm is
allowed to move

Optional centering -
parameter

Controls how
closely the
algorithm should
follow the ”central
path”

Optional max step Max change in
design point

Optional gradient tolerance Stopping critiera
based on L2 norm
of gradient

Optional linear inequality -
constraint matrix

Define coefficients
of the linear
inequality
constraints

Optional linear inequality -
lower bounds

Define lower
bounds for the
linear inequality
constraint

Optional linear inequality -
upper bounds

Define upper
bounds for the
linear inequality
constraint

Optional linear inequality -
scale types

Specify how each
linear inequality
constraint is scaled

Optional linear inequality -
scales

Define the
characteristic
values to scale
linear inequalities

6.2. METHOD 447

Optional linear equality -
constraint matrix

Define coefficients
of the linear
equalities

Optional linear equality -
targets

Define target
values for the
linear equality
constraints

Optional linear equality -
scale types

Specify how each
linear equality
constraint is scaled

Optional linear equality -
scales

Define the
characteristic
values to scale
linear equalities

Optional model pointer Identifier for
model block to be
used by a method

Description
This is a Newton method that expects a gradient and computes a finite-difference approximation to the Hes-
sian. Each of the Newton-based methods are automatically bound to the appropriate OPT++ algorithm based on
the user constraint specification (unconstrained, bound-constrained, or generally-constrained). In the generally-
constrained case, the Newton methods use a nonlinear interior-point approach to manage the constraints.

See package optpp for info related to all optpp methods.

See Also
These keywords may also be of interest:

• optpp cg

• optpp g newton

• optpp pds

• optpp newton

• optpp g newton

search method

• Keywords Area

• method

• optpp fd newton

• search method

Select a search method for Newton-based optimizers

448 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1

value based line -
search

Use only function
values for line
search

gradient based -
line search

Set the search
method to use the
gradient

trust region Use trust region as
the globalization
strategy.

tr pds Use direct search
as the local search
in a trust region
method

Description
The search method control is defined for all Newton-based optimizers and is used to select between trust -
region, gradient based line search, and value based line searchmethods. The gradient-
based line search option uses the line search method proposed by[61]. This option satisfies sufficient

decrease and curvature conditions; whereas, value base line search only satisfies the sufficient decrease
condition. At each line search iteration, the gradient based line search method computes the function
and gradient at the trial point. Consequently, given expensive function evaluations, the value based line -
search method is preferred to the gradient based line search method. Each of these Newton methods
additionally supports the tr pds selection for unconstrained problems. This option performs a robust trust region
search using pattern search techniques. Use of a line search is the default for bound-constrained and generally-
constrained problems, and use of a trust region search method is the default for unconstrained problems.

value based line search

• Keywords Area

• method

• optpp fd newton

• search method

• value based line search

Use only function values for line search

Specification
Alias: none

Argument(s): none
Default: trust region (unconstrained), value based line search (bound/general constraints)

6.2. METHOD 449

Description
The search method control is defined for all Newton-based optimizers and is used to select between trust -
region, gradient based line search, and value based line searchmethods. The gradient-
based line search option uses the line search method proposed by[61]. This option satisfies sufficient

decrease and curvature conditions; whereas, value base line search only satisfies the sufficient decrease
condition. At each line search iteration, the gradient based line search method computes the function
and gradient at the trial point. Consequently, given expensive function evaluations, the value based line -
search method is preferred to the gradient based line search method. Each of these Newton methods
additionally supports the tr pds selection for unconstrained problems. This option performs a robust trust region
search using pattern search techniques. Use of a line search is the default for bound-constrained and generally-
constrained problems, and use of a trust region search method is the default for unconstrained problems.

gradient based line search

• Keywords Area

• method

• optpp fd newton

• search method

• gradient based line search

Set the search method to use the gradient

Specification
Alias: none

Argument(s): none

Description
The search method control is defined for all Newton-based optimizers and is used to select between trust -
region, gradient based line search, and value based line searchmethods. The gradient-
based line search option uses the line search method proposed by[61]. This option satisfies sufficient

decrease and curvature conditions; whereas, value base line search only satisfies the sufficient decrease
condition. At each line search iteration, the gradient based line search method computes the function
and gradient at the trial point. Consequently, given expensive function evaluations, the value based line -
search method is preferred to the gradient based line search method. Each of these Newton methods
additionally supports the tr pds selection for unconstrained problems. This option performs a robust trust region
search using pattern search techniques. Use of a line search is the default for bound-constrained and generally-
constrained problems, and use of a trust region search method is the default for unconstrained problems.

trust region

• Keywords Area

• method

450 CHAPTER 6. KEYWORDS AREA

• optpp fd newton

• search method

• trust region

Use trust region as the globalization strategy.

Specification
Alias: none

Argument(s): none

Description
The trust region optional group specification can be used to specify the initial size of the trust region (using
initial size) relative to the total variable bounds, the minimum size of the trust region (using minimum -
size), the contraction factor for the trust region size (using contraction factor) used when the surrogate
model is performing poorly, and the expansion factor for the trust region size (using expansion factor) used
when the the surrogate model is performing well. Two additional commands are the trust region size contrac-
tion threshold (using contract threshold) and the trust region size expansion threshold (using expand-
threshold). These two commands are related to what is called the trust region ratio, which is the actual de-

crease in the truth model divided by the predicted decrease in the truth model in the current trust region. The com-
mand contract threshold sets the minimum acceptable value for the trust region ratio, i.e., values below
this threshold cause the trust region to shrink for the next SBL iteration. The command expand threshold
determines the trust region value above which the trust region will expand for the next SBL iteration.

tr pds

• Keywords Area

• method

• optpp fd newton

• search method

• tr pds

Use direct search as the local search in a trust region method

Specification
Alias: none

Argument(s): none

Description
The search method control is defined for all Newton-based optimizers and is used to select between trust -
region, gradient based line search, and value based line searchmethods. The gradient-
based line search option uses the line search method proposed by[61]. This option satisfies sufficient

decrease and curvature conditions; whereas, value base line search only satisfies the sufficient decrease
condition. At each line search iteration, the gradient based line search method computes the function

6.2. METHOD 451

and gradient at the trial point. Consequently, given expensive function evaluations, the value based line -
search method is preferred to the gradient based line search method. Each of these Newton methods
additionally supports the tr pds selection for unconstrained problems. This option performs a robust trust region
search using pattern search techniques. Use of a line search is the default for bound-constrained and generally-
constrained problems, and use of a trust region search method is the default for unconstrained problems.

merit function

• Keywords Area

• method

• optpp fd newton

• merit function

Balance goals of reducing objective function and satisfying constraints

Specification
Alias: none

Argument(s): none
Default: argaez tapia

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1
el bakry El-Bakry merit

function
argaez tapia The merit function

by Tapia and
Argaez

van shanno The merit function
by Vanderbei and
Shanno

Description
A merit function is a function in constrained optimization that attempts to provide joint progress toward
reducing the objective function and satisfying the constraints.

el bakry

• Keywords Area

• method

• optpp fd newton

• merit function

• el bakry

El-Bakry merit function

452 CHAPTER 6. KEYWORDS AREA

Specification

Alias: none
Argument(s): none

Description

The ”el bakry” merit function is the L2-norm of the first order optimality conditions for the nonlinear program-
ming problem. The cost per linesearch iteration is n+1 function evaluations. For more information, see[20].

argaez tapia

• Keywords Area

• method

• optpp fd newton

• merit function

• argaez tapia

The merit function by Tapia and Argaez

Specification

Alias: none
Argument(s): none

Description

The ”argaez tapia” merit function can be classified as a modified augmented Lagrangian function. The augmented
Lagrangian is modified by adding to its penalty term a potential reduction function to handle the perturbed com-
plementarity condition. The cost per linesearch iteration is one function evaluation. For more information, see
[80].

If the function evaluation is expensive or noisy, set the merit function to ”argaez tapia” or ”van shanno”.

van shanno

• Keywords Area

• method

• optpp fd newton

• merit function

• van shanno

The merit function by Vanderbei and Shanno

6.2. METHOD 453

Specification

Alias: none
Argument(s): none

Description

The ”van shanno” merit function can be classified as a penalty function for the logarithmic barrier formulation
of the nonlinear programming problem. The cost per linesearch iteration is one function evaluation. For more
information see[82].

If the function evaluation is expensive or noisy, set the merit function to ”argaez tapia” or ”van shanno”.

steplength to boundary

• Keywords Area

• method

• optpp fd newton

• steplength to boundary

Controls how close to the boundary of the feasible region the algorithm is allowed to move

Specification

Alias: none
Argument(s): REAL
Default: Merit function dependent: 0.8 (el bakry), 0.99995 (argaez tapia), 0.95 (van shanno)

Description

The steplength to boundary specification is a parameter (between 0 and 1) that controls how close to the
boundary of the feasible region the algorithm is allowed to move. A value of 1 means that the algorithm is allowed
to take steps that may reach the boundary of the feasible region. If the user wishes to maintain strict feasibility of
the design parameters this value should be less than 1. Default values are .8, .99995, and .95 for the el bakry,
argaez tapia, and van shanno merit functions, respectively.

centering parameter

• Keywords Area

• method

• optpp fd newton

• centering parameter

Controls how closely the algorithm should follow the ”central path”

454 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): REAL
Default: Merit function dependent: 0.2 (el bakry), 0.2 (argaez tapia), 0.1 (van shanno)

Description
The centering parameter specification is a parameter (between 0 and 1) that controls how closely the
algorithm should follow the ”central path”. See[88] for the definition of central path. The larger the value, the
more closely the algorithm follows the central path, which results in small steps. A value of 0 indicates that the
algorithm will take a pure Newton step. Default values are .2, .2, and .1 for the el bakry, argaez tapia,
and van shanno merit functions, respectively.

max step

• Keywords Area

• method

• optpp fd newton

• max step

Max change in design point

Specification
Alias: none

Argument(s): REAL
Default: 1000.

Description
The max step control specifies the maximum step that can be taken when computing a change in the current
design point (e.g., limiting the Newton step computed from current gradient and Hessian information). It is equiv-
alent to a move limit or a maximum trust region size. The gradient tolerance control defines the threshold
value on the L2 norm of the objective function gradient that indicates convergence to an unconstrained minimum
(no active constraints). The gradient tolerance control is defined for all gradient-based optimizers.

gradient tolerance

• Keywords Area

• method

• optpp fd newton

• gradient tolerance

Stopping critiera based on L2 norm of gradient

6.2. METHOD 455

Specification

Alias: none
Argument(s): REAL
Default: 1.e-4

Description

The gradient tolerance control defines the threshold value on the L2 norm of the objective function
gradient that indicates convergence to an unconstrained minimum (no active constraints). The gradient -
tolerance control is defined for all gradient-based optimizers.

linear inequality constraint matrix

• Keywords Area

• method

• optpp fd newton

• linear inequality constraint matrix

Define coefficients of the linear inequality constraints

Topics

This keyword is related to the topics:

• linear constraints

Specification

Alias: none
Argument(s): REALLIST
Default: no linear inequality constraints

Description

In the inequality case, the constraint matrix A provides coefficients for the variables in the two-sided formulation:

al ≤ Ax ≤ au

Where the bounds are optionally specified by linear inequality lower bounds, and linear -
inequality upper bounds. The bounds, if not specified, will default to -infinity, and 0, respectively, re-
sulting in one-sided inequalities of the form

Ax ≤ 0.0

.

456 CHAPTER 6. KEYWORDS AREA

linear inequality lower bounds

• Keywords Area

• method

• optpp fd newton

• linear inequality lower bounds

Define lower bounds for the linear inequality constraint

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = -infinity

Description
In the inequality case, the lower al and upper au bounds provide constraint limits for the two-sided formulation:

al ≤ Ax ≤ au

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective functions), the default linear inequality constraint

bounds are selected so that one-sided inequalities of the form

Ax ≤ 0.0

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since -DBL MAX < -bigRealBoundSize).

linear inequality upper bounds

• Keywords Area

• method

• optpp fd newton

• linear inequality upper bounds

Define upper bounds for the linear inequality constraint

6.2. METHOD 457

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 0 .

Description
In the inequality case, the lower al and upper au bounds provide constraint limits for the two-sided formulation:

al ≤ Ax ≤ au

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective functions), the default linear inequality constraint

bounds are selected so that one-sided inequalities of the form

Ax ≤ 0.0

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since -DBL MAX < -bigRealBoundSize).

linear inequality scale types

• Keywords Area

• method

• optpp fd newton

• linear inequality scale types

Specify how each linear inequality constraint is scaled

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): STRINGLIST
Default: vector values = ’none’

458 CHAPTER 6. KEYWORDS AREA

Description
linear inequality scale types provide strings specifying the scaling type for each linear inequality
constraint, in methods that support scaling.

An entry may be selected for each constraint. The options are:

• ’none’ - no scaling

• ’value’ - characteristic value if this is chosen, then linear inequality scales must be specified

• ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling
on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU

aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU

and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear inequality scales

• Keywords Area

• method

• optpp fd newton

• linear inequality scales

Define the characteristic values to scale linear inequalities

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

6.2. METHOD 459

Description
Each entry in linear inequality scales may be a user-specified, nonzero characteristic value to be used
in scaling each constraint.

Behavior depends on the choice of linear inequality scale type :

• scale type - behavior of linear inequality scales

• ’none’ - ignored

• ’value’ - required

• ’auto’ - optional

If a single real value is specified it will apply to all components of the constraint.
Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling

on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear equality constraint matrix

• Keywords Area

• method

• optpp fd newton

• linear equality constraint matrix

Define coefficients of the linear equalities

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: no linear equality constraints

460 CHAPTER 6. KEYWORDS AREA

Description
In the equality case, the constraint matrix A provides coefficients for the variables on the left hand side of:

Ax = at

linear equality targets

• Keywords Area

• method

• optpp fd newton

• linear equality targets

Define target values for the linear equality constraints

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 0 .

Description
In the equality case, the targets at provide the equality constraint right hand sides:

Ax = at

.
If this is not specified, the defaults for the equality constraint targets enforce a value of 0. for each constraint:

Ax = 0.0

linear equality scale types

• Keywords Area

• method

• optpp fd newton

• linear equality scale types

Specify how each linear equality constraint is scaled

6.2. METHOD 461

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): STRINGLIST
Default: vector values = ’none’

Description
linear equality scale types provide strings specifying the scaling type for each linear equality con-
straint, in methods that support scaling.

An entry may be selected for each constraint. The options are:

• ’none’ - no scaling

• ’value’ - characteristic value if this is chosen, then linear equality scales must be specified

• ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear equality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear equality scales

• Keywords Area

• method

• optpp fd newton

• linear equality scales

Define the characteristic values to scale linear equalities

462 CHAPTER 6. KEYWORDS AREA

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

Description
Each entry in linear equality scales may be a user-specified, nonzero characteristic value to be used in
scaling each constraint.

See the scaling page for details on how to use this keyword.
Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

model pointer

• Keywords Area

• method

• optpp fd newton

• model pointer

Identifier for model block to be used by a method

Topics
This keyword is related to the topics:

• block pointer

6.2. METHOD 463

Specification
Alias: none

Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

Description
The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

464 CHAPTER 6. KEYWORDS AREA

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses
response_functions = 3
no_gradients
no_hessians

6.2.32 optpp g newton
• Keywords Area

• method

• optpp g newton

Newton method based least-squares calbration

Topics
This keyword is related to the topics:

• package optpp

• local optimization methods

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional search method Select a search
method for
Newton-based
optimizers

Optional merit function Balance goals of
reducing objective
function and
satisfying
constraints

Optional steplength to -
boundary

Controls how close
to the boundary of
the feasible region
the algorithm is
allowed to move

6.2. METHOD 465

Optional centering -
parameter

Controls how
closely the
algorithm should
follow the ”central
path”

Optional max step Max change in
design point

Optional gradient tolerance Stopping critiera
based on L2 norm
of gradient

Optional linear inequality -
constraint matrix

Define coefficients
of the linear
inequality
constraints

Optional linear inequality -
lower bounds

Define lower
bounds for the
linear inequality
constraint

Optional linear inequality -
upper bounds

Define upper
bounds for the
linear inequality
constraint

Optional linear inequality -
scale types

Specify how each
linear inequality
constraint is scaled

Optional linear inequality -
scales

Define the
characteristic
values to scale
linear inequalities

Optional linear equality -
constraint matrix

Define coefficients
of the linear
equalities

Optional linear equality -
targets

Define target
values for the
linear equality
constraints

Optional linear equality -
scale types

Specify how each
linear equality
constraint is scaled

Optional linear equality -
scales

Define the
characteristic
values to scale
linear equalities

Optional model pointer Identifier for
model block to be
used by a method

466 CHAPTER 6. KEYWORDS AREA

Description
The Gauss-Newton algorithm is available as optpp g newton and supports unconstrained, bound-constrained,
and generally-constrained problems. When interfaced with the unconstrained, bound-constrained, and nonlinear
interior point full-Newton optimizers from the OPT++ library, it provides a Gauss-Newton least squares capability
which – on zero-residual test problems – can exhibit quadratic convergence rates near the solution. (Real problems
almost never have zero residuals, i.e., perfect fits.)

See package optpp for info related to all optpp methods.

See Also
These keywords may also be of interest:

• optpp cg

• optpp pds

• optpp fd newton

• optpp newton

• optpp g newton

• field calibration terms

search method

• Keywords Area

• method

• optpp g newton

• search method

Select a search method for Newton-based optimizers

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1

value based line -
search

Use only function
values for line
search

gradient based -
line search

Set the search
method to use the
gradient

trust region Use trust region as
the globalization
strategy.

tr pds Use direct search
as the local search
in a trust region
method

6.2. METHOD 467

Description

The search method control is defined for all Newton-based optimizers and is used to select between trust -
region, gradient based line search, and value based line searchmethods. The gradient-
based line search option uses the line search method proposed by[61]. This option satisfies sufficient

decrease and curvature conditions; whereas, value base line search only satisfies the sufficient decrease
condition. At each line search iteration, the gradient based line search method computes the function
and gradient at the trial point. Consequently, given expensive function evaluations, the value based line -
search method is preferred to the gradient based line search method. Each of these Newton methods
additionally supports the tr pds selection for unconstrained problems. This option performs a robust trust region
search using pattern search techniques. Use of a line search is the default for bound-constrained and generally-
constrained problems, and use of a trust region search method is the default for unconstrained problems.

value based line search

• Keywords Area

• method

• optpp g newton

• search method

• value based line search

Use only function values for line search

Specification

Alias: none
Argument(s): none
Default: trust region (unconstrained), value based line search (bound/general constraints)

Description

The search method control is defined for all Newton-based optimizers and is used to select between trust -
region, gradient based line search, and value based line searchmethods. The gradient-
based line search option uses the line search method proposed by[61]. This option satisfies sufficient

decrease and curvature conditions; whereas, value base line search only satisfies the sufficient decrease
condition. At each line search iteration, the gradient based line search method computes the function
and gradient at the trial point. Consequently, given expensive function evaluations, the value based line -
search method is preferred to the gradient based line search method. Each of these Newton methods
additionally supports the tr pds selection for unconstrained problems. This option performs a robust trust region
search using pattern search techniques. Use of a line search is the default for bound-constrained and generally-
constrained problems, and use of a trust region search method is the default for unconstrained problems.

468 CHAPTER 6. KEYWORDS AREA

gradient based line search

• Keywords Area

• method

• optpp g newton

• search method

• gradient based line search

Set the search method to use the gradient

Specification

Alias: none
Argument(s): none

Description

The search method control is defined for all Newton-based optimizers and is used to select between trust -
region, gradient based line search, and value based line searchmethods. The gradient-
based line search option uses the line search method proposed by[61]. This option satisfies sufficient

decrease and curvature conditions; whereas, value base line search only satisfies the sufficient decrease
condition. At each line search iteration, the gradient based line search method computes the function
and gradient at the trial point. Consequently, given expensive function evaluations, the value based line -
search method is preferred to the gradient based line search method. Each of these Newton methods
additionally supports the tr pds selection for unconstrained problems. This option performs a robust trust region
search using pattern search techniques. Use of a line search is the default for bound-constrained and generally-
constrained problems, and use of a trust region search method is the default for unconstrained problems.

trust region

• Keywords Area

• method

• optpp g newton

• search method

• trust region

Use trust region as the globalization strategy.

Specification

Alias: none
Argument(s): none

6.2. METHOD 469

Description
The trust region optional group specification can be used to specify the initial size of the trust region (using
initial size) relative to the total variable bounds, the minimum size of the trust region (using minimum -
size), the contraction factor for the trust region size (using contraction factor) used when the surrogate
model is performing poorly, and the expansion factor for the trust region size (using expansion factor) used
when the the surrogate model is performing well. Two additional commands are the trust region size contrac-
tion threshold (using contract threshold) and the trust region size expansion threshold (using expand-
threshold). These two commands are related to what is called the trust region ratio, which is the actual de-

crease in the truth model divided by the predicted decrease in the truth model in the current trust region. The com-
mand contract threshold sets the minimum acceptable value for the trust region ratio, i.e., values below
this threshold cause the trust region to shrink for the next SBL iteration. The command expand threshold
determines the trust region value above which the trust region will expand for the next SBL iteration.

tr pds

• Keywords Area

• method

• optpp g newton

• search method

• tr pds

Use direct search as the local search in a trust region method

Specification
Alias: none

Argument(s): none

Description
The search method control is defined for all Newton-based optimizers and is used to select between trust -
region, gradient based line search, and value based line searchmethods. The gradient-
based line search option uses the line search method proposed by[61]. This option satisfies sufficient

decrease and curvature conditions; whereas, value base line search only satisfies the sufficient decrease
condition. At each line search iteration, the gradient based line search method computes the function
and gradient at the trial point. Consequently, given expensive function evaluations, the value based line -
search method is preferred to the gradient based line search method. Each of these Newton methods
additionally supports the tr pds selection for unconstrained problems. This option performs a robust trust region
search using pattern search techniques. Use of a line search is the default for bound-constrained and generally-
constrained problems, and use of a trust region search method is the default for unconstrained problems.

merit function

• Keywords Area

• method

470 CHAPTER 6. KEYWORDS AREA

• optpp g newton

• merit function

Balance goals of reducing objective function and satisfying constraints

Specification
Alias: none

Argument(s): none
Default: argaez tapia

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1
el bakry El-Bakry merit

function
argaez tapia The merit function

by Tapia and
Argaez

van shanno The merit function
by Vanderbei and
Shanno

Description
A merit function is a function in constrained optimization that attempts to provide joint progress toward
reducing the objective function and satisfying the constraints.

el bakry

• Keywords Area

• method

• optpp g newton

• merit function

• el bakry

El-Bakry merit function

Specification
Alias: none

Argument(s): none

Description
The ”el bakry” merit function is the L2-norm of the first order optimality conditions for the nonlinear program-
ming problem. The cost per linesearch iteration is n+1 function evaluations. For more information, see[20].

6.2. METHOD 471

argaez tapia

• Keywords Area

• method

• optpp g newton

• merit function

• argaez tapia

The merit function by Tapia and Argaez

Specification
Alias: none

Argument(s): none

Description
The ”argaez tapia” merit function can be classified as a modified augmented Lagrangian function. The augmented
Lagrangian is modified by adding to its penalty term a potential reduction function to handle the perturbed com-
plementarity condition. The cost per linesearch iteration is one function evaluation. For more information, see
[80].

If the function evaluation is expensive or noisy, set the merit function to ”argaez tapia” or ”van shanno”.

van shanno

• Keywords Area

• method

• optpp g newton

• merit function

• van shanno

The merit function by Vanderbei and Shanno

Specification
Alias: none

Argument(s): none

Description
The ”van shanno” merit function can be classified as a penalty function for the logarithmic barrier formulation
of the nonlinear programming problem. The cost per linesearch iteration is one function evaluation. For more
information see[82].

If the function evaluation is expensive or noisy, set the merit function to ”argaez tapia” or ”van shanno”.

472 CHAPTER 6. KEYWORDS AREA

steplength to boundary

• Keywords Area

• method

• optpp g newton

• steplength to boundary

Controls how close to the boundary of the feasible region the algorithm is allowed to move

Specification
Alias: none

Argument(s): REAL
Default: Merit function dependent: 0.8 (el bakry), 0.99995 (argaez tapia), 0.95 (van shanno)

Description
The steplength to boundary specification is a parameter (between 0 and 1) that controls how close to the
boundary of the feasible region the algorithm is allowed to move. A value of 1 means that the algorithm is allowed
to take steps that may reach the boundary of the feasible region. If the user wishes to maintain strict feasibility of
the design parameters this value should be less than 1. Default values are .8, .99995, and .95 for the el bakry,
argaez tapia, and van shanno merit functions, respectively.

centering parameter

• Keywords Area

• method

• optpp g newton

• centering parameter

Controls how closely the algorithm should follow the ”central path”

Specification
Alias: none

Argument(s): REAL
Default: Merit function dependent: 0.2 (el bakry), 0.2 (argaez tapia), 0.1 (van shanno)

Description
The centering parameter specification is a parameter (between 0 and 1) that controls how closely the
algorithm should follow the ”central path”. See[88] for the definition of central path. The larger the value, the
more closely the algorithm follows the central path, which results in small steps. A value of 0 indicates that the
algorithm will take a pure Newton step. Default values are .2, .2, and .1 for the el bakry, argaez tapia,
and van shanno merit functions, respectively.

6.2. METHOD 473

max step

• Keywords Area

• method

• optpp g newton

• max step

Max change in design point

Specification

Alias: none
Argument(s): REAL
Default: 1000.

Description

The max step control specifies the maximum step that can be taken when computing a change in the current
design point (e.g., limiting the Newton step computed from current gradient and Hessian information). It is equiv-
alent to a move limit or a maximum trust region size. The gradient tolerance control defines the threshold
value on the L2 norm of the objective function gradient that indicates convergence to an unconstrained minimum
(no active constraints). The gradient tolerance control is defined for all gradient-based optimizers.

gradient tolerance

• Keywords Area

• method

• optpp g newton

• gradient tolerance

Stopping critiera based on L2 norm of gradient

Specification

Alias: none
Argument(s): REAL
Default: 1.e-4

Description

The gradient tolerance control defines the threshold value on the L2 norm of the objective function
gradient that indicates convergence to an unconstrained minimum (no active constraints). The gradient -
tolerance control is defined for all gradient-based optimizers.

474 CHAPTER 6. KEYWORDS AREA

linear inequality constraint matrix

• Keywords Area

• method

• optpp g newton

• linear inequality constraint matrix

Define coefficients of the linear inequality constraints

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: no linear inequality constraints

Description
In the inequality case, the constraint matrix A provides coefficients for the variables in the two-sided formulation:

al ≤ Ax ≤ au

Where the bounds are optionally specified by linear inequality lower bounds, and linear -
inequality upper bounds. The bounds, if not specified, will default to -infinity, and 0, respectively, re-
sulting in one-sided inequalities of the form

Ax ≤ 0.0

.

linear inequality lower bounds

• Keywords Area

• method

• optpp g newton

• linear inequality lower bounds

Define lower bounds for the linear inequality constraint

Topics
This keyword is related to the topics:

• linear constraints

6.2. METHOD 475

Specification

Alias: none
Argument(s): REALLIST
Default: vector values = -infinity

Description

In the inequality case, the lower al and upper au bounds provide constraint limits for the two-sided formulation:

al ≤ Ax ≤ au

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective functions), the default linear inequality constraint

bounds are selected so that one-sided inequalities of the form

Ax ≤ 0.0

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since -DBL MAX < -bigRealBoundSize).

linear inequality upper bounds

• Keywords Area

• method

• optpp g newton

• linear inequality upper bounds

Define upper bounds for the linear inequality constraint

Topics

This keyword is related to the topics:

• linear constraints

Specification

Alias: none
Argument(s): REALLIST
Default: vector values = 0 .

476 CHAPTER 6. KEYWORDS AREA

Description
In the inequality case, the lower al and upper au bounds provide constraint limits for the two-sided formulation:

al ≤ Ax ≤ au

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective functions), the default linear inequality constraint

bounds are selected so that one-sided inequalities of the form

Ax ≤ 0.0

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since -DBL MAX < -bigRealBoundSize).

linear inequality scale types

• Keywords Area

• method

• optpp g newton

• linear inequality scale types

Specify how each linear inequality constraint is scaled

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): STRINGLIST
Default: vector values = ’none’

Description
linear inequality scale types provide strings specifying the scaling type for each linear inequality
constraint, in methods that support scaling.

An entry may be selected for each constraint. The options are:

• ’none’ - no scaling

• ’value’ - characteristic value if this is chosen, then linear inequality scales must be specified

6.2. METHOD 477

• ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling
on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU

aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear inequality scales

• Keywords Area

• method

• optpp g newton

• linear inequality scales

Define the characteristic values to scale linear inequalities

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

Description
Each entry in linear inequality scales may be a user-specified, nonzero characteristic value to be used
in scaling each constraint.

Behavior depends on the choice of linear inequality scale type :

• scale type - behavior of linear inequality scales

• ’none’ - ignored

478 CHAPTER 6. KEYWORDS AREA

• ’value’ - required

• ’auto’ - optional

If a single real value is specified it will apply to all components of the constraint.
Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling

on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear equality constraint matrix

• Keywords Area

• method

• optpp g newton

• linear equality constraint matrix

Define coefficients of the linear equalities

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: no linear equality constraints

Description
In the equality case, the constraint matrix A provides coefficients for the variables on the left hand side of:

Ax = at

6.2. METHOD 479

linear equality targets

• Keywords Area

• method

• optpp g newton

• linear equality targets

Define target values for the linear equality constraints

Topics

This keyword is related to the topics:

• linear constraints

Specification

Alias: none
Argument(s): REALLIST
Default: vector values = 0 .

Description

In the equality case, the targets at provide the equality constraint right hand sides:

Ax = at

.
If this is not specified, the defaults for the equality constraint targets enforce a value of 0. for each constraint:

Ax = 0.0

linear equality scale types

• Keywords Area

• method

• optpp g newton

• linear equality scale types

Specify how each linear equality constraint is scaled

Topics

This keyword is related to the topics:

• linear constraints

480 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): STRINGLIST
Default: vector values = ’none’

Description
linear equality scale types provide strings specifying the scaling type for each linear equality con-
straint, in methods that support scaling.

An entry may be selected for each constraint. The options are:

• ’none’ - no scaling

• ’value’ - characteristic value if this is chosen, then linear equality scales must be specified

• ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear equality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear equality scales

• Keywords Area

• method

• optpp g newton

• linear equality scales

Define the characteristic values to scale linear equalities

Topics
This keyword is related to the topics:

• linear constraints

6.2. METHOD 481

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

Description
Each entry in linear equality scales may be a user-specified, nonzero characteristic value to be used in
scaling each constraint.

See the scaling page for details on how to use this keyword.
Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

model pointer

• Keywords Area

• method

• optpp g newton

• model pointer

Identifier for model block to be used by a method

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

482 CHAPTER 6. KEYWORDS AREA

Description

The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses

6.2. METHOD 483

response_functions = 3
no_gradients
no_hessians

6.2.33 optpp newton
• Keywords Area

• method

• optpp newton

Newton method based optimization

Topics
This keyword is related to the topics:

• package optpp

• local optimization methods

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional search method Select a search
method for
Newton-based
optimizers

Optional merit function Balance goals of
reducing objective
function and
satisfying
constraints

Optional steplength to -
boundary

Controls how close
to the boundary of
the feasible region
the algorithm is
allowed to move

Optional centering -
parameter

Controls how
closely the
algorithm should
follow the ”central
path”

484 CHAPTER 6. KEYWORDS AREA

Optional max step Max change in
design point

Optional gradient tolerance Stopping critiera
based on L2 norm
of gradient

Optional linear inequality -
constraint matrix

Define coefficients
of the linear
inequality
constraints

Optional linear inequality -
lower bounds

Define lower
bounds for the
linear inequality
constraint

Optional linear inequality -
upper bounds

Define upper
bounds for the
linear inequality
constraint

Optional linear inequality -
scale types

Specify how each
linear inequality
constraint is scaled

Optional linear inequality -
scales

Define the
characteristic
values to scale
linear inequalities

Optional linear equality -
constraint matrix

Define coefficients
of the linear
equalities

Optional linear equality -
targets

Define target
values for the
linear equality
constraints

Optional linear equality -
scale types

Specify how each
linear equality
constraint is scaled

Optional linear equality -
scales

Define the
characteristic
values to scale
linear equalities

Optional model pointer Identifier for
model block to be
used by a method

Description
This is a full Newton method that expects a gradient and a Hessian. Each of the Newton-based methods are au-
tomatically bound to the appropriate OPT++ algorithm based on the user constraint specification (unconstrained,
bound-constrained, or generally-constrained). In the generally-constrained case, the Newton methods use a non-
linear interior-point approach to manage the constraints.

See package optpp for info related to all optpp methods.

6.2. METHOD 485

See Also
These keywords may also be of interest:

• optpp cg

• optpp g newton

• optpp pds

• optpp fd newton

• optpp g newton

search method

• Keywords Area

• method

• optpp newton

• search method

Select a search method for Newton-based optimizers

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1

value based line -
search

Use only function
values for line
search

gradient based -
line search

Set the search
method to use the
gradient

trust region Use trust region as
the globalization
strategy.

tr pds Use direct search
as the local search
in a trust region
method

Description
The search method control is defined for all Newton-based optimizers and is used to select between trust -
region, gradient based line search, and value based line searchmethods. The gradient-
based line search option uses the line search method proposed by[61]. This option satisfies sufficient

decrease and curvature conditions; whereas, value base line search only satisfies the sufficient decrease
condition. At each line search iteration, the gradient based line search method computes the function

486 CHAPTER 6. KEYWORDS AREA

and gradient at the trial point. Consequently, given expensive function evaluations, the value based line -
search method is preferred to the gradient based line search method. Each of these Newton methods
additionally supports the tr pds selection for unconstrained problems. This option performs a robust trust region
search using pattern search techniques. Use of a line search is the default for bound-constrained and generally-
constrained problems, and use of a trust region search method is the default for unconstrained problems.

value based line search

• Keywords Area

• method

• optpp newton

• search method

• value based line search

Use only function values for line search

Specification
Alias: none

Argument(s): none
Default: trust region (unconstrained), value based line search (bound/general constraints)

Description
The search method control is defined for all Newton-based optimizers and is used to select between trust -
region, gradient based line search, and value based line searchmethods. The gradient-
based line search option uses the line search method proposed by[61]. This option satisfies sufficient

decrease and curvature conditions; whereas, value base line search only satisfies the sufficient decrease
condition. At each line search iteration, the gradient based line search method computes the function
and gradient at the trial point. Consequently, given expensive function evaluations, the value based line -
search method is preferred to the gradient based line search method. Each of these Newton methods
additionally supports the tr pds selection for unconstrained problems. This option performs a robust trust region
search using pattern search techniques. Use of a line search is the default for bound-constrained and generally-
constrained problems, and use of a trust region search method is the default for unconstrained problems.

gradient based line search

• Keywords Area

• method

• optpp newton

• search method

• gradient based line search

Set the search method to use the gradient

6.2. METHOD 487

Specification
Alias: none

Argument(s): none

Description
The search method control is defined for all Newton-based optimizers and is used to select between trust -
region, gradient based line search, and value based line searchmethods. The gradient-
based line search option uses the line search method proposed by[61]. This option satisfies sufficient

decrease and curvature conditions; whereas, value base line search only satisfies the sufficient decrease
condition. At each line search iteration, the gradient based line search method computes the function
and gradient at the trial point. Consequently, given expensive function evaluations, the value based line -
search method is preferred to the gradient based line search method. Each of these Newton methods
additionally supports the tr pds selection for unconstrained problems. This option performs a robust trust region
search using pattern search techniques. Use of a line search is the default for bound-constrained and generally-
constrained problems, and use of a trust region search method is the default for unconstrained problems.

trust region

• Keywords Area

• method

• optpp newton

• search method

• trust region

Use trust region as the globalization strategy.

Specification
Alias: none

Argument(s): none

Description
The trust region optional group specification can be used to specify the initial size of the trust region (using
initial size) relative to the total variable bounds, the minimum size of the trust region (using minimum -
size), the contraction factor for the trust region size (using contraction factor) used when the surrogate
model is performing poorly, and the expansion factor for the trust region size (using expansion factor) used
when the the surrogate model is performing well. Two additional commands are the trust region size contrac-
tion threshold (using contract threshold) and the trust region size expansion threshold (using expand-
threshold). These two commands are related to what is called the trust region ratio, which is the actual de-

crease in the truth model divided by the predicted decrease in the truth model in the current trust region. The com-
mand contract threshold sets the minimum acceptable value for the trust region ratio, i.e., values below
this threshold cause the trust region to shrink for the next SBL iteration. The command expand threshold
determines the trust region value above which the trust region will expand for the next SBL iteration.

488 CHAPTER 6. KEYWORDS AREA

tr pds

• Keywords Area

• method

• optpp newton

• search method

• tr pds

Use direct search as the local search in a trust region method

Specification
Alias: none

Argument(s): none

Description
The search method control is defined for all Newton-based optimizers and is used to select between trust -
region, gradient based line search, and value based line searchmethods. The gradient-
based line search option uses the line search method proposed by[61]. This option satisfies sufficient

decrease and curvature conditions; whereas, value base line search only satisfies the sufficient decrease
condition. At each line search iteration, the gradient based line search method computes the function
and gradient at the trial point. Consequently, given expensive function evaluations, the value based line -
search method is preferred to the gradient based line search method. Each of these Newton methods
additionally supports the tr pds selection for unconstrained problems. This option performs a robust trust region
search using pattern search techniques. Use of a line search is the default for bound-constrained and generally-
constrained problems, and use of a trust region search method is the default for unconstrained problems.

merit function

• Keywords Area

• method

• optpp newton

• merit function

Balance goals of reducing objective function and satisfying constraints

Specification
Alias: none

Argument(s): none
Default: argaez tapia

6.2. METHOD 489

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1
el bakry El-Bakry merit

function
argaez tapia The merit function

by Tapia and
Argaez

van shanno The merit function
by Vanderbei and
Shanno

Description
A merit function is a function in constrained optimization that attempts to provide joint progress toward
reducing the objective function and satisfying the constraints.

el bakry

• Keywords Area

• method

• optpp newton

• merit function

• el bakry

El-Bakry merit function

Specification
Alias: none

Argument(s): none

Description
The ”el bakry” merit function is the L2-norm of the first order optimality conditions for the nonlinear program-
ming problem. The cost per linesearch iteration is n+1 function evaluations. For more information, see[20].

argaez tapia

• Keywords Area

• method

• optpp newton

• merit function

• argaez tapia

The merit function by Tapia and Argaez

490 CHAPTER 6. KEYWORDS AREA

Specification

Alias: none
Argument(s): none

Description

The ”argaez tapia” merit function can be classified as a modified augmented Lagrangian function. The augmented
Lagrangian is modified by adding to its penalty term a potential reduction function to handle the perturbed com-
plementarity condition. The cost per linesearch iteration is one function evaluation. For more information, see
[80].

If the function evaluation is expensive or noisy, set the merit function to ”argaez tapia” or ”van shanno”.

van shanno

• Keywords Area

• method

• optpp newton

• merit function

• van shanno

The merit function by Vanderbei and Shanno

Specification

Alias: none
Argument(s): none

Description

The ”van shanno” merit function can be classified as a penalty function for the logarithmic barrier formulation
of the nonlinear programming problem. The cost per linesearch iteration is one function evaluation. For more
information see[82].

If the function evaluation is expensive or noisy, set the merit function to ”argaez tapia” or ”van shanno”.

steplength to boundary

• Keywords Area

• method

• optpp newton

• steplength to boundary

Controls how close to the boundary of the feasible region the algorithm is allowed to move

6.2. METHOD 491

Specification
Alias: none

Argument(s): REAL
Default: Merit function dependent: 0.8 (el bakry), 0.99995 (argaez tapia), 0.95 (van shanno)

Description
The steplength to boundary specification is a parameter (between 0 and 1) that controls how close to the
boundary of the feasible region the algorithm is allowed to move. A value of 1 means that the algorithm is allowed
to take steps that may reach the boundary of the feasible region. If the user wishes to maintain strict feasibility of
the design parameters this value should be less than 1. Default values are .8, .99995, and .95 for the el bakry,
argaez tapia, and van shanno merit functions, respectively.

centering parameter

• Keywords Area

• method

• optpp newton

• centering parameter

Controls how closely the algorithm should follow the ”central path”

Specification
Alias: none

Argument(s): REAL
Default: Merit function dependent: 0.2 (el bakry), 0.2 (argaez tapia), 0.1 (van shanno)

Description
The centering parameter specification is a parameter (between 0 and 1) that controls how closely the
algorithm should follow the ”central path”. See[88] for the definition of central path. The larger the value, the
more closely the algorithm follows the central path, which results in small steps. A value of 0 indicates that the
algorithm will take a pure Newton step. Default values are .2, .2, and .1 for the el bakry, argaez tapia,
and van shanno merit functions, respectively.

max step

• Keywords Area

• method

• optpp newton

• max step

Max change in design point

492 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): REAL
Default: 1000.

Description
The max step control specifies the maximum step that can be taken when computing a change in the current
design point (e.g., limiting the Newton step computed from current gradient and Hessian information). It is equiv-
alent to a move limit or a maximum trust region size. The gradient tolerance control defines the threshold
value on the L2 norm of the objective function gradient that indicates convergence to an unconstrained minimum
(no active constraints). The gradient tolerance control is defined for all gradient-based optimizers.

gradient tolerance

• Keywords Area

• method

• optpp newton

• gradient tolerance

Stopping critiera based on L2 norm of gradient

Specification
Alias: none

Argument(s): REAL
Default: 1.e-4

Description
The gradient tolerance control defines the threshold value on the L2 norm of the objective function
gradient that indicates convergence to an unconstrained minimum (no active constraints). The gradient -
tolerance control is defined for all gradient-based optimizers.

linear inequality constraint matrix

• Keywords Area

• method

• optpp newton

• linear inequality constraint matrix

Define coefficients of the linear inequality constraints

Topics
This keyword is related to the topics:

• linear constraints

6.2. METHOD 493

Specification
Alias: none

Argument(s): REALLIST
Default: no linear inequality constraints

Description
In the inequality case, the constraint matrix A provides coefficients for the variables in the two-sided formulation:

al ≤ Ax ≤ au

Where the bounds are optionally specified by linear inequality lower bounds, and linear -
inequality upper bounds. The bounds, if not specified, will default to -infinity, and 0, respectively, re-
sulting in one-sided inequalities of the form

Ax ≤ 0.0

.

linear inequality lower bounds

• Keywords Area

• method

• optpp newton

• linear inequality lower bounds

Define lower bounds for the linear inequality constraint

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = -infinity

Description
In the inequality case, the lower al and upper au bounds provide constraint limits for the two-sided formulation:

al ≤ Ax ≤ au

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective functions), the default linear inequality constraint

bounds are selected so that one-sided inequalities of the form

Ax ≤ 0.0

494 CHAPTER 6. KEYWORDS AREA

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since -DBL MAX < -bigRealBoundSize).

linear inequality upper bounds

• Keywords Area

• method

• optpp newton

• linear inequality upper bounds

Define upper bounds for the linear inequality constraint

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 0 .

Description
In the inequality case, the lower al and upper au bounds provide constraint limits for the two-sided formulation:

al ≤ Ax ≤ au

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective functions), the default linear inequality constraint

bounds are selected so that one-sided inequalities of the form

Ax ≤ 0.0

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since -DBL MAX < -bigRealBoundSize).

6.2. METHOD 495

linear inequality scale types

• Keywords Area

• method

• optpp newton

• linear inequality scale types

Specify how each linear inequality constraint is scaled

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): STRINGLIST
Default: vector values = ’none’

Description
linear inequality scale types provide strings specifying the scaling type for each linear inequality
constraint, in methods that support scaling.

An entry may be selected for each constraint. The options are:

• ’none’ - no scaling

• ’value’ - characteristic value if this is chosen, then linear inequality scales must be specified

• ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling
on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU

aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

496 CHAPTER 6. KEYWORDS AREA

linear inequality scales

• Keywords Area

• method

• optpp newton

• linear inequality scales

Define the characteristic values to scale linear inequalities

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

Description
Each entry in linear inequality scales may be a user-specified, nonzero characteristic value to be used
in scaling each constraint.

Behavior depends on the choice of linear inequality scale type :

• scale type - behavior of linear inequality scales

• ’none’ - ignored

• ’value’ - required

• ’auto’ - optional

If a single real value is specified it will apply to all components of the constraint.
Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling

on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

6.2. METHOD 497

linear equality constraint matrix

• Keywords Area

• method

• optpp newton

• linear equality constraint matrix

Define coefficients of the linear equalities

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: no linear equality constraints

Description
In the equality case, the constraint matrix A provides coefficients for the variables on the left hand side of:

Ax = at

linear equality targets

• Keywords Area

• method

• optpp newton

• linear equality targets

Define target values for the linear equality constraints

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 0 .

498 CHAPTER 6. KEYWORDS AREA

Description
In the equality case, the targets at provide the equality constraint right hand sides:

Ax = at

.
If this is not specified, the defaults for the equality constraint targets enforce a value of 0. for each constraint:

Ax = 0.0

linear equality scale types

• Keywords Area

• method

• optpp newton

• linear equality scale types

Specify how each linear equality constraint is scaled

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): STRINGLIST
Default: vector values = ’none’

Description
linear equality scale types provide strings specifying the scaling type for each linear equality con-
straint, in methods that support scaling.

An entry may be selected for each constraint. The options are:

• ’none’ - no scaling

• ’value’ - characteristic value if this is chosen, then linear equality scales must be specified

• ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear equality constraints

aL ≤ Aix ≤ aU

6.2. METHOD 499

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear equality scales

• Keywords Area

• method

• optpp newton

• linear equality scales

Define the characteristic values to scale linear equalities

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

Description
Each entry in linear equality scales may be a user-specified, nonzero characteristic value to be used in
scaling each constraint.

See the scaling page for details on how to use this keyword.
Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

500 CHAPTER 6. KEYWORDS AREA

model pointer

• Keywords Area

• method

• optpp newton

• model pointer

Identifier for model block to be used by a method

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

Description
The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

6.2. METHOD 501

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses
response_functions = 3
no_gradients
no_hessians

6.2.34 optpp pds
• Keywords Area

• method

• optpp pds

Simplex-based derivative free optimization method

Topics
This keyword is related to the topics:

• package optpp

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

502 CHAPTER 6. KEYWORDS AREA

Optional search scheme -
size

Number of points
to be used in the
direct search
template

Optional linear inequality -
constraint matrix

Define coefficients
of the linear
inequality
constraints

Optional linear inequality -
lower bounds

Define lower
bounds for the
linear inequality
constraint

Optional linear inequality -
upper bounds

Define upper
bounds for the
linear inequality
constraint

Optional linear inequality -
scale types

Specify how each
linear inequality
constraint is scaled

Optional linear inequality -
scales

Define the
characteristic
values to scale
linear inequalities

Optional linear equality -
constraint matrix

Define coefficients
of the linear
equalities

Optional linear equality -
targets

Define target
values for the
linear equality
constraints

Optional linear equality -
scale types

Specify how each
linear equality
constraint is scaled

Optional linear equality -
scales

Define the
characteristic
values to scale
linear equalities

Optional model pointer Identifier for
model block to be
used by a method

Description

The direct search algorithm, PDS (parallel direct search method), supports bound constraints.
The PDS method can directly exploit asynchronous evaluations; however, this capability has not yet been

implemented in Dakota.
See package optpp for info related to all optpp methods.

6.2. METHOD 503

See Also
These keywords may also be of interest:

• optpp cg

• optpp g newton

• optpp fd newton

• optpp newton

• optpp g newton

search scheme size

• Keywords Area

• method

• optpp pds

• search scheme size

Number of points to be used in the direct search template

Specification
Alias: none

Argument(s): INTEGER
Default: 32

Description
The search scheme size is defined for the PDS method to specify the number of points to be used in the
direct search template.

linear inequality constraint matrix

• Keywords Area

• method

• optpp pds

• linear inequality constraint matrix

Define coefficients of the linear inequality constraints

Topics
This keyword is related to the topics:

• linear constraints

504 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): REALLIST
Default: no linear inequality constraints

Description
In the inequality case, the constraint matrix A provides coefficients for the variables in the two-sided formulation:

al ≤ Ax ≤ au

Where the bounds are optionally specified by linear inequality lower bounds, and linear -
inequality upper bounds. The bounds, if not specified, will default to -infinity, and 0, respectively, re-
sulting in one-sided inequalities of the form

Ax ≤ 0.0

.

linear inequality lower bounds

• Keywords Area

• method

• optpp pds

• linear inequality lower bounds

Define lower bounds for the linear inequality constraint

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = -infinity

Description
In the inequality case, the lower al and upper au bounds provide constraint limits for the two-sided formulation:

al ≤ Ax ≤ au

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective functions), the default linear inequality constraint

bounds are selected so that one-sided inequalities of the form

Ax ≤ 0.0

6.2. METHOD 505

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since -DBL MAX < -bigRealBoundSize).

linear inequality upper bounds

• Keywords Area

• method

• optpp pds

• linear inequality upper bounds

Define upper bounds for the linear inequality constraint

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 0 .

Description
In the inequality case, the lower al and upper au bounds provide constraint limits for the two-sided formulation:

al ≤ Ax ≤ au

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective functions), the default linear inequality constraint

bounds are selected so that one-sided inequalities of the form

Ax ≤ 0.0

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since -DBL MAX < -bigRealBoundSize).

506 CHAPTER 6. KEYWORDS AREA

linear inequality scale types

• Keywords Area

• method

• optpp pds

• linear inequality scale types

Specify how each linear inequality constraint is scaled

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): STRINGLIST
Default: vector values = ’none’

Description
linear inequality scale types provide strings specifying the scaling type for each linear inequality
constraint, in methods that support scaling.

An entry may be selected for each constraint. The options are:

• ’none’ - no scaling

• ’value’ - characteristic value if this is chosen, then linear inequality scales must be specified

• ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling
on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU

aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

6.2. METHOD 507

linear inequality scales

• Keywords Area

• method

• optpp pds

• linear inequality scales

Define the characteristic values to scale linear inequalities

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

Description
Each entry in linear inequality scales may be a user-specified, nonzero characteristic value to be used
in scaling each constraint.

Behavior depends on the choice of linear inequality scale type :

• scale type - behavior of linear inequality scales

• ’none’ - ignored

• ’value’ - required

• ’auto’ - optional

If a single real value is specified it will apply to all components of the constraint.
Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling

on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

508 CHAPTER 6. KEYWORDS AREA

linear equality constraint matrix

• Keywords Area

• method

• optpp pds

• linear equality constraint matrix

Define coefficients of the linear equalities

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: no linear equality constraints

Description
In the equality case, the constraint matrix A provides coefficients for the variables on the left hand side of:

Ax = at

linear equality targets

• Keywords Area

• method

• optpp pds

• linear equality targets

Define target values for the linear equality constraints

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 0 .

6.2. METHOD 509

Description
In the equality case, the targets at provide the equality constraint right hand sides:

Ax = at

.
If this is not specified, the defaults for the equality constraint targets enforce a value of 0. for each constraint:

Ax = 0.0

linear equality scale types

• Keywords Area

• method

• optpp pds

• linear equality scale types

Specify how each linear equality constraint is scaled

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): STRINGLIST
Default: vector values = ’none’

Description
linear equality scale types provide strings specifying the scaling type for each linear equality con-
straint, in methods that support scaling.

An entry may be selected for each constraint. The options are:

• ’none’ - no scaling

• ’value’ - characteristic value if this is chosen, then linear equality scales must be specified

• ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear equality constraints

aL ≤ Aix ≤ aU

510 CHAPTER 6. KEYWORDS AREA

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear equality scales

• Keywords Area

• method

• optpp pds

• linear equality scales

Define the characteristic values to scale linear equalities

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

Description
Each entry in linear equality scales may be a user-specified, nonzero characteristic value to be used in
scaling each constraint.

See the scaling page for details on how to use this keyword.
Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

6.2. METHOD 511

model pointer

• Keywords Area

• method

• optpp pds

• model pointer

Identifier for model block to be used by a method

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

Description
The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

512 CHAPTER 6. KEYWORDS AREA

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses
response_functions = 3
no_gradients
no_hessians

6.2.35 asynch pattern search
• Keywords Area

• method

• asynch pattern search

Pattern search, derivative free optimization method

Topics
This keyword is related to the topics:

• package hopspack

• global optimization methods

Specification
Alias: coliny apps

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

6.2. METHOD 513

Optional initial delta Initial step size for
non-gradient based
optimizers

Optional contraction factor Amount by which
step length is
rescaled

Optional threshold delta Stopping criteria
based on step
length or pattern
size

Optional solution target Stopping criteria
based on objective
function value

Optional synchronization Select how Dakota
schedules function
evaluations in a
pattern search

Optional merit function Balance goals of
reducing objective
function and
satisfying
constraints

Optional constraint penalty Multiplier for the
penalty function

Optional smoothing factor Smoothing value
for smoothed
penalty functions

Optional linear inequality -
constraint matrix

Define coefficients
of the linear
inequality
constraints

Optional linear inequality -
lower bounds

Define lower
bounds for the
linear inequality
constraint

Optional linear inequality -
upper bounds

Define upper
bounds for the
linear inequality
constraint

Optional linear inequality -
scale types

Specify how each
linear inequality
constraint is scaled

514 CHAPTER 6. KEYWORDS AREA

Optional linear inequality -
scales

Define the
characteristic
values to scale
linear inequalities

Optional linear equality -
constraint matrix

Define coefficients
of the linear
equalities

Optional linear equality -
targets

Define target
values for the
linear equality
constraints

Optional linear equality -
scale types

Specify how each
linear equality
constraint is scaled

Optional linear equality -
scales

Define the
characteristic
values to scale
linear equalities

Optional model pointer Identifier for
model block to be
used by a method

Description
The asynchronous parallel pattern search (APPS) algorithm [37] is a fully asynchronous pattern search technique
in that the search along each offset direction continues without waiting for searches along other directions to
finish.

Currently, APPS only supports coordinate bases with a total of 2n function evaluations in the pattern, and
these patterns may only contract.

Concurrency
APPS exploits parallelism through the use of Dakota’s concurrent function evaluations. The variant of the

algorithm that is currently exposed, however, limits the amount of concurrency that can be exploited. In particular,
APPS can leverage an evaluation concurrency level of at most twice the number of variables. More options that
allow for greater evaluation concurrency may be exposed in future releases.

Algorithm Behavior

• initial delta: the initial step length, must be positive

• threshold delta: step length used to determine convergence, must be greater than or equal to 4.4e-16

• contraction factor: amount by which step length is rescaled after unsuccesful iterates, must be
strictly between 0 and 1

Merit Functions
APPS solves nonlinearly constrained problems by solving a sequence of linearly constrained merit function-

base subproblems. There are several exact and smoothed exact penalty functions that can be specified with the
merit function control. The options are as follows:

• merit max: based on `∞ norm

• merit max smooth: based on smoothed `∞ norm

6.2. METHOD 515

• merit1: based on `1 norm

• merit1 smooth: based on smoothed `1 norm

• merit2: based on `2 norm

• merit2 smooth: based on smoothed `2 norm

• merit2 squared: based on `22 norm

The user can also specify the following to affect the merit functions:

• constraint penalty

• smoothing parameter

Method Independent Controls
The only method independent controls that are currently mapped to APPS are:

• max function evaluations

• constraint tolerance

• output

Note that while APPS treats the constraint tolerance separately for linear and nonlinear constraints, we apply the
same value to both if the user specifies constraint tolerance.

The APPS internal display level is mapped to the Dakota output settings as follows:

• debug: display final solution, all input parameters, variable and constraint info, trial points, search direc-
tions, and execution details

• verbose: display final solution, all input parameters, variable and constraint info, and trial points

• normal: display final solution, all input parameters, variable and constraint summaries, and new best
points

• quiet: display final solution and all input parameters

• silent: display final solution

initial delta

• Keywords Area

• method

• asynch pattern search

• initial delta

Initial step size for non-gradient based optimizers

Specification
Alias: none

Argument(s): REAL
Default: 1.0

516 CHAPTER 6. KEYWORDS AREA

Description
If initial delta is supplied by the user, it will be applied in an absolute sense in all coordinate directions.
APPS documentation advocates choosing initial delta to be the approximate distance from the initial point
to the solution. If this is unknown, it is advisable to err on the side of choosing an initial delta that is too
large or to not specify it. In the latter case, APPS will take a full step to the boundary in each direction. Relative
application of initial delta is not available unless the user scales the problem accordingly.

contraction factor

• Keywords Area

• method

• asynch pattern search

• contraction factor

Amount by which step length is rescaled

Specification
Alias: none

Argument(s): REAL
Default: 0.5

Description
For pattern search methods, contraction factor specifies the amount by which step length is rescaled after
unsuccesful iterates, must be strictly between 0 and 1.

For methods that can expand the step length, the expansion is 1/ contraction factor

threshold delta

• Keywords Area

• method

• asynch pattern search

• threshold delta

Stopping criteria based on step length or pattern size

Specification
Alias: none

Argument(s): REAL
Default: 0.01

Description
threshold delta is the step length or pattern size used to determine convergence.

6.2. METHOD 517

solution target

• Keywords Area

• method

• asynch pattern search

• solution target

Stopping criteria based on objective function value

Specification
Alias: solution accuracy

Argument(s): REAL
Default: no target

Description
solution target is a termination criterion. The algorithm will terminate when the function value falls below
solution target.

synchronization

• Keywords Area

• method

• asynch pattern search

• synchronization

Select how Dakota schedules function evaluations in a pattern search

Specification
Alias: none

Argument(s): none
Default: nonblocking

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

synchronization
(Group 1)

blocking Evaluate all points
in a pattern

nonblocking Evaluate points in
the pattern until an
improving point is
found

Description
The synchronization specification can be used to specify the use of either blocking or nonblocking
schedulers.

518 CHAPTER 6. KEYWORDS AREA

blocking

• Keywords Area

• method

• asynch pattern search

• synchronization

• blocking

Evaluate all points in a pattern

Specification

Alias: none
Argument(s): none

Description

In the blocking case, all points in the pattern are evaluated (in parallel), and if the best of these trial points is
an improving point, then it becomes the next iterate. These runs are reproducible, assuming use of the same seed
in the stochastic case.

nonblocking

• Keywords Area

• method

• asynch pattern search

• synchronization

• nonblocking

Evaluate points in the pattern until an improving point is found

Specification

Alias: none
Argument(s): none

Description

In the nonblocking case, all points in the pattern may not be evaluated. The first improving point found
becomes the next iterate. Since the algorithm steps will be subject to parallel timing variabilities, these runs will
not generally be repeatable.

6.2. METHOD 519

merit function

• Keywords Area

• method

• asynch pattern search

• merit function

Balance goals of reducing objective function and satisfying constraints

Specification
Alias: none

Argument(s): none
Default: merit2 squared

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

merit function
(Group 1)

merit max Nonsmoothed
merit function

merit max smooth Smoothed merit
function

merit1 Nonsmoothed
merit function

merit1 smooth Smoothed merit
function

merit2 Nonsmoothed
merit function

merit2 smooth Smoothed merit
function

merit2 squared Nonsmoothed
merit function

Description
A merit function is a function in constrained optimization that attempts to provide joint progress toward
reducing the objective function and satisfying the constraints.

merit max

• Keywords Area

• method

• asynch pattern search

• merit function

• merit max

Nonsmoothed merit function

520 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): none

Description
APPS solves nonlinearly constrained problems by solving a sequence of linearly constrained merit function-base
subproblems. There are several exact and smoothed exact penalty functions.

merit max: based on `∞ norm

merit max smooth

• Keywords Area

• method

• asynch pattern search

• merit function

• merit max smooth

Smoothed merit function

Specification
Alias: none

Argument(s): none

Description
APPS solves nonlinearly constrained problems by solving a sequence of linearly constrained merit function-base
subproblems. There are several exact and smoothed exact penalty functions.

merit max smooth: based on smoothed `∞ norm

merit1

• Keywords Area

• method

• asynch pattern search

• merit function

• merit1

Nonsmoothed merit function

Specification
Alias: none

Argument(s): none

6.2. METHOD 521

Description
APPS solves nonlinearly constrained problems by solving a sequence of linearly constrained merit function-base
subproblems. There are several exact and smoothed exact penalty functions.

• merit1: based on `1 norm

merit1 smooth

• Keywords Area

• method

• asynch pattern search

• merit function

• merit1 smooth

Smoothed merit function

Specification
Alias: none

Argument(s): none

Description
APPS solves nonlinearly constrained problems by solving a sequence of linearly constrained merit function-base
subproblems. There are several exact and smoothed exact penalty functions.

merit1 smooth: based on smoothed `1 norm

merit2

• Keywords Area

• method

• asynch pattern search

• merit function

• merit2

Nonsmoothed merit function

Specification
Alias: none

Argument(s): none

Description
APPS solves nonlinearly constrained problems by solving a sequence of linearly constrained merit function-base
subproblems. There are several exact and smoothed exact penalty functions.

merit2: based on `2 norm

522 CHAPTER 6. KEYWORDS AREA

merit2 smooth

• Keywords Area

• method

• asynch pattern search

• merit function

• merit2 smooth

Smoothed merit function

Specification

Alias: none
Argument(s): none

Description

APPS solves nonlinearly constrained problems by solving a sequence of linearly constrained merit function-base
subproblems. There are several exact and smoothed exact penalty functions.

merit2 smooth: based on smoothed `2 norm

merit2 squared

• Keywords Area

• method

• asynch pattern search

• merit function

• merit2 squared

Nonsmoothed merit function

Specification

Alias: none
Argument(s): none

Description

APPS solves nonlinearly constrained problems by solving a sequence of linearly constrained merit function-base
subproblems. There are several exact and smoothed exact penalty functions.

merit2 squared: based on `22 norm

6.2. METHOD 523

constraint penalty

• Keywords Area

• method

• asynch pattern search

• constraint penalty

Multiplier for the penalty function

Specification

Alias: none
Argument(s): REAL
Default: 1.0

Description

Most SCOLIB optimizers treat constraints with a simple penalty scheme that adds constraint penalty
times the sum of squares of the constraint violations to the objective function. The default value of constraint-
penalty is 1000.0, except for methods that dynamically adapt their constraint penalty, for which the default

value is 1.0.

smoothing factor

• Keywords Area

• method

• asynch pattern search

• smoothing factor

Smoothing value for smoothed penalty functions

Specification

Alias: none
Argument(s): REAL
Default: 0.0

Description

• smoothing parameter: initial smoothing value for smoothed penalty functions, must be between 0
and 1 (inclusive)

524 CHAPTER 6. KEYWORDS AREA

linear inequality constraint matrix

• Keywords Area

• method

• asynch pattern search

• linear inequality constraint matrix

Define coefficients of the linear inequality constraints

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: no linear inequality constraints

Description
In the inequality case, the constraint matrix A provides coefficients for the variables in the two-sided formulation:

al ≤ Ax ≤ au

Where the bounds are optionally specified by linear inequality lower bounds, and linear -
inequality upper bounds. The bounds, if not specified, will default to -infinity, and 0, respectively, re-
sulting in one-sided inequalities of the form

Ax ≤ 0.0

.

linear inequality lower bounds

• Keywords Area

• method

• asynch pattern search

• linear inequality lower bounds

Define lower bounds for the linear inequality constraint

Topics
This keyword is related to the topics:

• linear constraints

6.2. METHOD 525

Specification

Alias: none
Argument(s): REALLIST
Default: vector values = -infinity

Description

In the inequality case, the lower al and upper au bounds provide constraint limits for the two-sided formulation:

al ≤ Ax ≤ au

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective functions), the default linear inequality constraint

bounds are selected so that one-sided inequalities of the form

Ax ≤ 0.0

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since -DBL MAX < -bigRealBoundSize).

linear inequality upper bounds

• Keywords Area

• method

• asynch pattern search

• linear inequality upper bounds

Define upper bounds for the linear inequality constraint

Topics

This keyword is related to the topics:

• linear constraints

Specification

Alias: none
Argument(s): REALLIST
Default: vector values = 0 .

526 CHAPTER 6. KEYWORDS AREA

Description
In the inequality case, the lower al and upper au bounds provide constraint limits for the two-sided formulation:

al ≤ Ax ≤ au

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective functions), the default linear inequality constraint

bounds are selected so that one-sided inequalities of the form

Ax ≤ 0.0

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since -DBL MAX < -bigRealBoundSize).

linear inequality scale types

• Keywords Area

• method

• asynch pattern search

• linear inequality scale types

Specify how each linear inequality constraint is scaled

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): STRINGLIST
Default: vector values = ’none’

Description
linear inequality scale types provide strings specifying the scaling type for each linear inequality
constraint, in methods that support scaling.

An entry may be selected for each constraint. The options are:

• ’none’ - no scaling

• ’value’ - characteristic value if this is chosen, then linear inequality scales must be specified

6.2. METHOD 527

• ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling
on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU

aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear inequality scales

• Keywords Area

• method

• asynch pattern search

• linear inequality scales

Define the characteristic values to scale linear inequalities

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

Description
Each entry in linear inequality scales may be a user-specified, nonzero characteristic value to be used
in scaling each constraint.

Behavior depends on the choice of linear inequality scale type :

• scale type - behavior of linear inequality scales

• ’none’ - ignored

528 CHAPTER 6. KEYWORDS AREA

• ’value’ - required

• ’auto’ - optional

If a single real value is specified it will apply to all components of the constraint.
Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling

on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear equality constraint matrix

• Keywords Area

• method

• asynch pattern search

• linear equality constraint matrix

Define coefficients of the linear equalities

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: no linear equality constraints

Description
In the equality case, the constraint matrix A provides coefficients for the variables on the left hand side of:

Ax = at

6.2. METHOD 529

linear equality targets

• Keywords Area

• method

• asynch pattern search

• linear equality targets

Define target values for the linear equality constraints

Topics

This keyword is related to the topics:

• linear constraints

Specification

Alias: none
Argument(s): REALLIST
Default: vector values = 0 .

Description

In the equality case, the targets at provide the equality constraint right hand sides:

Ax = at

.
If this is not specified, the defaults for the equality constraint targets enforce a value of 0. for each constraint:

Ax = 0.0

linear equality scale types

• Keywords Area

• method

• asynch pattern search

• linear equality scale types

Specify how each linear equality constraint is scaled

Topics

This keyword is related to the topics:

• linear constraints

530 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): STRINGLIST
Default: vector values = ’none’

Description
linear equality scale types provide strings specifying the scaling type for each linear equality con-
straint, in methods that support scaling.

An entry may be selected for each constraint. The options are:

• ’none’ - no scaling

• ’value’ - characteristic value if this is chosen, then linear equality scales must be specified

• ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear equality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear equality scales

• Keywords Area

• method

• asynch pattern search

• linear equality scales

Define the characteristic values to scale linear equalities

Topics
This keyword is related to the topics:

• linear constraints

6.2. METHOD 531

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

Description
Each entry in linear equality scales may be a user-specified, nonzero characteristic value to be used in
scaling each constraint.

See the scaling page for details on how to use this keyword.
Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

model pointer

• Keywords Area

• method

• asynch pattern search

• model pointer

Identifier for model block to be used by a method

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

532 CHAPTER 6. KEYWORDS AREA

Description

The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses

6.2. METHOD 533

response_functions = 3
no_gradients
no_hessians

6.2.36 mesh adaptive search
• Keywords Area

• method

• mesh adaptive search

Finds optimal variable values using adaptive mesh-based search

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional function precision Specify the
maximum
precision of the
analysis code
responses

Optional seed Seed of the random
number generator

Optional history file Name of file where
mesh adaptive
search records all
evaluation points.

Optional display format Information to be
reported from
mesh adaptive
search’s internal
records.

Optional variable -
neighborhood -
search

Percentage of
evaluations to do to
escape local
minima.

534 CHAPTER 6. KEYWORDS AREA

Optional neighbor order Number of
dimensions in
which to perturb
categorical
variables.

Optional display all -
evaluations

Shows mesh
adaptive search’s
internally held list
of all evaluations

Optional linear inequality -
constraint matrix

Define coefficients
of the linear
inequality
constraints

Optional linear inequality -
lower bounds

Define lower
bounds for the
linear inequality
constraint

Optional linear inequality -
upper bounds

Define upper
bounds for the
linear inequality
constraint

Optional linear inequality -
scale types

Specify how each
linear inequality
constraint is scaled

Optional linear inequality -
scales

Define the
characteristic
values to scale
linear inequalities

Optional linear equality -
constraint matrix

Define coefficients
of the linear
equalities

Optional linear equality -
targets

Define target
values for the
linear equality
constraints

Optional linear equality -
scale types

Specify how each
linear equality
constraint is scaled

Optional linear equality -
scales

Define the
characteristic
values to scale
linear equalities

6.2. METHOD 535

Optional model pointer Identifier for
model block to be
used by a method

Description
The mesh adaptive direct search algorithm[9] is a derivative-free generalized pattern search in which the set of
points evaluated becomes increasingly dense, leading to good convergence properties. It can handle unconstrained
problems as well as those with bound constraints and general nonlinear constraints. Furthermore, it can handle
continuous, discrete, and categorical variables.

Default Behavior
By default, mesh adaptive search operates on design variables. The types of variables can be expanded

through the use of the active keyword in the variables block in the Dakota input file. Categorical variables,
however, must be limited to design variables.

Expected Outputs
The best objective function value achieved and associated parameter and constraint values can be found at the

end of the Dakota output. The method’s internally summarized iteration history will appear in the screen output.
It also generates a history file containing a list of all function evaluations done.

Additional Discussion
The mesh adaptive direct search method is made available in Dakota through the NOMAD software[2], avail-

able to the public under the GNU LGPL from http://www.gerad.ca/nomad.

Examples
The following is an example of a Dakota input file that makes use of mesh adaptive search to optimize the
textbook function.

method,
mesh_adaptive_search
seed = 1234

variables,
continuous_design = 3
initial_point -1.0 1.5 2.0
upper_bounds 10.0 10.0 10.0
lower_bounds -10.0 -10.0 -10.0
descriptors ’x1’ ’x2’ ’x3’

interface,
direct

analysis_driver = ’text_book’

responses,
objective_functions = 1
no_gradients
no_hessians

\end verbatim

The best function value and associated parameters are found at the end
of the %Dakota output.

\verbatim
<<<<< Function evaluation summary: 674 total (674 new, 0 duplicate)
<<<<< Best parameters =

1.0000000000e+00 x1

http://www.gerad.ca/nomad

536 CHAPTER 6. KEYWORDS AREA

1.0000000000e+00 x2
1.0000000000e+00 x3

<<<<< Best objective function =
1.0735377280e-52

<<<<< Best data captured at function evaluation 658

A NOMAD-generated iteration summary is also printed to the screen.

MADS run {

BBE OBJ

1 17.0625000000
2 1.0625000000
13 0.0625000000
24 0.0002441406
41 0.0000314713
43 0.0000028610
54 0.0000000037
83 0.0000000000
105 0.0000000000
112 0.0000000000
114 0.0000000000
135 0.0000000000
142 0.0000000000
153 0.0000000000
159 0.0000000000
171 0.0000000000
193 0.0000000000
200 0.0000000000
207 0.0000000000
223 0.0000000000
229 0.0000000000
250 0.0000000000
266 0.0000000000
282 0.0000000000
288 0.0000000000
314 0.0000000000
320 0.0000000000
321 0.0000000000
327 0.0000000000
354 0.0000000000
361 0.0000000000
372 0.0000000000
373 0.0000000000
389 0.0000000000
400 0.0000000000
417 0.0000000000
444 0.0000000000
459 0.0000000000
461 0.0000000000
488 0.0000000000
492 0.0000000000
494 0.0000000000
501 0.0000000000
518 0.0000000000
530 0.0000000000
537 0.0000000000
564 0.0000000000
566 0.0000000000
583 0.0000000000
590 0.0000000000

6.2. METHOD 537

592 0.0000000000
604 0.0000000000
606 0.0000000000
629 0.0000000000
636 0.0000000000
658 0.0000000000
674 0.0000000000

} end of run (mesh size reached NOMAD precision)

blackbox evaluations : 674
best feasible solution : (1 1 1) h=0 f=1.073537728e-52

function precision

• Keywords Area

• method

• mesh adaptive search

• function precision

Specify the maximum precision of the analysis code responses

Specification
Alias: none

Argument(s): REAL
Default: 1.0e-10

Description
The function precision control provides the algorithm with an estimate of the accuracy to which the
problem functions can be computed. This is used to prevent the algorithm from trying to distinguish between
function values that differ by less than the inherent error in the calculation.

seed

• Keywords Area

• method

• mesh adaptive search

• seed

Seed of the random number generator

Specification
Alias: none

Argument(s): INTEGER
Default: system-generated (non-repeatable)

538 CHAPTER 6. KEYWORDS AREA

Description

The random seed control provides a mechanism for making a stochastic method repeatable. That is, the use of
the same random seed in identical studies will generate identical results.

Default Behavior
If not specified, the seed is randomly generated.
Expected Output
If seed is specified, a stochastic study will generate identical results when repeated using the same seed

value. Otherwise, results are not guaranteed to be the same.
Usage Tips
If a stochastic study was run without seed specified, and the user later wishes to repeat the study using the

same seed, the value of the seed used in the original study can be found in the output Dakota prints to the screen.
That value can then be added to the Dakota input file.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 15347

history file

• Keywords Area

• method

• mesh adaptive search

• history file

Name of file where mesh adaptive search records all evaluation points.

Specification

Alias: none
Argument(s): STRING
Default: mads history

Description

The history file is used to specify the name of a file to which mesh adaptive direct search will write its own
list of evaluated points.

Default Behavior
By default, mesh adaptive direct search will write the list of evaluation points in a file named mads history.-

xxxx, where xxxx corresponds to a randomly generated number.

6.2. METHOD 539

Examples
The example below shows the syntax for specifying the name of the history file.

method
mesh_adaptive_search

history_file = ’output.log’
seed = 1234

display format

• Keywords Area

• method

• mesh adaptive search

• display format

Information to be reported from mesh adaptive search’s internal records.

Specification
Alias: none

Argument(s): STRING

Description
The display format keyword is used to specify the set of information to be reported by the mesh adaptive
direct search method. This is information mostly internal to the method and not reported via Dakota output.

Default Behavior
By default, only the number of function evaluations (bbe) and the objective function value (obj) are reported.
The full list of options is as follows. Note that case does not matter.

• BBE: Blackbox evaluations.

• BBO: Blackbox outputs.

• EVAL: Evaluations (includes cache hits).

• MESH INDEX: Mesh index.

• MESH SIZE: Mesh size parameter.

• OBJ: Objective function value.

• POLL SIZE: Poll size parameter.

• SOL: Solution, with format iSOLj where i and j are two (optional) strings: i will be displayed before each
coordinate, and j after each coordinate (except the last).

• STAT AVG: The AVG statistic.

• STAT SUM: The SUM statistic defined by argument.

• TIME: Wall-clock time.

540 CHAPTER 6. KEYWORDS AREA

• VARi: Value of variable i. The index 0 corresponds to the first variable.

Expected Outputs
A list of the requested information will be printed to the screen.
Usage Tips
This will most likely only be useful for power users who want to understand and/or report more detailed

information on method behavior.

Examples
The following example shows the syntax for specifying display format. Note that all desired information
options should be listed within a single string.

method
mesh_adaptive_search

display_format ’bbe obj poll_size’
seed = 1234

Below is the output reported for the above example.

MADS run {

BBE OBJ POLL_SIZE

1 17.0625000000 2.0000000000 2.0000000000 2.0000000000
2 1.0625000000 2.0000000000 2.0000000000 2.0000000000
13 0.0625000000 1.0000000000 1.0000000000 1.0000000000
24 0.0002441406 0.5000000000 0.5000000000 0.5000000000
41 0.0000314713 0.1250000000 0.1250000000 0.1250000000
43 0.0000028610 0.2500000000 0.2500000000 0.2500000000
54 0.0000000037 0.1250000000 0.1250000000 0.1250000000
83 0.0000000000 0.0078125000 0.0078125000 0.0078125000
105 0.0000000000 0.0009765625 0.0009765625 0.0009765625
112 0.0000000000 0.0009765625 0.0009765625 0.0009765625
114 0.0000000000 0.0019531250 0.0019531250 0.0019531250
135 0.0000000000 0.0004882812 0.0004882812 0.0004882812
142 0.0000000000 0.0004882812 0.0004882812 0.0004882812
153 0.0000000000 0.0004882812 0.0004882812 0.0004882812
159 0.0000000000 0.0009765625 0.0009765625 0.0009765625
171 0.0000000000 0.0004882812 0.0004882812 0.0004882812
193 0.0000000000 0.0000610352 0.0000610352 0.0000610352
200 0.0000000000 0.0000610352 0.0000610352 0.0000610352
207 0.0000000000 0.0000610352 0.0000610352 0.0000610352
223 0.0000000000 0.0000305176 0.0000305176 0.0000305176
229 0.0000000000 0.0000610352 0.0000610352 0.0000610352
250 0.0000000000 0.0000152588 0.0000152588 0.0000152588
266 0.0000000000 0.0000076294 0.0000076294 0.0000076294
282 0.0000000000 0.0000038147 0.0000038147 0.0000038147
288 0.0000000000 0.0000076294 0.0000076294 0.0000076294
314 0.0000000000 0.0000009537 0.0000009537 0.0000009537
320 0.0000000000 0.0000019073 0.0000019073 0.0000019073
321 0.0000000000 0.0000038147 0.0000038147 0.0000038147
327 0.0000000000 0.0000076294 0.0000076294 0.0000076294
354 0.0000000000 0.0000004768 0.0000004768 0.0000004768
361 0.0000000000 0.0000004768 0.0000004768 0.0000004768
372 0.0000000000 0.0000004768 0.0000004768 0.0000004768
373 0.0000000000 0.0000009537 0.0000009537 0.0000009537
389 0.0000000000 0.0000004768 0.0000004768 0.0000004768
400 0.0000000000 0.0000004768 0.0000004768 0.0000004768
417 0.0000000000 0.0000001192 0.0000001192 0.0000001192

6.2. METHOD 541

444 0.0000000000 0.0000000075 0.0000000075 0.0000000075
459 0.0000000000 0.0000000037 0.0000000037 0.0000000037
461 0.0000000000 0.0000000075 0.0000000075 0.0000000075
488 0.0000000000 0.0000000005 0.0000000005 0.0000000005
492 0.0000000000 0.0000000009 0.0000000009 0.0000000009
494 0.0000000000 0.0000000019 0.0000000019 0.0000000019
501 0.0000000000 0.0000000019 0.0000000019 0.0000000019
518 0.0000000000 0.0000000005 0.0000000005 0.0000000005
530 0.0000000000 0.0000000002 0.0000000002 0.0000000002
537 0.0000000000 0.0000000002 0.0000000002 0.0000000002
564 0.0000000000 0.0000000000 0.0000000000 0.0000000000
566 0.0000000000 0.0000000000 0.0000000000 0.0000000000
583 0.0000000000 0.0000000000 0.0000000000 0.0000000000
590 0.0000000000 0.0000000000 0.0000000000 0.0000000000
592 0.0000000000 0.0000000000 0.0000000000 0.0000000000
604 0.0000000000 0.0000000000 0.0000000000 0.0000000000
606 0.0000000000 0.0000000000 0.0000000000 0.0000000000
629 0.0000000000 0.0000000000 0.0000000000 0.0000000000
636 0.0000000000 0.0000000000 0.0000000000 0.0000000000
658 0.0000000000 0.0000000000 0.0000000000 0.0000000000
674 0.0000000000 0.0000000000 0.0000000000 0.0000000000

} end of run (mesh size reached NOMAD precision)

blackbox evaluations : 674
best feasible solution : (1 1 1) h=0 f=1.073537728e-52

See Also
These keywords may also be of interest:

• display all evaluations

variable neighborhood search

• Keywords Area

• method

• mesh adaptive search

• variable neighborhood search

Percentage of evaluations to do to escape local minima.

Specification
Alias: none

Argument(s): REAL
Default: 0.0

Description
The variable neighborhood search keyword is used to set the percentage (in decimal form) of function
evaluations used to escape local minima. The mesh adaptive direct search method will try to perform a maximum
of that percentage of the function evaluations within this more extensive search.

Default Behavior

542 CHAPTER 6. KEYWORDS AREA

By default, variable neighborhood search is not used.
Usage Tips
Using variable neighborhood search results in an increased number of function evaluations. If the

desired result is a local minimum, the added cost is of little or no value, so the recommendation is not to use it. If
the desired result is the best local minimum possible within a computational budget, then there is value in setting
this parameter. Note that the higher the value, the greater the computational cost.

Examples

The following example shows the syntax used to set variable neighborhood search.

method
mesh_adaptive_search

seed = 1234
variable_neighborhood_search = 0.1

neighbor order

• Keywords Area

• method

• mesh adaptive search

• neighbor order

Number of dimensions in which to perturb categorical variables.

Specification

Alias: none
Argument(s): INTEGER

Description

The neighbor order keyword allows the user to specify the number of categorical dimensions to perturb
when determining neighboring points that will be used by the mesh adaptive direct search method to augment its
search. When greater than 1, the neighbors are defined from the tensor product of the admissible 1-dimensional
perturbations.

Default Behavior
By default, the categorical neighbors will be defined by perturbing only one categorical variable at a time

(according to the corresponding adjacency matrix; see adjacency matrix) while leaving the others fixed at their
current values.

Usage Tips
The maximum meaningful value neighbor order can take on is the number of categorical variables.

Examples

In this example, suppose we have the following categorical variables and associated adjacency matrices.

6.2. METHOD 543

variables
discrete_design_set

real = 2
categorical yes yes
num_set_values = 3 5
set_values = 1.2 2.3 3.4

1.2 3.3 4.4 5.5 7.7
adjacency_matrix = 1 1 0

1 1 1
0 1 1
1 0 1 0 1
0 1 0 1 0
1 0 1 0 1
0 1 0 1 0
1 0 1 0 1

Also suppose that we have the following method specification.

method
mesh_adaptive_search

seed = 1234

If the mesh adaptive direct search is at the point (1.2, 1.2), then the neighbors will be defined by the default
1-dimensional perturbations and would be the following:

(2.3, 1.2)
(1.2, 4.4)
(1.2, 7.7)

If, instead, the method specification is the following:

method
mesh_adaptive_search

seed = 1234
neighbor_order = 2

The neighbors will be defined by 2-dimensional perturbations defined from the tensor product of the 1-
dimensional perturbation and would be the following:

(2.3, 1.2)
(2.3, 4.4)
(2.3, 7.7)
(1.2, 4.4)
(1.2, 7.7)

See Also
These keywords may also be of interest:

• adjacency matrix

display all evaluations

• Keywords Area

• method

• mesh adaptive search

• display all evaluations

Shows mesh adaptive search’s internally held list of all evaluations

544 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): none
Default: false

Description
If set, display all evaluations will instruct the mesh adaptive direct search method to print out its own
record of all evaluations. The information reported may be controlled using display format.

Default Behavior
By default, mesh adaptive direct search does not report information on all evaluations, only on those for which

an improvement in the objective function is found.
Expected Outputs
The information specified by display format will be reported to the screen for every function evaluation.
Usage Tips
This will most likely only be useful for power users who want to understand and/or report more detailed

information on method behavior.

Examples
The following example shows the syntax for specifying display all evaluations.

method
mesh_adaptive_search

display_all_evaluations
max_function evaluations=20
seed = 1234

Note that the output below reports information (default for display format) for all function evaluations.

MADS run {

BBE OBJ

1 17.0625000000
2 1.0625000000
3 1297.0625000000
4 257.0625000000
5 81.0625000000
6 151.0625000000
7 1051.0625000000
8 40.0625000000
9 17.0625000000
10 40.0625000000
11 1.0625000000
12 102.0625000000
13 0.0625000000
14 231.0625000000
15 16.0625000000
16 5.0625000000
17 16.0625000000
18 71.0625000000
19 0.0625000000
20 1.0625000000

} end of run (max number of blackbox evaluations)

6.2. METHOD 545

blackbox evaluations : 20
best feasible solution : (1 0.5 1) h=0 f=0.0625

That is in contrast with what would be reported by default.

MADS run {

BBE OBJ

1 17.0625000000
2 1.0625000000
13 0.0625000000
20 0.0625000000

} end of run (max number of blackbox evaluations)

blackbox evaluations : 20
best feasible solution : (1 0.5 1) h=0 f=0.0625

See Also

These keywords may also be of interest:

• display format

linear inequality constraint matrix

• Keywords Area

• method

• mesh adaptive search

• linear inequality constraint matrix

Define coefficients of the linear inequality constraints

Topics

This keyword is related to the topics:

• linear constraints

Specification

Alias: none
Argument(s): REALLIST
Default: no linear inequality constraints

546 CHAPTER 6. KEYWORDS AREA

Description
In the inequality case, the constraint matrix A provides coefficients for the variables in the two-sided formulation:

al ≤ Ax ≤ au

Where the bounds are optionally specified by linear inequality lower bounds, and linear -
inequality upper bounds. The bounds, if not specified, will default to -infinity, and 0, respectively, re-
sulting in one-sided inequalities of the form

Ax ≤ 0.0

.

linear inequality lower bounds

• Keywords Area

• method

• mesh adaptive search

• linear inequality lower bounds

Define lower bounds for the linear inequality constraint

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = -infinity

Description
In the inequality case, the lower al and upper au bounds provide constraint limits for the two-sided formulation:

al ≤ Ax ≤ au

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective functions), the default linear inequality constraint

bounds are selected so that one-sided inequalities of the form

Ax ≤ 0.0

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since -DBL MAX < -bigRealBoundSize).

6.2. METHOD 547

linear inequality upper bounds

• Keywords Area

• method

• mesh adaptive search

• linear inequality upper bounds

Define upper bounds for the linear inequality constraint

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 0 .

Description
In the inequality case, the lower al and upper au bounds provide constraint limits for the two-sided formulation:

al ≤ Ax ≤ au

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective functions), the default linear inequality constraint

bounds are selected so that one-sided inequalities of the form

Ax ≤ 0.0

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since -DBL MAX < -bigRealBoundSize).

linear inequality scale types

• Keywords Area

• method

• mesh adaptive search

• linear inequality scale types

Specify how each linear inequality constraint is scaled

548 CHAPTER 6. KEYWORDS AREA

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): STRINGLIST
Default: vector values = ’none’

Description
linear inequality scale types provide strings specifying the scaling type for each linear inequality
constraint, in methods that support scaling.

An entry may be selected for each constraint. The options are:

• ’none’ - no scaling

• ’value’ - characteristic value if this is chosen, then linear inequality scales must be specified

• ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling
on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU

aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU

and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear inequality scales

• Keywords Area

• method

• mesh adaptive search

• linear inequality scales

Define the characteristic values to scale linear inequalities

6.2. METHOD 549

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

Description
Each entry in linear inequality scales may be a user-specified, nonzero characteristic value to be used
in scaling each constraint.

Behavior depends on the choice of linear inequality scale type :

• scale type - behavior of linear inequality scales

• ’none’ - ignored

• ’value’ - required

• ’auto’ - optional

If a single real value is specified it will apply to all components of the constraint.
Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling

on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear equality constraint matrix

• Keywords Area

• method

• mesh adaptive search

• linear equality constraint matrix

Define coefficients of the linear equalities

550 CHAPTER 6. KEYWORDS AREA

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: no linear equality constraints

Description
In the equality case, the constraint matrix A provides coefficients for the variables on the left hand side of:

Ax = at

linear equality targets

• Keywords Area

• method

• mesh adaptive search

• linear equality targets

Define target values for the linear equality constraints

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 0 .

Description
In the equality case, the targets at provide the equality constraint right hand sides:

Ax = at

.
If this is not specified, the defaults for the equality constraint targets enforce a value of 0. for each constraint:

Ax = 0.0

6.2. METHOD 551

linear equality scale types

• Keywords Area

• method

• mesh adaptive search

• linear equality scale types

Specify how each linear equality constraint is scaled

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): STRINGLIST
Default: vector values = ’none’

Description
linear equality scale types provide strings specifying the scaling type for each linear equality con-
straint, in methods that support scaling.

An entry may be selected for each constraint. The options are:

• ’none’ - no scaling

• ’value’ - characteristic value if this is chosen, then linear equality scales must be specified

• ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear equality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

552 CHAPTER 6. KEYWORDS AREA

linear equality scales

• Keywords Area

• method

• mesh adaptive search

• linear equality scales

Define the characteristic values to scale linear equalities

Topics

This keyword is related to the topics:

• linear constraints

Specification

Alias: none
Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

Description

Each entry in linear equality scales may be a user-specified, nonzero characteristic value to be used in
scaling each constraint.

See the scaling page for details on how to use this keyword.
Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU

aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU

and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

6.2. METHOD 553

model pointer

• Keywords Area

• method

• mesh adaptive search

• model pointer

Identifier for model block to be used by a method

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

Description
The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

554 CHAPTER 6. KEYWORDS AREA

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses
response_functions = 3
no_gradients
no_hessians

6.2.37 moga
• Keywords Area

• method

• moga

Multi-objective Genetic Algorithm (a.k.a Evolutionary Algorithm)

Topics
This keyword is related to the topics:

• package jega

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

6.2. METHOD 555

Optional fitness type Select the fitness
type for JEGA
methods

Optional replacement type Select a
replacement type
for JEGA methods

Optional niching type Specify the type of
niching pressure

Optional convergence type Select the
convergence type
for JEGA methods

Optional postprocessor type Post process the
final solution from
moga

Optional population size Set the initial
population size in
JEGA methods

Optional log file Specify the name
of a log file

Optional print each pop Print every
population to a
population file

Optional initialization type Specify how to
initialize the
population

Optional crossover type Select a crossover
type for JEGA
methods

Optional mutation type Select a mutation
type for JEGA
methods

Optional seed Seed of the random
number generator

Optional linear inequality -
constraint matrix

Define coefficients
of the linear
inequality
constraints

Optional linear inequality -
lower bounds

Define lower
bounds for the
linear inequality
constraint

556 CHAPTER 6. KEYWORDS AREA

Optional linear inequality -
upper bounds

Define upper
bounds for the
linear inequality
constraint

Optional linear inequality -
scale types

Specify how each
linear inequality
constraint is scaled

Optional linear inequality -
scales

Define the
characteristic
values to scale
linear inequalities

Optional linear equality -
constraint matrix

Define coefficients
of the linear
equalities

Optional linear equality -
targets

Define target
values for the
linear equality
constraints

Optional linear equality -
scale types

Specify how each
linear equality
constraint is scaled

Optional linear equality -
scales

Define the
characteristic
values to scale
linear equalities

Optional model pointer Identifier for
model block to be
used by a method

Description
moga stands for Multi-objective Genetic Algorithm, which is a global optimization method that does Pareto
optimization for multiple objectives. It supports general constraints and a mixture of real and discrete variables.

Constraints
moga can utilize linear constraints using the keywords: -∗ linear inequality constraint matrix -∗ linear -

inequality lower bounds -∗ linear inequality upper bounds -∗ linear inequality scale types -∗ linear inequality-
scales -∗ linear equality constraint matrix -∗ linear equality targets -∗ linear equality scale types -∗ linear -

equality scales
Configuration
The genetic algorithm configurations are:

1. fitness

2. replacement

3. niching

4. convergence

5. postprocessor

6.2. METHOD 557

6. initialization

7. crossover

8. mutation

9. population size

The steps followed by the algorithm are listed below. The configurations will effect how the algorithm com-
pletes each step.

Stopping Criteria
The moga method respects the max iterations and max function evaluations method indepen-

dent controls to provide integer limits for the maximum number of generations and function evaluations, respec-
tively.

The algorithm also stops when convergence is reached. This involves repeated assessment of the algorithm’s
progress in solving the problem, until some criterion is met.

The specification for convergence in a moga can either be metric tracker or can be omitted all together.
If omitted, no convergence algorithm will be used and the algorithm will rely on stopping criteria only.

Outputs
The moga method respects the output method independent control to vary the amount of information pre-

sented to the user during execution.
The final results are written to the Dakota tabular output. Additional information is also available - see the

log file and print each pop keywords.
Note that moga and SOGA create additional output files during execution. ”finaldata.dat” is a file that holds

the final set of Pareto optimal solutions after any post-processing is complete. ”discards.dat” holds solutions that
were discarded from the population during the course of evolution.

It can often be useful to plot objective function values from these files to visually see the Pareto front and
ensure that finaldata.dat solutions dominate discards.dat solutions. The solutions are written to these output files
in the format ”Input1...InputN..Output1...OutputM”.

Important Notes
The pool of potential members is the current population and the current set of offspring.
Choice of fitness assessors is strongly related to the type of replacement algorithm being used and can have a

profound effect on the solutions selected for the next generation.
If using the fitness types layer rank or domination count, it is strongly recommended that you use

the replacement type below limit (although the roulette wheel selectors can also be used).
The functionality of the domination count selector of JEGA v1.0 can now be achieved using the domination-

count fitness type and below limit replacement type.

Theory
The basic steps of the moga algorithm are as follows:

1. Initialize the population

2. Evaluate the population (calculate the values of the objective function and constraints for each population
member)

3. Loop until converged, or stopping criteria reached

(a) Perform crossover

(b) Perform mutation

(c) Evaluate the new population

558 CHAPTER 6. KEYWORDS AREA

(d) Assess the fitness of each member in the population

(e) Replace the population with members selected to continue in the next generation

(f) Apply niche pressure to the population

(g) Test for convergence

4. Perform post processing

If moga is used in a hybrid optimization method (which requires one optimal solution from each individual
optimization method to be passed to the subsequent optimization method as its starting point), the solution in the
Pareto set closest to the ”utopia” point is given as the best solution. This solution is also reported in the Dakota
output.

This ”best” solution in the Pareto set has minimum distance from the utopia point. The utopia point is defined
as the point of extreme (best) values for each objective function. For example, if the Pareto front is bounded by
(1,100) and (90,2), then (1,2) is the utopia point. There will be a point in the Pareto set that has minimum L2-norm
distance to this point, for example (10,10) may be such a point.

If moga is used in a method which may require passing multiple solutions to the next level (such as the
surrogate based globalmethod or hybridmethods), the orthogonal distance postprocessor type
may be used to specify the distances between each solution value to winnow down the solutions in the full Pareto
front to a subset which will be passed to the next iteration.

See Also

These keywords may also be of interest:

• soga

fitness type

• Keywords Area

• method

• moga

• fitness type

Select the fitness type for JEGA methods

Specification

Alias: none
Argument(s): none
Default: domination count

6.2. METHOD 559

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 layer rank Assign each
member to a layer,
based on
domination the
rank based on
layers

domination count Rank each member
by the number of
members that
dominate it

Description
The two JEGA methods use different fitness types, which are described on their respective pages.

layer rank

• Keywords Area

• method

• moga

• fitness type

• layer rank

Assign each member to a layer, based on domination the rank based on layers

Specification
Alias: none

Argument(s): none

Description
The fitness type: layer rank has been specifically designed to avoid problems with aggregating and
scaling objective function values and transforming them into a single objective.

The layer rank fitness assessor works by assigning all non-dominated designs a layer of 0, then from what
remains, assigning all the non-dominated a layer of 1, and so on until all designs have been assigned a layer. The
values are negated to follow the higher-is-better fitness convention.

Use of the below limit selector with the layer rank fitness assessor has the effect of keeping all those
designs whose layer is below a certain threshold again subject to the shrinkage limit.

domination count

• Keywords Area

• method

• moga

560 CHAPTER 6. KEYWORDS AREA

• fitness type

• domination count

Rank each member by the number of members that dominate it

Specification
Alias: none

Argument(s): none

Description
The fitness type: domination count has been specifically designed to avoid problems with aggregating
and scaling objective function values and transforming them into a single objective.

Instead, the domination count fitness assessor works by ordering population members by the negative
of the number of designs that dominate them. The values are negated in keeping with the convention that higher
fitness is better.

The layer rank fitness assessor works by assigning all non-dominated designs a layer of 0, then from what
remains, assigning all the non-dominated a layer of 1, and so on until all designs have been assigned a layer.
Again, the values are negated for the higher-is-better fitness convention.

Use of the below limit selector with the domination count fitness assessor has the effect of keeping
all designs that are dominated by fewer then a limiting number of other designs subject to the shrinkage limit.

Using it with the layer rank fitness assessor has the effect of keeping all those designs whose layer is
below a certain threshold again subject to the shrinkage limit.

replacement type

• Keywords Area

• method

• moga

• replacement type

Select a replacement type for JEGA methods

Specification
Alias: none

Argument(s): none
Default: below limit

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1

elitist Use the best
designs to form a
new population

6.2. METHOD 561

roulette wheel Replace population
unique roulette -
wheel

Replace population

below limit Limit number of
designs dominating
those kept

Description
Replace the population with members selected to continue in the next generation. The pool of potential members
is the current population and the current set of offspring. The replacement type of roulette wheel or
unique roulette wheel may be used either with MOGA or SOGA problems however they are not recom-
mended for use with MOGA. Given that the only two fitness assessors for MOGA are the layer rank and
domination count, the recommended selector is the below limit selector. The below limit replace-
ment will only keep designs that are dominated by fewer than a limiting number of other designs.

In roulette wheel replacement, each design is conceptually allotted a portion of a wheel proportional to
its fitness relative to the fitnesses of the other Designs. Then, portions of the wheel are chosen at random and the
design occupying those portions are duplicated into the next population. Those Designs allotted larger portions
of the wheel are more likely to be selected (potentially many times). unique roulette wheel replacement
is the same as roulette wheel replacement, with the exception that a design may only be selected once. The
below limit selector attempts to keep all designs for which the negated fitness is below a certain limit. The
values are negated to keep with the convention that higher fitness is better. The inputs to the below limit
selector are the limit as a real value, and a shrinkage percentage as a real value. The shrinkage -
percentage defines the minimum amount of selections that will take place if enough designs are available. It
is interpreted as a percentage of the population size that must go on to the subsequent generation. To enforce this,
below limit makes all the selections it would make anyway and if that is not enough, it takes the remaining
that it needs from the best of what is left (effectively raising its limit as far as it must to get the minimum number
of selections). It continues until it has made enough selections. The shrinkage percentage is designed to
prevent extreme decreases in the population size at any given generation, and thus prevent a big loss of genetic
diversity in a very short time. Without a shrinkage limit, a small group of ”super” designs may appear and quickly
cull the population down to a size on the order of the limiting value. In this case, all the diversity of the population
is lost and it is expensive to re-diversify and spread the population. The

The replacement type for a SOGA may be roulette wheel, unique roulette wheel, elitist,
or favor feasible. The elitist selector simply chooses the required number of designs taking the most
fit. For example, if 100 selections are requested, then the top 100 designs as ranked by fitness will be selected
and the remaining will be discarded. The favor feasible replacement type first considers feasibility as a
selection criteria. If that does not produce a ”winner” then it moves on to considering fitness value. Because of
this, any fitness assessor used with the favor feasible selector must only account objectives in the creation
of fitness. Therefore, there is such a fitness assessor and it’s use is enforced when the favor feasible selector
is chosen. In that case, and if the output level is set high enough, a message will be presented indicating that the
weighted sum only fitness assessor will be used.

elitist

• Keywords Area

• method

• moga

• replacement type

562 CHAPTER 6. KEYWORDS AREA

• elitist

Use the best designs to form a new population

Specification

Alias: none
Argument(s): none

Description

The elitist (default) setting creates a new population using (a) the replacement size best individuals
from the current population, (b) and population size - replacement size individuals randomly selected
from the newly generated individuals. It is possible in this case to lose a good solution from the newly generated
individuals if it is not randomly selected for replacement; however, the default new solutions generated
value is set such that the entire set of newly generated individuals will be selected for replacement.

roulette wheel

• Keywords Area

• method

• moga

• replacement type

• roulette wheel

Replace population

Specification

Alias: none
Argument(s): none

Description

Replace the population with members selected to continue in the next generation. The pool of potential members
is the current population and the current set of offspring. The replacement type of roulette wheel
or unique roulette wheel may be used either with MOGA or SOGA problems however they are not rec-
ommended for use with MOGA. Given that the only two fitness assessors for MOGA are the layer rank
and domination count, the recommended selector is the below limit selector. The below limit re-
placement will only keep designs that are dominated by fewer than a limiting number of other designs. The
replacement type of favor feasible is specific to a SOGA. This replacement operator will always pre-
fer a more feasible design to a less feasible one. Beyond that, it favors solutions based on an assigned fitness value
which must have been installed by the weighted sum only fitness assessor (see the discussion below).

6.2. METHOD 563

unique roulette wheel

• Keywords Area

• method

• moga

• replacement type

• unique roulette wheel

Replace population

Specification
Alias: none

Argument(s): none

Description
Replace the population with members selected to continue in the next generation. The pool of potential members
is the current population and the current set of offspring. The replacement type of roulette wheel
or unique roulette wheel may be used either with MOGA or SOGA problems however they are not rec-
ommended for use with MOGA. Given that the only two fitness assessors for MOGA are the layer rank
and domination count, the recommended selector is the below limit selector. The below limit re-
placement will only keep designs that are dominated by fewer than a limiting number of other designs. The
replacement type of favor feasible is specific to a SOGA. This replacement operator will always pre-
fer a more feasible design to a less feasible one. Beyond that, it favors solutions based on an assigned fitness value
which must have been installed by the weighted sum only fitness assessor (see the discussion below).

below limit

• Keywords Area

• method

• moga

• replacement type

• below limit

Limit number of designs dominating those kept

Specification
Alias: none

Argument(s): REAL
Default: 6

564 CHAPTER 6. KEYWORDS AREA

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional shrinkage fraction Decrease the
population size by
a percentage

Description
The below limit replacement will only keep designs that are dominated by fewer than a limiting number of
other designs.

shrinkage fraction

• Keywords Area

• method

• moga

• replacement type

• below limit

• shrinkage fraction

Decrease the population size by a percentage

Specification
Alias: shrinkage percentage

Argument(s): REAL
Default: 0.9

Description
As of JEGA v2.0, all replacement types are common to both MOGA and SOGA. They include the roulette -
wheel, unique roulette wheel, elitist, and below limit selectors. In roulette wheel replacement,
each design is conceptually allotted a portion of a wheel proportional to its fitness relative to the fitnesses of the
other Designs. Then, portions of the wheel are chosen at random and the design occupying those portions are
duplicated into the next population. Those Designs allotted larger portions of the wheel are more likely to be
selected (potentially many times). unique roulette wheel replacement is the same as roulette wheel
replacement, with the exception that a design may only be selected once. The below limit selector attempts
to keep all designs for which the negated fitness is below a certain limit. The values are negated to keep with the
convention that higher fitness is better. The inputs to the below limit selector are the limit as a real value, and
a shrinkage percentage as a real value. The shrinkage percentage defines the minimum amount
of selections that will take place if enough designs are available. It is interpreted as a percentage of the population
size that must go on to the subsequent generation. To enforce this, below limit makes all the selections it
would make anyway and if that is not enough, it takes the remaining that it needs from the best of what is left
(effectively raising its limit as far as it must to get the minimum number of selections). It continues until it
has made enough selections. The shrinkage percentage is designed to prevent extreme decreases in the
population size at any given generation, and thus prevent a big loss of genetic diversity in a very short time.
Without a shrinkage limit, a small group of ”super” designs may appear and quickly cull the population down to

6.2. METHOD 565

a size on the order of the limiting value. In this case, all the diversity of the population is lost and it is expensive
to re-diversify and spread the population. The elitist selector simply chooses the required number of designs
taking the most fit. For example, if 100 selections are requested, then the top 100 designs as ranked by fitness will
be selected and the remaining will be discarded.

niching type

• Keywords Area

• method

• moga

• niching type

Specify the type of niching pressure

Specification
Alias: none

Argument(s): none
Default: No niche pressure

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1
radial Set niching

distance to
percentage of
non-dominated
range

distance Enforce minimum
Euclidean distance
between designs

max designs Limit number of
solutions to remain
in the population

Description
The purpose of niching is to encourage differentiation along the Pareto frontier and thus a more even and uniform
sampling.

This is typically accomplished by discouraging clustering of design points in the performance space. In JE-
GA, the application of niche pressure occurs as a secondary selection operation. The nicher is given a chance to
perform a pre-selection operation prior to the operation of the selection (replacement) operator, and is then called
to perform niching on the set of designs that were selected by the selection operator.

The radial nicher takes information input from the user to compute a minimum allowable distance between
designs in the performance space and acts as a secondary selection operator whereby it enforces this minimum
distance. The distance nicher requires that solutions must be separated from other solutions by a minimum
distance in each dimension (vs. Euclidean distance for the radial niching). After niching is complete, all designs
in the population will be at least the minimum distance from one another in all directions.

The radial niche pressure applicator works by enforcing a minimum Euclidean distance between designs
in the performance space at each generation. The algorithm proceeds by starting at the (or one of the) extreme

566 CHAPTER 6. KEYWORDS AREA

designs along objective dimension 0 and marching through the population removing all designs that are too close
to the current design. One exception to the rule is that the algorithm will never remove an extreme design which
is defined as a design that is maximal or minimal in all but 1 objective dimension (for a classical 2 objective
problem, the extreme designs are those at the tips of the non-dominated frontier). The distance nicher enforces
a minimimum distance in each dimension.

The designs that are removed by the nicher are not discarded. They are buffered and re-inserted into the
population during the next pre-selection operation. This way, the selector is still the only operator that discards
designs and the algorithm will not waste time ”re-filling” gaps created by the nicher.

The radial nicher requires as input a vector of fractions with length equal to the number of objectives.
The elements of the vector are interpreted as percentages of the non-dominated range for each objective defining
a minimum distance to all other designs. All values should be in the range (0, 1). The minimum allowable
distance between any two designs in the performance space is the Euclidian (simple square-root-sum-of-squares
calculation) distance defined by these percentages. The distance nicher has a similar input vector requirement,
only the distance is the minimum distance in each dimension.

The max designs niche pressure applicator is designed to choose a limited number of solutions to remain
in the population. That number is specified by num designs. It does so in order to balance the tendency for
populations to grow very large and thus consuming too many computer resources. It operates by ranking designs
according to their fitness standing and a computed count of how many other designs are too close to them. Too
close is a function of the supplied niche vector, which specifies the minimum distance between any two points
in the performance space along each dimension individually. Once the designs are all ranked, the top c\ num -
designs designs are kept in the population and the remaining ones are bufferred or discarded. Note that like other
niching operators, this one will not discard an extreme design.

radial

• Keywords Area

• method

• moga

• niching type

• radial

Set niching distance to percentage of non-dominated range

Specification
Alias: none

Argument(s): REALLIST
Default: 0.01 for all objectives

Description
The radial nicher requires as input a vector of fractions with length equal to the number of objectives. The
elements of the vector are interpreted as percentages of the non-dominated range for each objective defining
a minimum distance to all other designs. All values should be in the range (0, 1). The minimum allowable
distance between any two designs in the performance space is the Euclidian (simple square-root-sum-of-squares
calculation) distance defined by these percentages. The distance nicher has a similar input vector requirement,
only the distance is the minimum distance in each dimension.

6.2. METHOD 567

distance

• Keywords Area

• method

• moga

• niching type

• distance

Enforce minimum Euclidean distance between designs

Specification
Alias: none

Argument(s): REALLIST

Description
Currently, the only niche pressure operators available are the radial nicher, the distance nicher, and the
max designs nicher. The radial niche pressure applicator works by enforcing a minimum Euclidean distance
between designs in the performance space at each generation. The algorithm proceeds by starting at the (or one of
the) extreme designs along objective dimension 0 and marching through the population removing all designs that
are too close to the current design. One exception to the rule is that the algorithm will never remove an extreme
design which is defined as a design that is maximal or minimal in all but 1 objective dimension (for a classical
2 objective problem, the extreme designs are those at the tips of the non-dominated frontier). The distance
nicher enforces a minimimum distance in each dimension.

The designs that are removed by the nicher are not discarded. They are buffered and re-inserted into the
population during the next pre-selection operation. This way, the selector is still the only operator that discards
designs and the algorithm will not waste time ”re-filling” gaps created by the nicher.

max designs

• Keywords Area

• method

• moga

• niching type

• max designs

Limit number of solutions to remain in the population

Specification
Alias: none

Argument(s): REALLIST

568 CHAPTER 6. KEYWORDS AREA

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional num designs Limit the number
of solutions

Description

The max designs niche pressure applicator is designed to choose a limited number of solutions to remain in
the population. That number is specified by num designs. It does so in order to balance the tendency for
populations to grow very large and thus consuming too many computer resources. It operates by ranking designs
according to their fitness standing and a computed count of how many other designs are too close to them. Too
close is a function of the supplied niche vector, which specifies the minimum distance between any two points
in the performance space along each dimension individually. Once the designs are all ranked, the top c\ num -
designs designs are kept in the population and the remaining ones are bufferred or discarded. Note that like other
niching operators, this one will not discard an extreme design.

num designs

• Keywords Area

• method

• moga

• niching type

• max designs

• num designs

Limit the number of solutions

Specification

Alias: none
Argument(s): INTEGER
Default: 100

Description

The max designs niche pressure applicator is designed to choose a limited number of solutions to remain in
the population. That number is specified by num designs. It does so in order to balance the tendency for
populations to grow very large and thus consuming too many computer resources. It operates by ranking designs
according to their fitness standing and a computed count of how many other designs are too close to them. Too
close is a function of the supplied niche vector, which specifies the minimum distance between any two points
in the performance space along each dimension individually. Once the designs are all ranked, the top c\ num -
designs designs are kept in the population and the remaining ones are bufferred or discarded. Note that like other
niching operators, this one will not discard an extreme design.

6.2. METHOD 569

convergence type

• Keywords Area

• method

• moga

• convergence type

Select the convergence type for JEGA methods

Specification

Alias: none
Argument(s): none
Default: average fitness tracker

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required metric tracker Track changes in
the non-dominated
frontier

Optional percent change Define the
convergence
criterion for JEGA
methods

Optional num generations Define the
convergence
criterion for JEGA
methods

Description

The two JEGA methods use different convergence types, which are described on their respective pages.
All the convergence types are modified by the optional keywords percent change and num generations.

metric tracker

• Keywords Area

• method

• moga

• convergence type

• metric tracker

Track changes in the non-dominated frontier

570 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): none
Default: metric tracker

Description
The moga converger (metric tracker) operates by tracking various changes in the non-dominated frontier
from generation to generation. When the changes occurring over a user specified number of generations fall below
a user specified threshold, the algorithm stops.

If metric tracker is specified, then a percent change and num generations must be supplied as
well. These are listed as optional keywords in the input spec.

Theory
The metric tracker converger tracks 3 metrics specific to the non-dominated frontier from generation to
generation. All 3 of these metrics are computed as percent changes between the generations. In order to compute
these metrics, the converger stores a duplicate of the non-dominated frontier at each generation for comparison to
the non-dominated frontier of the next generation.

The first metric is one that indicates how the expanse of the frontier is changing. The expanse along a given
objective is defined by the range of values existing within the non-dominated set. The expansion metric is com-
puted by tracking the extremes of the non-dominated frontier from one generation to the next. Any movement of
the extreme values is noticed and the maximum percentage movement is computed as:

Em = max over j of abs((range(j, i) - range(j, i-1)) /
range(j, i-1)) j=1,nof

where Em is the max expansion metric, j is the objective function index, i is the current generation number, and
nof is the total number of objectives. The range is the difference between the largest value along an objective and
the smallest when considering only non-dominated designs.

The second metric monitors changes in the density of the non-dominated set. The density metric is computed
as the number of non-dominated points divided by the hypervolume of the non-dominated region of space. There-
fore, changes in the density can be caused by changes in the number of non-dominated points or by changes in
size of the non-dominated space or both. The size of the non-dominated space is computed as:

Vps(i) = product over j of range(j, i) j=1,nof

where Vps(i) is the hypervolume of the non-dominated space at generation i and all other terms have the same
meanings as above.

The density of the a given non-dominated space is then:

Dps(i) = Pct(i) / Vps(i)

where Pct(i) is the number of points on the non-dominated frontier at generation i.
The percentage increase in density of the frontier is then calculated as

Cd = abs((Dps(i) - Dps(i-1)) / Dps(i-1))

where Cd is the change in density metric.
The final metric is one that monitors the ”goodness” of the non-dominated frontier. This metric is computed

by considering each design in the previous population and determining if it is dominated by any designs in the
current population. All that are determined to be dominated are counted. The metric is the ratio of the number
that are dominated to the total number that exist in the previous population.

As mentioned above, each of these metrics is a percentage. The tracker records the largest of these three at
each generation. Once the recorded percentage is below the supplied percent change for the supplied number of
generations consecutively, the algorithm is converged.

6.2. METHOD 571

percent change

• Keywords Area

• method

• moga

• convergence type

• percent change

Define the convergence criterion for JEGA methods

Specification

Alias: none
Argument(s): REAL
Default: 0.1

Description

The percent change is the threshold beneath which convergence is attained whereby it is compared to the
metric value computed.

num generations

• Keywords Area

• method

• moga

• convergence type

• num generations

Define the convergence criterion for JEGA methods

Specification

Alias: none
Argument(s): INTEGER
Default: 10

Description

The num generations is the number of generations over which the metric value should be tracked. Conver-
gence will be attained if the recorded metric is below percent change for num generations consecutive
generations.

572 CHAPTER 6. KEYWORDS AREA

postprocessor type

• Keywords Area

• method

• moga

• postprocessor type

Post process the final solution from moga

Specification

Alias: none
Argument(s): none
Default: No post-processing of solutions

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required orthogonal -
distance

Get subset of
Pareto front based
on distance

Description

The purpose of this operation is to perform any needed data manipulations on the final solution deemed necessary.
Currently the orthogonal distance is the only one. It reduces the final solution set size such that a minimum
distance in each direction exists between any two designs.

orthogonal distance

• Keywords Area

• method

• moga

• postprocessor type

• orthogonal distance

Get subset of Pareto front based on distance

Specification

Alias: none
Argument(s): REALLIST
Default: 0.01 for all objectives

6.2. METHOD 573

Description
Note that MOGA and SOGA create additional output files during execution. ”finaldata.dat” is a file that holds
the final set of Pareto optimal solutions after any post-processing is complete. ”discards.dat” holds solutions that
were discarded from the population during the course of evolution. It can often be useful to plot objective function
values from these files to visually see the Pareto front and ensure that finaldata.dat solutions dominate discards.dat
solutions. The solutions are written to these output files in the format ”Input1...InputN..Output1...OutputM”. If
MOGA is used in a hybrid optimization meta-iteration (which requires one optimal solution from each individual
optimization method to be passed to the subsequent optimization method as its starting point), the solution in the
Pareto set closest to the ”utopia” point is given as the best solution. This solution is also reported in the Dakota
output. This ”best” solution in the Pareto set has minimum distance from the utopia point. The utopia point
is defined as the point of extreme (best) values for each objective function. For example, if the Pareto front is
bounded by (1,100) and (90,2), then (1,2) is the utopia point. There will be a point in the Pareto set that has
minimum L2-norm distance to this point, for example (10,10) may be such a point. In SOGA, the solution that
minimizes the single objective function is returned as the best solution. If moga is used in meta-iteration which
may require passing multiple solutions to the next level (such as the surrogate based global or hybrid
methods), the orthogonal distance postprocessor type may be used to specify the distances between each
solution value to winnow down the solutions in the full Pareto front to a subset which will be passed to the next
iteration.

population size

• Keywords Area

• method

• moga

• population size

Set the initial population size in JEGA methods

Specification
Alias: none

Argument(s): INTEGER
Default: 50

Description
The number of designs in the initial population is specified by the population size. Note that the population-
size only sets the size of the initial population. The population size may vary in the JEGA methods according

to the type of operators chosen for a particular optimization run.

log file

• Keywords Area

• method

• moga

• log file

Specify the name of a log file

574 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): STRING
Default: JEGAGlobal.log

Description
New as of JEGA v2.0 is the introduction of the log file specification. JEGA now uses a logging library to
output messages and status to the user. JEGA can be configured at build time to log to both the console window
and a text file, one or the other, or neither. The log file input is a string name of a file into which to log. If
the build was configured without file logging in JEGA, this input is ignored. If file logging is enabled and no
log file is specified, the default file name of JEGAGlobal.log is used.

print each pop

• Keywords Area

• method

• moga

• print each pop

Print every population to a population file

Specification
Alias: none

Argument(s): none
Default: No printing

Description
New to JEGA v2.0 is the introduction of the print each pop specification. It serves as a flag and if supplied,
the population at each generation will be printed to a file named ”population<GEN#>.dat” where <GEN#> is
the number of the current generation.

initialization type

• Keywords Area

• method

• moga

• initialization type

Specify how to initialize the population

Specification
Alias: none

Argument(s): none
Default: unique random

6.2. METHOD 575

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1
simple random Create random

initial solutions
unique random Create random

initial solutions,
but enforce
uniqueness
(default)

flat file Read initial
solutions from file

Description

The initialization type defines how the initial population is created for the GA. There are three types:

1. simple random

2. unique random (default)

3. flat file

Setting the size for the flat file initializer has the effect of requiring a minimum number of designs to
create. If this minimum number has not been created once the files are all read, the rest are created using the
unique random initializer and then the simple random initializer if necessary.

simple random

• Keywords Area

• method

• moga

• initialization type

• simple random

Create random initial solutions

Specification

Alias: none
Argument(s): none

Description

simple random creates initial solutions with random variable values according to a uniform random number
distribution. It gives no consideration to any previously generated designs.

576 CHAPTER 6. KEYWORDS AREA

unique random

• Keywords Area

• method

• moga

• initialization type

• unique random

Create random initial solutions, but enforce uniqueness (default)

Specification
Alias: none

Argument(s): none

Description
unique random is the same as simple random, except that when a new solution is generated, it is checked
against the rest of the solutions. If it duplicates any of them, it is rejected.

flat file

• Keywords Area

• method

• moga

• initialization type

• flat file

Read initial solutions from file

Specification
Alias: none

Argument(s): STRING

Description
flat file allows the initial population to be read from a flat file. If flat file is specified, a file name must
be given.

Variables can be delimited in the flat file in any way you see fit with a few exceptions. The delimiter must be
the same on any given line of input with the exception of leading and trailing whitespace. So a line could look
like: 1.1, 2.2 ,3.3 for example but could not look like: 1.1, 2.2 3.3. The delimiter can vary from line to line within
the file which can be useful if data from multiple sources is pasted into the same input file. The delimiter can be
any string that does not contain any of the characters .+-dDeE or any of the digits 0-9. The input will be read until
the end of the file. The algorithm will discard any configurations for which it was unable to retrieve at least the

6.2. METHOD 577

number of design variables. The objective and constraint entries are not required but if ALL are present, they will
be recorded and the design will be tagged as evaluated so that evaluators may choose not to re-evaluate them.

Setting the size for this initializer has the effect of requiring a minimum number of designs to create. If this
minimum number has not been created once the files are all read, the rest are created using the unique random
initializer and then the simple random initializer if necessary.

crossover type

• Keywords Area

• method

• moga

• crossover type

Select a crossover type for JEGA methods

Specification
Alias: none

Argument(s): none
Default: shuffle random

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1

multi point binary Use bit switching
for crossover
events

multi point -
parameterized -
binary

Use bit switching
to crossover each
design variable

multi point real Perform crossover
in real valued
genome

shuffle random Perform crossover
by choosing design
variable(s)

Optional crossover rate Specify the
probability of a
crossover event

Description
There are many crossover types available. multi point binary crossover requires an integer number, N, of
crossover points. This crossover type performs a bit switching crossover at N crossover points in the binary en-
coded genome of two designs. Thus, crossover may occur at any point along a solution chromosome (in the middle
of a gene representing a design variable, for example). multi point parameterized binary crossover
is similar in that it performs a bit switching crossover routine at N crossover points. However, this crossover
type performs crossover on each design variable individually. So the individual chromosomes are crossed at N
locations. multi point real crossover performs a variable switching crossover routing at N crossover points
in the real real valued genome of two designs. In this scheme, crossover only occurs between design variables

578 CHAPTER 6. KEYWORDS AREA

(chromosomes). Note that the standard solution chromosome representation in the JEGA algorithm is real en-
coded and can handle integer or real design variables. For any crossover types that use a binary representation,
real variables are converted to long integers by multiplying the real number by 10∧6 and then truncating. Note
that this assumes a precision of only six decimal places. Discrete variables are represented as integers (indices
within a list of possible values) within the algorithm and thus require no special treatment by the binary operators.

The final crossover type is shuffle random. This crossover type performs crossover by choosing design
variables at random from a specified number of parents enough times that the requested number of children are
produced. For example, consider the case of 3 parents producing 2 children. This operator would go through and
for each design variable, select one of the parents as the donor for the child. So it creates a random shuffle of the
parent design variable values. The relative numbers of children and parents are controllable to allow for as much
mixing as desired. The more parents involved, the less likely that the children will wind up exact duplicates of the
parents.

All crossover types take a crossover rate. The crossover rate is used to calculate the number of crossover
operations that take place. The number of crossovers is equal to the rate ∗ population size.

multi point binary

• Keywords Area

• method

• moga

• crossover type

• multi point binary

Use bit switching for crossover events

Specification

Alias: none
Argument(s): INTEGER

Description

There are many crossover types available. multi point binary crossover requires an integer number, N, of
crossover points. This crossover type performs a bit switching crossover at N crossover points in the binary en-
coded genome of two designs. Thus, crossover may occur at any point along a solution chromosome (in the middle
of a gene representing a design variable, for example). multi point parameterized binary crossover
is similar in that it performs a bit switching crossover routine at N crossover points. However, this crossover
type performs crossover on each design variable individually. So the individual chromosomes are crossed at N
locations. multi point real crossover performs a variable switching crossover routing at N crossover points
in the real real valued genome of two designs. In this scheme, crossover only occurs between design variables
(chromosomes). Note that the standard solution chromosome representation in the JEGA algorithm is real en-
coded and can handle integer or real design variables. For any crossover types that use a binary representation,
real variables are converted to long integers by multiplying the real number by 10∧6 and then truncating. Note
that this assumes a precision of only six decimal places. Discrete variables are represented as integers (indices
within a list of possible values) within the algorithm and thus require no special treatment by the binary operators.

6.2. METHOD 579

multi point parameterized binary

• Keywords Area

• method

• moga

• crossover type

• multi point parameterized binary

Use bit switching to crossover each design variable

Specification
Alias: none

Argument(s): INTEGER

Description
There are many crossover types available. multi point binary crossover requires an integer number, N, of
crossover points. This crossover type performs a bit switching crossover at N crossover points in the binary en-
coded genome of two designs. Thus, crossover may occur at any point along a solution chromosome (in the middle
of a gene representing a design variable, for example). multi point parameterized binary crossover
is similar in that it performs a bit switching crossover routine at N crossover points. However, this crossover
type performs crossover on each design variable individually. So the individual chromosomes are crossed at N
locations. multi point real crossover performs a variable switching crossover routing at N crossover points
in the real real valued genome of two designs. In this scheme, crossover only occurs between design variables
(chromosomes). Note that the standard solution chromosome representation in the JEGA algorithm is real en-
coded and can handle integer or real design variables. For any crossover types that use a binary representation,
real variables are converted to long integers by multiplying the real number by 10∧6 and then truncating. Note
that this assumes a precision of only six decimal places. Discrete variables are represented as integers (indices
within a list of possible values) within the algorithm and thus require no special treatment by the binary operators.

multi point real

• Keywords Area

• method

• moga

• crossover type

• multi point real

Perform crossover in real valued genome

Specification
Alias: none

Argument(s): INTEGER

580 CHAPTER 6. KEYWORDS AREA

Description
There are many crossover types available. multi point binary crossover requires an integer number, N, of
crossover points. This crossover type performs a bit switching crossover at N crossover points in the binary en-
coded genome of two designs. Thus, crossover may occur at any point along a solution chromosome (in the middle
of a gene representing a design variable, for example). multi point parameterized binary crossover
is similar in that it performs a bit switching crossover routine at N crossover points. However, this crossover
type performs crossover on each design variable individually. So the individual chromosomes are crossed at N
locations. multi point real crossover performs a variable switching crossover routing at N crossover points
in the real real valued genome of two designs. In this scheme, crossover only occurs between design variables
(chromosomes). Note that the standard solution chromosome representation in the JEGA algorithm is real en-
coded and can handle integer or real design variables. For any crossover types that use a binary representation,
real variables are converted to long integers by multiplying the real number by 10∧6 and then truncating. Note
that this assumes a precision of only six decimal places. Discrete variables are represented as integers (indices
within a list of possible values) within the algorithm and thus require no special treatment by the binary operators.

shuffle random

• Keywords Area

• method

• moga

• crossover type

• shuffle random

Perform crossover by choosing design variable(s)

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional num parents Number of parents
in random shuffle
crossover

Optional num offspring Number of
offspring in
random shuffle
crossover

Description
The final crossover type is shuffle random. This crossover type performs crossover by choosing design
variables at random from a specified number of parents enough times that the requested number of children are
produced. For example, consider the case of 3 parents producing 2 children. This operator would go through and
for each design variable, select one of the parents as the donor for the child. So it creates a random shuffle of the
parent design variable values. The relative numbers of children and parents are controllable to allow for as much
mixing as desired. The more parents involved, the less likely that the children will wind up exact duplicates of the
parents.

6.2. METHOD 581

num parents

• Keywords Area

• method

• moga

• crossover type

• shuffle random

• num parents

Number of parents in random shuffle crossover

Specification

Alias: none
Argument(s): INTEGER
Default: 2

Description

Number of parents in random shuffle crossover

num offspring

• Keywords Area

• method

• moga

• crossover type

• shuffle random

• num offspring

Number of offspring in random shuffle crossover

Specification

Alias: none
Argument(s): INTEGER
Default: 2

Description

Number of offspring in random shuffle crossover

582 CHAPTER 6. KEYWORDS AREA

crossover rate

• Keywords Area

• method

• moga

• crossover type

• crossover rate

Specify the probability of a crossover event

Specification
Alias: none

Argument(s): REAL
Default: 0.8

Description
The crossover type controls what approach is employed for combining parent genetic information to cre-
ate offspring, and the crossover rate specifies the probability of a crossover operation being performed to
generate a new offspring. The SCOLIB EA method supports three forms of crossover, two point, blend, and
uniform, which generate a new individual through combinations of two parent individuals. Two-point crossover
divides each parent into three regions, where offspring are created from the combination of the middle region from
one parent and the end regions from the other parent. Since the SCOLIB EA does not utilize bit representations
of variable values, the crossover points only occur on coordinate boundaries, never within the bits of a particular
coordinate. Uniform crossover creates offspring through random combination of coordinates from the two par-
ents. Blend crossover generates a new individual randomly along the multidimensional vector connecting the two
parents.

mutation type

• Keywords Area

• method

• moga

• mutation type

Select a mutation type for JEGA methods

Specification
Alias: none

Argument(s): none
Default: replace uniform

6.2. METHOD 583

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1

bit random Mutate by flipping
a random bit

replace uniform Use uniformly
distributed value
over range of
parameter

offset normal Set mutation offset
to use a normal
distribution

offset cauchy Use a Cauchy
distribution for the
mutation offset

offset uniform Set mutation offset
to use a uniform
distribution

Optional mutation rate Set probability of a
mutation

Description

Five mutation types are available for selection by keyword: replace uniform, bit random, offset -
cauchy, offset normal, and offset uniform. They are described in greater detail on their respective
keyword pages.

The offset ∗ mutators all act by adding a random ”offset” to a variable value. The random amount has a
mean of zero in all cases. The size of the offset is controlled using the mutation scale keyword, which is
interpreted differently for each offset ∗ type.

The rate of mutations for all types is controlled suing the mutation rate. The rate is applied differently
in each mutation type.

bit random

• Keywords Area

• method

• moga

• mutation type

• bit random

Mutate by flipping a random bit

Specification

Alias: none
Argument(s): none

584 CHAPTER 6. KEYWORDS AREA

Description
The bit random mutator introduces random variation by first converting a randomly chosen variable of a ran-
domly chosen design into a binary string. It then flips a randomly chosen bit in the string from a 1 to a 0 or visa
versa. In this mutation scheme, the resulting value has more probability of being similar to the original value.

replace uniform

• Keywords Area

• method

• moga

• mutation type

• replace uniform

Use uniformly distributed value over range of parameter

Specification
Alias: none

Argument(s): none

Description
replace uniform introduces random variation by first randomly choosing a design variable of a randomly
selected design and reassigning it to a random valid value for that variable. No consideration of the current value
is given when determining the new value.

offset normal

• Keywords Area

• method

• moga

• mutation type

• offset normal

Set mutation offset to use a normal distribution

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional mutation scale Scales mutation
across range of
parameter

6.2. METHOD 585

Description
The offset normal mutator introduces random variation by adding a Gaussian random amount to a variable
value. The random amount has a standard deviation dependent on the mutation scale.

mutation scale

• Keywords Area

• method

• moga

• mutation type

• offset normal

• mutation scale

Scales mutation across range of parameter

Specification
Alias: none

Argument(s): REAL
Default: 0.15

Description
The mutation scale is a fraction in the range [0, 1] and is meant to help control the amount of variation that takes
place when a variable is mutated. Its behavior depends on the selected mutation type. For offset normal
and offset cauchy, mutation scale is multipled by the range of the variable being mutated to obtain the
standard deviation of the offset. For offset uniform, the range of possible deviation amounts is +/- 1/2 ∗
(mutation scale ∗ variable range).

offset cauchy

• Keywords Area

• method

• moga

• mutation type

• offset cauchy

Use a Cauchy distribution for the mutation offset

Specification
Alias: none

Argument(s): none

586 CHAPTER 6. KEYWORDS AREA

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional mutation scale Scales mutation
across range of
parameter

Description
The offset cauchy mutator introduces random variation by adding a Cauchy random amount to a variable
value. The random amount has a standard deviation dependent on the mutation scale.

mutation scale

• Keywords Area

• method

• moga

• mutation type

• offset cauchy

• mutation scale

Scales mutation across range of parameter

Specification
Alias: none

Argument(s): REAL
Default: 0.15

Description
The mutation scale is a fraction in the range [0, 1] and is meant to help control the amount of variation that takes
place when a variable is mutated. Its behavior depends on the selected mutation type. For offset normal
and offset cauchy, mutation scale is multipled by the range of the variable being mutated to obtain the
standard deviation of the offset. For offset uniform, the range of possible deviation amounts is +/- 1/2 ∗
(mutation scale ∗ variable range).

offset uniform

• Keywords Area

• method

• moga

• mutation type

• offset uniform

Set mutation offset to use a uniform distribution

6.2. METHOD 587

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional mutation scale Scales mutation
across range of
parameter

Description
The offset uniform mutator introduces random variation by adding a uniform random amount to a variable
value. The random amount depends on the mutation scale.

mutation scale

• Keywords Area

• method

• moga

• mutation type

• offset uniform

• mutation scale

Scales mutation across range of parameter

Specification
Alias: none

Argument(s): REAL
Default: 0.15

Description
The mutation scale is a fraction in the range [0, 1] and is meant to help control the amount of variation that takes
place when a variable is mutated. Its behavior depends on the selected mutation type. For offset normal
and offset cauchy, mutation scale is multipled by the range of the variable being mutated to obtain the
standard deviation of the offset. For offset uniform, the range of possible deviation amounts is +/- 1/2 ∗
(mutation scale ∗ variable range).

mutation rate

• Keywords Area

• method

• moga

• mutation type

588 CHAPTER 6. KEYWORDS AREA

• mutation rate

Set probability of a mutation

Specification

Alias: none
Argument(s): REAL
Default: 0.08

Description

All mutation types have a mutation rate, which controls the number of mutations performed. For replace-
uniform and all the offset ∗ types, the number of mutations performed is the product of mutation -
rate and population size. For bit random, it’s the product of the mutation rate, number of design
variables, and population size

seed

• Keywords Area

• method

• moga

• seed

Seed of the random number generator

Specification

Alias: none
Argument(s): INTEGER
Default: system-generated (non-repeatable)

Description

The random seed control provides a mechanism for making a stochastic method repeatable. That is, the use of
the same random seed in identical studies will generate identical results.

Default Behavior
If not specified, the seed is randomly generated.
Expected Output
If seed is specified, a stochastic study will generate identical results when repeated using the same seed

value. Otherwise, results are not guaranteed to be the same.
Usage Tips
If a stochastic study was run without seed specified, and the user later wishes to repeat the study using the

same seed, the value of the seed used in the original study can be found in the output Dakota prints to the screen.
That value can then be added to the Dakota input file.

6.2. METHOD 589

Examples
method

sampling
sample_type lhs
samples = 10
seed = 15347

linear inequality constraint matrix

• Keywords Area

• method

• moga

• linear inequality constraint matrix

Define coefficients of the linear inequality constraints

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: no linear inequality constraints

Description
In the inequality case, the constraint matrix A provides coefficients for the variables in the two-sided formulation:

al ≤ Ax ≤ au

Where the bounds are optionally specified by linear inequality lower bounds, and linear -
inequality upper bounds. The bounds, if not specified, will default to -infinity, and 0, respectively, re-
sulting in one-sided inequalities of the form

Ax ≤ 0.0

.

linear inequality lower bounds

• Keywords Area

• method

• moga

• linear inequality lower bounds

Define lower bounds for the linear inequality constraint

590 CHAPTER 6. KEYWORDS AREA

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = -infinity

Description
In the inequality case, the lower al and upper au bounds provide constraint limits for the two-sided formulation:

al ≤ Ax ≤ au

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective functions), the default linear inequality constraint

bounds are selected so that one-sided inequalities of the form

Ax ≤ 0.0

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since -DBL MAX < -bigRealBoundSize).

linear inequality upper bounds

• Keywords Area

• method

• moga

• linear inequality upper bounds

Define upper bounds for the linear inequality constraint

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 0 .

6.2. METHOD 591

Description
In the inequality case, the lower al and upper au bounds provide constraint limits for the two-sided formulation:

al ≤ Ax ≤ au

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective functions), the default linear inequality constraint

bounds are selected so that one-sided inequalities of the form

Ax ≤ 0.0

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since -DBL MAX < -bigRealBoundSize).

linear inequality scale types

• Keywords Area

• method

• moga

• linear inequality scale types

Specify how each linear inequality constraint is scaled

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): STRINGLIST
Default: vector values = ’none’

Description
linear inequality scale types provide strings specifying the scaling type for each linear inequality
constraint, in methods that support scaling.

An entry may be selected for each constraint. The options are:

• ’none’ - no scaling

• ’value’ - characteristic value if this is chosen, then linear inequality scales must be specified

592 CHAPTER 6. KEYWORDS AREA

• ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling
on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU

aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear inequality scales

• Keywords Area

• method

• moga

• linear inequality scales

Define the characteristic values to scale linear inequalities

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

Description
Each entry in linear inequality scales may be a user-specified, nonzero characteristic value to be used
in scaling each constraint.

Behavior depends on the choice of linear inequality scale type :

• scale type - behavior of linear inequality scales

• ’none’ - ignored

6.2. METHOD 593

• ’value’ - required

• ’auto’ - optional

If a single real value is specified it will apply to all components of the constraint.
Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling

on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear equality constraint matrix

• Keywords Area

• method

• moga

• linear equality constraint matrix

Define coefficients of the linear equalities

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: no linear equality constraints

Description
In the equality case, the constraint matrix A provides coefficients for the variables on the left hand side of:

Ax = at

594 CHAPTER 6. KEYWORDS AREA

linear equality targets

• Keywords Area

• method

• moga

• linear equality targets

Define target values for the linear equality constraints

Topics

This keyword is related to the topics:

• linear constraints

Specification

Alias: none
Argument(s): REALLIST
Default: vector values = 0 .

Description

In the equality case, the targets at provide the equality constraint right hand sides:

Ax = at

.
If this is not specified, the defaults for the equality constraint targets enforce a value of 0. for each constraint:

Ax = 0.0

linear equality scale types

• Keywords Area

• method

• moga

• linear equality scale types

Specify how each linear equality constraint is scaled

Topics

This keyword is related to the topics:

• linear constraints

6.2. METHOD 595

Specification
Alias: none

Argument(s): STRINGLIST
Default: vector values = ’none’

Description
linear equality scale types provide strings specifying the scaling type for each linear equality con-
straint, in methods that support scaling.

An entry may be selected for each constraint. The options are:

• ’none’ - no scaling

• ’value’ - characteristic value if this is chosen, then linear equality scales must be specified

• ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear equality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear equality scales

• Keywords Area

• method

• moga

• linear equality scales

Define the characteristic values to scale linear equalities

Topics
This keyword is related to the topics:

• linear constraints

596 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

Description
Each entry in linear equality scales may be a user-specified, nonzero characteristic value to be used in
scaling each constraint.

See the scaling page for details on how to use this keyword.
Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

model pointer

• Keywords Area

• method

• moga

• model pointer

Identifier for model block to be used by a method

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

6.2. METHOD 597

Description

The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses

598 CHAPTER 6. KEYWORDS AREA

response_functions = 3
no_gradients
no_hessians

6.2.38 soga
• Keywords Area

• method

• soga

Single-objective Genetic Algorithm (a.k.a Evolutionary Algorithm)

Topics
This keyword is related to the topics:

• package jega

• global optimization methods

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional fitness type Select the fitness
type for JEGA
methods

Optional replacement type Select a
replacement type
for JEGA methods

Optional convergence type Select the
convergence type
for JEGA methods

Optional population size Set the initial
population size in
JEGA methods

Optional log file Specify the name
of a log file

Optional print each pop Print every
population to a
population file

6.2. METHOD 599

Optional initialization type Specify how to
initialize the
population

Optional crossover type Select a crossover
type for JEGA
methods

Optional mutation type Select a mutation
type for JEGA
methods

Optional seed Seed of the random
number generator

Optional linear inequality -
constraint matrix

Define coefficients
of the linear
inequality
constraints

Optional linear inequality -
lower bounds

Define lower
bounds for the
linear inequality
constraint

Optional linear inequality -
upper bounds

Define upper
bounds for the
linear inequality
constraint

Optional linear inequality -
scale types

Specify how each
linear inequality
constraint is scaled

Optional linear inequality -
scales

Define the
characteristic
values to scale
linear inequalities

Optional linear equality -
constraint matrix

Define coefficients
of the linear
equalities

Optional linear equality -
targets

Define target
values for the
linear equality
constraints

Optional linear equality -
scale types

Specify how each
linear equality
constraint is scaled

Optional linear equality -
scales

Define the
characteristic
values to scale
linear equalities

600 CHAPTER 6. KEYWORDS AREA

Optional model pointer Identifier for
model block to be
used by a method

Description
soga stands for Single-objective Genetic Algorithm, which is a global optimization method that supports general
constraints and a mixture of real and discrete variables. soga is part of the JEGA library.

Constraints soga can utilize linear constraints.
Configuration
The genetic algorithm configurations are:

1. fitness

2. replacement

3. convergence

4. initialization

5. crossover

6. mutation

7. population size

The pool of potential members is the current population and the current set of offspring. Choice of fitness
assessors is strongly related to the type of replacement algorithm being used and can have a profound effect on
the solutions selected for the next generation.

Stopping Criteria
The soga method respects the max iterations and max function evaluations method indepen-

dent controls to provide integer limits for the maximum number of generations and function evaluations, respec-
tively.

The algorithm also stops when convergence is reached. This involves repeated assessment of the algorithm’s
progress in solving the problem, until some criterion is met.

Outputs The soga method respects the output method independent control to vary the amount of infor-
mation presented to the user during execution.

The final results are written to the Dakota tabular output. Additional information is also available - see the
log file and print each pop keywords.

Theory
The basic steps of the soga algorithm are as follows:

1. Initialize the population

2. Evaluate the population (calculate the values of the objective function and constraints for each population
member)

3. Loop until converged, or stopping criteria reached

(a) Perform crossover

(b) Perform mutation

6.2. METHOD 601

(c) Evaluate the new population
(d) Assess the fitness of each member in the population
(e) Replace the population with members selected to continue in the next generation
(f) Test for convergence

See Also
These keywords may also be of interest:

• moga

fitness type

• Keywords Area

• method

• soga

• fitness type

Select the fitness type for JEGA methods

Specification
Alias: none

Argument(s): none
Default: merit function

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required merit function Balance goals of
reducing objective
function and
satisfying
constraints

Optional constraint penalty Multiplier for the
penalty function

Description
The two JEGA methods use different fitness types, which are described on their respective pages.

merit function

• Keywords Area

• method

• soga

• fitness type

• merit function

Balance goals of reducing objective function and satisfying constraints

602 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): none

Description
A merit function is a function in constrained optimization that attempts to provide joint progress toward
reducing the objective function and satisfying the constraints.

constraint penalty

• Keywords Area

• method

• soga

• fitness type

• constraint penalty

Multiplier for the penalty function

Specification
Alias: none

Argument(s): REAL
Default: 1.0

Description
The merit function fitness assessor uses an exterior penalty function formulation to penalize infeasible de-
signs. The specification allows the input of a constraint penalty which is the multiplier to use on the
constraint violations.

replacement type

• Keywords Area

• method

• soga

• replacement type

Select a replacement type for JEGA methods

Specification
Alias: none

Argument(s): none
Default: elitist

6.2. METHOD 603

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1

elitist Use the best
designs to form a
new population

favor feasible Prioritize feasible
designs

roulette wheel Replace population
unique roulette -
wheel

Replace population

Description
Replace the population with members selected to continue in the next generation. The pool of potential members
is the current population and the current set of offspring. The replacement type of roulette wheel or
unique roulette wheel may be used either with MOGA or SOGA problems however they are not recom-
mended for use with MOGA. Given that the only two fitness assessors for MOGA are the layer rank and
domination count, the recommended selector is the below limit selector. The below limit replace-
ment will only keep designs that are dominated by fewer than a limiting number of other designs.

In roulette wheel replacement, each design is conceptually allotted a portion of a wheel proportional to
its fitness relative to the fitnesses of the other Designs. Then, portions of the wheel are chosen at random and the
design occupying those portions are duplicated into the next population. Those Designs allotted larger portions
of the wheel are more likely to be selected (potentially many times). unique roulette wheel replacement
is the same as roulette wheel replacement, with the exception that a design may only be selected once. The
below limit selector attempts to keep all designs for which the negated fitness is below a certain limit. The
values are negated to keep with the convention that higher fitness is better. The inputs to the below limit
selector are the limit as a real value, and a shrinkage percentage as a real value. The shrinkage -
percentage defines the minimum amount of selections that will take place if enough designs are available. It
is interpreted as a percentage of the population size that must go on to the subsequent generation. To enforce this,
below limit makes all the selections it would make anyway and if that is not enough, it takes the remaining
that it needs from the best of what is left (effectively raising its limit as far as it must to get the minimum number
of selections). It continues until it has made enough selections. The shrinkage percentage is designed to
prevent extreme decreases in the population size at any given generation, and thus prevent a big loss of genetic
diversity in a very short time. Without a shrinkage limit, a small group of ”super” designs may appear and quickly
cull the population down to a size on the order of the limiting value. In this case, all the diversity of the population
is lost and it is expensive to re-diversify and spread the population. The

The replacement type for a SOGA may be roulette wheel, unique roulette wheel, elitist,
or favor feasible. The elitist selector simply chooses the required number of designs taking the most
fit. For example, if 100 selections are requested, then the top 100 designs as ranked by fitness will be selected
and the remaining will be discarded. The favor feasible replacement type first considers feasibility as a
selection criteria. If that does not produce a ”winner” then it moves on to considering fitness value. Because of
this, any fitness assessor used with the favor feasible selector must only account objectives in the creation
of fitness. Therefore, there is such a fitness assessor and it’s use is enforced when the favor feasible selector
is chosen. In that case, and if the output level is set high enough, a message will be presented indicating that the
weighted sum only fitness assessor will be used.

elitist

• Keywords Area

• method

604 CHAPTER 6. KEYWORDS AREA

• soga

• replacement type

• elitist

Use the best designs to form a new population

Specification
Alias: none

Argument(s): none

Description
The elitist (default) setting creates a new population using (a) the replacement size best individuals
from the current population, (b) and population size - replacement size individuals randomly selected
from the newly generated individuals. It is possible in this case to lose a good solution from the newly generated
individuals if it is not randomly selected for replacement; however, the default new solutions generated
value is set such that the entire set of newly generated individuals will be selected for replacement.

favor feasible

• Keywords Area

• method

• soga

• replacement type

• favor feasible

Prioritize feasible designs

Specification
Alias: none

Argument(s): none

Description
This replacement operator will always prefer a more feasible design to a less feasible one. Beyond that, it favors
solutions based on an assigned fitness value which must have been installed by the weighted sum only fitness
assessor.

The favor feasible replacement type first considers feasibility as a selection criteria. If that does not
produce a ”winner” then it moves on to considering fitness value. Because of this, any fitness assessor used with
the favor feasible selector must only account objectives in the creation of fitness. Therefore, there is such
a fitness assessor and it’s use is enforced when the favor feasible selector is chosen. In that case, and if the
output level is set high enough, a message will be presented indicating that the weighted sum only fitness
assessor will be used.

6.2. METHOD 605

roulette wheel

• Keywords Area

• method

• soga

• replacement type

• roulette wheel

Replace population

Specification

Alias: none
Argument(s): none

Description

Replace the population with members selected to continue in the next generation. The pool of potential members
is the current population and the current set of offspring. The replacement type of roulette wheel
or unique roulette wheel may be used either with MOGA or SOGA problems however they are not rec-
ommended for use with MOGA. Given that the only two fitness assessors for MOGA are the layer rank
and domination count, the recommended selector is the below limit selector. The below limit re-
placement will only keep designs that are dominated by fewer than a limiting number of other designs. The
replacement type of favor feasible is specific to a SOGA. This replacement operator will always pre-
fer a more feasible design to a less feasible one. Beyond that, it favors solutions based on an assigned fitness value
which must have been installed by the weighted sum only fitness assessor (see the discussion below).

unique roulette wheel

• Keywords Area

• method

• soga

• replacement type

• unique roulette wheel

Replace population

Specification

Alias: none
Argument(s): none

606 CHAPTER 6. KEYWORDS AREA

Description
Replace the population with members selected to continue in the next generation. The pool of potential members
is the current population and the current set of offspring. The replacement type of roulette wheel
or unique roulette wheel may be used either with MOGA or SOGA problems however they are not rec-
ommended for use with MOGA. Given that the only two fitness assessors for MOGA are the layer rank
and domination count, the recommended selector is the below limit selector. The below limit re-
placement will only keep designs that are dominated by fewer than a limiting number of other designs. The
replacement type of favor feasible is specific to a SOGA. This replacement operator will always pre-
fer a more feasible design to a less feasible one. Beyond that, it favors solutions based on an assigned fitness value
which must have been installed by the weighted sum only fitness assessor (see the discussion below).

convergence type

• Keywords Area

• method

• soga

• convergence type

Select the convergence type for JEGA methods

Specification
Alias: none

Argument(s): none
Default: average fitness tracker

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 best fitness tracker Tracks the best
fitness of the
population

average fitness -
tracker

Tracks the average
fitness of the
population

Description
The two JEGA methods use different convergence types, which are described on their respective pages.

All the convergence types are modified by the optional keywords percent change and num generations.

best fitness tracker

• Keywords Area

• method

• soga

• convergence type

6.2. METHOD 607

• best fitness tracker

Tracks the best fitness of the population

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional percent change Define the
convergence
criterion for JEGA
methods

Optional num generations Define the
convergence
criterion for JEGA
methods

Description
The best fitness tracker tracks the best fitness in the population. Convergence occurs after num -
generations has passed and there has been less than percent change in the best fitness value. The percent
change can be as low as 0% in which case there must be no change at all over the number of generations.

See Also
These keywords may also be of interest:

• average fitness tracker

percent change

• Keywords Area

• method

• soga

• convergence type

• best fitness tracker

• percent change

Define the convergence criterion for JEGA methods

Specification
Alias: none

Argument(s): REAL
Default: 0.1

608 CHAPTER 6. KEYWORDS AREA

Description
The percent change is the threshold beneath which convergence is attained whereby it is compared to the
metric value computed.

num generations

• Keywords Area

• method

• soga

• convergence type

• best fitness tracker

• num generations

Define the convergence criterion for JEGA methods

Specification
Alias: none

Argument(s): INTEGER
Default: 10

Description
The num generations is the number of generations over which the metric value should be tracked. Conver-
gence will be attained if the recorded metric is below percent change for num generations consecutive
generations.

average fitness tracker

• Keywords Area

• method

• soga

• convergence type

• average fitness tracker

Tracks the average fitness of the population

Specification
Alias: none

Argument(s): none

6.2. METHOD 609

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional percent change Define the
convergence
criterion for JEGA
methods

Optional num generations Define the
convergence
criterion for JEGA
methods

Description

The convergence type called average fitness tracker keeps track of the average fitness in a popu-
lation. If this average fitness does not change more than percent change over some number of generations,
num generations, then the solution is reported as converged and the algorithm terminates.

See Also

These keywords may also be of interest:

• best fitness tracker

percent change

• Keywords Area

• method

• soga

• convergence type

• average fitness tracker

• percent change

Define the convergence criterion for JEGA methods

Specification

Alias: none
Argument(s): REAL
Default: 0.1

Description

The percent change is the threshold beneath which convergence is attained whereby it is compared to the
metric value computed.

610 CHAPTER 6. KEYWORDS AREA

num generations

• Keywords Area

• method

• soga

• convergence type

• average fitness tracker

• num generations

Define the convergence criterion for JEGA methods

Specification
Alias: none

Argument(s): INTEGER
Default: 10

Description
The num generations is the number of generations over which the metric value should be tracked. Conver-
gence will be attained if the recorded metric is below percent change for num generations consecutive
generations.

population size

• Keywords Area

• method

• soga

• population size

Set the initial population size in JEGA methods

Specification
Alias: none

Argument(s): INTEGER
Default: 50

Description
The number of designs in the initial population is specified by the population size. Note that the population-
size only sets the size of the initial population. The population size may vary in the JEGA methods according

to the type of operators chosen for a particular optimization run.

6.2. METHOD 611

log file

• Keywords Area

• method

• soga

• log file

Specify the name of a log file

Specification

Alias: none
Argument(s): STRING
Default: JEGAGlobal.log

Description

New as of JEGA v2.0 is the introduction of the log file specification. JEGA now uses a logging library to
output messages and status to the user. JEGA can be configured at build time to log to both the console window
and a text file, one or the other, or neither. The log file input is a string name of a file into which to log. If
the build was configured without file logging in JEGA, this input is ignored. If file logging is enabled and no
log file is specified, the default file name of JEGAGlobal.log is used.

print each pop

• Keywords Area

• method

• soga

• print each pop

Print every population to a population file

Specification

Alias: none
Argument(s): none
Default: No printing

Description

New to JEGA v2.0 is the introduction of the print each pop specification. It serves as a flag and if supplied,
the population at each generation will be printed to a file named ”population<GEN#>.dat” where <GEN#> is
the number of the current generation.

612 CHAPTER 6. KEYWORDS AREA

initialization type

• Keywords Area

• method

• soga

• initialization type

Specify how to initialize the population

Specification
Alias: none

Argument(s): none
Default: unique random

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1
simple random Create random

initial solutions
unique random Create random

initial solutions,
but enforce
uniqueness
(default)

flat file Read initial
solutions from file

Description
The initialization type defines how the initial population is created for the GA. There are three types:

1. simple random

2. unique random (default)

3. flat file

Setting the size for the flat file initializer has the effect of requiring a minimum number of designs to
create. If this minimum number has not been created once the files are all read, the rest are created using the
unique random initializer and then the simple random initializer if necessary.

simple random

• Keywords Area

• method

• soga

• initialization type

• simple random

Create random initial solutions

6.2. METHOD 613

Specification
Alias: none

Argument(s): none

Description
simple random creates initial solutions with random variable values according to a uniform random number
distribution. It gives no consideration to any previously generated designs.

unique random

• Keywords Area

• method

• soga

• initialization type

• unique random

Create random initial solutions, but enforce uniqueness (default)

Specification
Alias: none

Argument(s): none

Description
unique random is the same as simple random, except that when a new solution is generated, it is checked
against the rest of the solutions. If it duplicates any of them, it is rejected.

flat file

• Keywords Area

• method

• soga

• initialization type

• flat file

Read initial solutions from file

Specification
Alias: none

Argument(s): STRING

614 CHAPTER 6. KEYWORDS AREA

Description

flat file allows the initial population to be read from a flat file. If flat file is specified, a file name must
be given.

Variables can be delimited in the flat file in any way you see fit with a few exceptions. The delimiter must be
the same on any given line of input with the exception of leading and trailing whitespace. So a line could look
like: 1.1, 2.2 ,3.3 for example but could not look like: 1.1, 2.2 3.3. The delimiter can vary from line to line within
the file which can be useful if data from multiple sources is pasted into the same input file. The delimiter can be
any string that does not contain any of the characters .+-dDeE or any of the digits 0-9. The input will be read until
the end of the file. The algorithm will discard any configurations for which it was unable to retrieve at least the
number of design variables. The objective and constraint entries are not required but if ALL are present, they will
be recorded and the design will be tagged as evaluated so that evaluators may choose not to re-evaluate them.

Setting the size for this initializer has the effect of requiring a minimum number of designs to create. If this
minimum number has not been created once the files are all read, the rest are created using the unique random
initializer and then the simple random initializer if necessary.

crossover type

• Keywords Area

• method

• soga

• crossover type

Select a crossover type for JEGA methods

Specification

Alias: none
Argument(s): none
Default: shuffle random

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1

multi point binary Use bit switching
for crossover
events

multi point -
parameterized -
binary

Use bit switching
to crossover each
design variable

multi point real Perform crossover
in real valued
genome

shuffle random Perform crossover
by choosing design
variable(s)

Optional crossover rate Specify the
probability of a
crossover event

6.2. METHOD 615

Description
There are many crossover types available. multi point binary crossover requires an integer number, N, of
crossover points. This crossover type performs a bit switching crossover at N crossover points in the binary en-
coded genome of two designs. Thus, crossover may occur at any point along a solution chromosome (in the middle
of a gene representing a design variable, for example). multi point parameterized binary crossover
is similar in that it performs a bit switching crossover routine at N crossover points. However, this crossover
type performs crossover on each design variable individually. So the individual chromosomes are crossed at N
locations. multi point real crossover performs a variable switching crossover routing at N crossover points
in the real real valued genome of two designs. In this scheme, crossover only occurs between design variables
(chromosomes). Note that the standard solution chromosome representation in the JEGA algorithm is real en-
coded and can handle integer or real design variables. For any crossover types that use a binary representation,
real variables are converted to long integers by multiplying the real number by 10∧6 and then truncating. Note
that this assumes a precision of only six decimal places. Discrete variables are represented as integers (indices
within a list of possible values) within the algorithm and thus require no special treatment by the binary operators.

The final crossover type is shuffle random. This crossover type performs crossover by choosing design
variables at random from a specified number of parents enough times that the requested number of children are
produced. For example, consider the case of 3 parents producing 2 children. This operator would go through and
for each design variable, select one of the parents as the donor for the child. So it creates a random shuffle of the
parent design variable values. The relative numbers of children and parents are controllable to allow for as much
mixing as desired. The more parents involved, the less likely that the children will wind up exact duplicates of the
parents.

All crossover types take a crossover rate. The crossover rate is used to calculate the number of crossover
operations that take place. The number of crossovers is equal to the rate ∗ population size.

multi point binary

• Keywords Area

• method

• soga

• crossover type

• multi point binary

Use bit switching for crossover events

Specification
Alias: none

Argument(s): INTEGER

Description
There are many crossover types available. multi point binary crossover requires an integer number, N, of
crossover points. This crossover type performs a bit switching crossover at N crossover points in the binary en-
coded genome of two designs. Thus, crossover may occur at any point along a solution chromosome (in the middle
of a gene representing a design variable, for example). multi point parameterized binary crossover
is similar in that it performs a bit switching crossover routine at N crossover points. However, this crossover
type performs crossover on each design variable individually. So the individual chromosomes are crossed at N

616 CHAPTER 6. KEYWORDS AREA

locations. multi point real crossover performs a variable switching crossover routing at N crossover points
in the real real valued genome of two designs. In this scheme, crossover only occurs between design variables
(chromosomes). Note that the standard solution chromosome representation in the JEGA algorithm is real en-
coded and can handle integer or real design variables. For any crossover types that use a binary representation,
real variables are converted to long integers by multiplying the real number by 10∧6 and then truncating. Note
that this assumes a precision of only six decimal places. Discrete variables are represented as integers (indices
within a list of possible values) within the algorithm and thus require no special treatment by the binary operators.

multi point parameterized binary

• Keywords Area

• method

• soga

• crossover type

• multi point parameterized binary

Use bit switching to crossover each design variable

Specification
Alias: none

Argument(s): INTEGER

Description
There are many crossover types available. multi point binary crossover requires an integer number, N, of
crossover points. This crossover type performs a bit switching crossover at N crossover points in the binary en-
coded genome of two designs. Thus, crossover may occur at any point along a solution chromosome (in the middle
of a gene representing a design variable, for example). multi point parameterized binary crossover
is similar in that it performs a bit switching crossover routine at N crossover points. However, this crossover
type performs crossover on each design variable individually. So the individual chromosomes are crossed at N
locations. multi point real crossover performs a variable switching crossover routing at N crossover points
in the real real valued genome of two designs. In this scheme, crossover only occurs between design variables
(chromosomes). Note that the standard solution chromosome representation in the JEGA algorithm is real en-
coded and can handle integer or real design variables. For any crossover types that use a binary representation,
real variables are converted to long integers by multiplying the real number by 10∧6 and then truncating. Note
that this assumes a precision of only six decimal places. Discrete variables are represented as integers (indices
within a list of possible values) within the algorithm and thus require no special treatment by the binary operators.

multi point real

• Keywords Area

• method

• soga

• crossover type

• multi point real

Perform crossover in real valued genome

6.2. METHOD 617

Specification

Alias: none
Argument(s): INTEGER

Description

There are many crossover types available. multi point binary crossover requires an integer number, N, of
crossover points. This crossover type performs a bit switching crossover at N crossover points in the binary en-
coded genome of two designs. Thus, crossover may occur at any point along a solution chromosome (in the middle
of a gene representing a design variable, for example). multi point parameterized binary crossover
is similar in that it performs a bit switching crossover routine at N crossover points. However, this crossover
type performs crossover on each design variable individually. So the individual chromosomes are crossed at N
locations. multi point real crossover performs a variable switching crossover routing at N crossover points
in the real real valued genome of two designs. In this scheme, crossover only occurs between design variables
(chromosomes). Note that the standard solution chromosome representation in the JEGA algorithm is real en-
coded and can handle integer or real design variables. For any crossover types that use a binary representation,
real variables are converted to long integers by multiplying the real number by 10∧6 and then truncating. Note
that this assumes a precision of only six decimal places. Discrete variables are represented as integers (indices
within a list of possible values) within the algorithm and thus require no special treatment by the binary operators.

shuffle random

• Keywords Area

• method

• soga

• crossover type

• shuffle random

Perform crossover by choosing design variable(s)

Specification

Alias: none
Argument(s): none

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional num parents Number of parents
in random shuffle
crossover

Optional num offspring Number of
offspring in
random shuffle
crossover

618 CHAPTER 6. KEYWORDS AREA

Description

The final crossover type is shuffle random. This crossover type performs crossover by choosing design
variables at random from a specified number of parents enough times that the requested number of children are
produced. For example, consider the case of 3 parents producing 2 children. This operator would go through and
for each design variable, select one of the parents as the donor for the child. So it creates a random shuffle of the
parent design variable values. The relative numbers of children and parents are controllable to allow for as much
mixing as desired. The more parents involved, the less likely that the children will wind up exact duplicates of the
parents.

num parents

• Keywords Area

• method

• soga

• crossover type

• shuffle random

• num parents

Number of parents in random shuffle crossover

Specification

Alias: none
Argument(s): INTEGER
Default: 2

Description

Number of parents in random shuffle crossover

num offspring

• Keywords Area

• method

• soga

• crossover type

• shuffle random

• num offspring

Number of offspring in random shuffle crossover

6.2. METHOD 619

Specification
Alias: none

Argument(s): INTEGER
Default: 2

Description
Number of offspring in random shuffle crossover

crossover rate

• Keywords Area

• method

• soga

• crossover type

• crossover rate

Specify the probability of a crossover event

Specification
Alias: none

Argument(s): REAL
Default: 0.8

Description
The crossover type controls what approach is employed for combining parent genetic information to cre-
ate offspring, and the crossover rate specifies the probability of a crossover operation being performed to
generate a new offspring. The SCOLIB EA method supports three forms of crossover, two point, blend, and
uniform, which generate a new individual through combinations of two parent individuals. Two-point crossover
divides each parent into three regions, where offspring are created from the combination of the middle region from
one parent and the end regions from the other parent. Since the SCOLIB EA does not utilize bit representations
of variable values, the crossover points only occur on coordinate boundaries, never within the bits of a particular
coordinate. Uniform crossover creates offspring through random combination of coordinates from the two par-
ents. Blend crossover generates a new individual randomly along the multidimensional vector connecting the two
parents.

mutation type

• Keywords Area

• method

• soga

• mutation type

Select a mutation type for JEGA methods

620 CHAPTER 6. KEYWORDS AREA

Specification

Alias: none
Argument(s): none
Default: replace uniform

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1

bit random Mutate by flipping
a random bit

replace uniform Use uniformly
distributed value
over range of
parameter

offset normal Set mutation offset
to use a normal
distribution

offset cauchy Use a Cauchy
distribution for the
mutation offset

offset uniform Set mutation offset
to use a uniform
distribution

Optional mutation rate Set probability of a
mutation

Description

Five mutation types are available for selection by keyword: replace uniform, bit random, offset -
cauchy, offset normal, and offset uniform. They are described in greater detail on their respective
keyword pages.

The offset ∗ mutators all act by adding a random ”offset” to a variable value. The random amount has a
mean of zero in all cases. The size of the offset is controlled using the mutation scale keyword, which is
interpreted differently for each offset ∗ type.

The rate of mutations for all types is controlled suing the mutation rate. The rate is applied differently
in each mutation type.

bit random

• Keywords Area

• method

• soga

• mutation type

• bit random

Mutate by flipping a random bit

6.2. METHOD 621

Specification
Alias: none

Argument(s): none

Description
The bit random mutator introduces random variation by first converting a randomly chosen variable of a ran-
domly chosen design into a binary string. It then flips a randomly chosen bit in the string from a 1 to a 0 or visa
versa. In this mutation scheme, the resulting value has more probability of being similar to the original value.

replace uniform

• Keywords Area

• method

• soga

• mutation type

• replace uniform

Use uniformly distributed value over range of parameter

Specification
Alias: none

Argument(s): none

Description
replace uniform introduces random variation by first randomly choosing a design variable of a randomly
selected design and reassigning it to a random valid value for that variable. No consideration of the current value
is given when determining the new value.

offset normal

• Keywords Area

• method

• soga

• mutation type

• offset normal

Set mutation offset to use a normal distribution

Specification
Alias: none

Argument(s): none

622 CHAPTER 6. KEYWORDS AREA

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional mutation scale Scales mutation
across range of
parameter

Description
The offset normal mutator introduces random variation by adding a Gaussian random amount to a variable
value. The random amount has a standard deviation dependent on the mutation scale.

mutation scale

• Keywords Area

• method

• soga

• mutation type

• offset normal

• mutation scale

Scales mutation across range of parameter

Specification
Alias: none

Argument(s): REAL
Default: 0.15

Description
The mutation scale is a fraction in the range [0, 1] and is meant to help control the amount of variation that takes
place when a variable is mutated. Its behavior depends on the selected mutation type. For offset normal
and offset cauchy, mutation scale is multipled by the range of the variable being mutated to obtain the
standard deviation of the offset. For offset uniform, the range of possible deviation amounts is +/- 1/2 ∗
(mutation scale ∗ variable range).

offset cauchy

• Keywords Area

• method

• soga

• mutation type

• offset cauchy

Use a Cauchy distribution for the mutation offset

6.2. METHOD 623

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional mutation scale Scales mutation
across range of
parameter

Description
The offset cauchy mutator introduces random variation by adding a Cauchy random amount to a variable
value. The random amount has a standard deviation dependent on the mutation scale.

mutation scale

• Keywords Area

• method

• soga

• mutation type

• offset cauchy

• mutation scale

Scales mutation across range of parameter

Specification
Alias: none

Argument(s): REAL
Default: 0.15

Description
The mutation scale is a fraction in the range [0, 1] and is meant to help control the amount of variation that takes
place when a variable is mutated. Its behavior depends on the selected mutation type. For offset normal
and offset cauchy, mutation scale is multipled by the range of the variable being mutated to obtain the
standard deviation of the offset. For offset uniform, the range of possible deviation amounts is +/- 1/2 ∗
(mutation scale ∗ variable range).

offset uniform

• Keywords Area

• method

• soga

• mutation type

624 CHAPTER 6. KEYWORDS AREA

• offset uniform

Set mutation offset to use a uniform distribution

Specification

Alias: none
Argument(s): none

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional mutation scale Scales mutation
across range of
parameter

Description

The offset uniform mutator introduces random variation by adding a uniform random amount to a variable
value. The random amount depends on the mutation scale.

mutation scale

• Keywords Area

• method

• soga

• mutation type

• offset uniform

• mutation scale

Scales mutation across range of parameter

Specification

Alias: none
Argument(s): REAL
Default: 0.15

Description

The mutation scale is a fraction in the range [0, 1] and is meant to help control the amount of variation that takes
place when a variable is mutated. Its behavior depends on the selected mutation type. For offset normal
and offset cauchy, mutation scale is multipled by the range of the variable being mutated to obtain the
standard deviation of the offset. For offset uniform, the range of possible deviation amounts is +/- 1/2 ∗
(mutation scale ∗ variable range).

6.2. METHOD 625

mutation rate

• Keywords Area

• method

• soga

• mutation type

• mutation rate

Set probability of a mutation

Specification
Alias: none

Argument(s): REAL
Default: 0.08

Description
All mutation types have a mutation rate, which controls the number of mutations performed. For replace-
uniform and all the offset ∗ types, the number of mutations performed is the product of mutation -
rate and population size. For bit random, it’s the product of the mutation rate, number of design
variables, and population size

seed

• Keywords Area

• method

• soga

• seed

Seed of the random number generator

Specification
Alias: none

Argument(s): INTEGER
Default: system-generated (non-repeatable)

Description
The random seed control provides a mechanism for making a stochastic method repeatable. That is, the use of
the same random seed in identical studies will generate identical results.

Default Behavior
If not specified, the seed is randomly generated.
Expected Output
If seed is specified, a stochastic study will generate identical results when repeated using the same seed

value. Otherwise, results are not guaranteed to be the same.

626 CHAPTER 6. KEYWORDS AREA

Usage Tips
If a stochastic study was run without seed specified, and the user later wishes to repeat the study using the

same seed, the value of the seed used in the original study can be found in the output Dakota prints to the screen.
That value can then be added to the Dakota input file.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 15347

linear inequality constraint matrix

• Keywords Area

• method

• soga

• linear inequality constraint matrix

Define coefficients of the linear inequality constraints

Topics

This keyword is related to the topics:

• linear constraints

Specification

Alias: none
Argument(s): REALLIST
Default: no linear inequality constraints

Description

In the inequality case, the constraint matrix A provides coefficients for the variables in the two-sided formulation:

al ≤ Ax ≤ au

Where the bounds are optionally specified by linear inequality lower bounds, and linear -
inequality upper bounds. The bounds, if not specified, will default to -infinity, and 0, respectively, re-
sulting in one-sided inequalities of the form

Ax ≤ 0.0

.

6.2. METHOD 627

linear inequality lower bounds

• Keywords Area

• method

• soga

• linear inequality lower bounds

Define lower bounds for the linear inequality constraint

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = -infinity

Description
In the inequality case, the lower al and upper au bounds provide constraint limits for the two-sided formulation:

al ≤ Ax ≤ au

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective functions), the default linear inequality constraint

bounds are selected so that one-sided inequalities of the form

Ax ≤ 0.0

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since -DBL MAX < -bigRealBoundSize).

linear inequality upper bounds

• Keywords Area

• method

• soga

• linear inequality upper bounds

Define upper bounds for the linear inequality constraint

628 CHAPTER 6. KEYWORDS AREA

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 0 .

Description
In the inequality case, the lower al and upper au bounds provide constraint limits for the two-sided formulation:

al ≤ Ax ≤ au

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective functions), the default linear inequality constraint

bounds are selected so that one-sided inequalities of the form

Ax ≤ 0.0

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since -DBL MAX < -bigRealBoundSize).

linear inequality scale types

• Keywords Area

• method

• soga

• linear inequality scale types

Specify how each linear inequality constraint is scaled

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): STRINGLIST
Default: vector values = ’none’

6.2. METHOD 629

Description
linear inequality scale types provide strings specifying the scaling type for each linear inequality
constraint, in methods that support scaling.

An entry may be selected for each constraint. The options are:

• ’none’ - no scaling

• ’value’ - characteristic value if this is chosen, then linear inequality scales must be specified

• ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling
on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU

aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU

and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear inequality scales

• Keywords Area

• method

• soga

• linear inequality scales

Define the characteristic values to scale linear inequalities

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

630 CHAPTER 6. KEYWORDS AREA

Description
Each entry in linear inequality scales may be a user-specified, nonzero characteristic value to be used
in scaling each constraint.

Behavior depends on the choice of linear inequality scale type :

• scale type - behavior of linear inequality scales

• ’none’ - ignored

• ’value’ - required

• ’auto’ - optional

If a single real value is specified it will apply to all components of the constraint.
Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling

on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear equality constraint matrix

• Keywords Area

• method

• soga

• linear equality constraint matrix

Define coefficients of the linear equalities

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: no linear equality constraints

6.2. METHOD 631

Description
In the equality case, the constraint matrix A provides coefficients for the variables on the left hand side of:

Ax = at

linear equality targets

• Keywords Area

• method

• soga

• linear equality targets

Define target values for the linear equality constraints

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 0 .

Description
In the equality case, the targets at provide the equality constraint right hand sides:

Ax = at

.
If this is not specified, the defaults for the equality constraint targets enforce a value of 0. for each constraint:

Ax = 0.0

linear equality scale types

• Keywords Area

• method

• soga

• linear equality scale types

Specify how each linear equality constraint is scaled

632 CHAPTER 6. KEYWORDS AREA

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): STRINGLIST
Default: vector values = ’none’

Description
linear equality scale types provide strings specifying the scaling type for each linear equality con-
straint, in methods that support scaling.

An entry may be selected for each constraint. The options are:

• ’none’ - no scaling

• ’value’ - characteristic value if this is chosen, then linear equality scales must be specified

• ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear equality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear equality scales

• Keywords Area

• method

• soga

• linear equality scales

Define the characteristic values to scale linear equalities

6.2. METHOD 633

Topics
This keyword is related to the topics:

• linear constraints

Specification
Alias: none

Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

Description
Each entry in linear equality scales may be a user-specified, nonzero characteristic value to be used in
scaling each constraint.

See the scaling page for details on how to use this keyword.
Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:

x̃j =
xj − xjO
xjM

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU
aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

model pointer

• Keywords Area

• method

• soga

• model pointer

Identifier for model block to be used by a method

Topics
This keyword is related to the topics:

• block pointer

634 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

Description
The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

6.2. METHOD 635

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses
response_functions = 3
no_gradients
no_hessians

6.2.39 coliny pattern search
• Keywords Area

• method

• coliny pattern search

Pattern search, derivative free optimization method

Topics
This keyword is related to the topics:

• package scolib

• package coliny

• global optimization methods

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional constant penalty Use a simple
weighted penalty
to manage
feasibility

Optional no expansion Don’t allow
expansion of the
search pattern

Optional expand after -
success

Set the factor by
which a search
pattern can be
expanded

636 CHAPTER 6. KEYWORDS AREA

Optional pattern basis Pattern basis
selection

Optional stochastic Generate trial
points in random
order

Optional total pattern size Total number of
points in search
pattern

Optional exploratory moves Exploratory moves
selection

Optional synchronization Select how Dakota
schedules function
evaluations in a
pattern search

Optional contraction factor Amount by which
step length is
rescaled

Optional constraint penalty Multiplier for the
penalty function

Optional initial delta Initial step size for
non-gradient based
optimizers

Optional threshold delta Stopping criteria
based on step
length or pattern
size

Optional solution target Stopping criteria
based on objective
function value

Optional seed Seed of the random
number generator

Optional show misc options Show algorithm
parameters not
exposed in Dakota
input

Optional misc options Set method options
not available
through Dakota
spec

Optional model pointer Identifier for
model block to be
used by a method

Description
Pattern search techniques are nongradient-based optimization methods which use a set of offsets from the current
iterate to locate improved points in the design space.

See the page package scolib for important information regarding all SCOLIB methods

6.2. METHOD 637

coliny pattern search supports concurrency up to the size of the search pattern

Traditional pattern search methods search with a fixed pattern of search directions to try to find improve-
ments to the current iterate. The SCOLIB pattern search methods generalize this simple algorithmic strategy
to enable control of how the search pattern is adapted, as well as how each search pattern is evaluated. The
stochastic and synchronization specifications denote how the the trial points are evaluated. The
stochastic specification indicates that the trial points are considered in a random order. For parallel pat-
tern search, synchronization dictates whether the evaluations are scheduled using a blocking scheduler
or a nonblocking scheduler. In the blocking case, all points in the pattern are evaluated (in parallel), and if
the best of these trial points is an improving point, then it becomes the next iterate. These runs are reproducible,
assuming use of the same seed in the stochastic case. In the nonblocking case, all points in the pattern
may not be evaluated, since the first improving point found becomes the next iterate. Since the algorithm steps will
be subject to parallel timing variabilities, these runs will not generally be repeatable. The synchronization
specification has similar connotations for sequential pattern search. If blocking is specified, then each sequen-
tial iteration terminates after all trial points have been considered, and if nonblocking is specified, then each
sequential iteration terminates after the first improving trial point is evaluated. In this release, both blocking
and nonblocking specifications result in blocking behavior (except in the case where exporatory moves
below is set to adaptive pattern). Nonblocking behavior will be re-enabled after some underlying technical
issues have been resolved.

The particular form of the search pattern is controlled by the pattern basis specification. If pattern-
basis is coordinate basis, then the pattern search uses a plus and minus offset in each coordinate direction,

for a total of 2n function evaluations in the pattern. This case is depicted in Figure 5.3 for three coordinate
dimensions.

638 CHAPTER 6. KEYWORDS AREA

Figure 6.1: Depiction of coordinate pattern search algorithm

If pattern basis is simplex, then pattern search uses a minimal positive basis simplex for the parameter
space, for a total of n+1 function evaluations in the pattern. Note that the simplex pattern basis can be used
for unbounded problems only. The total pattern size specification can be used to augment the basic
coordinate and simplex patterns with additional function evaluations, and is particularly useful for parallel
load balancing. For example, if some function evaluations in the pattern are dropped due to duplication or bound
constraint interaction, then the total pattern size specification instructs the algorithm to generate new
offsets to bring the total number of evaluations up to this consistent total.

The exploratory moves specification controls how the search pattern is adapted. (The search pattern can
be adapted after an improving trial point is found, or after all trial points in a search pattern have been found to be
unimproving points.) The following exploratory moves selections are supported by SCOLIB:

• The basic pattern case is the simple pattern search approach, which uses the same pattern in each
iteration.

• The multi step case examines each trial step in the pattern in turn. If a successful step is found, the
pattern search continues examining trial steps about this new point. In this manner, the effects of multiple
successful steps are cumulative within a single iteration. This option does not support any parallelism and
will result in a serial pattern search.

• The adaptive pattern case invokes a pattern search technique that adaptively rescales the different
search directions to maximize the number of redundant function evaluations. See[45] for details of this

6.2. METHOD 639

method. In preliminary experiments, this method had more robust performance than the standard basic-
pattern case in serial tests. This option supports a limited degree of parallelism. After successful

iterations (where the step length is not contracted), a parallel search will be performed. After unsuccessful
iterations (where the step length is contracted), only a single evaluation is performed.

The initial delta and threshold delta specifications provide the initial offset size and the threshold
size at which to terminate the algorithm. For any dimension that has both upper and lower bounds, this step length
will be internally rescaled to provide search steps of length initial delta ∗ range ∗ 0.1. This rescaling does
not occur for other dimensions, so search steps in those directions have length initial delta. Note that the
factor of 0.1 in the rescaling could result in an undesirably small initial step. This can be offset by providing a
large initial delta.

In general, pattern search methods can expand and contract their step lengths. SCOLIB pattern search methods
contract the step length by the value contraction factor, and they expand the step length by the value
(1/contraction factor). The expand after success control specifies how many successful objective function
improvements must occur with a specific step length prior to expansion of the step length, whereas the no -
expansion flag instructs the algorithm to forgo pattern expansion altogether.

Finally, constraint infeasibility can be managed in a somewhat more sophisticated manner than the simple
weighted penalty function. If the constant penalty specification is used, then the simple weighted penalty
scheme described above is used. Otherwise, the constraint penalty is adapted to the value constraint -
penalty/L, where L is the the smallest step length used so far.

See Also
These keywords may also be of interest:

• coliny beta

• coliny direct

• coliny cobyla

• coliny ea

• coliny solis wets

constant penalty

• Keywords Area

• method

• coliny pattern search

• constant penalty

Use a simple weighted penalty to manage feasibility

Specification
Alias: none

Argument(s): none
Default: algorithm dynamically adapts the constraint penalty

640 CHAPTER 6. KEYWORDS AREA

Description

Finally, constraint infeasibility can be managed in a somewhat more sophisticated manner than the simple weighted
penalty function. If the constant penalty specification is used, then the simple weighted penalty scheme
described above is used. Otherwise, the constraint penalty is adapted to the value constraint penalty/L,
where L is the the smallest step length used so far.

no expansion

• Keywords Area

• method

• coliny pattern search

• no expansion

Don’t allow expansion of the search pattern

Specification

Alias: none
Argument(s): none
Default: algorithm may expand pattern size

Description

In general, pattern search methods can expand and contract their step lengths. SCOLIB pattern search methods
contract the step length by the value contraction factor, and they expand the step length by the value
(1/contraction factor). The expand after success control specifies how many successful objective function
improvements must occur with a specific step length prior to expansion of the step length, whereas the no -
expansion flag instructs the algorithm to forgo pattern expansion altogether.

expand after success

• Keywords Area

• method

• coliny pattern search

• expand after success

Set the factor by which a search pattern can be expanded

Specification

Alias: none
Argument(s): INTEGER
Default: 5

6.2. METHOD 641

Description
In general, pattern search methods can expand and contract their step lengths. SCOLIB pattern search methods
contract the step length by the value contraction factor, and they expand the step length by the value
(1/contraction factor). The expand after success control specifies how many successful objective function
improvements must occur with a specific step length prior to expansion of the step length, whereas the no -
expansion flag instructs the algorithm to forgo pattern expansion altogether.

pattern basis

• Keywords Area

• method

• coliny pattern search

• pattern basis

Pattern basis selection

Specification
Alias: none

Argument(s): none
Default: coordinate

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 coordinate Use coordinate
directions as
search pattern

simplex Use a minimal
simplex for the
search pattern

Description
The particular form of the search pattern is controlled by the pattern basis specification. If pattern -
basis is coordinate basis, then the pattern search uses a plus and minus offset in each coordinate direction,
for a total of 2n function evaluations in the pattern. This case is depicted in Figure 5.3 for three coordinate
dimensions.

coordinate

• Keywords Area

• method

• coliny pattern search

• pattern basis

• coordinate

Use coordinate directions as search pattern

642 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): none

Description
The particular form of the search pattern is controlled by the pattern basis specification. If pattern -
basis is coordinate basis, then the pattern search uses a plus and minus offset in each coordinate direction,
for a total of 2n function evaluations in the pattern. This case is depicted in Figure 5.3 for three coordinate
dimensions.

simplex

• Keywords Area

• method

• coliny pattern search

• pattern basis

• simplex

Use a minimal simplex for the search pattern

Specification
Alias: none

Argument(s): none

Description
If pattern basis is simplex, then pattern search uses a minimal positive basis simplex for the parameter
space, for a total of n+1 function evaluations in the pattern. Note that the simplex pattern basis can be used
for unbounded problems only. The total pattern size specification can be used to augment the basic
coordinate and simplex patterns with additional function evaluations, and is particularly useful for parallel
load balancing. For example, if some function evaluations in the pattern are dropped due to duplication or bound
constraint interaction, then the total pattern size specification instructs the algorithm to generate new
offsets to bring the total number of evaluations up to this consistent total.

stochastic

• Keywords Area

• method

• coliny pattern search

• stochastic

Generate trial points in random order

6.2. METHOD 643

Specification
Alias: none

Argument(s): none

Description
Traditional pattern search methods search with a fixed pattern of search directions to try to find improvements to
the current iterate. The SCOLIB pattern search methods generalize this simple algorithmic strategy to enable con-
trol of how the search pattern is adapted, as well as how each search pattern is evaluated. The stochastic and
synchronization specifications denote how the the trial points are evaluated. The stochastic specifica-
tion indicates that the trial points are considered in a random order. For parallel pattern search, synchronization
dictates whether the evaluations are scheduled using a blocking scheduler or a nonblocking scheduler (i.e.,

total pattern size

• Keywords Area

• method

• coliny pattern search

• total pattern size

Total number of points in search pattern

Specification
Alias: none

Argument(s): INTEGER
Default: no augmentation of basic pattern

Description
If pattern basis is simplex, then pattern search uses a minimal positive basis simplex for the parameter
space, for a total of n+1 function evaluations in the pattern. Note that the simplex pattern basis can be used
for unbounded problems only. The total pattern size specification can be used to augment the basic
coordinate and simplex patterns with additional function evaluations, and is particularly useful for parallel
load balancing. For example, if some function evaluations in the pattern are dropped due to duplication or bound
constraint interaction, then the total pattern size specification instructs the algorithm to generate new
offsets to bring the total number of evaluations up to this consistent total.

exploratory moves

• Keywords Area

• method

• coliny pattern search

• exploratory moves

Exploratory moves selection

644 CHAPTER 6. KEYWORDS AREA

Specification

Alias: none
Argument(s): none
Default: basic pattern

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1
multi step Examine trial step

around successful
new point

adaptive pattern Adaptively rescale
search directions

basic pattern Use the same
search pattern
every iteration

Description

The exploratory moves specification controls how the search pattern is adapted. (The search pattern can be
adapted after an improving trial point is found, or after all trial points in a search pattern have been found to be
unimproving points.) The following exploratory moves selections are supported by SCOLIB:

multi step

• Keywords Area

• method

• coliny pattern search

• exploratory moves

• multi step

Examine trial step around successful new point

Specification

Alias: none
Argument(s): none

Description

The multi step case examines each trial step in the pattern in turn. If a successful step is found, the pattern
search continues examining trial steps about this new point. In this manner, the effects of multiple successful steps
are cumulative within a single iteration. This option does not support any parallelism and will result in a serial
pattern

6.2. METHOD 645

adaptive pattern

• Keywords Area

• method

• coliny pattern search

• exploratory moves

• adaptive pattern

Adaptively rescale search directions

Specification

Alias: none
Argument(s): none

Description

The adaptive pattern case invokes a pattern search technique that adaptively rescales the different search
directions to maximize the number of redundant function evaluations. See[45] for details of this method. In
preliminary experiments, this method had more robust performance than the standard basic pattern case in
serial tests. This option supports a limited degree of parallelism. After successful iterations (where the step length
is not contracted), a parallel search will be performed. After unsuccessful iterations (where the step length is
contracted), only a single evaluation is performed.

basic pattern

• Keywords Area

• method

• coliny pattern search

• exploratory moves

• basic pattern

Use the same search pattern every iteration

Specification

Alias: none
Argument(s): none

Description

The basic pattern case is the simple pattern search approach, which uses the same pattern in each iteration.

646 CHAPTER 6. KEYWORDS AREA

synchronization

• Keywords Area

• method

• coliny pattern search

• synchronization

Select how Dakota schedules function evaluations in a pattern search

Specification
Alias: none

Argument(s): none
Default: nonblocking

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 blocking Evaluate all points
in a pattern

nonblocking Evaluate points in
the pattern until an
improving point is
found

Description
The synchronization specification can be used to specify the use of either blocking or nonblocking
schedulers.

blocking

• Keywords Area

• method

• coliny pattern search

• synchronization

• blocking

Evaluate all points in a pattern

Specification
Alias: none

Argument(s): none

Description
In the blocking case, all points in the pattern are evaluated (in parallel), and if the best of these trial points is
an improving point, then it becomes the next iterate. These runs are reproducible, assuming use of the same seed
in the stochastic case.

6.2. METHOD 647

nonblocking

• Keywords Area

• method

• coliny pattern search

• synchronization

• nonblocking

Evaluate points in the pattern until an improving point is found

Specification

Alias: none
Argument(s): none

Description

In the nonblocking case, all points in the pattern may not be evaluated. The first improving point found
becomes the next iterate. Since the algorithm steps will be subject to parallel timing variabilities, these runs will
not generally be repeatable.

contraction factor

• Keywords Area

• method

• coliny pattern search

• contraction factor

Amount by which step length is rescaled

Specification

Alias: none
Argument(s): REAL
Default: 0.5

Description

For pattern search methods, contraction factor specifies the amount by which step length is rescaled after
unsuccesful iterates, must be strictly between 0 and 1.

For methods that can expand the step length, the expansion is 1/ contraction factor

648 CHAPTER 6. KEYWORDS AREA

constraint penalty

• Keywords Area

• method

• coliny pattern search

• constraint penalty

Multiplier for the penalty function

Specification

Alias: none
Argument(s): REAL
Default: 1.0

Description

Most SCOLIB optimizers treat constraints with a simple penalty scheme that adds constraint penalty
times the sum of squares of the constraint violations to the objective function. The default value of constraint-
penalty is 1000.0, except for methods that dynamically adapt their constraint penalty, for which the default

value is 1.0.

initial delta

• Keywords Area

• method

• coliny pattern search

• initial delta

Initial step size for non-gradient based optimizers

Specification

Alias: none
Argument(s): REAL
Default: 1.0 (COBYLA), 0.1∗range (PS, SW)

Description

If initial delta is supplied by the user, it will be applied in an absolute sense in all coordinate directions.
APPS documentation advocates choosing initial delta to be the approximate distance from the initial point
to the solution. If this is unknown, it is advisable to err on the side of choosing an initial delta that is too
large or to not specify it. In the latter case, APPS will take a full step to the boundary in each direction. Relative
application of initial delta is not available unless the user scales the problem accordingly.

6.2. METHOD 649

threshold delta

• Keywords Area

• method

• coliny pattern search

• threshold delta

Stopping criteria based on step length or pattern size

Specification
Alias: none

Argument(s): REAL
Default: 1.0e-4 (COBYLA), 1.0e-5 (PS), 1.0e-6 (SW)

Description
threshold delta is the step length or pattern size used to determine convergence.

solution target

• Keywords Area

• method

• coliny pattern search

• solution target

Stopping criteria based on objective function value

Specification
Alias: solution accuracy

Argument(s): REAL
Default: -DBL MAX

Description
solution target is a termination criterion. The algorithm will terminate when the function value falls below
solution target.

seed

• Keywords Area

• method

• coliny pattern search

• seed

Seed of the random number generator

650 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): INTEGER
Default: system-generated (non-repeatable)

Description
The random seed control provides a mechanism for making a stochastic method repeatable. That is, the use of
the same random seed in identical studies will generate identical results.

Default Behavior
If not specified, the seed is randomly generated.
Expected Output
If seed is specified, a stochastic study will generate identical results when repeated using the same seed

value. Otherwise, results are not guaranteed to be the same.
Usage Tips
If a stochastic study was run without seed specified, and the user later wishes to repeat the study using the

same seed, the value of the seed used in the original study can be found in the output Dakota prints to the screen.
That value can then be added to the Dakota input file.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 15347

show misc options

• Keywords Area

• method

• coliny pattern search

• show misc options

Show algorithm parameters not exposed in Dakota input

Specification
Alias: none

Argument(s): none
Default: no dump of specification options

Description
All SCOLIB methods support the show misc options optional specification which results in a dump of all the
allowable method inputs. Note that the information provided by this command refers to optimizer parameters that
are internal to SCOLIB, and which may differ from corresponding parameters used by the Dakota interface. The
misc options optional specification provides a means for inputing additional settings supported by the SCOLI-
B methods but which are not currently mapped through the Dakota input specification. Care must be taken in using

6.2. METHOD 651

this specification; they should only be employed by users familiar with the full range of parameter specifications
available directly from SCOLIB and understand any differences that exist between those specifications and the
ones available through Dakota.

misc options

• Keywords Area

• method

• coliny pattern search

• misc options

Set method options not available through Dakota spec

Specification

Alias: none
Argument(s): STRINGLIST
Default: no misc options

Description

All SCOLIB methods support the show misc options optional specification which results in a dump of all the
allowable method inputs. Note that the information provided by this command refers to optimizer parameters that
are internal to SCOLIB, and which may differ from corresponding parameters used by the Dakota interface. The
misc options optional specification provides a means for inputing additional settings supported by the SCOLI-
B methods but which are not currently mapped through the Dakota input specification. Care must be taken in using
this specification; they should only be employed by users familiar with the full range of parameter specifications
available directly from SCOLIB and understand any differences that exist between those specifications and the
ones available through Dakota.

model pointer

• Keywords Area

• method

• coliny pattern search

• model pointer

Identifier for model block to be used by a method

Topics

This keyword is related to the topics:

• block pointer

652 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

Description
The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

6.2. METHOD 653

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses
response_functions = 3
no_gradients
no_hessians

6.2.40 coliny solis wets
• Keywords Area

• method

• coliny solis wets

Simple greedy local search method

Topics
This keyword is related to the topics:

• package scolib

• package coliny

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional contract after -
failure

The number of
unsuccessful
cycles prior to
contraction.

Optional no expansion Don’t allow
expansion of the
search pattern

Optional expand after -
success

Set the factor by
which a search
pattern can be
expanded

654 CHAPTER 6. KEYWORDS AREA

Optional constant penalty Use a simple
weighted penalty
to manage
feasibility

Optional contraction factor Amount by which
step length is
rescaled

Optional constraint penalty Multiplier for the
penalty function

Optional initial delta Initial step size for
non-gradient based
optimizers

Optional threshold delta Stopping criteria
based on step
length or pattern
size

Optional solution target Stopping criteria
based on objective
function value

Optional seed Seed of the random
number generator

Optional show misc options Show algorithm
parameters not
exposed in Dakota
input

Optional misc options Set method options
not available
through Dakota
spec

Optional model pointer Identifier for
model block to be
used by a method

Description

The Solis-Wets method is a simple greedy local search heuristic for continuous parameter spaces. Solis-Wets
generates trial points using a multivariate normal distribution, and unsuccessful trial points are reflected about the
current point to find a descent direction.

See the page package scolib for important information regarding all SCOLIB methods
coliny solis wets is inherently serial, no concurrency is used.

These specifications have the same meaning as corresponding specifications for coliny pattern search. Please
see that page for specification details.

In particular, coliny solis wets supports dynamic rescaling of the step length, and dynamic rescaling of
the constraint penalty. The only new specification is contract after failure, which specifies the number
of unsuccessful cycles which must occur with a specific delta prior to contraction of the delta.

6.2. METHOD 655

See Also
These keywords may also be of interest:

• coliny beta

• coliny direct

• coliny pattern search

• coliny cobyla

• coliny ea

contract after failure

• Keywords Area

• method

• coliny solis wets

• contract after failure

The number of unsuccessful cycles prior to contraction.

Specification
Alias: none

Argument(s): INTEGER
Default: 4∗number of variables

Description
In particular, coliny solis wets supports dynamic rescaling of the step length, and dynamic rescaling of the
constraint penalty. The only new specification is contract after failure, which specifies the number of
unsuccessful cycles which must occur with a specific delta prior to contraction of the delta.

no expansion

• Keywords Area

• method

• coliny solis wets

• no expansion

Don’t allow expansion of the search pattern

Specification
Alias: none

Argument(s): none
Default: algorithm may expand pattern size

656 CHAPTER 6. KEYWORDS AREA

Description
In general, pattern search methods can expand and contract their step lengths. SCOLIB pattern search methods
contract the step length by the value contraction factor, and they expand the step length by the value
(1/contraction factor). The expand after success control specifies how many successful objective function
improvements must occur with a specific step length prior to expansion of the step length, whereas the no -
expansion flag instructs the algorithm to forgo pattern expansion altogether.

expand after success

• Keywords Area

• method

• coliny solis wets

• expand after success

Set the factor by which a search pattern can be expanded

Specification
Alias: none

Argument(s): INTEGER
Default: 5

Description
In general, pattern search methods can expand and contract their step lengths. SCOLIB pattern search methods
contract the step length by the value contraction factor, and they expand the step length by the value
(1/contraction factor). The expand after success control specifies how many successful objective function
improvements must occur with a specific step length prior to expansion of the step length, whereas the no -
expansion flag instructs the algorithm to forgo pattern expansion altogether.

constant penalty

• Keywords Area

• method

• coliny solis wets

• constant penalty

Use a simple weighted penalty to manage feasibility

Specification
Alias: none

Argument(s): none
Default: algorithm dynamically adapts the constraint penalty

6.2. METHOD 657

Description
Finally, constraint infeasibility can be managed in a somewhat more sophisticated manner than the simple weighted
penalty function. If the constant penalty specification is used, then the simple weighted penalty scheme
described above is used. Otherwise, the constraint penalty is adapted to the value constraint penalty/L,
where L is the the smallest step length used so far.

contraction factor

• Keywords Area

• method

• coliny solis wets

• contraction factor

Amount by which step length is rescaled

Specification
Alias: none

Argument(s): REAL
Default: 0.5

Description
For pattern search methods, contraction factor specifies the amount by which step length is rescaled after
unsuccesful iterates, must be strictly between 0 and 1.

For methods that can expand the step length, the expansion is 1/ contraction factor

constraint penalty

• Keywords Area

• method

• coliny solis wets

• constraint penalty

Multiplier for the penalty function

Specification
Alias: none

Argument(s): REAL
Default: 1.0

Description
Most SCOLIB optimizers treat constraints with a simple penalty scheme that adds constraint penalty
times the sum of squares of the constraint violations to the objective function. The default value of constraint-
penalty is 1000.0, except for methods that dynamically adapt their constraint penalty, for which the default

value is 1.0.

658 CHAPTER 6. KEYWORDS AREA

initial delta

• Keywords Area

• method

• coliny solis wets

• initial delta

Initial step size for non-gradient based optimizers

Specification

Alias: none
Argument(s): REAL
Default: 1.0 (COBYLA), 0.1∗range (PS, SW)

Description

If initial delta is supplied by the user, it will be applied in an absolute sense in all coordinate directions.
APPS documentation advocates choosing initial delta to be the approximate distance from the initial point
to the solution. If this is unknown, it is advisable to err on the side of choosing an initial delta that is too
large or to not specify it. In the latter case, APPS will take a full step to the boundary in each direction. Relative
application of initial delta is not available unless the user scales the problem accordingly.

threshold delta

• Keywords Area

• method

• coliny solis wets

• threshold delta

Stopping criteria based on step length or pattern size

Specification

Alias: none
Argument(s): REAL
Default: 1.0e-4 (COBYLA), 1.0e-5 (PS), 1.0e-6 (SW)

Description

threshold delta is the step length or pattern size used to determine convergence.

6.2. METHOD 659

solution target

• Keywords Area

• method

• coliny solis wets

• solution target

Stopping criteria based on objective function value

Specification
Alias: solution accuracy

Argument(s): REAL
Default: -DBL MAX

Description
solution target is a termination criterion. The algorithm will terminate when the function value falls below
solution target.

seed

• Keywords Area

• method

• coliny solis wets

• seed

Seed of the random number generator

Specification
Alias: none

Argument(s): INTEGER
Default: system-generated (non-repeatable)

Description
The random seed control provides a mechanism for making a stochastic method repeatable. That is, the use of
the same random seed in identical studies will generate identical results.

Default Behavior
If not specified, the seed is randomly generated.
Expected Output
If seed is specified, a stochastic study will generate identical results when repeated using the same seed

value. Otherwise, results are not guaranteed to be the same.
Usage Tips
If a stochastic study was run without seed specified, and the user later wishes to repeat the study using the

same seed, the value of the seed used in the original study can be found in the output Dakota prints to the screen.
That value can then be added to the Dakota input file.

660 CHAPTER 6. KEYWORDS AREA

Examples
method

sampling
sample_type lhs
samples = 10
seed = 15347

show misc options

• Keywords Area

• method

• coliny solis wets

• show misc options

Show algorithm parameters not exposed in Dakota input

Specification
Alias: none

Argument(s): none
Default: no dump of specification options

Description
All SCOLIB methods support the show misc options optional specification which results in a dump of all the
allowable method inputs. Note that the information provided by this command refers to optimizer parameters that
are internal to SCOLIB, and which may differ from corresponding parameters used by the Dakota interface. The
misc options optional specification provides a means for inputing additional settings supported by the SCOLI-
B methods but which are not currently mapped through the Dakota input specification. Care must be taken in using
this specification; they should only be employed by users familiar with the full range of parameter specifications
available directly from SCOLIB and understand any differences that exist between those specifications and the
ones available through Dakota.

misc options

• Keywords Area

• method

• coliny solis wets

• misc options

Set method options not available through Dakota spec

Specification
Alias: none

Argument(s): STRINGLIST
Default: no misc options

6.2. METHOD 661

Description

All SCOLIB methods support the show misc options optional specification which results in a dump of all the
allowable method inputs. Note that the information provided by this command refers to optimizer parameters that
are internal to SCOLIB, and which may differ from corresponding parameters used by the Dakota interface. The
misc options optional specification provides a means for inputing additional settings supported by the SCOLI-
B methods but which are not currently mapped through the Dakota input specification. Care must be taken in using
this specification; they should only be employed by users familiar with the full range of parameter specifications
available directly from SCOLIB and understand any differences that exist between those specifications and the
ones available through Dakota.

model pointer

• Keywords Area

• method

• coliny solis wets

• model pointer

Identifier for model block to be used by a method

Topics

This keyword is related to the topics:

• block pointer

Specification

Alias: none
Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

Description

The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

662 CHAPTER 6. KEYWORDS AREA

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses
response_functions = 3
no_gradients
no_hessians

6.2.41 coliny cobyla

• Keywords Area

• method

• coliny cobyla

Constrained Optimization BY Linear Approximations (COBYLA)

6.2. METHOD 663

Topics
This keyword is related to the topics:

• package scolib

• package coliny

• local optimization methods

• constrained

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional initial delta Initial step size for
non-gradient based
optimizers

Optional threshold delta Stopping criteria
based on step
length or pattern
size

Optional solution target Stopping criteria
based on objective
function value

Optional seed Seed of the random
number generator

Optional show misc options Show algorithm
parameters not
exposed in Dakota
input

Optional misc options Set method options
not available
through Dakota
spec

Optional model pointer Identifier for
model block to be
used by a method

Description
The Constrained Optimization BY Linear Approximations (COBYLA) algorithm is an extension to the Nelder--
Mead simplex algorithm for handling general linear/nonlinear constraints and is invoked using the coliny-
cobyla group specification. The COBYLA algorithm employs linear approximations to the objective and

constraint functions, the approximations being formed by linear interpolation at N+1 points in the space of the
variables. We regard these interpolation points as vertices of a simplex. The step length parameter controls the size
of the simplex and it is reduced automatically from initial delta to threshold delta. One advantage

664 CHAPTER 6. KEYWORDS AREA

that COBYLA has over many of its competitors is that it treats each constraint individually when calculating a
change to the variables, instead of lumping the constraints together into a single penalty function.

See the page package scolib for important information regarding all SCOLIB methods
coliny cobyla is inherently serial.
Stopping Critieria
DIRECT can be terminated with:

• max function evaluations

• solution target

COBYLA currently only supports termination based on the max function evaluations and solution-
target specifications.

See Also
These keywords may also be of interest:

• coliny beta

• coliny direct

• coliny pattern search

• coliny ea

• coliny solis wets

initial delta

• Keywords Area

• method

• coliny cobyla

• initial delta

Initial step size for non-gradient based optimizers

Specification
Alias: none

Argument(s): REAL
Default: 1.0 (COBYLA), 0.1∗range (PS, SW)

Description
If initial delta is supplied by the user, it will be applied in an absolute sense in all coordinate directions.
APPS documentation advocates choosing initial delta to be the approximate distance from the initial point
to the solution. If this is unknown, it is advisable to err on the side of choosing an initial delta that is too
large or to not specify it. In the latter case, APPS will take a full step to the boundary in each direction. Relative
application of initial delta is not available unless the user scales the problem accordingly.

6.2. METHOD 665

threshold delta

• Keywords Area

• method

• coliny cobyla

• threshold delta

Stopping criteria based on step length or pattern size

Specification
Alias: none

Argument(s): REAL
Default: 1.0e-4 (COBYLA), 1.0e-5 (PS), 1.0e-6 (SW)

Description
threshold delta is the step length or pattern size used to determine convergence.

solution target

• Keywords Area

• method

• coliny cobyla

• solution target

Stopping criteria based on objective function value

Specification
Alias: solution accuracy

Argument(s): REAL
Default: -DBL MAX

Description
solution target is a termination criterion. The algorithm will terminate when the function value falls below
solution target.

seed

• Keywords Area

• method

• coliny cobyla

• seed

Seed of the random number generator

666 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): INTEGER
Default: system-generated (non-repeatable)

Description
The random seed control provides a mechanism for making a stochastic method repeatable. That is, the use of
the same random seed in identical studies will generate identical results.

Default Behavior
If not specified, the seed is randomly generated.
Expected Output
If seed is specified, a stochastic study will generate identical results when repeated using the same seed

value. Otherwise, results are not guaranteed to be the same.
Usage Tips
If a stochastic study was run without seed specified, and the user later wishes to repeat the study using the

same seed, the value of the seed used in the original study can be found in the output Dakota prints to the screen.
That value can then be added to the Dakota input file.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 15347

show misc options

• Keywords Area

• method

• coliny cobyla

• show misc options

Show algorithm parameters not exposed in Dakota input

Specification
Alias: none

Argument(s): none
Default: no dump of specification options

Description
All SCOLIB methods support the show misc options optional specification which results in a dump of all the
allowable method inputs. Note that the information provided by this command refers to optimizer parameters that
are internal to SCOLIB, and which may differ from corresponding parameters used by the Dakota interface. The
misc options optional specification provides a means for inputing additional settings supported by the SCOLI-
B methods but which are not currently mapped through the Dakota input specification. Care must be taken in using

6.2. METHOD 667

this specification; they should only be employed by users familiar with the full range of parameter specifications
available directly from SCOLIB and understand any differences that exist between those specifications and the
ones available through Dakota.

misc options

• Keywords Area

• method

• coliny cobyla

• misc options

Set method options not available through Dakota spec

Specification

Alias: none
Argument(s): STRINGLIST
Default: no misc options

Description

All SCOLIB methods support the show misc options optional specification which results in a dump of all the
allowable method inputs. Note that the information provided by this command refers to optimizer parameters that
are internal to SCOLIB, and which may differ from corresponding parameters used by the Dakota interface. The
misc options optional specification provides a means for inputing additional settings supported by the SCOLI-
B methods but which are not currently mapped through the Dakota input specification. Care must be taken in using
this specification; they should only be employed by users familiar with the full range of parameter specifications
available directly from SCOLIB and understand any differences that exist between those specifications and the
ones available through Dakota.

model pointer

• Keywords Area

• method

• coliny cobyla

• model pointer

Identifier for model block to be used by a method

Topics

This keyword is related to the topics:

• block pointer

668 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

Description
The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

6.2. METHOD 669

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses
response_functions = 3
no_gradients
no_hessians

6.2.42 coliny direct
• Keywords Area

• method

• coliny direct

DIviding RECTangles method

Topics
This keyword is related to the topics:

• package scolib

• package coliny

• global optimization methods

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional division Determine how
rectangles are
subdivided

Optional global balance -
parameter

Tolerance for
whether a
subregion is worth
dividing

Optional local balance -
parameter

Tolerance for
whether a
subregion is worth
dividing

670 CHAPTER 6. KEYWORDS AREA

Optional max boxsize limit Stopping Criterion
based on longest
edge of
hyperrectangle

Optional min boxsize limit Stopping Criterion
based on shortest
edge of
hyperrectangle

Optional constraint penalty Multiplier for the
penalty function

Optional solution target Stopping criteria
based on objective
function value

Optional seed Seed of the random
number generator

Optional show misc options Show algorithm
parameters not
exposed in Dakota
input

Optional misc options Set method options
not available
through Dakota
spec

Optional model pointer Identifier for
model block to be
used by a method

Description
The DIviding RECTangles (DIRECT) optimization algorithm is a derivative free global optimization method that
balances local search in promising regions of the design space with global search in unexplored regions. As shown
in Figure 5.1, DIRECT adaptively subdivides the space of feasible design points so as to guarantee that iterates
are generated in the neighborhood of a global minimum in finitely many iterations.

DIRECT” \image latex direct1.eps ”Design space partitioning with DIRECT” width=10cm
In practice, DIRECT has proven an effective heuristic for engineering design applications, for which it is able

to quickly identify candidate solutions that can be further refined with fast local optimizers.
See the page package scolib for important information regarding all SCOLIB methods
The DIRECT algorithm supports concurrency up to twice the number of variables being optimized.
DIRECT uses the solution target, constraint penalty and show misc options specifica-

tions that are described in package scolib. Note, however, that DIRECT uses a fixed penalty value for constraint
violations (i.e. it is not dynamically adapted as is done in coliny pattern search).

Search Parameters
The global balance parameter controls how much global search is performed by only allowing a

subregion to be subdivided if the size of the subregion divided by the size of the largest subregion is at least
global balance parameter. Intuitively, this forces large subregions to be subdivided before the smallest
subregions are refined. The local balance parameter provides a tolerance for estimating whether the
smallest subregion can provide a sufficient decrease to be worth subdividing; the default value is a small value
that is suitable for most applications.

6.2. METHOD 671

Stopping Critieria
DIRECT can be terminated with:

• max function evaluations

• max iterations

• convergence tolerance

• solution target

• max boxsize limit

• min boxsize limit - most effective in practice

See Also
These keywords may also be of interest:

• coliny beta

• coliny pattern search

• coliny cobyla

• coliny ea

• coliny solis wets

• ncsu direct

division

• Keywords Area

• method

• coliny direct

• division

Determine how rectangles are subdivided

Specification
Alias: none

Argument(s): none
Default: major dimension

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 major dimension (default) Longest
edge of subregion
is subdivided

672 CHAPTER 6. KEYWORDS AREA

all dimensions All dimensions are
simultaneously
subdivided

Description
The division specification determines how DIRECT subdivides each subregion of the search space.

If division is set to major dimension, then the dimension representing the longest edge of the sub-
region is subdivided (this is the default). If division is set to all dimensions, then all dimensions are
simultaneously subdivided.

major dimension

• Keywords Area

• method

• coliny direct

• division

• major dimension

(default) Longest edge of subregion is subdivided

Specification
Alias: none

Argument(s): none

Description
Longest edge of subregion is subdivided

all dimensions

• Keywords Area

• method

• coliny direct

• division

• all dimensions

All dimensions are simultaneously subdivided

Specification
Alias: none

Argument(s): none

6.2. METHOD 673

Description
All dimensions are simultaneously subdivided

global balance parameter

• Keywords Area

• method

• coliny direct

• global balance parameter

Tolerance for whether a subregion is worth dividing

Specification
Alias: none

Argument(s): REAL
Default: 0.0

Description
The global balance parameter controls how much global search is performed by only allowing a subre-
gion to be subdivided if the size of the subregion divided by the size of the largest subregion is at least global -
balance parameter. Intuitively, this forces large subregions to be subdivided before the smallest subregions
are refined.

local balance parameter

• Keywords Area

• method

• coliny direct

• local balance parameter

Tolerance for whether a subregion is worth dividing

Specification
Alias: none

Argument(s): REAL
Default: 1.e-8

Description
See parent page. The local balance parameter provides a tolerance for estimating whether the smallest
subregion can provide a sufficient decrease to be worth subdividing; the default value is a small value that is
suitable for most applications.

674 CHAPTER 6. KEYWORDS AREA

max boxsize limit

• Keywords Area

• method

• coliny direct

• max boxsize limit

Stopping Criterion based on longest edge of hyperrectangle

Specification

Alias: none
Argument(s): REAL
Default: 0.0

Description

Each subregion considered by DIRECT has a size, which corresponds to the longest diagonal of the subregion.
max boxsize limit specification terminates DIRECT if the size of the largest subregion falls below this

threshold.

min boxsize limit

• Keywords Area

• method

• coliny direct

• min boxsize limit

Stopping Criterion based on shortest edge of hyperrectangle

Specification

Alias: none
Argument(s): REAL
Default: 1.0e-4

Description

min boxsize limit is a setting that terminates the optimization when the measure of a hyperrectangle S with
f(c(S)) = fmin is less than min boxsize limit.

Each subregion considered by DIRECT has a size, which corresponds to the longest diagonal of the subregion.
min boxsize limit specification terminates DIRECT if the size of the smallest subregion falls below this

threshold.
In practice, this specification is likely to be more effective at limiting DIRECT’s search.

6.2. METHOD 675

constraint penalty

• Keywords Area

• method

• coliny direct

• constraint penalty

Multiplier for the penalty function

Specification

Alias: none
Argument(s): REAL
Default: 1000.0

Description

Most SCOLIB optimizers treat constraints with a simple penalty scheme that adds constraint penalty
times the sum of squares of the constraint violations to the objective function. The default value of constraint-
penalty is 1000.0, except for methods that dynamically adapt their constraint penalty, for which the default

value is 1.0.

solution target

• Keywords Area

• method

• coliny direct

• solution target

Stopping criteria based on objective function value

Specification

Alias: solution accuracy
Argument(s): REAL
Default: -DBL MAX

Description

solution target is a termination criterion. The algorithm will terminate when the function value falls below
solution target.

676 CHAPTER 6. KEYWORDS AREA

seed

• Keywords Area

• method

• coliny direct

• seed

Seed of the random number generator

Specification

Alias: none
Argument(s): INTEGER
Default: system-generated (non-repeatable)

Description

The random seed control provides a mechanism for making a stochastic method repeatable. That is, the use of
the same random seed in identical studies will generate identical results.

Default Behavior
If not specified, the seed is randomly generated.
Expected Output
If seed is specified, a stochastic study will generate identical results when repeated using the same seed

value. Otherwise, results are not guaranteed to be the same.
Usage Tips
If a stochastic study was run without seed specified, and the user later wishes to repeat the study using the

same seed, the value of the seed used in the original study can be found in the output Dakota prints to the screen.
That value can then be added to the Dakota input file.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 15347

show misc options

• Keywords Area

• method

• coliny direct

• show misc options

Show algorithm parameters not exposed in Dakota input

6.2. METHOD 677

Specification
Alias: none

Argument(s): none
Default: no dump of specification options

Description
All SCOLIB methods support the show misc options optional specification which results in a dump of all the
allowable method inputs. Note that the information provided by this command refers to optimizer parameters that
are internal to SCOLIB, and which may differ from corresponding parameters used by the Dakota interface. The
misc options optional specification provides a means for inputing additional settings supported by the SCOLI-
B methods but which are not currently mapped through the Dakota input specification. Care must be taken in using
this specification; they should only be employed by users familiar with the full range of parameter specifications
available directly from SCOLIB and understand any differences that exist between those specifications and the
ones available through Dakota.

misc options

• Keywords Area

• method

• coliny direct

• misc options

Set method options not available through Dakota spec

Specification
Alias: none

Argument(s): STRINGLIST
Default: no misc options

Description
All SCOLIB methods support the show misc options optional specification which results in a dump of all the
allowable method inputs. Note that the information provided by this command refers to optimizer parameters that
are internal to SCOLIB, and which may differ from corresponding parameters used by the Dakota interface. The
misc options optional specification provides a means for inputing additional settings supported by the SCOLI-
B methods but which are not currently mapped through the Dakota input specification. Care must be taken in using
this specification; they should only be employed by users familiar with the full range of parameter specifications
available directly from SCOLIB and understand any differences that exist between those specifications and the
ones available through Dakota.

model pointer

• Keywords Area

• method

• coliny direct

678 CHAPTER 6. KEYWORDS AREA

• model pointer

Identifier for model block to be used by a method

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

Description
The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs

6.2. METHOD 679

samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses
response_functions = 3
no_gradients
no_hessians

6.2.43 coliny ea
• Keywords Area

• method

• coliny ea

Evolutionary Algorithm

Topics
This keyword is related to the topics:

• package scolib

• package coliny

• global optimization methods

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional population size Set the population
size

680 CHAPTER 6. KEYWORDS AREA

Optional initialization type Specify how to
initialize the
population

Optional fitness type Select fitness type
Optional replacement type Select a

replacement type
for SCOLIB
evolutionary
algorithm
(coliny ea)

Optional crossover rate Specify the
probability of a
crossover event

Optional crossover type Select a crossover
type

Optional mutation rate Set probability of a
mutation

Optional mutation type Select a mutation
type

Optional constraint penalty Multiplier for the
penalty function

Optional solution target Stopping criteria
based on objective
function value

Optional seed Seed of the random
number generator

Optional show misc options Show algorithm
parameters not
exposed in Dakota
input

Optional misc options Set method options
not available
through Dakota
spec

Optional model pointer Identifier for
model block to be
used by a method

Description
Evolutionary Algorithm

See the page package scolib for important information regarding all SCOLIB methods
coliny pattern search supports concurrency up to the size of the population
The random seed control provides a mechanism for making a stochastic optimization repeatable. That is, the

use of the same random seed in identical studies will generate identical results. The population size control
specifies how many individuals will comprise the EA’s population.

The initialization type defines the type of initialization for the population of the EA. There are three
types: simple random, unique random, and flat file. simple random creates initial solutions with

6.2. METHOD 681

random variable values according to a uniform random number distribution. It gives no consideration to any
previously generated designs. The number of designs is specified by the population size. unique -
random is the same as simple random, except that when a new solution is generated, it is checked against
the rest of the solutions. If it duplicates any of them, it is rejected. flat file allows the initial population to be
read from a flat file. If flat file is specified, a file name must be given.

The fitness type controls how strongly differences in ”fitness” (i.e., the objective function) are weighted
in the process of selecting ”parents” for crossover:

• the linear rank setting uses a linear scaling of probability of selection based on the rank order of each
individual’s objective function within the population

• the merit function setting uses a proportional scaling of probability of selection based on the relative
value of each individual’s objective function within the population

The replacement type controls how current populations and newly generated individuals are combined to
create a new population. Each of the replacement type selections accepts an integer value, which is referred
to below as the replacement size.

• The random setting creates a new population using (a) replacement size randomly selected individ-
uals from the current population, and (b) population size - replacement size individuals ran-
domly selected from among the newly generated individuals (the number of which is optionally specified
using new solutions generated) that are created for each generation (using the selection, crossover,
and mutation procedures).

• The chc setting creates a new population using (a) the replacement size best individuals from the
combination of the current population and the newly generated individuals, and (b) population size -
replacement size individuals randomly selected from among the remaining individuals in this com-
bined pool. The chc setting is the preferred selection for many engineering problems.

• The elitist (default) setting creates a new population using (a) the replacement size best indi-
viduals from the current population, (b) and population size - replacement size individuals
randomly selected from the newly generated individuals. It is possible in this case to lose a good solution
from the newly generated individuals if it is not randomly selected for replacement; however, the default
new solutions generated value is set such that the entire set of newly generated individuals will be
selected for replacement.

Note that new solutions generated is not recognized by Dakota as a valid keyword unless replacement-
type has been specified.

Theory

The basic steps of an evolutionary algorithm are depicted in Figure 5.2.

682 CHAPTER 6. KEYWORDS AREA

Figure 6.2: Depiction of evolutionary algorithm

They can be enumerated as follows:

1. Select an initial population randomly and perform function evaluations on these individuals

2. Perform selection for parents based on relative fitness

3. Apply crossover and mutation to generate new solutions generated new individuals from the se-
lected parents

• Apply crossover with a fixed probability from two selected parents

• If crossover is applied, apply mutation to the newly generated individual with a fixed probability

• If crossover is not applied, apply mutation with a fixed probability to a single selected parent

4. Perform function evaluations on the new individuals

5. Perform replacement to determine the new population

6. Return to step 2 and continue the algorithm until convergence criteria are satisfied or iteration limits are
exceeded

See Also
These keywords may also be of interest:

• coliny beta

• coliny direct

• coliny pattern search

• coliny cobyla

• coliny solis wets

6.2. METHOD 683

population size

• Keywords Area

• method

• coliny ea

• population size

Set the population size

Specification
Alias: none

Argument(s): INTEGER
Default: 50

Description
The number of designs in the population is specified by the population size.

initialization type

• Keywords Area

• method

• coliny ea

• initialization type

Specify how to initialize the population

Specification
Alias: none

Argument(s): none
Default: unique random

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1
simple random Create random

initial solutions
unique random Create random

initial solutions,
but enforce
uniqueness
(default)

684 CHAPTER 6. KEYWORDS AREA

flat file Read initial
solutions from file

Description
The initialization type defines how the initial population is created for the GA. There are three types:

1. simple random

2. unique random (default)

3. flat file

Setting the size for the flat file initializer has the effect of requiring a minimum number of designs to
create. If this minimum number has not been created once the files are all read, the rest are created using the
unique random initializer and then the simple random initializer if necessary.

simple random

• Keywords Area

• method

• coliny ea

• initialization type

• simple random

Create random initial solutions

Specification
Alias: none

Argument(s): none

Description
simple random creates initial solutions with random variable values according to a uniform random number
distribution. It gives no consideration to any previously generated designs.

unique random

• Keywords Area

• method

• coliny ea

• initialization type

• unique random

Create random initial solutions, but enforce uniqueness (default)

6.2. METHOD 685

Specification
Alias: none

Argument(s): none

Description
unique random is the same as simple random, except that when a new solution is generated, it is checked
against the rest of the solutions. If it duplicates any of them, it is rejected.

flat file

• Keywords Area

• method

• coliny ea

• initialization type

• flat file

Read initial solutions from file

Specification
Alias: none

Argument(s): STRING

Description
flat file allows the initial population to be read from a flat file. If flat file is specified, a file name must
be given.

fitness type

• Keywords Area

• method

• coliny ea

• fitness type

Select fitness type

Specification
Alias: none

Argument(s): none
Default: linear rank

686 CHAPTER 6. KEYWORDS AREA

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 linear rank Set selection
scaling

merit function Balance goals of
reducing objective
function and
satisfying
constraints

Description
The fitness type controls how strongly differences in ”fitness” (i.e., the objective function) are weighted in
the process of selecting ”parents” for crossover. It has two options, linear rank and merit function.

linear rank

• Keywords Area

• method

• coliny ea

• fitness type

• linear rank

Set selection scaling

Specification
Alias: none

Argument(s): none

Description
The linear rank setting uses a linear scaling of probability of selection based on the rank order of each
individual’s objective function within the population

merit function

• Keywords Area

• method

• coliny ea

• fitness type

• merit function

Balance goals of reducing objective function and satisfying constraints

6.2. METHOD 687

Specification

Alias: none
Argument(s): none

Description

A merit function is a function in constrained optimization that attempts to provide joint progress toward
reducing the objective function and satisfying the constraints.

replacement type

• Keywords Area

• method

• coliny ea

• replacement type

Select a replacement type for SCOLIB evolutionary algorithm (coliny ea)

Specification

Alias: none
Argument(s): none
Default: elitist=1

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1
random Create new

population
randomly

chc Create new
population using
replacement

elitist Use the best
designs to form a
new population

Optional new solutions -
generated

Replace population
with individuals
chosen from
population

Description

The replacement type controls how current populations and newly generated individuals are combined to create
a new population. Each of the replacement type selections accepts an associated integer value, which is specified
by the replacement size:

The random setting creates a new population using (a) replacement size randomly selected individ-
uals from the current population, and (b) population size - replacement size individuals randomly

688 CHAPTER 6. KEYWORDS AREA

selected from among the newly generated individuals (the number of which is optionally specified using new-
solutions generated) that are created for each generation (using the selection, crossover, and mutation

procedures).
The chc setting creates a new population using (a) the replacement size best individuals from the

combination of the current population and the newly generated individuals, and (b) population size -
replacement size individuals randomly selected from among the remaining individuals in this combined
pool. The chc setting is the preferred selection for many engineering problems.

The elitist (default) setting creates a new population using (a) the replacement size best individuals
from the current population, (b) and population size - replacement size individuals randomly selected
from the newly generated individuals. It is possible in this case to lose a good solution from the newly generated
individuals if it is not randomly selected for replacement; however, the default new solutions generated
value is set such that the entire set of newly generated individuals will be selected for replacement.

Note that new solutions generated is not recognized by Dakota as a valid keyword unless replacement-
type has been specified.

random

• Keywords Area

• method

• coliny ea

• replacement type

• random

Create new population randomly

Specification
Alias: none

Argument(s): INTEGER

Description
The replacement type controls how current populations and newly generated individuals are combined to
create a new population. Each of the replacement type selections accepts an integer value, which is referred
as the replacement size:

The random setting creates a new population using:

• replacement size randomly selected individuals from the current population, and

• population size - replacement size individuals randomly selected from among the newly gen-
erated individuals (the number of which is optionally specified using new solutions generated) that
are created for each generation (using the selection, crossover, and mutation procedures).

chc

• Keywords Area

• method

6.2. METHOD 689

• coliny ea

• replacement type

• chc

Create new population using replacement

Specification

Alias: none
Argument(s): INTEGER

Description

The replacement type controls how current populations and newly generated individuals are combined to
create a new population. Each of the replacement type selections accepts an integer value, which is referred
as the replacement size:

The chc setting creates a new population using (a) the replacement size best individuals from the
combination of the current population and the newly generated individuals, and (b) population size -
replacement size individuals randomly selected from among the remaining individuals in this combined
pool. The chc setting is the preferred selection for many engineering problems.

elitist

• Keywords Area

• method

• coliny ea

• replacement type

• elitist

Use the best designs to form a new population

Specification

Alias: none
Argument(s): INTEGER

Description

The elitist (default) setting creates a new population using (a) the replacement size best individuals
from the current population, (b) and population size - replacement size individuals randomly selected
from the newly generated individuals. It is possible in this case to lose a good solution from the newly generated
individuals if it is not randomly selected for replacement; however, the default new solutions generated
value is set such that the entire set of newly generated individuals will be selected for replacement.

690 CHAPTER 6. KEYWORDS AREA

new solutions generated

• Keywords Area

• method

• coliny ea

• replacement type

• new solutions generated

Replace population with individuals chosen from population

Specification

Alias: none
Argument(s): INTEGER
Default: population size - replacement size

Description

• The random setting creates a new population using (a) replacement size randomly selected individ-
uals from the current population, and (b) population size - replacement size individuals ran-
domly selected from among the newly generated individuals (the number of which is optionally specified
using new solutions generated) that are created for each generation (using the selection, crossover,
and mutation procedures).

crossover rate

• Keywords Area

• method

• coliny ea

• crossover rate

Specify the probability of a crossover event

Specification

Alias: none
Argument(s): REAL
Default: 0.8

6.2. METHOD 691

Description
The crossover type controls what approach is employed for combining parent genetic information to cre-
ate offspring, and the crossover rate specifies the probability of a crossover operation being performed to
generate a new offspring. The SCOLIB EA method supports three forms of crossover, two point, blend, and
uniform, which generate a new individual through combinations of two parent individuals. Two-point crossover
divides each parent into three regions, where offspring are created from the combination of the middle region from
one parent and the end regions from the other parent. Since the SCOLIB EA does not utilize bit representations
of variable values, the crossover points only occur on coordinate boundaries, never within the bits of a particular
coordinate. Uniform crossover creates offspring through random combination of coordinates from the two par-
ents. Blend crossover generates a new individual randomly along the multidimensional vector connecting the two
parents.

crossover type

• Keywords Area

• method

• coliny ea

• crossover type

Select a crossover type

Specification
Alias: none

Argument(s): none
Default: two point

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1
two point Combine middle of

one parent with
end of another

blend Random blend of
parents

uniform Randomly
combine
coordinates from
parents

Description
The crossover type controls what approach is employed for combining parent genetic information to create
offspring. The SCOLIB EA method supports three forms of crossover, two point, blend, and uniform,
which generate a new individual through combinations of two parent individuals.

two point

• Keywords Area

692 CHAPTER 6. KEYWORDS AREA

• method

• coliny ea

• crossover type

• two point

Combine middle of one parent with end of another

Specification

Alias: none
Argument(s): none

Description

Two-point crossover divides each parent into three regions, where offspring are created from the combination
of the middle region from one parent and the end regions from the other parent. Since the SCOLIB EA does
not utilize bit representations of variable values, the crossover points only occur on coordinate boundaries, never
within the bits of a particular coordinate.

blend

• Keywords Area

• method

• coliny ea

• crossover type

• blend

Random blend of parents

Specification

Alias: none
Argument(s): none

Description

blend crossover generates a new individual randomly along the multidimensional vector connecting the two
parents.

6.2. METHOD 693

uniform

• Keywords Area

• method

• coliny ea

• crossover type

• uniform

Randomly combine coordinates from parents

Specification
Alias: none

Argument(s): none

Description
Uniform crossover creates offspring through random combination of coordinates from the two parents.

mutation rate

• Keywords Area

• method

• coliny ea

• mutation rate

Set probability of a mutation

Specification
Alias: none

Argument(s): REAL
Default: 1.0

Description
The mutation rate controls the probability of mutation being performed on an individual, both for new
individuals generated by crossover (if crossover occurs) and for individuals from the existing population. It is the
fraction of trial points that are mutated in a given iteration and therefore must be specified to be between 0 and 1.

mutation type

• Keywords Area

• method

• coliny ea

• mutation type

Select a mutation type

694 CHAPTER 6. KEYWORDS AREA

Specification

Alias: none
Argument(s): none
Default: offset normal

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1

replace uniform Replace coordinate
with randomly
generated value

offset normal Set mutation offset
to use a normal
distribution

offset cauchy Use a Cauchy
distribution for the
mutation offset

offset uniform Set mutation offset
to use a uniform
distribution

Optional non adaptive Disable
self-adaptive
mutation

Description

The mutation type controls what approach is employed in randomly modifying continuous design variables
within the EA population. Each of the mutation methods generates coordinate-wise changes to individuals, usually
by adding a random variable to a given coordinate value (an offset ∗ mutation), but also by replacing a given
coordinate value with a random variable (a replace ∗ mutation).

Discrete design variables are always mutated using the offset uniform method.

replace uniform

• Keywords Area

• method

• coliny ea

• mutation type

• replace uniform

Replace coordinate with randomly generated value

Specification

Alias: none
Argument(s): none

6.2. METHOD 695

Description
The replace uniform mutation type generates a replacement value for a coordinate using a uniformly dis-
tributed value over the total range for that coordinate.

offset normal

• Keywords Area

• method

• coliny ea

• mutation type

• offset normal

Set mutation offset to use a normal distribution

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional mutation scale Scales mutation
across range of
parameter

Optional mutation range Set uniform offset
control for discrete
parameters

Description
The offset normal type is an ”offset” mutation that adds a 0-mean random variable with a normal uniform
distribution to the existing coordinate value. The offset is limited in magnitude by mutation scale.

mutation scale

• Keywords Area

• method

• coliny ea

• mutation type

• offset normal

• mutation scale

Scales mutation across range of parameter

696 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): REAL
Default: 0.1

Description
The mutation scale specifies a scale factor which scales continuous mutation offsets; this is a fraction of the
total range of each dimension, so mutation scale is a relative value between 0 and 1.

mutation range

• Keywords Area

• method

• coliny ea

• mutation type

• offset normal

• mutation range

Set uniform offset control for discrete parameters

Specification
Alias: none

Argument(s): INTEGER
Default: 1

Description
The mutation range is used to control offset uniform mutation used for discrete parameters. The re-
placement discrete value is the original value plus or minus an integer value up to mutation range.

offset cauchy

• Keywords Area

• method

• coliny ea

• mutation type

• offset cauchy

Use a Cauchy distribution for the mutation offset

Specification
Alias: none

Argument(s): none

6.2. METHOD 697

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional mutation scale Scales mutation
across range of
parameter

Optional mutation range Set uniform offset
control for discrete
parameters

Description
The offset cauchy type is an ”offset” mutation that adds a 0-mean random variable with a cauchy distribution
to the existing coordinate value. The offset is limited in magnitude by mutation scale.

mutation scale

• Keywords Area

• method

• coliny ea

• mutation type

• offset cauchy

• mutation scale

Scales mutation across range of parameter

Specification
Alias: none

Argument(s): REAL
Default: 0.1

Description
The mutation scale specifies a scale factor which scales continuous mutation offsets; this is a fraction of the
total range of each dimension, so mutation scale is a relative value between 0 and 1.

mutation range

• Keywords Area

• method

• coliny ea

• mutation type

• offset cauchy

• mutation range

Set uniform offset control for discrete parameters

698 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): INTEGER
Default: 1

Description
The mutation range is used to control offset uniform mutation used for discrete parameters. The re-
placement discrete value is the original value plus or minus an integer value up to mutation range.

offset uniform

• Keywords Area

• method

• coliny ea

• mutation type

• offset uniform

Set mutation offset to use a uniform distribution

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional mutation scale Scales mutation
across range of
parameter

Optional mutation range Set uniform offset
control for discrete
parameters

Description
The offset uniform type is an ”offset” mutation that adds a 0-mean random variable with a uniform distri-
bution to the existing coordinate value. The offset is limited in magnitude by mutation scale

For discrete design variables, offset uniform is always used, and mutation range controls the mag-
nitude of the mutation.

mutation scale

• Keywords Area

• method

• coliny ea

• mutation type

6.2. METHOD 699

• offset uniform

• mutation scale

Scales mutation across range of parameter

Specification
Alias: none

Argument(s): REAL
Default: 0.1

Description
The mutation scale specifies a scale factor which scales continuous mutation offsets; this is a fraction of the
total range of each dimension, so mutation scale is a relative value between 0 and 1.

mutation range

• Keywords Area

• method

• coliny ea

• mutation type

• offset uniform

• mutation range

Set uniform offset control for discrete parameters

Specification
Alias: none

Argument(s): INTEGER
Default: 1

Description
The mutation range is used to control offset uniform mutation used for discrete parameters. The re-
placement discrete value is the original value plus or minus an integer value up to mutation range.

non adaptive

• Keywords Area

• method

• coliny ea

• mutation type

• non adaptive

Disable self-adaptive mutation

700 CHAPTER 6. KEYWORDS AREA

Specification

Alias: none
Argument(s): none
Default: Adaptive mutation

Description

The SCOLIB EA method uses self-adaptive mutation, which modifies the mutation scale dynamically. This
mechanism is borrowed from EAs like evolution strategies. The non adaptive flag can be used to deactivate
the self-adaptation, which may facilitate a more global search.

Note that non adaptive is not recognized by Dakota as a valid keyword unless mutation type has
been specified.

constraint penalty

• Keywords Area

• method

• coliny ea

• constraint penalty

Multiplier for the penalty function

Specification

Alias: none
Argument(s): REAL

Description

Most SCOLIB optimizers treat constraints with a simple penalty scheme that adds constraint penalty
times the sum of squares of the constraint violations to the objective function. The default value of constraint-
penalty is 1000.0, except for methods that dynamically adapt their constraint penalty, for which the default

value is 1.0.

solution target

• Keywords Area

• method

• coliny ea

• solution target

Stopping criteria based on objective function value

6.2. METHOD 701

Specification

Alias: solution accuracy
Argument(s): REAL
Default: -DBL MAX

Description

solution target is a termination criterion. The algorithm will terminate when the function value falls below
solution target.

seed

• Keywords Area

• method

• coliny ea

• seed

Seed of the random number generator

Specification

Alias: none
Argument(s): INTEGER
Default: system-generated (non-repeatable)

Description

The random seed control provides a mechanism for making a stochastic method repeatable. That is, the use of
the same random seed in identical studies will generate identical results.

Default Behavior
If not specified, the seed is randomly generated.
Expected Output
If seed is specified, a stochastic study will generate identical results when repeated using the same seed

value. Otherwise, results are not guaranteed to be the same.
Usage Tips
If a stochastic study was run without seed specified, and the user later wishes to repeat the study using the

same seed, the value of the seed used in the original study can be found in the output Dakota prints to the screen.
That value can then be added to the Dakota input file.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 15347

702 CHAPTER 6. KEYWORDS AREA

show misc options

• Keywords Area

• method

• coliny ea

• show misc options

Show algorithm parameters not exposed in Dakota input

Specification

Alias: none
Argument(s): none
Default: no dump of specification options

Description

All SCOLIB methods support the show misc options optional specification which results in a dump of all the
allowable method inputs. Note that the information provided by this command refers to optimizer parameters that
are internal to SCOLIB, and which may differ from corresponding parameters used by the Dakota interface. The
misc options optional specification provides a means for inputing additional settings supported by the SCOLI-
B methods but which are not currently mapped through the Dakota input specification. Care must be taken in using
this specification; they should only be employed by users familiar with the full range of parameter specifications
available directly from SCOLIB and understand any differences that exist between those specifications and the
ones available through Dakota.

misc options

• Keywords Area

• method

• coliny ea

• misc options

Set method options not available through Dakota spec

Specification

Alias: none
Argument(s): STRINGLIST
Default: no misc options

6.2. METHOD 703

Description

All SCOLIB methods support the show misc options optional specification which results in a dump of all the
allowable method inputs. Note that the information provided by this command refers to optimizer parameters that
are internal to SCOLIB, and which may differ from corresponding parameters used by the Dakota interface. The
misc options optional specification provides a means for inputing additional settings supported by the SCOLI-
B methods but which are not currently mapped through the Dakota input specification. Care must be taken in using
this specification; they should only be employed by users familiar with the full range of parameter specifications
available directly from SCOLIB and understand any differences that exist between those specifications and the
ones available through Dakota.

model pointer

• Keywords Area

• method

• coliny ea

• model pointer

Identifier for model block to be used by a method

Topics

This keyword is related to the topics:

• block pointer

Specification

Alias: none
Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

Description

The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

704 CHAPTER 6. KEYWORDS AREA

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses
response_functions = 3
no_gradients
no_hessians

6.2.44 coliny beta

• Keywords Area

• method

• coliny beta

(Experimental) Coliny beta solver

6.2. METHOD 705

Topics
This keyword is related to the topics:

• package scolib

• package coliny

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required beta solver name Use an
in-development
SCOLIB solver

Optional solution target Stopping criteria
based on objective
function value

Optional seed Seed of the random
number generator

Optional show misc options Show algorithm
parameters not
exposed in Dakota
input

Optional misc options Set method options
not available
through Dakota
spec

Optional model pointer Identifier for
model block to be
used by a method

Description
This method keyword allows testing of experimental (beta) Coliny (Scolib) optimization solvers during software
development. It is intended primarily for developer use. Additional information on Coliny solvers is available at
package scolib.

See Also
These keywords may also be of interest:

• coliny direct

• coliny pattern search

• coliny cobyla

• coliny ea

706 CHAPTER 6. KEYWORDS AREA

• coliny solis wets

beta solver name

• Keywords Area

• method

• coliny beta

• beta solver name

Use an in-development SCOLIB solver

Specification

Alias: none
Argument(s): STRING

Description

This is a means of accessing new methods in SCOLIB before they are exposed through the Dakota interface. Seek
help from a Dakota or SCOLIB developer or a Dakota developer.

solution target

• Keywords Area

• method

• coliny beta

• solution target

Stopping criteria based on objective function value

Specification

Alias: solution accuracy
Argument(s): REAL
Default: -DBL MAX

Description

solution target is a termination criterion. The algorithm will terminate when the function value falls below
solution target.

6.2. METHOD 707

seed

• Keywords Area

• method

• coliny beta

• seed

Seed of the random number generator

Specification

Alias: none
Argument(s): INTEGER
Default: system-generated (non-repeatable)

Description

The random seed control provides a mechanism for making a stochastic method repeatable. That is, the use of
the same random seed in identical studies will generate identical results.

Default Behavior
If not specified, the seed is randomly generated.
Expected Output
If seed is specified, a stochastic study will generate identical results when repeated using the same seed

value. Otherwise, results are not guaranteed to be the same.
Usage Tips
If a stochastic study was run without seed specified, and the user later wishes to repeat the study using the

same seed, the value of the seed used in the original study can be found in the output Dakota prints to the screen.
That value can then be added to the Dakota input file.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 15347

show misc options

• Keywords Area

• method

• coliny beta

• show misc options

Show algorithm parameters not exposed in Dakota input

708 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): none
Default: no dump of specification options

Description
All SCOLIB methods support the show misc options optional specification which results in a dump of all the
allowable method inputs. Note that the information provided by this command refers to optimizer parameters that
are internal to SCOLIB, and which may differ from corresponding parameters used by the Dakota interface. The
misc options optional specification provides a means for inputing additional settings supported by the SCOLI-
B methods but which are not currently mapped through the Dakota input specification. Care must be taken in using
this specification; they should only be employed by users familiar with the full range of parameter specifications
available directly from SCOLIB and understand any differences that exist between those specifications and the
ones available through Dakota.

misc options

• Keywords Area

• method

• coliny beta

• misc options

Set method options not available through Dakota spec

Specification
Alias: none

Argument(s): STRINGLIST
Default: no misc options

Description
All SCOLIB methods support the show misc options optional specification which results in a dump of all the
allowable method inputs. Note that the information provided by this command refers to optimizer parameters that
are internal to SCOLIB, and which may differ from corresponding parameters used by the Dakota interface. The
misc options optional specification provides a means for inputing additional settings supported by the SCOLI-
B methods but which are not currently mapped through the Dakota input specification. Care must be taken in using
this specification; they should only be employed by users familiar with the full range of parameter specifications
available directly from SCOLIB and understand any differences that exist between those specifications and the
ones available through Dakota.

model pointer

• Keywords Area

• method

• coliny beta

6.2. METHOD 709

• model pointer

Identifier for model block to be used by a method

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

Description
The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs

710 CHAPTER 6. KEYWORDS AREA

samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses
response_functions = 3
no_gradients
no_hessians

6.2.45 nl2sol
• Keywords Area

• method

• nl2sol

Trust-region method for nonlinear least squares

Topics
This keyword is related to the topics:

• nonlinear least squares

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional function precision Specify the
maximum
precision of the
analysis code
responses

6.2. METHOD 711

Optional absolute conv tol Absolute
convergence
tolerance

Optional x conv tol X-convergence
tolerance

Optional singular conv tol Singular
convergence
tolerance

Optional singular radius Singular radius
Optional false conv tol False convergence

tolerance
Optional initial trust radius Initial trust region

radius
Optional covariance Determine how the

final covariance
matrix is computed

Optional regression -
diagnostics

Turn on regression
diagnostics

Optional model pointer Identifier for
model block to be
used by a method

Description

NL2SOL is available as nl2sol and addresses unconstrained and bound-constrained least squares problems. It
uses a trust-region method (and thus can be viewed as a generalization of the Levenberg-Marquardt algorithm)
and adaptively chooses between two Hessian approximations, the Gauss-Newton approximation alone and the
Gauss-Newton approximation plus a quasi-Newton approximation to the rest of the Hessian. Even on small-
residual problems, the latter Hessian approximation can be useful when the starting guess is far from the solution.
On problems that are not over-parameterized (i.e., that do not involve more optimization variables than the data
support), NL2SOL usually exhibits fast convergence.

Several internal NL2SOL convergence tolerances are adjusted in response to function precision, which
gives the relative precision to which responses are computed.

These tolerances may also be specified explicitly using:

• convergence tolerance (NL2SOL’s rfctol)

• x conv tol (NL2SOL’s xctol)

• absolute conv tol (NL2SOL’s afctol)

• singular conv tol (NL2SOL’s sctol)

• false conv tol (NL2SOL’s xftol)

• initial trust radius (NL2SOL’s lmax0)

The internal NL2SOL defaults can be obtained for many of these controls by specifying the value -1. The internal
defaults are often functions of machine epsilon (as limited by function precision).

712 CHAPTER 6. KEYWORDS AREA

Examples
An example of nl2sol is given below, and is discussed in the User’s Manual.

Note that in this usage of calibration terms, the driver script rosenbrock, is returning ”residuals”, which the
nl2sol method is attempting to minimze. Another use case is to provide a data file, which Dakota will attempt
to match the model responses to. See calibration data file. Finally, as of Dakota 6.2, the field data capability may
be used with nl2sol. That is, the user can specify field simulation data and field experiment data, and Dakota
will interpolate and provide the proper residuals for the calibration.

Dakota Input File: rosen_opt_nls.in
environment

tabular_data
tabular_data_file = ’rosen_opt_nls.dat’

method
max_iterations = 100
convergence_tolerance = 1e-4
nl2sol

model
single

variables
continuous_design = 2

initial_point -1.2 1.0
lower_bounds -2.0 -2.0
upper_bounds 2.0 2.0
descriptors ’x1’ "x2"

interface
analysis_driver = ’rosenbrock’

direct

responses
calibration_terms = 2
analytic_gradients
no_hessians

Theory
NL2SOL has a variety of internal controls as described in AT&T Bell Labs CS TR 153 (http://cm.bell-labs.-
com/cm/cs/cstr/153.ps.gz). A number of existing Dakota controls (method independent controls and
responses controls) are mapped into these NL2SOL internal controls. In particular, Dakota’s convergence-
tolerance, max iterations, max function evaluations, and fd gradient step size are

mapped directly into NL2SOL’s rfctol, mxiter, mxfcal, and dltfdj controls, respectively. In addi-
tion, Dakota’s fd hessian step size is mapped into both delta0 and dltfdc, and Dakota’s output
verbosity is mapped into NL2SOL’s auxprt and outlev (for normal/verbose/debug output, N-
L2SOL prints initial guess, final solution, solution statistics, nondefault values, and changes to the active bound
constraint set on every iteration; for quiet output, NL2SOL prints only the initial guess and final solution;
and for silent output, NL2SOL output is suppressed).

See Also
These keywords may also be of interest:

• nlssol sqp

http://cm.bell-labs.com/cm/cs/cstr/153.ps.gz
http://cm.bell-labs.com/cm/cs/cstr/153.ps.gz

6.2. METHOD 713

• optpp g newton

• field calibration terms

function precision

• Keywords Area

• method

• nl2sol

• function precision

Specify the maximum precision of the analysis code responses

Specification
Alias: none

Argument(s): REAL
Default: 1.0e-10

Description
The function precision control provides the algorithm with an estimate of the accuracy to which the
problem functions can be computed. This is used to prevent the algorithm from trying to distinguish between
function values that differ by less than the inherent error in the calculation.

absolute conv tol

• Keywords Area

• method

• nl2sol

• absolute conv tol

Absolute convergence tolerance

Specification
Alias: none

Argument(s): REAL
Default: -1. (use NL2SOL internal default)

Description
absolute conv tol (NL2SOL’s afctol) is the absolute function convergence tolerance (stop when half the
sum of squares is less than absolute conv tol, which is mainly of interest on zero-residual test problems).

The internal default is a function of machine epsilon (as limited by function precision). The default is
selected with a value of -1.

714 CHAPTER 6. KEYWORDS AREA

x conv tol

• Keywords Area

• method

• nl2sol

• x conv tol

X-convergence tolerance

Specification
Alias: none

Argument(s): REAL
Default: -1. (use NL2SOL internal default)

Description
x conv tol maps to the internal NL2SOL control xctol. It is the X-convergence tolerance (scaled relative
accuracy of the solution variables).

The internal default is a function of machine epsilon (as limited by function precision). The default is
selected with a value of -1.

singular conv tol

• Keywords Area

• method

• nl2sol

• singular conv tol

Singular convergence tolerance

Specification
Alias: none

Argument(s): REAL
Default: -1. (use NL2SOL internal default)

Description
singular conv tol (NL2SOL’s sctol) is the singular convergence tolerance, which works in conjunc-
tion with singular radius to test for underdetermined least-squares problems (stop when the relative reduction
yet possible in the sum of squares appears less then singular conv tol for steps of scaled length at most
singular radius).

The internal default is a function of machine epsilon (as limited by function precision). The default is
selected with a value of -1.

6.2. METHOD 715

singular radius

• Keywords Area

• method

• nl2sol

• singular radius

Singular radius

Specification

Alias: none
Argument(s): REAL
Default: -1. (use NL2SOL internal default of 1)

Description

singular radius works in conjunction with singular conv tol to test for underdetermined least-squares prob-
lems (stop when the relative reduction yet possible in the sum of squares appears less than singular conv tol
for steps of scaled length at most singular radius).

The internal default results in the internal use of steps of length 1. The default is selected with a value of -1.

false conv tol

• Keywords Area

• method

• nl2sol

• false conv tol

False convergence tolerance

Specification

Alias: none
Argument(s): REAL
Default: -1. (use NL2SOL internal default)

Description

false conv tol (NL2SOL’s xftol) is the false-convergence tolerance (stop with a suspicion of discontinuity
when a more favorable stopping test is not satisfied and a step of scaled length at most false conv tol is not
accepted)

The internal default is a function of machine epsilon (as limited by function precision). The default is
selected with a value of -1.

716 CHAPTER 6. KEYWORDS AREA

initial trust radius

• Keywords Area

• method

• nl2sol

• initial trust radius

Initial trust region radius

Specification
Alias: none

Argument(s): REAL
Default: -1. (use NL2SOL internal default of 1)

Description
initial trust radius specification (NL2SOL’s lmax0) specifies the initial trust region radius for the al-
gorithm.

The internal default results in the internal use of steps of length 1. The default is selected with a value of -1.

covariance

• Keywords Area

• method

• nl2sol

• covariance

Determine how the final covariance matrix is computed

Specification
Alias: none

Argument(s): INTEGER
Default: 0 (no covariance)

Description
covariance (NL2SOL’s covreq) specifies whether and how NL2SOL computes a final covariance matrix.

The desired covariance approximation:

• 0 = default = none

• 1 or -1 ==> σ2H−1JTJH−1

• 2 or -2 ==> σ2H−1

• 3 or -3 ==> σ2(JTJ)−1

6.2. METHOD 717

• Negative values ==> estimate the final Hessian H by finite differences of function values only (using fd -
hessian step size)

• Positive values ==> differences of gradients (using fd hessian step size)

regression diagnostics

• Keywords Area

• method

• nl2sol

• regression diagnostics

Turn on regression diagnostics

Specification
Alias: none

Argument(s): none
Default: no regression diagnostics

Description
When regression diagnostics (NL2SOL’s rdreq) is specified and a positive-definite final Hessian ap-
proximation H is computed, NL2SOL computes and prints a regression diagnostic vector RD such that if omitting
the i-th observation would cause alpha times the change in the solution that omitting the j-th observation would
cause, then RD[i] = |alpha| RD[j]. The finite-difference step-size tolerance affecting H is fd step size (NL2SOL’s
delta0 and dltfdc).

model pointer

• Keywords Area

• method

• nl2sol

• model pointer

Identifier for model block to be used by a method

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

718 CHAPTER 6. KEYWORDS AREA

Description

The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses

6.2. METHOD 719

response_functions = 3
no_gradients
no_hessians

6.2.46 nonlinear cg
• Keywords Area

• method

• nonlinear cg

(Experimental) nonlinear conjugate gradient optimization

Topics
This keyword is related to the topics:

• local optimization methods

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional misc options Options for
nonlinear CG
optimizer

Optional model pointer Identifier for
model block to be
used by a method

Description
This method is an incomplete experimental implementation of nonlinear conjugate gradient optimization, a local,
gradient-based solver.

misc options

• Keywords Area

• method

• nonlinear cg

• misc options

Options for nonlinear CG optimizer

720 CHAPTER 6. KEYWORDS AREA

Specification

Alias: none
Argument(s): STRINGLIST
Default: no misc options

Description

List of miscellaneous string options to pass to the experimental nonlinear CG solver (see NonlinearCGOptimizer.-
cpp in the Dakota source code for available controls). Includes controls for step sizes, linesearch control, conver-
gence, etc.

model pointer

• Keywords Area

• method

• nonlinear cg

• model pointer

Identifier for model block to be used by a method

Topics

This keyword is related to the topics:

• block pointer

Specification

Alias: none
Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

Description

The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

6.2. METHOD 721

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses
response_functions = 3
no_gradients
no_hessians

6.2.47 ncsu direct

• Keywords Area

• method

• ncsu direct

DIviding RECTangles method

722 CHAPTER 6. KEYWORDS AREA

Topics
This keyword is related to the topics:

• global optimization methods

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional solution target Specifies a
globally optimal
value toward which
the optimizer
should track

Optional min boxsize limit Stopping Criterion
based on shortest
edge of
hyperrectangle

Optional volume boxsize -
limit

Stopping criterion
based on volume
of search space

Optional model pointer Identifier for
model block to be
used by a method

Description
North Carolina State University (NCSU) has an implementation of the DIRECT algorithm (DIviding RECTangles
algorithm that is outlined in the SCOLIB method section above). This version is documented in [28] We have
found that the NCSU DIRECT implementation works better and is more robust for some problems than coliny-
direct. Currently, we maintain both versions of DIRECT in Dakota; in the future, we may deprecate one.

The NCSU DIRECT method is selected with ncsu direct. We have tried to maintain consistency between
the keywords in SCOLIB and NCSU implementation of DIRECT, but the algorithms have different parameters,
so the keywords sometimes have slightly different meaning.

Stopping Criteria
The algorithm stops based on:

1. max iterations - number of iterations

2. max function evaluations - number of function evaluations

3. solution target and convergence tolerance

4. min boxsize limit

5. volume boxsize limit

This method will always strictly respect the number of iterations, but may slightly exceed the number of
function evaluations, as it will always explore all sub-rectangles at the current level.

6.2. METHOD 723

See Also

These keywords may also be of interest:

• coliny direct

solution target

• Keywords Area

• method

• ncsu direct

• solution target

Specifies a globally optimal value toward which the optimizer should track

Specification

Alias: solution accuracy
Argument(s): REAL
Default: 0

Description

The solution target specifies a goal toward which the optimizer should track.
This is used for test problems, when the true global minimum is known (call it solution target -

:= fglobal). Then, the optimization terminates when 100(f min-fglobal)/max(1,abs(fglobal) < convergence -
tolerance. The default for fglobal is -1.0e100 and the default for convergence tolerance is described at convergence-
tolerance.

min boxsize limit

• Keywords Area

• method

• ncsu direct

• min boxsize limit

Stopping Criterion based on shortest edge of hyperrectangle

Specification

Alias: none
Argument(s): REAL
Default: 1.0e-4

724 CHAPTER 6. KEYWORDS AREA

Description
min boxsize limit is a setting that terminates the optimization when the measure of a hyperrectangle S with
f(c(S)) = fmin is less than min boxsize limit.

Each subregion considered by DIRECT has a size, which corresponds to the longest diagonal of the subregion.
min boxsize limit specification terminates DIRECT if the size of the smallest subregion falls below this

threshold.
In practice, this specification is likely to be more effective at limiting DIRECT’s search.

volume boxsize limit

• Keywords Area

• method

• ncsu direct

• volume boxsize limit

Stopping criterion based on volume of search space

Specification
Alias: none

Argument(s): REAL
Default: 1.0e-6

Description
volume boxsize limit is a setting that terminates the optimization when the volume of a hyperrectangle S
with f(c(S)) = fmin is less than volume boxsize limit percent of the original hyperrectangle. Basically, volume-
boxsize limit stops the optimization when the volume of the particular rectangle which has fmin is less than a

certain percentage of the whole volume.

model pointer

• Keywords Area

• method

• ncsu direct

• model pointer

Identifier for model block to be used by a method

Topics
This keyword is related to the topics:

• block pointer

6.2. METHOD 725

Specification
Alias: none

Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

Description
The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

726 CHAPTER 6. KEYWORDS AREA

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses
response_functions = 3
no_gradients
no_hessians

6.2.48 genie opt darts

• Keywords Area

• method

• genie opt darts

Voronoi-based high-dimensional global Lipschitzian optimization

Specification

Alias: none
Argument(s): none

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional seed Seed of the random
number generator

Optional model pointer Identifier for
model block to be
used by a method

Description

OPT-Darts method is a fast alternative to DIRECT for global Lipschitzian optimization purposes. Instead of
hyperrectangular, OPT-Darts decomposes a high-dimensional domain into Voronoi cells, and places samples via
stochastic blue noise instead of deterministic cell division.

To refine a cell, OPT-Darts first adds a new sample within it via spoke-dart sampling, then set the conflict
radius to the cells inscribed hypersphere radius, to avoid adding a sample point that is too close to a prior sample,
then divide that cell (and update its neighboring cells) via the approximate Delaunay graph, and use the computed
witnesses to decide the next refinement candidate. These two steps replace the corresponding deterministic center-
sample and rectangular cell division in DIRECT, respectively.

OPT-Darts is the first exact stochastic Lipschitzian optimization technique that combines the benefits of guar-
anteed convergence in [Jones et al. 1993] and high dimensional efficiency in [Spall 2005]. Computing blue
noise and Voronoi regions has been intractable in high dimensions, and are being done within OPT-Darts using
Spoke-Darts.

6.2. METHOD 727

seed

• Keywords Area

• method

• genie opt darts

• seed

Seed of the random number generator

Specification

Alias: none
Argument(s): INTEGER
Default: system-generated (non-repeatable)

Description

The random seed control provides a mechanism for making a stochastic method repeatable. That is, the use of
the same random seed in identical studies will generate identical results.

Default Behavior
If not specified, the seed is randomly generated.
Expected Output
If seed is specified, a stochastic study will generate identical results when repeated using the same seed

value. Otherwise, results are not guaranteed to be the same.
Usage Tips
If a stochastic study was run without seed specified, and the user later wishes to repeat the study using the

same seed, the value of the seed used in the original study can be found in the output Dakota prints to the screen.
That value can then be added to the Dakota input file.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 15347

model pointer

• Keywords Area

• method

• genie opt darts

• model pointer

Identifier for model block to be used by a method

728 CHAPTER 6. KEYWORDS AREA

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

Description
The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single

6.2. METHOD 729

interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses
response_functions = 3
no_gradients
no_hessians

6.2.49 genie direct

• Keywords Area

• method

• genie direct

Classical high-dimensional global Lipschitzian optimization Classical high-dimensional global Lipschitzian
optimization

Specification

Alias: none
Argument(s): none

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional seed Seed of the random
number generator

Optional model pointer Identifier for
model block to be
used by a method

Description

DIRECT (DIviding RECTangles) partitions the domain into hyperrectangles and uses an iterative Lipschitzian
optimization approach to search for a global optimal point.

DIRECT begins by scaling the domain into the unit hypercube by adopting a center-sampling strategy. The
objective function is evaluated at the midpoint of the domain, where a lower bound is constructed. In one-
dimension, the domain is tri-sected and two new center points are sampled. At each iteration (dividing and
sampling), DIRECT identifies intervals that contain the best minimal value of the objective function found up
to that point. This strategy of selecting and dividing gives DIRECT its performance and convergence properties
compared to other deterministic methods.

730 CHAPTER 6. KEYWORDS AREA

The classical DIRECT method [Shubert 1972] has two limitations: poor scaling to high dimensions; and
relying on a global K; whose exact value is often unknown. The enhanced DIRECT algorithm [Jones et al. 1993]
generalizes [Shubert 1972] to higher dimensions and does not require knowledge of the Lipschitz constant.

seed

• Keywords Area

• method

• genie direct

• seed

Seed of the random number generator

Specification
Alias: none

Argument(s): INTEGER
Default: system-generated (non-repeatable)

Description
The random seed control provides a mechanism for making a stochastic method repeatable. That is, the use of
the same random seed in identical studies will generate identical results.

Default Behavior
If not specified, the seed is randomly generated.
Expected Output
If seed is specified, a stochastic study will generate identical results when repeated using the same seed

value. Otherwise, results are not guaranteed to be the same.
Usage Tips
If a stochastic study was run without seed specified, and the user later wishes to repeat the study using the

same seed, the value of the seed used in the original study can be found in the output Dakota prints to the screen.
That value can then be added to the Dakota input file.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 15347

model pointer

• Keywords Area

• method

• genie direct

• model pointer

Identifier for model block to be used by a method

6.2. METHOD 731

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

Description
The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single

732 CHAPTER 6. KEYWORDS AREA

interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses
response_functions = 3
no_gradients
no_hessians

6.2.50 efficient global
• Keywords Area

• method

• efficient global

Global Surrogate Based Optimization, a.k.a. EGO

Topics
This keyword is related to the topics:

• global optimization methods

• surrogate based optimization methods

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional gaussian process Gaussian Process
surrogate model

Optional use derivatives Use derivative data
to construct
surrogate models

6.2. METHOD 733

Optional import points file File containing
variable values and
corresponding
responses

Optional export points file Output file for
evaluations of a
surrogate model

Optional seed Seed of the random
number generator

Optional model pointer Identifier for
model block to be
used by a method

Description
The Efficient Global Optimization (EGO) method was first developed by Jones, Schonlau, and Welch[54]. In
EGO, a stochastic response surface approximation for the objective function is developed based on some sample
points from the ”true” simulation.

Note that several major differences exist between our implementation and that of[54]. First, rather than using
a branch and bound method to find the point which maximizes the EIF, we use the DIRECT global optimization
method.

Second, we support both global optimization and global nonlinear least squares as well as general nonlinear
constraints through abstraction and subproblem recasting.

The efficient global method is in prototype form. Currently, we do not expose any specification controls for
the underlying Gaussian process model used or for the optimization of the expected improvement function (which
is currently performed by the NCSU DIRECT algorithm using its internal defaults).

By default, EGO uses the Surfpack GP (Kriging) model, but the Dakota implementation may be selected
instead. If use derivatives is specified the GP model will be built using available derivative data (Surfpack
GP only).

Theory
The particular response surface used is a Gaussian process (GP). The GP allows one to calculate the prediction at a
new input location as well as the uncertainty associated with that prediction. The key idea in EGO is to maximize
the Expected Improvement Function (EIF). The EIF is used to select the location at which a new training point
should be added to the Gaussian process model by maximizing the amount of improvement in the objective
function that can be expected by adding that point. A point could be expected to produce an improvement in the
objective function if its predicted value is better than the current best solution, or if the uncertainty in its prediction
is such that the probability of it producing a better solution is high. Because the uncertainty is higher in regions of
the design space with few observations, this provides a balance between exploiting areas of the design space that
predict good solutions, and exploring areas where more information is needed. EGO trades off this ”exploitation
vs. exploration.” The general procedure for these EGO-type methods is:

• Build an initial Gaussian process model of the objective function

• Find the point that maximizes the EIF. If the EIF value at this point is sufficiently small, stop.

734 CHAPTER 6. KEYWORDS AREA

• Evaluate the objective function at the point where the EIF is maximized. Update the Gaussian process
model using this new point.

• Return to the previous step.

See Also
These keywords may also be of interest:

• surrogate based local

• surrogate based global

gaussian process

• Keywords Area

• method

• efficient global

• gaussian process

Gaussian Process surrogate model

Specification
Alias: kriging

Argument(s): none
Default: Surfpack Gaussian process

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 surfpack Use the Surfpack
version of
Gaussian Process
surrogates

dakota Select the built in
Gaussian Process
surrogate

Description
Use the Gaussian process (GP) surrogate from Surfpack, which is specified using the surfpack keyword.

An alternate version of GP surrogates was available in prior versions of Dakota. For now, both versions are
supported but the dakota version is deprecated and intended to be removed in a future release.

surfpack

• Keywords Area

• method

• efficient global

6.2. METHOD 735

• gaussian process

• surfpack

Use the Surfpack version of Gaussian Process surrogates

Specification

Alias: none
Argument(s): none

Description

This keyword specifies the use of the Gaussian process that is incorporated in our surface fitting library called
Surfpack.

Several user options are available:

1. Optimization methods:

Maximum Likelihood Estimation (MLE) is used to find the optimal values of the hyper-parameters gov-
erning the trend and correlation functions. By default the global optimization method DIRECT is used for
MLE, but other options for the optimization method are available. See optimization method.

The total number of evaluations of the likelihood function can be controlled using the max trials key-
word followed by a positive integer. Note that the likelihood function does not require running the ”truth”
model, and is relatively inexpensive to compute.

2. Trend Function:

The GP models incorporate a parametric trend function whose purpose is to capture large-scale variations.
See trend.

3. Correlation Lengths:

Correlation lengths are usually optimized by Surfpack, however, the user can specify the lengths manually.
See correlation lengths.

4. Ill-conditioning

One of the major problems in determining the governing values for a Gaussian process or Kriging model is
the fact that the correlation matrix can easily become ill-conditioned when there are too many input points
close together. Since the predictions from the Gaussian process model involve inverting the correlation
matrix, ill-conditioning can lead to poor predictive capability and should be avoided.

Note that a sufficiently bad sample design could require correlation lengths to be so short that any interpo-
latory GP model would become inept at extrapolation and interpolation.

The surfpack model handles ill-conditioning internally by default, but behavior can be modified using

5. Gradient Enhanced Kriging (GEK).

The use derivatives keyword will cause the Surfpack GP to be constructed from a combination of
function value and gradient information (if available).

See notes in the Theory section.

736 CHAPTER 6. KEYWORDS AREA

Theory
Gradient Enhanced Kriging

Incorporating gradient information will only be beneficial if accurate and inexpensive derivative information
is available, and the derivatives are not infinite or nearly so. Here ”inexpensive” means that the cost of evaluating a
function value plus gradient is comparable to the cost of evaluating only the function value, for example gradients
computed by analytical, automatic differentiation, or continuous adjoint techniques. It is not cost effective to use
derivatives computed by finite differences. In tests, GEK models built from finite difference derivatives were also
significantly less accurate than those built from analytical derivatives. Note that GEK’s correlation matrix tends
to have a significantly worse condition number than Kriging for the same sample design.

This issue was addressed by using a pivoted Cholesky factorization of Kriging’s correlation matrix (which is a
small sub-matrix within GEK’s correlation matrix) to rank points by how much unique information they contain.
This reordering is then applied to whole points (the function value at a point immediately followed by gradient
information at the same point) in GEK’s correlation matrix. A standard non-pivoted Cholesky is then applied to the
reordered GEK correlation matrix and a bisection search is used to find the last equation that meets the constraint
on the (estimate of) condition number. The cost of performing pivoted Cholesky on Kriging’s correlation matrix
is usually negligible compared to the cost of the non-pivoted Cholesky factorization of GEK’s correlation matrix.
In tests, it also resulted in more accurate GEK models than when pivoted Cholesky or whole-point-block pivoted
Cholesky was performed on GEK’s correlation matrix.

dakota

• Keywords Area

• method

• efficient global

• gaussian process

• dakota

Select the built in Gaussian Process surrogate

Specification
Alias: none

Argument(s): none

Description
A second version of GP surrogates was available in prior versions of Dakota. For now, both versions are
supported but the dakota version is deprecated and intended to be removed in a future release.

Historically these models were drastically different, but in Dakota 5.1, they became quite similar. They now
differ in that the Surfpack GP has a richer set of features/options and tends to be more accurate than the Dakota
version. Due to how the Surfpack GP handles ill-conditioned correlation matrices (which significantly contributes
to its greater accuracy), the Surfpack GP can be a factor of two or three slower than Dakota’s. As of Dakota
5.2, the Surfpack implementation is the default in all contexts except Bayesian calibration.

More details on the gaussian process dakota model can be found in[58].
Dakota’s GP deals with ill-conditioning in two ways. First, when it encounters a non-invertible correlation

matrix it iteratively increases the size of a ”nugget,” but in such cases the resulting approximation smooths rather
than interpolates the data. Second, it has a point selection option (default off) that uses a greedy algorithm

6.2. METHOD 737

to select a well-spaced subset of points prior to the construction of the GP. In this case, the GP will only interpo-
late the selected subset. Typically, one should not need point selection in trust-region methods because a small
number of points are used to develop a surrogate within each trust region. Point selection is most beneficial when
constructing with a large number of points, typically more than order one hundred, though this depends on the
number of variables and spacing of the sample points.

This differs from the point selection option of the Dakota GP which initially chooses a well-spaced
subset of points and finds the correlation parameters that are most likely for that one subset.

use derivatives

• Keywords Area

• method

• efficient global

• use derivatives

Use derivative data to construct surrogate models

Specification
Alias: none

Argument(s): none
Default: use function values only

Description
The use derivatives flag specifies that any available derivative information should be used in global approx-
imation builds, for those global surrogate types that support it (currently, polynomial regression and the Surfpack
Gaussian process).

However, it’s use with Surfpack Gaussian process is not recommended.

import points file

• Keywords Area

• method

• efficient global

• import points file

File containing variable values and corresponding responses

Specification
Alias: none

Argument(s): STRING
Default: no point import from a file

738 CHAPTER 6. KEYWORDS AREA

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional(Choose
One)

tabular format
(Group 1)

annotated Selects annotated
tabular file format

custom annotated Selects
custom-annotated
tabular file format

freeform Selects freeform
file format

Optional active only Import only active
variables from
tabular data file

Description
The import points file allows the user to specify a file that contains a list of variable values and the model
responses computed at those values. These can be used by a number of methods in place of model evaluations.
When used to construct surrogate models or emulators these are often called build points or training data.

Default Behavior
Be default, methods do not import points from a file.
Usage Tips
Dakota parses input files without regard to whitespace, but the import points file must be in one of three

formats:

• annotated (default)

• custom annotated

• freeform

Examples
method

list_parameter_study
import_points_file = ’dakota_pstudy.3.dat’

annotated

• Keywords Area

• method

• efficient global

• import points file

• annotated

Selects annotated tabular file format

6.2. METHOD 739

Topics

This keyword is related to the topics:

• file formats

Specification

Alias: none
Argument(s): none
Default: annotated format

Description

An annotated tabular file is a whitespace-separated text file with one leading header row of comments/column la-
bels. Each subsequent row contains an evaluation ID and interface ID, followed by data for variables, or variables
followed by responses, depending on context.

Default Behavior
By default, Dakota imports and exports tabular files in annotated format. The annotated keyword can be

used to explicitly specify this.
Usage Tips

• To specify pre-Dakota 6.1 tabular format, which did not include interface id, specify custom annotated
header eval id

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export an annotated top-level tabular data file containing a header row, leading eval id and interface id columns,
and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
annotated

Resulting tabular file:

%eval_id interface x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 NO_ID 0.9 1.1 0.0002 0.26 0.76
2 NO_ID 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 NO_ID 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

740 CHAPTER 6. KEYWORDS AREA

custom annotated

• Keywords Area

• method

• efficient global

• import points file

• custom annotated

Selects custom-annotated tabular file format

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Default: annotated format

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional header Enable header row
in
custom-annotated
tabular file

Optional eval id Enable evaluation
ID column in
custom-annotated
tabular file

Optional interface id Enable interface
ID column in
custom-annotated
tabular file

Description
A custom-annotated tabular file is a whitespace-separated text file typically containing row data for variables, or
variables followed by responses, though the format is used for other tabular exports/imports as well. Custom-
annotated allows user options for whether header row, eval id column, and interface id column appear
in the tabular file, thus bridging freeform and (fully) annotated.

Default Behavior
The annotated format is the default for tabular export/import. To control which header row and columns

are in the input/output, specify custom annotated, followed by options, in the relevant export/import context.
Usage Tips

6.2. METHOD 741

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export a custom-annotated tabular file in Dakota 6.0 format, which contained only header and eval id (no interface-
id), and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
custom_annotated header eval_id

Resulting tabular file:

%eval_id x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 0.9 1.1 0.0002 0.26 0.76
2 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

header

• Keywords Area

• method

• efficient global

• import points file

• custom annotated

• header

Enable header row in custom-annotated tabular file

Specification

Alias: none
Argument(s): none
Default: no header

Description

See description of parent custom annotated

742 CHAPTER 6. KEYWORDS AREA

eval id

• Keywords Area

• method

• efficient global

• import points file

• custom annotated

• eval id

Enable evaluation ID column in custom-annotated tabular file

Specification

Alias: none
Argument(s): none
Default: no eval id column

Description

See description of parent custom annotated

interface id

• Keywords Area

• method

• efficient global

• import points file

• custom annotated

• interface id

Enable interface ID column in custom-annotated tabular file

Specification

Alias: none
Argument(s): none
Default: no interface id column

Description

See description of parent custom annotated

6.2. METHOD 743

freeform

• Keywords Area

• method

• efficient global

• import points file

• freeform

Selects freeform file format

Topics

This keyword is related to the topics:

• file formats

Specification

Alias: none
Argument(s): none
Default: annotated format

Description

A freeform tabular file is whitespace-separated text file with no leading header row and no leading columns. Most
commonly, each row contains data for variables, or variables followed by responses, though the format is used for
other tabular exports/imports as well.

Default Behavior
The annotated format is the default for tabular export/import. To change this behavior, specify freeform

in the relevant export/import context.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• In freeform, the num rows x num cols total data entries may be separated with any whitespace including
spaces, tabs, and newlines. In this format, vectors may therefore appear as a single row or single column
(or mixture; entries will populate the vector in order).

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

744 CHAPTER 6. KEYWORDS AREA

Examples
Export a freeform tabular file containing only data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
freeform

Resulting tabular file:

0.9 1.1 0.0002 0.26 0.76
0.90009 1.1 0.0001996404857 0.2601620081 0.759955
0.89991 1.1 0.0002003604863 0.2598380081 0.760045

...

active only

• Keywords Area

• method

• efficient global

• import points file

• active only

Import only active variables from tabular data file

Topics

This keyword is related to the topics:

• file formats

Specification

Alias: none
Argument(s): none

Description

By default, files for tabular data imports are expected to contain columns for all variables, active and inactive. The
keyword active only indicates that the file to import contains only the active variables.

This option should only be used in contexts where the inactive variables have no influence, for example,
building a surrogate over active variables, with the state variables held at nominal. It should not be used in more
complex nested contexts, where the values of inactive variables are relevant to the function evaluations used to
build the surrogate.

6.2. METHOD 745

export points file

• Keywords Area

• method

• efficient global

• export points file

Output file for evaluations of a surrogate model

Specification
Alias: none

Argument(s): STRING
Default: no point export to a file

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional(Choose
One)

tabular format
(Group 1)

annotated Selects annotated
tabular file format

custom annotated Selects
custom-annotated
tabular file format

freeform Selects freeform
file format

Description
File of points (input variable values and predicted approximate outputs from the surrogate) evaluated on the
surrogate model. The export points contain test point values and the emulator predictions at these points.

Usage Tips
Dakota exports tabular data in one of three formats:

• annotated (default)

• custom annotated

• freeform

annotated

• Keywords Area

• method

• efficient global

• export points file

• annotated

Selects annotated tabular file format

746 CHAPTER 6. KEYWORDS AREA

Topics

This keyword is related to the topics:

• file formats

Specification

Alias: none
Argument(s): none
Default: annotated format

Description

An annotated tabular file is a whitespace-separated text file with one leading header row of comments/column la-
bels. Each subsequent row contains an evaluation ID and interface ID, followed by data for variables, or variables
followed by responses, depending on context.

Default Behavior
By default, Dakota imports and exports tabular files in annotated format. The annotated keyword can be

used to explicitly specify this.
Usage Tips

• To specify pre-Dakota 6.1 tabular format, which did not include interface id, specify custom annotated
header eval id

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export an annotated top-level tabular data file containing a header row, leading eval id and interface id columns,
and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
annotated

Resulting tabular file:

%eval_id interface x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 NO_ID 0.9 1.1 0.0002 0.26 0.76
2 NO_ID 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 NO_ID 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

6.2. METHOD 747

custom annotated

• Keywords Area

• method

• efficient global

• export points file

• custom annotated

Selects custom-annotated tabular file format

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Default: annotated format

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional header Enable header row
in
custom-annotated
tabular file

Optional eval id Enable evaluation
ID column in
custom-annotated
tabular file

Optional interface id Enable interface
ID column in
custom-annotated
tabular file

Description
A custom-annotated tabular file is a whitespace-separated text file typically containing row data for variables, or
variables followed by responses, though the format is used for other tabular exports/imports as well. Custom-
annotated allows user options for whether header row, eval id column, and interface id column appear
in the tabular file, thus bridging freeform and (fully) annotated.

Default Behavior
The annotated format is the default for tabular export/import. To control which header row and columns

are in the input/output, specify custom annotated, followed by options, in the relevant export/import context.
Usage Tips

748 CHAPTER 6. KEYWORDS AREA

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export a custom-annotated tabular file in Dakota 6.0 format, which contained only header and eval id (no interface-
id), and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
custom_annotated header eval_id

Resulting tabular file:

%eval_id x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 0.9 1.1 0.0002 0.26 0.76
2 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

header

• Keywords Area

• method

• efficient global

• export points file

• custom annotated

• header

Enable header row in custom-annotated tabular file

Specification

Alias: none
Argument(s): none
Default: no header

Description

See description of parent custom annotated

6.2. METHOD 749

eval id

• Keywords Area

• method

• efficient global

• export points file

• custom annotated

• eval id

Enable evaluation ID column in custom-annotated tabular file

Specification

Alias: none
Argument(s): none
Default: no eval id column

Description

See description of parent custom annotated

interface id

• Keywords Area

• method

• efficient global

• export points file

• custom annotated

• interface id

Enable interface ID column in custom-annotated tabular file

Specification

Alias: none
Argument(s): none
Default: no interface id column

Description

See description of parent custom annotated

750 CHAPTER 6. KEYWORDS AREA

freeform

• Keywords Area

• method

• efficient global

• export points file

• freeform

Selects freeform file format

Topics

This keyword is related to the topics:

• file formats

Specification

Alias: none
Argument(s): none
Default: annotated format

Description

A freeform tabular file is whitespace-separated text file with no leading header row and no leading columns. Most
commonly, each row contains data for variables, or variables followed by responses, though the format is used for
other tabular exports/imports as well.

Default Behavior
The annotated format is the default for tabular export/import. To change this behavior, specify freeform

in the relevant export/import context.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• In freeform, the num rows x num cols total data entries may be separated with any whitespace including
spaces, tabs, and newlines. In this format, vectors may therefore appear as a single row or single column
(or mixture; entries will populate the vector in order).

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

6.2. METHOD 751

Examples
Export a freeform tabular file containing only data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
freeform

Resulting tabular file:

0.9 1.1 0.0002 0.26 0.76
0.90009 1.1 0.0001996404857 0.2601620081 0.759955
0.89991 1.1 0.0002003604863 0.2598380081 0.760045

...

seed

• Keywords Area

• method

• efficient global

• seed

Seed of the random number generator

Specification
Alias: none

Argument(s): INTEGER
Default: system-generated (non-repeatable)

Description
The random seed control provides a mechanism for making a stochastic method repeatable. That is, the use of
the same random seed in identical studies will generate identical results.

Default Behavior
If not specified, the seed is randomly generated.
Expected Output
If seed is specified, a stochastic study will generate identical results when repeated using the same seed

value. Otherwise, results are not guaranteed to be the same.
Usage Tips
If a stochastic study was run without seed specified, and the user later wishes to repeat the study using the

same seed, the value of the seed used in the original study can be found in the output Dakota prints to the screen.
That value can then be added to the Dakota input file.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 15347

752 CHAPTER 6. KEYWORDS AREA

model pointer

• Keywords Area

• method

• efficient global

• model pointer

Identifier for model block to be used by a method

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

Description
The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

6.2. METHOD 753

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses
response_functions = 3
no_gradients
no_hessians

6.2.51 polynomial chaos

• Keywords Area

• method

• polynomial chaos

Uncertainty quantification using polynomial chaos expansions

Specification

Alias: nond polynomial chaos

Argument(s): none

754 CHAPTER 6. KEYWORDS AREA

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional p refinement Automatic
polynomial order
refinement

Optional(Choose
One)

Basis polynomial
family (Group 1)

askey Select the
standardized
random variables
(and associated
basis polynomials)
from the Askey
family that best
match the
user-specified
random variables.

wiener Use standard
normal random
variables (along
with Hermite
orthogonal basis
polynomials) when
transforming to a
standardized
probability space.

Required(Choose
One)

Coefficient
estimation
approach (Group
2)

quadrature order Cubature using
tensor-products of
Gaussian
quadrature rules

sparse grid level Set the sparse grid
level to be used
when peforming
sparse grid
integration or
sparse grid
interpolation

6.2. METHOD 755

cubature integrand Cubature using
Stroud rules and
their extensions

expansion order The (initial) order
of a polynomial
expansion

orthogonal least -
interpolation

Build a polynomial
chaos expansion
from simulation
samples using
orthogonal least
interpolation.

import expansion -
file

Build a Polynomial
Chaos Expansion
(PCE) by import
coefficients and a
multi-index from a
file

Optional variance based -
decomp

Activates global
sensitivity analysis
based on
decomposition of
response variance
into main,
interaction, and
total effects

Optional(Choose
One)

Covariance type
(Group 3)

diagonal -
covariance

Display only the
diagonal terms of
the covariance
matrix

full covariance Display the full
covariance matrix

Optional normalized The normalized
specification
requests output of
PCE coefficients
that correspond to
normalized
orthogonal basis
polynomials

756 CHAPTER 6. KEYWORDS AREA

Optional sample type Selection of
sampling strategy

Optional probability -
refinement

Allow refinement
of probability and
generalized
reliability results
using importance
sampling

Optional export points file Output file for
evaluations of a
surrogate model

Optional export expansion -
file

Export the
coefficients and
multi-index of a
Polynomial Chaos
Expansion (PCE)
to a file

Optional fixed seed Reuses the same
seed value for
multiple random
sampling sets

Optional reliability levels Specify reliability
levels at which the
response values
will be estimated

Optional response levels Values at which to
estimate desired
statistics for each
response

Optional distribution Selection of
cumulative or
complementary
cumulative
functions

6.2. METHOD 757

Optional probability levels Specify probability
levels at which to
estimate the
corresponding
response value

Optional gen reliability -
levels

Specify
generalized
relability levels at
which to estimate
the corresponding
response value

Optional rng Selection of a
random number
generator

Optional samples Number of
samples for
sampling-based
methods

Optional seed Seed of the random
number generator

Optional model pointer Identifier for
model block to be
used by a method

Description
The polynomial chaos expansion (PCE) is a general framework for the approximate representation of random
response functions in terms of finite-dimensional series expansions in standardized random variables

R =
P∑
i=0

αiΨi(ξ)

where αi is a deterministic coefficient, Ψi is a multidimensional orthogonal polynomial and ξ is a vector of
standardized random variables. An important distinguishing feature of the methodology is that the functional
relationship between random inputs and outputs is captured, not merely the output statistics as in the case of many
nondeterministic methodologies.

Basis polynomial family (Group 1)
Group 1 keywords are used to select the type of basis, Ψi, of the expansion. Three approaches may be

employed:

• Wiener: employs standard normal random variables in a transformed probability space, corresponding to
Hermite orthogonal basis polynomials (see wiener).

• Askey: employs standard normal, standard uniform, standard exponential, standard beta, and standard
gamma random variables in a transformed probability space, corresponding to Hermite, Legendre, La-
guerre, Jacobi, and generalized Laguerre orthogonal basis polynomials, respectively (see askey).

758 CHAPTER 6. KEYWORDS AREA

• Extended (default if no option is selected): The Extended option avoids the use of any nonlinear variable
transformations by augmenting the Askey approach with numerically-generated orthogonal polynomials for
non-Askey probability density functions. Extended polynomial selections replace each of the sub-optimal
Askey basis selections for bounded normal, lognormal, bounded lognormal, loguniform, triangular, gumbel,
frechet, weibull, and bin-based histogram.

For supporting correlated random variables, certain fallbacks must be implemented.

• The Extended option is the default and supports only Gaussian correlations.

• If needed to support prescribed correlations (not under user control), the Extended and Askey options will
fall back to the Wiener option on a per variable basis. If the prescribed correlations are also unsupported
by Wiener expansions, then Dakota will exit with an error.

Refer to variable support for additional information on supported variable types, with and without correlation.
Coefficient estimation approach (Group 2)
To obtain the coefficients αi of the expansion, seven options are provided:

1. multidimensional integration by a tensor-product of Gaussian quadrature rules (specified with quadrature-
order, and, optionally, dimension preference).

2. multidimensional integration by the Smolyak sparse grid method (specified with sparse grid level
and, optionally, dimension preference)

3. multidimensional integration by Stroud cubature rules and extensions as specified with cubature -
integrand.

4. multidimensional integration by Latin hypercube sampling (specified with expansion order and expansion-
samples).

5. linear regression (specified with expansion order and either collocation points or collocation-
ratio), using either over-determined (least squares) or under-determined (compressed sensing) approaches.

6. orthogonal least interpolation (specified with orthogonal least interpolation and collocation-
points)

7. coefficient import from a file (specified with import expansion file). The expansion can be com-
prised of a general set of expansion terms, as indicated by the multi-index annotation within the file.

It is important to note that, while quadrature order, sparse grid level, and expansion order
are array inputs, only one scalar from these arrays is active at a time for a particular expansion estimation. These
scalars can be augmented with a dimension preference to support anisotropy across the random dimension
set. The array inputs are present to support advanced use cases such as multifidelity UQ, where multiple grid
resolutions can be employed.

Active Variables
The default behavior is to form expansions over aleatory uncertain continuous variables. To form expansions

over a broader set of variables, one needs to specify active followed by state, epistemic, design, or
all in the variables specification block.

For continuous design, continuous state, and continuous epistemic uncertain variables included in the expan-
sion, Legendre chaos bases are used to model the bounded intervals for these variables. However, these variables
are not assumed to have any particular probability distribution, only that they are independent variables. More-
over, when probability integrals are evaluated, only the aleatory random variable domain is integrated, leaving
behind a polynomial relationship between the statistics and the remaining design/state/epistemic variables.

6.2. METHOD 759

Covariance type (Group 3)
These two keywords are used to specify how this method computes, stores, and outputs the covariance of the

responses. In particular, the diagonal covariance option is provided for reducing post-processing overhead and
output volume in high dimensional applications.

Optional Keywords regarding method outputs
Each of these sampling specifications refer to sampling on the PCE approximation for the purposes of gener-

ating approximate statistics.

• sample type

• samples

• seed

• fixed seed

• rng

• probability refinement

• distribution

• reliability levels

• response levels

• probability levels

• gen reliability levels

which should be distinguished from simulation sampling for generating the PCE coefficients as described in
options 4, 5, and 6 above (although these options will share the sample type, seed, and rng settings, if
provided).

When using the probability refinement control, the number of refinement samples is not under the
user’s control (these evaluations are approximation-based, so management of this expense is less critical). This
option allows for refinement of probability and generalized reliability results using importance sampling.

Multi-fidelity UQ
The advanced use case of multifidelity UQ automatically becomes active if the model selected for iteration by

the method specification is a multifidelity surrogate model (see hierarchical). In this case, an expansion will first
be formed for the model discrepancy (the difference between response results if additive correction or the
ratio of results if multiplicative correction), using the first quadrature order, sparse grid -
level, or expansion order value along with any specified refinement strategy. Second, an expansion will
be formed for the low fidelity surrogate model, using the second quadrature order, sparse grid level,
or expansion order value (if present; the first is reused if not present) along with any specified refinement
strategy. Then the two expansions are combined (added or multiplied) into an expansion that approximates the
high fidelity model, from which the final set of statistics are generated. For polynomial chaos expansions, this high
fidelity expansion can differ significantly in form from the low fidelity and discrepancy expansions, particularly
in the multiplicative case where it is expanded to include all of the basis products.

Usage Tips
If n is small (e.g., two or three), then tensor-product Gaussian quadrature is quite effective and can be the

preferred choice. For moderate to large n (e.g., five or more), tensor-product quadrature quickly becomes too
expensive and the sparse grid and regression approaches are preferred. Random sampling for coefficient estima-
tion is generally not recommended due to its slow convergence rate. For incremental studies, approaches 4 and 5
support reuse of previous samples through the incremental lhs and reuse points specifications, respectively.

760 CHAPTER 6. KEYWORDS AREA

In the quadrature and sparse grid cases, growth rates for nested and non-nested rules can be synchronized
for consistency. For a non-nested Gauss rule used within a sparse grid, linear one-dimensional growth rules of
m = 2l + 1 are used to enforce odd quadrature orders, where l is the grid level and m is the number of points
in the rule. The precision of this Gauss rule is then i = 2m − 1 = 4l + 1. For nested rules, order growth
with level is typically exponential; however, the default behavior is to restrict the number of points to be the
lowest order rule that is available that meets the one-dimensional precision requirement implied by either a level
l for a sparse grid (i = 4l + 1) or an order m for a tensor grid (i = 2m − 1). This behavior is known as
”restricted growth” or ”delayed sequences.” To override this default behavior in the case of sparse grids, the
unrestricted keyword can be used; it cannot be overridden for tensor grids using nested rules since it also
provides a mapping to the available nested rule quadrature orders. An exception to the default usage of restricted
growth is the dimension adaptive p refinement generalized sparse grid case described previously,
since the ability to evolve the index sets of a sparse grid in an unstructured manner eliminates the motivation for
restricting the exponential growth of nested rules.

Additional Resources
Dakota provides access to PCE methods through the NonDPolynomialChaos class. Refer to the Uncertainty

Quantification Capabilities chapter of the Users Manual[4] and the Stochastic Expansion Methods chapter of the
Theory Manual[6] for additional information on the PCE algorithm.

Examples
method,

polynomial_chaos
sparse_grid_level = 2
samples = 10000 seed = 12347 rng rnum2
response_levels = .1 1. 50. 100. 500. 1000.
variance_based_decomp

See Also
These keywords may also be of interest:

• adaptive sampling

• gpais

• local reliability

• global reliability

• sampling

• importance sampling

• stoch collocation

p refinement

• Keywords Area

• method

• polynomial chaos

• p refinement

Automatic polynomial order refinement

6.2. METHOD 761

Specification

Alias: none
Argument(s): none
Default: no refinement

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

p-refinement type
(Group 1)

uniform Refine an
expansion
uniformly in all
dimensions.

dimension -
adaptive

Perform
anisotropic
expansion
refinement by
preferentially
adapting in
dimensions that are
detected to have
higher
‘importance’.

Description

The p refinement keyword specifies the usage of automated polynomial order refinement, which can be either
uniform or dimension adaptive.

The dimension adaptive option is supported for the tensor-product quadrature and Smolyak sparse grid
options and uniform is supported for tensor and sparse grids as well as regression approaches (collocation-
points or collocation ratio).

Each of these refinement cases makes use of the max iterations and convergence tolerance
method independent controls. The former control limits the number of refinement iterations, and the latter control
terminates refinement when the two-norm of the change in the response covariance matrix (or, in goal-oriented
approaches, the two-norm of change in the statistical quantities of interest (QOI)) falls below the tolerance.

The dimension adaptive case can be further specified to utilize sobol, decay, or generalized
refinement controls. The former two cases employ anisotropic tensor/sparse grids in which the anisotropic di-
mension preference (leading to anisotropic integrations/expansions with differing refinement levels for different
random dimensions) is determined using either total Sobol’ indices from variance-based decomposition (sobol
case: high indices result in high dimension preference) or using spectral coefficient decay rates from a rate
estimation technique similar to Richardson extrapolation (decay case: low decay rates result in high dimen-
sion preference). In these two cases as well as the uniform refinement case, the quadrature order or
sparse grid level are ramped by one on each refinement iteration until either of the two convergence con-
trols is satisfied. For the uniform refinement case with regression approaches, the expansion order is
ramped by one on each iteration while the oversampling ratio (either defined by collocation ratio or in-
ferred from collocation points based on the initial expansion) is held fixed. Finally, the generalized
dimension adaptive case is the default adaptive approach; it refers to the generalized sparse grid algorithm,
a greedy approach in which candidate index sets are evaluated for their impact on the statistical QOI, the most
influential sets are selected and used to generate additional candidates, and the index set frontier of a sparse grid
is evolved in an unstructured and goal-oriented manner (refer to User’s Manual PCE descriptions for additional
specifics).

762 CHAPTER 6. KEYWORDS AREA

For the case of p refinement or the case of an explicit nested override, Gauss-Hermite rules are replaced
with Genz-Keister nested rules and Gauss-Legendre rules are replaced with Gauss-Patterson nested rules, both of
which exchange lower integrand precision for greater point reuse.

uniform

• Keywords Area

• method

• polynomial chaos

• p refinement

• uniform

Refine an expansion uniformly in all dimensions.

Specification
Alias: none

Argument(s): none

Description
The quadrature order or sparse grid level are ramped by one on each refinement iteration until either of the two
convergence controls is satisfied. For the uniform refinement case with regression approaches, the expansion-
order is ramped by one on each iteration while the oversampling ratio (either defined by collocation ratio or

inferred from collocation points based on the initial expansion) is held fixed.

dimension adaptive

• Keywords Area

• method

• polynomial chaos

• p refinement

• dimension adaptive

Perform anisotropic expansion refinement by preferentially adapting in dimensions that are detected to have
higher ‘importance’.

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

6.2. METHOD 763

Required(Choose
One)

dimension
adaptivity
estimation
approach (Group
1)

sobol Estimate
dimension
preference for
automated
refinement of
stochastic
expansion using
total Sobol’
sensitivity indices.

decay Estimate spectral
coefficient decay
rates to guide
dimension-
adaptive
refinement.

generalized Use the
generalized sparse
grid dimension
adaptive algorithm
to refine a sparse
grid approximation
of stochastic
expansion.

Description
Perform anisotropic expansion refinement by preferentially adapting in dimensions that are detected to hold higher
‘importance’ in resolving statistical quantities of interest.

Dimension importance must be estimated as part of the refinement process. Techniques include either sobol or
generalized for stochastic collocation and either sobol, decay, or generalized for polynomial chaos. Each of these
automated refinement approaches makes use of the max iterations and convergence tolerance iteration controls.

sobol

• Keywords Area

• method

• polynomial chaos

• p refinement

• dimension adaptive

• sobol

Estimate dimension preference for automated refinement of stochastic expansion using total Sobol’ sensitivity
indices.

764 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): none
Default: generalized

Description
Determine dimension preference for refinement of a stochastic expansion from the total Sobol’ sensitivity indices
obtained from global sensitivity analysis. High indices indicate high importance for resolving statistical quantities
of interest and therefore result in high dimension preference.

Examples
method,

polynomial_chaos
sparse_grid_level = 3
dimension_adaptive p_refinement sobol

max_iterations = 20
convergence_tol = 1.e-4

decay

• Keywords Area

• method

• polynomial chaos

• p refinement

• dimension adaptive

• decay

Estimate spectral coefficient decay rates to guide dimension-adaptive refinement.

Specification
Alias: none

Argument(s): none

Description
Estimate spectral coefficient decay rates from a rate estimation technique similar to Richardson extrapolation.
These decay rates are used to guide dimension-adaptive refinement, where slower decay rates result in higher
dimension preference.

Examples
method,

polynomial_chaos
sparse_grid_level = 3
dimension_adaptive p_refinement decay

max_iterations = 20
convergence_tol = 1.e-4

6.2. METHOD 765

generalized

• Keywords Area

• method

• polynomial chaos

• p refinement

• dimension adaptive

• generalized

Use the generalized sparse grid dimension adaptive algorithm to refine a sparse grid approximation of stochas-
tic expansion.

Specification
Alias: none

Argument(s): none

Description
The generalized sparse grid algorithm is a greedy approach in which candidate index sets are evaluated for their
impact on the statistical QOI, the most influential sets are selected and used to generate additional candidates,
and the index set frontier of a sparse grid is evolved in an unstructured and goal-oriented manner (refer to User’s
Manual PCE descriptions for additional specifics).

Examples
method,

polynomial_chaos
sparse_grid_level = 3
dimension_adaptive p_refinement generalized
max_iterations = 20
convergence_tol = 1.e-4

askey

• Keywords Area

• method

• polynomial chaos

• askey

Select the standardized random variables (and associated basis polynomials) from the Askey family that best
match the user-specified random variables.

Specification
Alias: none

Argument(s): none
Default: extended (Askey + numerically-generated)

766 CHAPTER 6. KEYWORDS AREA

Description
The Askey option employs standard normal, standard uniform, standard exponential, standard beta, and standard
gamma random variables in a transformed probability space. These selections correspond to Hermite, Legendre,
Laguerre, Jacobi, and generalized Laguerre orthogonal polynomials, respectively.

Specific mappings for the basis polynomials are based on a closest match criterion, and include Hermite
for normal (optimal) as well as bounded normal, lognormal, bounded lognormal, gumbel, frechet, and weibull
(sub-optimal); Legendre for uniform (optimal) as well as loguniform, triangular, and bin-based histogram (sub-
optimal); Laguerre for exponential (optimal); Jacobi for beta (optimal); and generalized Laguerre for gamma
(optimal).

See Also
These keywords may also be of interest:

• polynomial chaos

• wiener

wiener

• Keywords Area

• method

• polynomial chaos

• wiener

Use standard normal random variables (along with Hermite orthogonal basis polynomials) when transforming
to a standardized probability space.

Specification
Alias: none

Argument(s): none
Default: extended (Askey + numerically-generated)

Description
The Wiener option employs standard normal random variables in a transformed probability space, corresponding
to a Hermite orthogonal polynomial basis. This is the same nonlinear variable transformation used by local and
global reliability methods (and therefore has the same variable support).

See Also
These keywords may also be of interest:

• polynomial chaos

• askey

6.2. METHOD 767

quadrature order

• Keywords Area

• method

• polynomial chaos

• quadrature order

Cubature using tensor-products of Gaussian quadrature rules

Specification
Alias: none

Argument(s): INTEGERLIST
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional dimension -
preference

A set of weights
specifying the
realtive importance
of each uncertain
variable
(dimension)

Optional(Choose
One)

Nesting of
quadrature rules
(Group 1)

nested Enforce use of
nested quadrature
rules if available

non nested Enforce use of
non-nested
quadrature rules

Description
Multidimensional integration by a tensor-product of Gaussian quadrature rules (specified with quadrature-
order, and, optionally, dimension preference). The default rule selection is to employ non nested

Gauss rules including Gauss-Hermite (for normals or transformed normals), Gauss-Legendre (for uniforms or
transformed uniforms), Gauss-Jacobi (for betas), Gauss-Laguerre (for exponentials), generalized Gauss-Laguerre
(for gammas), and numerically-generated Gauss rules (for other distributions when using an Extended basis).
For the case of p refinement or the case of an explicit nested override, Gauss-Hermite rules are replaced
with Genz-Keister nested rules and Gauss-Legendre rules are replaced with Gauss-Patterson nested rules, both of
which exchange lower integrand precision for greater point reuse. By specifying a dimension preference,
where higher preference leads to higher order polynomial resolution, the tensor grid may be rendered anisotropic.
The dimension specified to have highest preference will be set to the specified quadrature order and all
other dimensions will be reduced in proportion to their reduced preference; any non-integral portion is truncated.
To synchronize with tensor-product integration, a tensor-product expansion is used, where the order pi of the
expansion in each dimension is selected to be half of the integrand precision available from the rule in use,
rounded down. In the case of non-nested Gauss rules with integrand precision 2mi − 1, pi is one less than the
quadrature order mi in each dimension (a one-dimensional expansion contains the same number of terms, p+ 1,
as the number of Gauss points). The total number of terms, N, in a tensor-product expansion involving n uncertain
input variables is

N = 1 + P =
n∏
i=1

(pi + 1)

768 CHAPTER 6. KEYWORDS AREA

In some advanced use cases (e.g., multifidelity UQ), multiple grid resolutions can be employed; for this reason,
the quadrature order specification supports an array input.

dimension preference

• Keywords Area

• method

• polynomial chaos

• quadrature order

• dimension preference

A set of weights specifying the realtive importance of each uncertain variable (dimension)

Specification
Alias: none

Argument(s): REALLIST
Default: isotropic grids

Description
A set of weights specifying the realtive importance of each uncertain variable (dimension). Using this specification
leada to anisotropic integrations with differing refinement levels for different random dimensions.

See Also
These keywords may also be of interest:

• sobol

• decay

nested

• Keywords Area

• method

• polynomial chaos

• quadrature order

• nested

Enforce use of nested quadrature rules if available

Specification
Alias: none

Argument(s): none
Default: quadrature: non nested unless automated refinement; sparse grids: nested

6.2. METHOD 769

Description

Enforce use of nested quadrature rules if available. For instance if the aleatory variables are Gaussian use the
Nested Genz-Keister rule instead of the default non-nested Gauss-Hermite rule variables are

non nested

• Keywords Area

• method

• polynomial chaos

• quadrature order

• non nested

Enforce use of non-nested quadrature rules

Specification

Alias: none
Argument(s): none

Description

Enforce use of non-nested quadrature rules if available. For instance if the aleatory variables are Gaussian use the
non-nested Gauss-Hermite rule

sparse grid level

• Keywords Area

• method

• polynomial chaos

• sparse grid level

Set the sparse grid level to be used when peforming sparse grid integration or sparse grid interpolation

Specification

Alias: none
Argument(s): INTEGERLIST

770 CHAPTER 6. KEYWORDS AREA

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional(Choose
One)

Group 1 restricted Restrict the growth
rates for nested and
non-nested rules
can be
synchronized for
consistency.

unrestricted Overide the default
restriction of
growth rates for
nested and
non-nested rules
that are by defualt
synchronized for
consistency.

Optional dimension -
preference

A set of weights
specifying the
realtive importance
of each uncertain
variable
(dimension)

Optional(Choose
One)

Nesting of
quadrature rules
(Group 2)

nested Enforce use of
nested quadrature
rules if available

non nested Enforce use of
non-nested
quadrature rules

Description

Multi-dimensional integration by the Smolyak sparse grid method (specified with sparse grid level and, option-
ally, dimension preference). The underlying one-dimensional integration rules are the same as for the tensor-
product quadrature case; however, the default rule selection is nested for sparse grids (Genz-Keister for nor-
mals/transformed normals and Gauss-Patterson for uniforms/transformed uniforms). This default can be over-
ridden with an explicit non nested specification (resulting in Gauss-Hermite for normals/transformed normals
and Gauss-Legendre for uniforms/transformed uniforms). As for tensor quadrature, the dimension preference
specification enables the use of anisotropic sparse grids (refer to the PCE description in the User’s Manual for
the anisotropic index set constraint definition). Similar to anisotropic tensor grids, the dimension with greatest
preference will have resolution at the full sparse grid level and all other dimension resolutions will be reduced in
proportion to their reduced preference. For PCE with either isotropic or anisotropic sparse grids, a summation of
tensor-product expansions is used, where each anisotropic tensor-product quadrature rule underlying the sparse
grid construction results in its own anisotropic tensor-product expansion as described in case 1. These anisotropic
tensor-product expansions are summed into a sparse PCE using the standard Smolyak summation (again, refer to
the User’s Manual for additional details). As for quadrature order, the sparse grid level specification admits an
array input for enabling specification of multiple grid resolutions used by certain advanced solution methodolo-
gies.

This keyword can be used when using sparse grid integration to calculate PCE coefficients or when generating
samples for sparse grid collocation.

6.2. METHOD 771

restricted

• Keywords Area

• method

• polynomial chaos

• sparse grid level

• restricted

Restrict the growth rates for nested and non-nested rules can be synchronized for consistency.

Specification
Alias: none

Argument(s): none
Default: restricted (except for generalized sparse grids)

Description
In the quadrature and sparse grid cases, growth rates for nested and non-nested rules can be synchronized for
consistency. For a non-nested Gauss rule used within a sparse grid, linear one-dimensional growth rules of m =
2l + 1 are used to enforce odd quadrature orders, where l is the grid level and m is the number of points in the
rule. The precision of this Gauss rule is then i = 2m − 1 = 4l + 1. For nested rules, order growth with level is
typically exponential; however, the default behavior is to restrict the number of points to be the lowest order rule
that is available that meets the one-dimensional precision requirement implied by either a level l for a sparse grid
(i = 4l + 1) or an order m for a tensor grid (i = 2m − 1). This behavior is known as ”restricted growth” or
”delayed sequences.” To override this default behavior in the case of sparse grids, the unrestricted keyword can be
used; it cannot be overridden for tensor grids using nested rules since it also provides a mapping to the available
nested rule quadrature orders. An exception to the default usage of restricted growth is the dimension adaptive p-
refinement generalized sparse grid case described previously, since the ability to evolve the index sets of a sparse

grid in an unstructured manner eliminates the motivation for restricting the exponential growth of nested rules.

unrestricted

• Keywords Area

• method

• polynomial chaos

• sparse grid level

• unrestricted

Overide the default restriction of growth rates for nested and non-nested rules that are by defualt synchronized
for consistency.

Specification
Alias: none

Argument(s): none

772 CHAPTER 6. KEYWORDS AREA

Description

In the quadrature and sparse grid cases, growth rates for nested and non-nested rules can be synchronized for
consistency. For a non-nested Gauss rule used within a sparse grid, linear one-dimensional growth rules of m =
2l + 1 are used to enforce odd quadrature orders, where l is the grid level and m is the number of points in the
rule. The precision of this Gauss rule is then i = 2m − 1 = 4l + 1. For nested rules, order growth with level is
typically exponential; however, the default behavior is to restrict the number of points to be the lowest order rule
that is available that meets the one-dimensional precision requirement implied by either a level l for a sparse grid
(i = 4l + 1) or an order m for a tensor grid (i = 2m − 1). This behavior is known as ”restricted growth” or
”delayed sequences.” To override this default behavior in the case of sparse grids, the unrestricted keyword can be
used; it cannot be overridden for tensor grids using nested rules since it also provides a mapping to the available
nested rule quadrature orders. An exception to the default usage of restricted growth is the dimension adaptive p-
refinement generalized sparse grid case described previously, since the ability to evolve the index sets of a sparse

grid in an unstructured manner eliminates the motivation for restricting the exponential growth of nested rules.

dimension preference

• Keywords Area

• method

• polynomial chaos

• sparse grid level

• dimension preference

A set of weights specifying the realtive importance of each uncertain variable (dimension)

Specification

Alias: none
Argument(s): REALLIST
Default: isotropic grids

Description

A set of weights specifying the realtive importance of each uncertain variable (dimension). Using this specification
leada to anisotropic integrations with differing refinement levels for different random dimensions.

See Also

These keywords may also be of interest:

• sobol

• decay

6.2. METHOD 773

nested

• Keywords Area

• method

• polynomial chaos

• sparse grid level

• nested

Enforce use of nested quadrature rules if available

Specification

Alias: none
Argument(s): none
Default: quadrature: non nested unless automated refinement; sparse grids: nested

Description

Enforce use of nested quadrature rules if available. For instance if the aleatory variables are Gaussian use the
Nested Genz-Keister rule instead of the default non-nested Gauss-Hermite rule variables are

non nested

• Keywords Area

• method

• polynomial chaos

• sparse grid level

• non nested

Enforce use of non-nested quadrature rules

Specification

Alias: none
Argument(s): none

Description

Enforce use of non-nested quadrature rules if available. For instance if the aleatory variables are Gaussian use the
non-nested Gauss-Hermite rule

774 CHAPTER 6. KEYWORDS AREA

cubature integrand

• Keywords Area

• method

• polynomial chaos

• cubature integrand

Cubature using Stroud rules and their extensions

Specification
Alias: none

Argument(s): INTEGER

Description
Multi-dimensional integration by Stroud cubature rules [77] and extensions [90], as specified with cubature -
integrand. A total-order expansion is used, where the isotropic order p of the expansion is half of the integrand
order, rounded down. The total number of terms N for an isotropic total-order expansion of order p over n variables
is given by

N = 1 + P = 1 +
p∑
s=1

1
s!

s−1∏
r=0

(n+ r) =
(n+ p)!
n!p!

Since the maximum integrand order is currently five for normal and uniform and two for all other types, at most
second- and first-order expansions, respectively, will be used. As a result, cubature is primarily useful for global
sensitivity analysis, where the Sobol’ indices will provide main effects and, at most, two-way interactions. In
addition, the random variable set must be independent and identically distributed (iid), so the use of askey or
wiener transformations may be required to create iid variable sets in the transformed space (as well as to allow
usage of the higher order cubature rules for normal and uniform). Note that global sensitivity analysis often
assumes uniform bounded regions, rather than precise probability distributions, so the iid restriction would not be
problematic in that case.

expansion order

• Keywords Area

• method

• polynomial chaos

• expansion order

The (initial) order of a polynomial expansion

Specification
Alias: none

Argument(s): INTEGERLIST

6.2. METHOD 775

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional dimension -
preference

A set of weights
specifying the
realtive importance
of each uncertain
variable
(dimension)

Optional basis type Specify the type of
truncation to be
used with a
Polynomial Chaos
Expansion.

Required(Choose
One)

Group 1
collocation points Specify the

number of
collocation points
used to estimate
PCE coefficients
using regression or
orthogonal-least-
interpolation.

collocation ratio Set the number of
points used to
build a PCE via
regression to be
proportional to the
number of terms in
the expansion.

expansion samples The Number
simulation samples
to estimate the
PCE coefficients

Optional import points file File containing
variable values and
corresponding
responses

Description
When the expansion order for a a polynomial chaos expansion is specified, the coefficients may be computed
by integration based on random samples or by regression using either random or sub-sampled tensor product
quadrature points.

Multidimensional integration by Latin hypercube sampling (specified with expansion samples). In this
case, the expansion order p cannot be inferred from the numerical integration specification and it is necessary to
provide an expansion order to specify p for a total-order expansion.

Linear regression (specified with either collocation points or collocation ratio). A total-order
expansion is used and must be specified using expansion order as described in the previous option. To
avoid requiring the user to calculate N from n and p), the collocation ratio allows for specification of a

776 CHAPTER 6. KEYWORDS AREA

constant factor applied to N (e.g., collocation ratio = 2. produces samples = 2N). In addition, the default
linear relationship with N can be overridden using a real-valued exponent specified using ratio order. In this
case, the number of samples becomes cNo where c is the collocation ratio and o is the ratio order.
The use derivatives flag informs the regression approach to include derivative matching equations (limited
to gradients at present) in the least squares solutions, enabling the use of fewer collocation points for a given
expansion order and dimension (number of points required becomes cNo

n+1). When admissible, a constrained least
squares approach is employed in which response values are first reproduced exactly and error in reproducing
response derivatives is minimized. Two collocation grid options are supported: the default is Latin hypercube
sampling (”point collocation”), and an alternate approach of ”probabilistic collocation” is also available through
inclusion of the tensor grid keyword. In this alternate case, the collocation grid is defined using a subset of
tensor-product quadrature points: the order of the tensor-product grid is selected as one more than the expansion
order in each dimension (to avoid sampling at roots of the basis polynomials) and then the tensor multi-index is
uniformly sampled to generate a non-repeated subset of tensor quadrature points.

If collocation points or collocation ratio is specified, the PCE coefficients will be determined
by regression. If no regression specification is provided, appropriate defaults are defined. Specifically SVD-based
least-squares will be used for solving over-determined systems and under-determined systems will be solved
using LASSO. For the situation when the number of function values is smaller than the number of terms in a
PCE, but the total number of samples including gradient values is greater than the number of terms, the resulting
over-determined system will be solved using equality constrained least squares. Technical information on the
various methods listed below can be found in the Linear regression section of the Theory Manual. Some of the
regression methods (OMP, LASSO, and LARS) are able to produce a set of possible PCE coefficient vectors
(see the Linear regression section in the Theory Manual). If cross validation is inactive, then only one solution,
consistent with the noise tolerance, will be returned. If cross validation is active, Dakota will choose
between possible coefficient vectors found internally by the regression method across the set of expansion orders
(1,...,expansion order) and the set of specified noise tolerances and return the one with the lowest cross
validation error indicator.

dimension preference

• Keywords Area

• method

• polynomial chaos

• expansion order

• dimension preference

A set of weights specifying the realtive importance of each uncertain variable (dimension)

Specification
Alias: none

Argument(s): REALLIST
Default: isotropic grids

Description
A set of weights specifying the realtive importance of each uncertain variable (dimension). Using this specification
leada to anisotropic integrations with differing refinement levels for different random dimensions.

6.2. METHOD 777

See Also

These keywords may also be of interest:

• sobol

• decay

basis type

• Keywords Area

• method

• polynomial chaos

• expansion order

• basis type

Specify the type of truncation to be used with a Polynomial Chaos Expansion.

Specification

Alias: none
Argument(s): none

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1
tensor product Use a

tensor-product
index set to
construct a
polynomial chaos
expansion.

total order Use a total-order
index set to
construct a
polynomial chaos
expansion.

adapted Use adaptive basis
selection to choose
the basis terms in a
polynomial chaos
expansion.

Description

Specify the type of truncation to be used with a Polynomial Chaos Expansion.

778 CHAPTER 6. KEYWORDS AREA

tensor product

• Keywords Area

• method

• polynomial chaos

• expansion order

• basis type

• tensor product

Use a tensor-product index set to construct a polynomial chaos expansion.

Specification

Alias: none
Argument(s): none

Description

Use a tensor-product index set to construct a polynomial chaos expansion. That is for a given order p keep all
terms with d-dimensional multi index i = (i1, . . . , id) that satisfies

max (i1, . . . , id) ≤ p

total order

• Keywords Area

• method

• polynomial chaos

• expansion order

• basis type

• total order

Use a total-order index set to construct a polynomial chaos expansion.

Specification

Alias: none
Argument(s): none

6.2. METHOD 779

Description
Use the traditional total-order index set to construct a polynomial chaos expansion. That is for a given order p
keep all terms with a d-dimensional multi index i = (i1, . . . , id) that satisfies

d∑
k=1

ik ≤ p

adapted

• Keywords Area

• method

• polynomial chaos

• expansion order

• basis type

• adapted

Use adaptive basis selection to choose the basis terms in a polynomial chaos expansion.

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional advancements The maximum
number of steps
used to expand a
basis step.

Optional soft convergence -
limit

The maximum
number of times no
improvement in
cross validation
error is allowed
before the
algorithm is
terminated.

Description
Use adaptive basis selection to choose the basis terms in a polynomial chaos expansion. Basis selection uses
compressed sensing to identify a initial set of non zero PCE coefficients. Then these non-zero terms are expanded
a set number of times (we suggest 3) and compressed sensing is then applied to these three new index sets. Cross
valiation is used to choose the best candidate basis. The best basis is then restricted again to the non-zero terms
and expanded until no improvement can be gained by adding additional terms.

780 CHAPTER 6. KEYWORDS AREA

advancements

• Keywords Area

• method

• polynomial chaos

• expansion order

• basis type

• adapted

• advancements

The maximum number of steps used to expand a basis step.

Specification
Alias: none

Argument(s): INTEGER

Description
Use adaptive basis selection to choose the basis terms in a polynomial chaos expansion. Basis selection uses
compressed sensing to identify a initial set of non zero PCE coefficients. Then these non-zero terms are expanded
a set number of times (we suggest 3) and compressed sensing is then applied to these three new index sets. Cross
valiation is used to choose the best candidate basis. The best basis is then restricted again to the non-zero terms
and expanded until no improvement can be gained by adding additional terms.

See Also
These keywords may also be of interest:

• adapted

soft convergence limit

• Keywords Area

• method

• polynomial chaos

• expansion order

• basis type

• adapted

• soft convergence limit

The maximum number of times no improvement in cross validation error is allowed before the algorithm is
terminated.

6.2. METHOD 781

Specification

Alias: none

Argument(s): INTEGER

Description

Use adaptive basis selection to choose the basis terms in a polynomial chaos expansion. Basis selection uses
compressed sensing to identify a initial set of non zero PCE coefficients. Then these non-zero terms are expanded
a set number of times (we suggest 3) and compressed sensing is then applied to these three new index sets. Cross
valiation is used to choose the best candidate basis. The best basis is then restricted again to the non-zero terms
and expanded until no improvement can be gained by adding additional terms.

See Also

These keywords may also be of interest:

• adapted

collocation points

• Keywords Area

• method

• polynomial chaos

• expansion order

• collocation points

Specify the number of collocation points used to estimate PCE coefficients using regression or orthogonal-
least-interpolation.

Specification

Alias: none

Argument(s): INTEGERLIST

782 CHAPTER 6. KEYWORDS AREA

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional ratio order Specify a
non-linear the
relationship
between the
expansion order of
a polynomial chaos
expansion and the
number of samples
that will be used to
compute the PCE
coefficients.

Optional(Choose
One)

Group 1

least squares Compute the
coefficients of a
polynomial
expansion using
least squares

orthogonal -
matching pursuit

Compute the
coefficients of a
polynomial
expansion using
orthogonal
matching pursuit
(OMP)

basis pursuit Compute the
coefficients of a
polynomial
expansion by
solving the Basis
Pursuit
`1-minimization
problem using
linear
programming.

6.2. METHOD 783

basis pursuit -
denoising

Compute the
coefficients of a
polynomial
expansion by
solving the Basis
Pursuit Denoising
`1-minimization
problem using
second order cone
optimization.

least angle -
regression

Compute the
coefficients of a
polynomial
expansion by using
the greedy least
angle regression
(LAR) method.

least absolute -
shrinkage

Compute the
coefficients of a
polynomial
expansion by using
the LASSO
problem.

Optional cross validation Use cross
validation to
choose the ’best’
polynomial order
of a polynomial
chaos expansion.

Optional use derivatives Use derivative data
to construct
surrogate models

Optional tensor grid Use sub-sampled
tensor-product
quadrature points
to build a
polynomial chaos
expansion.

784 CHAPTER 6. KEYWORDS AREA

Optional reuse points This describes the
behavior of reuse
of points in
constructing
polynomial chaos
expansion models.

Description
Specify the number of collocation points used to estimate PCE coefficients using regression or orthogonal-least-
interpolation.

ratio order

• Keywords Area

• method

• polynomial chaos

• expansion order

• collocation points

• ratio order

Specify a non-linear the relationship between the expansion order of a polynomial chaos expansion and the
number of samples that will be used to compute the PCE coefficients.

Specification
Alias: none

Argument(s): REAL
Default: 1.

Description
When using regression type methods (specified with either collocation points or collocation ratio), a total-order
expansion can be specified using expansion order. To avoid requiring the user to calculate N from n and p), the
collocation ratio allows for specification of a constant factor applied to N (e.g., collocation ratio = 2. produces
samples = 2N). In addition, the default linear relationship with N can be overridden using a real-valued exponent
specified using ratio order. In this case, the number of samples becomes $cN∧o$ where c is the collocation -
ratio and o is the ratio order.

least squares

• Keywords Area

• method

• polynomial chaos

• expansion order

6.2. METHOD 785

• collocation points

• least squares

Compute the coefficients of a polynomial expansion using least squares

Specification

Alias: none
Argument(s): none
Default: svd

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional(Choose
One)

Group 1 svd Calculate the
coefficients of a
polynomial chaos
expansion using
the singular value
decomposition.

equality -
constrained

Calculate the
coefficients of a
polynomial chaos
expansion using
equality
constrained least
squares.

Description

Compute the coefficients of a polynomial expansion using least squares. Specifically SVD-based least-squares
will be used for solving over-determined systems. For the situation when the number of function values is smaller
than the number of terms in a PCE, but the total number of samples including gradient values is greater than the
number of terms, the resulting over-determined system will be solved using equality constrained least squares

svd

• Keywords Area

• method

• polynomial chaos

• expansion order

• collocation points

• least squares

• svd

Calculate the coefficients of a polynomial chaos expansion using the singular value decomposition.

786 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): none

Description
Calculate the coefficients of a polynomial chaos expansion using the singular value decomposition. When the
number of model runs exceeds the number of terms in the PCE, the solution returned will be the least-squares
solution, otherwise the solution will be the minimum norm solution computed using the pseudo-inverse.

equality constrained

• Keywords Area

• method

• polynomial chaos

• expansion order

• collocation points

• least squares

• equality constrained

Calculate the coefficients of a polynomial chaos expansion using equality constrained least squares.

Specification
Alias: none

Argument(s): none

Description
Calculate the coefficients of a polynomial chaos expansion using equality constrained least squares.

orthogonal matching pursuit

• Keywords Area

• method

• polynomial chaos

• expansion order

• collocation points

• orthogonal matching pursuit

Compute the coefficients of a polynomial expansion using orthogonal matching pursuit (OMP)

Specification
Alias: omp

Argument(s): none

6.2. METHOD 787

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional noise tolerance The noise
tolerance used
when performing
cross validation in
the presence of
noise or truncation
errors.

Description
Compute the coefficients of a polynomial expansion using orthogonal matching pursuit (OMP). Orthogonal
matching pursuit (OMP) is a greedy algorithm that is usefult when solving underdetermined linear systems.

noise tolerance

• Keywords Area

• method

• polynomial chaos

• expansion order

• collocation points

• orthogonal matching pursuit

• noise tolerance

The noise tolerance used when performing cross validation in the presence of noise or truncation errors.

Specification
Alias: none

Argument(s): REALLIST
Default: 1e-3 for BPDN, 0. otherwise (algorithms run until termination)

Description
The noise tolerance used when performing cross validation in the presence of noise or truncation errors.

basis pursuit

• Keywords Area

• method

• polynomial chaos

• expansion order

• collocation points

788 CHAPTER 6. KEYWORDS AREA

• basis pursuit

Compute the coefficients of a polynomial expansion by solving the Basis Pursuit `1-minimization problem
using linear programming.

Specification

Alias: bp
Argument(s): none

Description

Compute the coefficients of a polynomial expansion by solving the Basis Pursuit `1-minimization problem using
linear programming.

basis pursuit denoising

• Keywords Area

• method

• polynomial chaos

• expansion order

• collocation points

• basis pursuit denoising

Compute the coefficients of a polynomial expansion by solving the Basis Pursuit Denoising `1-minimization
problem using second order cone optimization.

Specification

Alias: bpdn
Argument(s): none

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional noise tolerance The noise
tolerance used
when performing
cross validation in
the presence of
noise or truncation
errors.

Description

Compute the coefficients of a polynomial expansion by solving the Basis Pursuit Denoising `1-minimization
problem using second order cone optimization.

6.2. METHOD 789

noise tolerance

• Keywords Area

• method

• polynomial chaos

• expansion order

• collocation points

• basis pursuit denoising

• noise tolerance

The noise tolerance used when performing cross validation in the presence of noise or truncation errors.

Specification
Alias: none

Argument(s): REALLIST
Default: 1e-3 for BPDN, 0. otherwise (algorithms run until termination)

Description
The noise tolerance used when performing cross validation in the presence of noise or truncation errors.

least angle regression

• Keywords Area

• method

• polynomial chaos

• expansion order

• collocation points

• least angle regression

Compute the coefficients of a polynomial expansion by using the greedy least angle regression (LAR) method.

Specification
Alias: lars

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

790 CHAPTER 6. KEYWORDS AREA

Optional noise tolerance The noise
tolerance used
when performing
cross validation in
the presence of
noise or truncation
errors.

Description
Compute the coefficients of a polynomial expansion by using the greedy least angle regression (LAR) method.

noise tolerance

• Keywords Area

• method

• polynomial chaos

• expansion order

• collocation points

• least angle regression

• noise tolerance

The noise tolerance used when performing cross validation in the presence of noise or truncation errors.

Specification
Alias: none

Argument(s): REALLIST
Default: 1e-3 for BPDN, 0. otherwise (algorithms run until termination)

Description
The noise tolerance used when performing cross validation in the presence of noise or truncation errors.

least absolute shrinkage

• Keywords Area

• method

• polynomial chaos

• expansion order

• collocation points

• least absolute shrinkage

Compute the coefficients of a polynomial expansion by using the LASSO problem.

6.2. METHOD 791

Specification
Alias: lasso

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional noise tolerance The noise
tolerance used
when performing
cross validation in
the presence of
noise or truncation
errors.

Optional l2 penalty The l2 pentalty
used when
performing
compressed
sensing with
elastic net.

Description
Compute the coefficients of a polynomial expansion by using the LASSO problem.

noise tolerance

• Keywords Area

• method

• polynomial chaos

• expansion order

• collocation points

• least absolute shrinkage

• noise tolerance

The noise tolerance used when performing cross validation in the presence of noise or truncation errors.

Specification
Alias: none

Argument(s): REALLIST
Default: 1e-3 for BPDN, 0. otherwise (algorithms run until termination)

Description
The noise tolerance used when performing cross validation in the presence of noise or truncation errors.

792 CHAPTER 6. KEYWORDS AREA

l2 penalty

• Keywords Area

• method

• polynomial chaos

• expansion order

• collocation points

• least absolute shrinkage

• l2 penalty

The l2 pentalty used when performing compressed sensing with elastic net.

Specification
Alias: none

Argument(s): REAL
Default: 0. (reverts to standard LASSO formulation)

Description
The l2 pentalty used when performing compressed sensing with elastic net.

cross validation

• Keywords Area

• method

• polynomial chaos

• expansion order

• collocation points

• cross validation

Use cross validation to choose the ’best’ polynomial order of a polynomial chaos expansion.

Specification
Alias: none

Argument(s): none

Description
Use cross validation to choose the ’best’ polynomial degree of a polynomial chaos expansion. 10 fold cross
validation is used to estimate the cross validation error of a total-order polynomial expansion for orders 1 through
to order. The order chosen is the one that produces the lowest cross validation error. If there are not enough points
to perform 10 fold cross validation then one-at-a-time cross validation will be performed.

6.2. METHOD 793

use derivatives

• Keywords Area

• method

• polynomial chaos

• expansion order

• collocation points

• use derivatives

Use derivative data to construct surrogate models

Specification

Alias: none
Argument(s): none
Default: use function values only

Description

The use derivatives flag specifies that any available derivative information should be used in global approx-
imation builds, for those global surrogate types that support it (currently, polynomial regression and the Surfpack
Gaussian process).

However, it’s use with Surfpack Gaussian process is not recommended.

tensor grid

• Keywords Area

• method

• polynomial chaos

• expansion order

• collocation points

• tensor grid

Use sub-sampled tensor-product quadrature points to build a polynomial chaos expansion.

Specification

Alias: none
Argument(s): none
Default: regression with LHS sample set (point collocation)

794 CHAPTER 6. KEYWORDS AREA

Description
Tthe collocation grid is defined using a subset of tensor-product quadrature points: the order of the tensor-product
grid is selected as one more than the expansion order in each dimension (to avoid sampling at roots of the basis
polynomials) and then the tensor multi-index is uniformly sampled to generate a non-repeated subset of tensor
quadrature points.

reuse points

• Keywords Area

• method

• polynomial chaos

• expansion order

• collocation points

• reuse points

This describes the behavior of reuse of points in constructing polynomial chaos expansion models.

Specification
Alias: reuse samples

Argument(s): none
Default: no sample reuse in coefficient estimation

Description
The reuse points option controls the reuse behavior of points for various types of polynomial chaos expan-
sions, including: collocation points, collocation ratio, expansion samples, or orthogonal-
least interpolation. If any of these approaches are specified to create a set of points for the polynomial

chaos expansion, one can specify reuse points so that any points that have been previously generated (for
example, from the import points file) can be reused.

collocation ratio

• Keywords Area

• method

• polynomial chaos

• expansion order

• collocation ratio

Set the number of points used to build a PCE via regression to be proportional to the number of terms in the
expansion.

Specification
Alias: none

Argument(s): REAL

6.2. METHOD 795

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional ratio order Specify a
non-linear the
relationship
between the
expansion order of
a polynomial chaos
expansion and the
number of samples
that will be used to
compute the PCE
coefficients.

Optional(Choose
One)

Group 1

least squares Compute the
coefficients of a
polynomial
expansion using
least squares

orthogonal -
matching pursuit

Compute the
coefficients of a
polynomial
expansion using
orthogonal
matching pursuit
(OMP)

basis pursuit Compute the
coefficients of a
polynomial
expansion by
solving the Basis
Pursuit
`1-minimization
problem using
linear
programming.

796 CHAPTER 6. KEYWORDS AREA

basis pursuit -
denoising

Compute the
coefficients of a
polynomial
expansion by
solving the Basis
Pursuit Denoising
`1-minimization
problem using
second order cone
optimization.

least angle -
regression

Compute the
coefficients of a
polynomial
expansion by using
the greedy least
angle regression
(LAR) method.

least absolute -
shrinkage

Compute the
coefficients of a
polynomial
expansion by using
the LASSO
problem.

Optional cross validation Use cross
validation to
choose the ’best’
polynomial order
of a polynomial
chaos expansion.

Optional use derivatives Use derivative data
to construct
surrogate models

Optional tensor grid Use sub-sampled
tensor-product
quadrature points
to build a
polynomial chaos
expansion.

6.2. METHOD 797

Optional reuse points This describes the
behavior of reuse
of points in
constructing
polynomial chaos
expansion models.

Description

Set the number of points used to build a PCE via regression to be proportional to the number of terms in the
expansion. To avoid requiring the user to calculate N from n and p, the collocation ratio allows for specification
of a constant factor applied to N (e.g., collocation ratio = 2. produces samples = 2N). In addition, the default
linear relationship with N can be overridden using a real-valued exponent specified using ratio order. In this case,
the number of samples becomes cNo where c is the collocation ratio and o is the ratio order. The use derivatives
flag informs the regression approach to include derivative matching equations (limited to gradients at present) in
the least squares solutions, enabling the use of fewer collocation points for a given expansion order and dimension
(number of points required becomes cNo

n+1).

ratio order

• Keywords Area

• method

• polynomial chaos

• expansion order

• collocation ratio

• ratio order

Specify a non-linear the relationship between the expansion order of a polynomial chaos expansion and the
number of samples that will be used to compute the PCE coefficients.

Specification

Alias: none
Argument(s): REAL
Default: 1.

Description

When using regression type methods (specified with either collocation points or collocation ratio), a total-order
expansion can be specified using expansion order. To avoid requiring the user to calculate N from n and p), the
collocation ratio allows for specification of a constant factor applied to N (e.g., collocation ratio = 2. produces
samples = 2N). In addition, the default linear relationship with N can be overridden using a real-valued exponent
specified using ratio order. In this case, the number of samples becomes $cN∧o$ where c is the collocation -
ratio and o is the ratio order.

798 CHAPTER 6. KEYWORDS AREA

least squares

• Keywords Area

• method

• polynomial chaos

• expansion order

• collocation ratio

• least squares

Compute the coefficients of a polynomial expansion using least squares

Specification
Alias: none

Argument(s): none
Default: svd

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional(Choose
One)

Group 1 svd Calculate the
coefficients of a
polynomial chaos
expansion using
the singular value
decomposition.

equality -
constrained

Calculate the
coefficients of a
polynomial chaos
expansion using
equality
constrained least
squares.

Description
Compute the coefficients of a polynomial expansion using least squares. Specifically SVD-based least-squares
will be used for solving over-determined systems. For the situation when the number of function values is smaller
than the number of terms in a PCE, but the total number of samples including gradient values is greater than the
number of terms, the resulting over-determined system will be solved using equality constrained least squares

svd

• Keywords Area

• method

• polynomial chaos

• expansion order

6.2. METHOD 799

• collocation ratio

• least squares

• svd

Calculate the coefficients of a polynomial chaos expansion using the singular value decomposition.

Specification

Alias: none
Argument(s): none

Description

Calculate the coefficients of a polynomial chaos expansion using the singular value decomposition. When the
number of model runs exceeds the number of terms in the PCE, the solution returned will be the least-squares
solution, otherwise the solution will be the minimum norm solution computed using the pseudo-inverse.

equality constrained

• Keywords Area

• method

• polynomial chaos

• expansion order

• collocation ratio

• least squares

• equality constrained

Calculate the coefficients of a polynomial chaos expansion using equality constrained least squares.

Specification

Alias: none
Argument(s): none

Description

Calculate the coefficients of a polynomial chaos expansion using equality constrained least squares.

800 CHAPTER 6. KEYWORDS AREA

orthogonal matching pursuit

• Keywords Area

• method

• polynomial chaos

• expansion order

• collocation ratio

• orthogonal matching pursuit

Compute the coefficients of a polynomial expansion using orthogonal matching pursuit (OMP)

Specification

Alias: omp
Argument(s): none

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional noise tolerance The noise
tolerance used
when performing
cross validation in
the presence of
noise or truncation
errors.

Description

Compute the coefficients of a polynomial expansion using orthogonal matching pursuit (OMP). Orthogonal
matching pursuit (OMP) is a greedy algorithm that is usefult when solving underdetermined linear systems.

noise tolerance

• Keywords Area

• method

• polynomial chaos

• expansion order

• collocation ratio

• orthogonal matching pursuit

• noise tolerance

The noise tolerance used when performing cross validation in the presence of noise or truncation errors.

6.2. METHOD 801

Specification
Alias: none

Argument(s): REALLIST
Default: 1e-3 for BPDN, 0. otherwise (algorithms run until termination)

Description
The noise tolerance used when performing cross validation in the presence of noise or truncation errors.

basis pursuit
• Keywords Area

• method

• polynomial chaos

• expansion order

• collocation ratio

• basis pursuit

Compute the coefficients of a polynomial expansion by solving the Basis Pursuit `1-minimization problem
using linear programming.

Specification
Alias: bp

Argument(s): none

Description
Compute the coefficients of a polynomial expansion by solving the Basis Pursuit `1-minimization problem using
linear programming.

basis pursuit denoising
• Keywords Area

• method

• polynomial chaos

• expansion order

• collocation ratio

• basis pursuit denoising

Compute the coefficients of a polynomial expansion by solving the Basis Pursuit Denoising `1-minimization
problem using second order cone optimization.

Specification
Alias: bpdn

Argument(s): none

802 CHAPTER 6. KEYWORDS AREA

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional noise tolerance The noise
tolerance used
when performing
cross validation in
the presence of
noise or truncation
errors.

Description
Compute the coefficients of a polynomial expansion by solving the Basis Pursuit Denoising `1-minimization
problem using second order cone optimization.

noise tolerance

• Keywords Area

• method

• polynomial chaos

• expansion order

• collocation ratio

• basis pursuit denoising

• noise tolerance

The noise tolerance used when performing cross validation in the presence of noise or truncation errors.

Specification
Alias: none

Argument(s): REALLIST
Default: 1e-3 for BPDN, 0. otherwise (algorithms run until termination)

Description
The noise tolerance used when performing cross validation in the presence of noise or truncation errors.

least angle regression

• Keywords Area

• method

• polynomial chaos

• expansion order

• collocation ratio

• least angle regression

Compute the coefficients of a polynomial expansion by using the greedy least angle regression (LAR) method.

6.2. METHOD 803

Specification
Alias: lars

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional noise tolerance The noise
tolerance used
when performing
cross validation in
the presence of
noise or truncation
errors.

Description
Compute the coefficients of a polynomial expansion by using the greedy least angle regression (LAR) method.

noise tolerance

• Keywords Area

• method

• polynomial chaos

• expansion order

• collocation ratio

• least angle regression

• noise tolerance

The noise tolerance used when performing cross validation in the presence of noise or truncation errors.

Specification
Alias: none

Argument(s): REALLIST
Default: 1e-3 for BPDN, 0. otherwise (algorithms run until termination)

Description
The noise tolerance used when performing cross validation in the presence of noise or truncation errors.

least absolute shrinkage

• Keywords Area

• method

• polynomial chaos

804 CHAPTER 6. KEYWORDS AREA

• expansion order

• collocation ratio

• least absolute shrinkage

Compute the coefficients of a polynomial expansion by using the LASSO problem.

Specification
Alias: lasso

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional noise tolerance The noise
tolerance used
when performing
cross validation in
the presence of
noise or truncation
errors.

Optional l2 penalty The l2 pentalty
used when
performing
compressed
sensing with
elastic net.

Description
Compute the coefficients of a polynomial expansion by using the LASSO problem.

noise tolerance

• Keywords Area

• method

• polynomial chaos

• expansion order

• collocation ratio

• least absolute shrinkage

• noise tolerance

The noise tolerance used when performing cross validation in the presence of noise or truncation errors.

Specification
Alias: none

Argument(s): REALLIST
Default: 1e-3 for BPDN, 0. otherwise (algorithms run until termination)

6.2. METHOD 805

Description
The noise tolerance used when performing cross validation in the presence of noise or truncation errors.

l2 penalty

• Keywords Area

• method

• polynomial chaos

• expansion order

• collocation ratio

• least absolute shrinkage

• l2 penalty

The l2 pentalty used when performing compressed sensing with elastic net.

Specification
Alias: none

Argument(s): REAL
Default: 0. (reverts to standard LASSO formulation)

Description
The l2 pentalty used when performing compressed sensing with elastic net.

cross validation

• Keywords Area

• method

• polynomial chaos

• expansion order

• collocation ratio

• cross validation

Use cross validation to choose the ’best’ polynomial order of a polynomial chaos expansion.

Specification
Alias: none

Argument(s): none

806 CHAPTER 6. KEYWORDS AREA

Description

Use cross validation to choose the ’best’ polynomial degree of a polynomial chaos expansion. 10 fold cross
validation is used to estimate the cross validation error of a total-order polynomial expansion for orders 1 through
to order. The order chosen is the one that produces the lowest cross validation error. If there are not enough points
to perform 10 fold cross validation then one-at-a-time cross validation will be performed.

use derivatives

• Keywords Area

• method

• polynomial chaos

• expansion order

• collocation ratio

• use derivatives

Use derivative data to construct surrogate models

Specification

Alias: none
Argument(s): none
Default: use function values only

Description

The use derivatives flag specifies that any available derivative information should be used in global approx-
imation builds, for those global surrogate types that support it (currently, polynomial regression and the Surfpack
Gaussian process).

However, it’s use with Surfpack Gaussian process is not recommended.

tensor grid

• Keywords Area

• method

• polynomial chaos

• expansion order

• collocation ratio

• tensor grid

Use sub-sampled tensor-product quadrature points to build a polynomial chaos expansion.

6.2. METHOD 807

Specification
Alias: none

Argument(s): none
Default: regression with LHS sample set (point collocation)

Description
Tthe collocation grid is defined using a subset of tensor-product quadrature points: the order of the tensor-product
grid is selected as one more than the expansion order in each dimension (to avoid sampling at roots of the basis
polynomials) and then the tensor multi-index is uniformly sampled to generate a non-repeated subset of tensor
quadrature points.

reuse points

• Keywords Area

• method

• polynomial chaos

• expansion order

• collocation ratio

• reuse points

This describes the behavior of reuse of points in constructing polynomial chaos expansion models.

Specification
Alias: reuse samples

Argument(s): none
Default: no sample reuse in coefficient estimation

Description
The reuse points option controls the reuse behavior of points for various types of polynomial chaos expan-
sions, including: collocation points, collocation ratio, expansion samples, or orthogonal-
least interpolation. If any of these approaches are specified to create a set of points for the polynomial

chaos expansion, one can specify reuse points so that any points that have been previously generated (for
example, from the import points file) can be reused.

expansion samples

• Keywords Area

• method

• polynomial chaos

• expansion order

• expansion samples

The Number simulation samples to estimate the PCE coefficients

808 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): INTEGERLIST
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional reuse points This describes the
behavior of reuse
of points in
constructing
polynomial chaos
expansion models.

Optional incremental lhs Augments an
existing Latin
Hypercube
Sampling (LHS)
study

Description
The Number simulation samples to estimate the PCE coefficients In this case, the expansion order p cannot be
inferred from the numerical integration specification and it is necessary to provide an expansion order to specify
p for a total-order expansion.

reuse points

• Keywords Area

• method

• polynomial chaos

• expansion order

• expansion samples

• reuse points

This describes the behavior of reuse of points in constructing polynomial chaos expansion models.

Specification
Alias: reuse samples

Argument(s): none
Default: no sample reuse in coefficient estimation

Description
The reuse points option controls the reuse behavior of points for various types of polynomial chaos expan-
sions, including: collocation points, collocation ratio, expansion samples, or orthogonal-
least interpolation. If any of these approaches are specified to create a set of points for the polynomial

chaos expansion, one can specify reuse points so that any points that have been previously generated (for
example, from the import points file) can be reused.

6.2. METHOD 809

incremental lhs

• Keywords Area

• method

• polynomial chaos

• expansion order

• expansion samples

• incremental lhs

Augments an existing Latin Hypercube Sampling (LHS) study

Specification
Alias: none

Argument(s): none
Default: no sample reuse in coefficient estimation

Description
incremental lhs will augment an existing LHS sampling study with more samples to get better estimates
of mean, variance, and percentiles. The number of samples in the second set MUST currently be 2 times the
number of previous samples, although incremental sampling based on any power of two may be supported in
future releases.

Default Behavior
Incremental Latin Hypercube Sampling is not used by default. To change this behavior, the incremental-

lhs keyword must be specified in conjuction with the sample type keyword. Additionally, a previous LHS
(or incremental LHS) sampling study with sample size N must have already been performed, and the dakota
restart file must be available from this previous study. The variables and responses specifications must be the
same in both studies.

Usage Tips
The incremental approach is useful if it is uncertain how many simulations can be completed within available

time.
See the examples below and the Usage and Restarting Dakota Studies pages.

Examples
For example, say a user performs an initial study using lhs as the sample type, and generates 10 samples.

One way to ensure the restart file is saved is to specify a non-default name, via a command line option:

dakota -i LHS_10.in -w LHS_10.rst

which uses the input file:

LHS_10.in

environment
tabular_data

tabular_data_file = ’lhs10.dat’

method

810 CHAPTER 6. KEYWORDS AREA

sampling
sample_type lhs
samples = 10

model
single

variables
uniform_uncertain = 2

descriptors = ’input1’ ’input2’
lower_bounds = -2.0 -2.0
upper_bounds = 2.0 2.0

interface
analysis_drivers ’text_book’

fork

responses
response_functions = 1
no_gradients
no_hessians

and the restart file is written to LHS 10.rst.
Then an incremental LHS study can be run with:

dakota -i LHS_20.in -r LHS_10.rst -w LHS_20.rst

where LHS 20.in is shown below, and LHS 10.rst is the restart file containing the results of the previous LHS
study.
LHS_20.in

environment
tabular_data

tabular_data_file = ’lhs_incremental_20.dat’

method
sampling

sample_type incremental_lhs
samples = 20
previous_samples = 10

model
single

variables
uniform_uncertain = 2

descriptors = ’input1’ ’input2’
lower_bounds = -2.0 -2.0
upper_bounds = 2.0 2.0

interface
analysis_drivers ’text_book’

fork

responses
response_functions = 1
no_gradients
no_hessians

The user will get 10 new LHS samples which maintain both the correlation and stratification of the original
LHS sample. The new samples will be combined with the original samples to generate a combined sample of size
20.

This is clearly seen by comparing the two tabular data files.

6.2. METHOD 811

import points file

• Keywords Area

• method

• polynomial chaos

• expansion order

• import points file

File containing variable values and corresponding responses

Specification
Alias: none

Argument(s): STRING
Default: no point import from a file

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional(Choose
One)

tabular format
(Group 1)

annotated Selects annotated
tabular file format

custom annotated Selects
custom-annotated
tabular file format

freeform Selects freeform
file format

Optional active only Import only active
variables from
tabular data file

Description
The import points file allows the user to specify a file that contains a list of variable values and the model
responses computed at those values. These can be used by a number of methods in place of model evaluations.
When used to construct surrogate models or emulators these are often called build points or training data.

Default Behavior
Be default, methods do not import points from a file.
Usage Tips
Dakota parses input files without regard to whitespace, but the import points file must be in one of three

formats:

• annotated (default)

• custom annotated

• freeform

812 CHAPTER 6. KEYWORDS AREA

Examples
method

list_parameter_study
import_points_file = ’dakota_pstudy.3.dat’

annotated

• Keywords Area

• method

• polynomial chaos

• expansion order

• import points file

• annotated

Selects annotated tabular file format

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Default: annotated format

Description
An annotated tabular file is a whitespace-separated text file with one leading header row of comments/column la-
bels. Each subsequent row contains an evaluation ID and interface ID, followed by data for variables, or variables
followed by responses, depending on context.

Default Behavior
By default, Dakota imports and exports tabular files in annotated format. The annotated keyword can be

used to explicitly specify this.
Usage Tips

• To specify pre-Dakota 6.1 tabular format, which did not include interface id, specify custom annotated
header eval id

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

6.2. METHOD 813

Examples
Export an annotated top-level tabular data file containing a header row, leading eval id and interface id columns,
and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
annotated

Resulting tabular file:

%eval_id interface x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 NO_ID 0.9 1.1 0.0002 0.26 0.76
2 NO_ID 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 NO_ID 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

custom annotated

• Keywords Area

• method

• polynomial chaos

• expansion order

• import points file

• custom annotated

Selects custom-annotated tabular file format

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Default: annotated format

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional header Enable header row
in
custom-annotated
tabular file

814 CHAPTER 6. KEYWORDS AREA

Optional eval id Enable evaluation
ID column in
custom-annotated
tabular file

Optional interface id Enable interface
ID column in
custom-annotated
tabular file

Description
A custom-annotated tabular file is a whitespace-separated text file typically containing row data for variables, or
variables followed by responses, though the format is used for other tabular exports/imports as well. Custom-
annotated allows user options for whether header row, eval id column, and interface id column appear
in the tabular file, thus bridging freeform and (fully) annotated.

Default Behavior
The annotated format is the default for tabular export/import. To control which header row and columns

are in the input/output, specify custom annotated, followed by options, in the relevant export/import context.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export a custom-annotated tabular file in Dakota 6.0 format, which contained only header and eval id (no interface-
id), and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
custom_annotated header eval_id

Resulting tabular file:

%eval_id x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 0.9 1.1 0.0002 0.26 0.76
2 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

header

• Keywords Area

• method

• polynomial chaos

6.2. METHOD 815

• expansion order

• import points file

• custom annotated

• header

Enable header row in custom-annotated tabular file

Specification

Alias: none
Argument(s): none
Default: no header

Description

See description of parent custom annotated

eval id

• Keywords Area

• method

• polynomial chaos

• expansion order

• import points file

• custom annotated

• eval id

Enable evaluation ID column in custom-annotated tabular file

Specification

Alias: none
Argument(s): none
Default: no eval id column

Description

See description of parent custom annotated

816 CHAPTER 6. KEYWORDS AREA

interface id

• Keywords Area

• method

• polynomial chaos

• expansion order

• import points file

• custom annotated

• interface id

Enable interface ID column in custom-annotated tabular file

Specification
Alias: none

Argument(s): none
Default: no interface id column

Description
See description of parent custom annotated

freeform

• Keywords Area

• method

• polynomial chaos

• expansion order

• import points file

• freeform

Selects freeform file format

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Default: annotated format

6.2. METHOD 817

Description
A freeform tabular file is whitespace-separated text file with no leading header row and no leading columns. Most
commonly, each row contains data for variables, or variables followed by responses, though the format is used for
other tabular exports/imports as well.

Default Behavior
The annotated format is the default for tabular export/import. To change this behavior, specify freeform

in the relevant export/import context.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• In freeform, the num rows x num cols total data entries may be separated with any whitespace including
spaces, tabs, and newlines. In this format, vectors may therefore appear as a single row or single column
(or mixture; entries will populate the vector in order).

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export a freeform tabular file containing only data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
freeform

Resulting tabular file:

0.9 1.1 0.0002 0.26 0.76
0.90009 1.1 0.0001996404857 0.2601620081 0.759955
0.89991 1.1 0.0002003604863 0.2598380081 0.760045

...

active only

• Keywords Area

• method

• polynomial chaos

• expansion order

• import points file

• active only

Import only active variables from tabular data file

Topics
This keyword is related to the topics:

• file formats

818 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): none

Description
By default, files for tabular data imports are expected to contain columns for all variables, active and inactive. The
keyword active only indicates that the file to import contains only the active variables.

This option should only be used in contexts where the inactive variables have no influence, for example,
building a surrogate over active variables, with the state variables held at nominal. It should not be used in more
complex nested contexts, where the values of inactive variables are relevant to the function evaluations used to
build the surrogate.

orthogonal least interpolation

• Keywords Area

• method

• polynomial chaos

• orthogonal least interpolation

Build a polynomial chaos expansion from simulation samples using orthogonal least interpolation.

Specification
Alias: least interpolation oli

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required collocation points Specify the
number of
collocation points
used to estimate
PCE coefficients
using orthogonal
least interpolation

Optional cross validation Use cross
validation to
choose the ’best’
polynomial order
of a polynomial
chaos expansion.

6.2. METHOD 819

Optional tensor grid Use sub-sampled
tensor-product
quadrature points
to build a
polynomial chaos
expansion.

Optional reuse points This describes the
behavior of reuse
of points in
constructing
polynomial chaos
expansion models.

Optional import points file File containing
variable values and
corresponding
responses

Description
Build a polynomial chaos expansion from simulation samples using orthogonal least interpolation. Unlike the
other regression methods expansion order cannot be set. OLI will produce the lowest degree polynomial
that interpolates the data

collocation points

• Keywords Area

• method

• polynomial chaos

• orthogonal least interpolation

• collocation points

Specify the number of collocation points used to estimate PCE coefficients using orthogonal least interpolation

Specification
Alias: none

Argument(s): INTEGERLIST

Description
Specify the number of collocation points used to estimate PCE coefficients using orthogonal least interpolation

cross validation

• Keywords Area

• method

820 CHAPTER 6. KEYWORDS AREA

• polynomial chaos

• orthogonal least interpolation

• cross validation

Use cross validation to choose the ’best’ polynomial order of a polynomial chaos expansion.

Specification

Alias: none
Argument(s): none

Description

Use cross validation to choose the ’best’ polynomial degree of a polynomial chaos expansion. 10 fold cross
validation is used to estimate the cross validation error of a total-order polynomial expansion for orders 1 through
to order. The order chosen is the one that produces the lowest cross validation error. If there are not enough points
to perform 10 fold cross validation then one-at-a-time cross validation will be performed.

tensor grid

• Keywords Area

• method

• polynomial chaos

• orthogonal least interpolation

• tensor grid

Use sub-sampled tensor-product quadrature points to build a polynomial chaos expansion.

Specification

Alias: none
Argument(s): INTEGERLIST
Default: regression with LHS sample set (point collocation)

Description

Tthe collocation grid is defined using a subset of tensor-product quadrature points: the order of the tensor-product
grid is selected as one more than the expansion order in each dimension (to avoid sampling at roots of the basis
polynomials) and then the tensor multi-index is uniformly sampled to generate a non-repeated subset of tensor
quadrature points.

6.2. METHOD 821

reuse points

• Keywords Area

• method

• polynomial chaos

• orthogonal least interpolation

• reuse points

This describes the behavior of reuse of points in constructing polynomial chaos expansion models.

Specification
Alias: reuse samples

Argument(s): none
Default: no sample reuse in coefficient estimation

Description
The reuse points option controls the reuse behavior of points for various types of polynomial chaos expan-
sions, including: collocation points, collocation ratio, expansion samples, or orthogonal-
least interpolation. If any of these approaches are specified to create a set of points for the polynomial

chaos expansion, one can specify reuse points so that any points that have been previously generated (for
example, from the import points file) can be reused.

import points file

• Keywords Area

• method

• polynomial chaos

• orthogonal least interpolation

• import points file

File containing variable values and corresponding responses

Specification
Alias: none

Argument(s): STRING
Default: no point import from a file

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

822 CHAPTER 6. KEYWORDS AREA

Optional(Choose
One)

tabular format
(Group 1)

annotated Selects annotated
tabular file format

custom annotated Selects
custom-annotated
tabular file format

freeform Selects freeform
file format

Optional active only Import only active
variables from
tabular data file

Description
The import points file allows the user to specify a file that contains a list of variable values and the model
responses computed at those values. These can be used by a number of methods in place of model evaluations.
When used to construct surrogate models or emulators these are often called build points or training data.

Default Behavior
Be default, methods do not import points from a file.
Usage Tips
Dakota parses input files without regard to whitespace, but the import points file must be in one of three

formats:

• annotated (default)

• custom annotated

• freeform

Examples
method

list_parameter_study
import_points_file = ’dakota_pstudy.3.dat’

annotated

• Keywords Area

• method

• polynomial chaos

• orthogonal least interpolation

• import points file

• annotated

Selects annotated tabular file format

6.2. METHOD 823

Topics

This keyword is related to the topics:

• file formats

Specification

Alias: none
Argument(s): none
Default: annotated format

Description

An annotated tabular file is a whitespace-separated text file with one leading header row of comments/column la-
bels. Each subsequent row contains an evaluation ID and interface ID, followed by data for variables, or variables
followed by responses, depending on context.

Default Behavior
By default, Dakota imports and exports tabular files in annotated format. The annotated keyword can be

used to explicitly specify this.
Usage Tips

• To specify pre-Dakota 6.1 tabular format, which did not include interface id, specify custom annotated
header eval id

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export an annotated top-level tabular data file containing a header row, leading eval id and interface id columns,
and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
annotated

Resulting tabular file:

%eval_id interface x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 NO_ID 0.9 1.1 0.0002 0.26 0.76
2 NO_ID 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 NO_ID 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

824 CHAPTER 6. KEYWORDS AREA

custom annotated

• Keywords Area

• method

• polynomial chaos

• orthogonal least interpolation

• import points file

• custom annotated

Selects custom-annotated tabular file format

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Default: annotated format

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional header Enable header row
in
custom-annotated
tabular file

Optional eval id Enable evaluation
ID column in
custom-annotated
tabular file

Optional interface id Enable interface
ID column in
custom-annotated
tabular file

Description
A custom-annotated tabular file is a whitespace-separated text file typically containing row data for variables, or
variables followed by responses, though the format is used for other tabular exports/imports as well. Custom-
annotated allows user options for whether header row, eval id column, and interface id column appear
in the tabular file, thus bridging freeform and (fully) annotated.

Default Behavior

6.2. METHOD 825

The annotated format is the default for tabular export/import. To control which header row and columns
are in the input/output, specify custom annotated, followed by options, in the relevant export/import context.

Usage Tips

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export a custom-annotated tabular file in Dakota 6.0 format, which contained only header and eval id (no interface-
id), and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
custom_annotated header eval_id

Resulting tabular file:

%eval_id x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 0.9 1.1 0.0002 0.26 0.76
2 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

header

• Keywords Area

• method

• polynomial chaos

• orthogonal least interpolation

• import points file

• custom annotated

• header

Enable header row in custom-annotated tabular file

Specification
Alias: none

Argument(s): none
Default: no header

Description
See description of parent custom annotated

826 CHAPTER 6. KEYWORDS AREA

eval id

• Keywords Area

• method

• polynomial chaos

• orthogonal least interpolation

• import points file

• custom annotated

• eval id

Enable evaluation ID column in custom-annotated tabular file

Specification
Alias: none

Argument(s): none
Default: no eval id column

Description
See description of parent custom annotated

interface id

• Keywords Area

• method

• polynomial chaos

• orthogonal least interpolation

• import points file

• custom annotated

• interface id

Enable interface ID column in custom-annotated tabular file

Specification
Alias: none

Argument(s): none
Default: no interface id column

Description
See description of parent custom annotated

6.2. METHOD 827

freeform

• Keywords Area

• method

• polynomial chaos

• orthogonal least interpolation

• import points file

• freeform

Selects freeform file format

Topics

This keyword is related to the topics:

• file formats

Specification

Alias: none
Argument(s): none
Default: annotated format

Description

A freeform tabular file is whitespace-separated text file with no leading header row and no leading columns. Most
commonly, each row contains data for variables, or variables followed by responses, though the format is used for
other tabular exports/imports as well.

Default Behavior
The annotated format is the default for tabular export/import. To change this behavior, specify freeform

in the relevant export/import context.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• In freeform, the num rows x num cols total data entries may be separated with any whitespace including
spaces, tabs, and newlines. In this format, vectors may therefore appear as a single row or single column
(or mixture; entries will populate the vector in order).

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

828 CHAPTER 6. KEYWORDS AREA

Examples
Export a freeform tabular file containing only data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
freeform

Resulting tabular file:

0.9 1.1 0.0002 0.26 0.76
0.90009 1.1 0.0001996404857 0.2601620081 0.759955
0.89991 1.1 0.0002003604863 0.2598380081 0.760045

...

active only

• Keywords Area

• method

• polynomial chaos

• orthogonal least interpolation

• import points file

• active only

Import only active variables from tabular data file

Topics

This keyword is related to the topics:

• file formats

Specification

Alias: none
Argument(s): none

Description

By default, files for tabular data imports are expected to contain columns for all variables, active and inactive. The
keyword active only indicates that the file to import contains only the active variables.

This option should only be used in contexts where the inactive variables have no influence, for example,
building a surrogate over active variables, with the state variables held at nominal. It should not be used in more
complex nested contexts, where the values of inactive variables are relevant to the function evaluations used to
build the surrogate.

6.2. METHOD 829

import expansion file

• Keywords Area

• method

• polynomial chaos

• import expansion file

Build a Polynomial Chaos Expansion (PCE) by import coefficients and a multi-index from a file

Specification
Alias: none

Argument(s): STRING

Description
The coefficients can be specified in an arbitrary order. The multi-index provided is used to generate a sparse
expansion that conists only of the indices corresponding to the non-zero coefficients provided in the file.

variance based decomp

• Keywords Area

• method

• polynomial chaos

• variance based decomp

Activates global sensitivity analysis based on decomposition of response variance into main, interaction, and
total effects

Specification
Alias: none

Argument(s): none
Default: no variance-based decomposition

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional interaction order Specify the
maximum number
of variables
allowed in an
interaction when
reporting
interaction metrics.

830 CHAPTER 6. KEYWORDS AREA

Optional drop tolerance Suppresses output
of sensitivity
indices with values
lower than this
tolerance

Description
Dakota can calculate sensitivity indices through variance-based decomposition using the keyword variance-
based decomp. This approach decomposes main, interaction, and total effects in order to identify the most

important variables and combinations of variables in contributing to the variance of output quantities of interest.
Default Behavior
Because of processing overhead and output volume, variance based decomp is inactive by default,

unless required for dimension-adaptive refinement using Sobol’ indices.
Expected Outputs
When variance based decomp is specified, sensitivity indices for main effects, total effects, and any

interaction effects will be reported. Each of these effects represents the percent contribution to the variance
in the model response, where main effects include the aggregated set of univariate terms for each individual
variable, interaction effects represent the set of mixed terms (the complement of the univariate set), and total effects
represent the complete set of terms (univariate and mixed) that contain each individual variable. The aggregated
set of main and interaction sensitivity indices will sum to one, whereas the sum of total effects sensitivity indices
will be greater than one due to redundant counting of mixed terms.

Usage Tips
An important consideration is that the number of possible interaction terms grows exponentially with dimen-

sion and expansion order. To mitigate this, both in terms of compute time and output volume, possible interaction
effects are suppressed whenever no contributions are present due to the particular form of an expansion. In addi-
tion, the interaction order and drop tolerance controls can further limit the computational and output
requirements.

Examples
method,

polynomial_chaos # or stoch_collocation
sparse_grid_level = 3
variance_based_decomp interaction_order = 2

Theory
In this context, we take sensitivity analysis to be global, not local as when calculating derivatives of output
variables with respect to input variables. Our definition is similar to that of[73] : ”The study of how uncertainty
in the output of a model can be apportioned to different sources of uncertainty in the model input.”

Variance based decomposition is a way of using sets of samples to understand how the variance of the output
behaves, with respect to each input variable. A larger value of the sensitivity index, Si, means that the uncertainty
in the input variable i has a larger effect on the variance of the output. More details on the calculations and
interpretation of the sensitivity indices can be found in[87].

interaction order

• Keywords Area

6.2. METHOD 831

• method

• polynomial chaos

• variance based decomp

• interaction order

Specify the maximum number of variables allowed in an interaction when reporting interaction metrics.

Specification
Alias: none

Argument(s): INTEGER
Default: Unrestricted (VBD includes all interaction orders present in the expansion)

Description
The interaction order option has been added to allow suppression of higher-order interactions, since the out-
put volume (and memory and compute consumption) of these results could be extensive for high dimensional
problems (note: the previous univariate effects specification is equivalent to interaction order = 1 in the cur-
rent specification). Similar to suppression of interactions is the covariance control, which can be selected to be
diagonal covariance or full covariance, with the former supporting suppression of the off-diagonal covariance
terms (to again save compute and memory resources and reduce output volume)

drop tolerance

• Keywords Area

• method

• polynomial chaos

• variance based decomp

• drop tolerance

Suppresses output of sensitivity indices with values lower than this tolerance

Specification
Alias: none

Argument(s): REAL
Default: All VBD indices displayed

Description
The drop tolerance keyword allows the user to specify a value below which sensitivity indices generated by
variance based decomp are not displayed.

Default Behavior
By default, all sensitivity indices generated by variance based decomp are displayed.
Usage Tips

832 CHAPTER 6. KEYWORDS AREA

For polynomial chaos, which outputs main, interaction, and total effects by default, the univariate-
effects may be a more appropriate option. It allows suppression of the interaction effects since the output

volume of these results can be prohibitive for high dimensional problems. Similar to suppression of these inter-
actions is the covariance control, which can be selected to be diagonal covariance or full covariance, with the
former supporting suppression of the off-diagonal covariance terms (to save compute and memory resources and
reduce output volume).

Examples
method,

sampling
sample_type lhs
samples = 100
variance_based_decomp
drop_tolerance = 0.001

diagonal covariance

• Keywords Area

• method

• polynomial chaos

• diagonal covariance

Display only the diagonal terms of the covariance matrix

Specification
Alias: none

Argument(s): none
Default: diagonal covariance for response vector > 10; else full covariance

Description
With a large number of responses, the covariance matrix can be very large. diagonal covariance is used to
suppress the off-diagonal covariance terms (to save compute and memory resources and reduce output volume).

full covariance

• Keywords Area

• method

• polynomial chaos

• full covariance

Display the full covariance matrix

Specification
Alias: none

Argument(s): none

6.2. METHOD 833

Description
With a large number of responses, the covariance matrix can be very large. full covariance is used to force
Dakota to output the full covariance matrix.

normalized

• Keywords Area

• method

• polynomial chaos

• normalized

The normalized specification requests output of PCE coefficients that correspond to normalized orthogonal
basis polynomials

Specification
Alias: none

Argument(s): none
Default: PCE coefficients correspond to unnormalized basis polynomials

Description
The normalized specification requests output of PCE coefficients that correspond to normalized orthogonal basis
polynomials

sample type

• Keywords Area

• method

• polynomial chaos

• sample type

Selection of sampling strategy

Specification
Alias: none

Argument(s): none
Default: lhs

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

834 CHAPTER 6. KEYWORDS AREA

Required(Choose
One)

Group 1 lhs Uses Latin
Hypercube
Sampling (LHS) to
sample variables

random Uses purely
random Monte
Carlo sampling to
sample variables

Description
The sample type keyword allows the user to select between multiple random sampling approaches. There are
two primary types of sampling: Monte Carlo (pure random) and Latin Hypercube Sampling. Additionally, these
methods have incremental variants that allow an existing study to be augmented with additional samples to get
better estimates of mean, variance, and percentiles.

Default Behavior
If the sample type keyword is present, it must be accompanied by lhs, random, incremental lhs,

or incremental random. Otherwise, lhs will be used by default.

Examples
method

sampling
sample_type lhs
samples = 20

lhs

• Keywords Area

• method

• polynomial chaos

• sample type

• lhs

Uses Latin Hypercube Sampling (LHS) to sample variables

Specification
Alias: none

Argument(s): none

Description
The lhs keyword invokes Latin Hypercube Sampling as the means of drawing samples of uncertain variables
according to their probability distributions. This is a stratified, space-filling approach that selects variable values
from a set of equi-probable bins.

Default Behavior

6.2. METHOD 835

By default, Latin Hypercube Sampling is used. To explicitly specify this in the Dakota input file, however, the
lhs keyword must appear in conjunction with the sample type keyword.

Usage Tips
Latin Hypercube Sampling is very robust and can be applied to any problem. It is fairly effective at estimating

the mean of model responses and linear correlations with a reasonably small number of samples relative to the
number of variables.

Examples
method

sampling
sample_type lhs
samples = 20

random

• Keywords Area

• method

• polynomial chaos

• sample type

• random

Uses purely random Monte Carlo sampling to sample variables

Specification

Alias: none
Argument(s): none

Description

The random keyword invokes Monte Carlo sampling as the means of drawing samples of uncertain variables
according to their probability distributions.

Default Behavior
Monte Carlo sampling is not used by default. To change this behavior, the random keyword must be specified

in conjuction with the sample type keyword.
Usage Tips
Monte Carlo sampling is more computationally expensive than Latin Hypercube Sampling as it requires a

larger number of samples to accurately estimate statistics.

Examples
method

sampling
sample_type random
samples = 200

836 CHAPTER 6. KEYWORDS AREA

probability refinement

• Keywords Area

• method

• polynomial chaos

• probability refinement

Allow refinement of probability and generalized reliability results using importance sampling

Topics
This keyword is related to the topics:

• reliability methods

Specification
Alias: sample refinement

Argument(s): none
Default: no refinement

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1
import Sampling option
adapt import Importance

sampling option
mm adapt import Sampling option

Optional refinement -
samples

Specify the
number of samples
used to improve a
probabilty
estimate.

Description
The probability refinement allows refinement of probability and generalized reliability results using
importance sampling. If one specifies probability refinement, there are some additional options. One
can specify which type of importance sampling to use (import, adapt import, or mm adapt import).
Additionally, one can specify the number of refinement samples to use with refinement samples and the
seed to use with seed.

The probability refinement density reweighting accounts originally was developed based on Gaus-
sian distributions. It now accounts for additional non-Gaussian cases.

import

• Keywords Area

• method

• polynomial chaos

6.2. METHOD 837

• probability refinement

• import

Sampling option

Specification
Alias: none

Argument(s): none

Description
import centers a sampling density at one of the initial LHS samples identified in the failure region. It then
generates the importance samples, weights them by their probability of occurence given the original density, and
calculates the required probability (CDF or CCDF level).

adapt import

• Keywords Area

• method

• polynomial chaos

• probability refinement

• adapt import

Importance sampling option

Specification
Alias: none

Argument(s): none

Description
adapt import centers a sampling density at one of the initial LHS samples identified in the failure region. It
then generates the importance samples, weights them by their probability of occurence given the original density,
and calculates the required probability (CDF or CCDF level). This continues iteratively until the failure probability
estimate converges.

mm adapt import

• Keywords Area

• method

• polynomial chaos

• probability refinement

• mm adapt import

Sampling option

838 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): none

Description
mm adapt import starts with all of the samples located in the failure region to build a multimodal sampling
density. First, it uses a small number of samples around each of the initial samples in the failure region. Note
that these samples are allocated to the different points based on their relative probabilities of occurrence: more
probable points get more samples. This early part of the approach is done to search for ”representative” points.
Once these are located, the multimodal sampling density is set and then mm adapt import proceeds similarly
to adapt import (sample until convergence).

refinement samples

• Keywords Area

• method

• polynomial chaos

• probability refinement

• refinement samples

Specify the number of samples used to improve a probabilty estimate.

Specification
Alias: none

Argument(s): INTEGER

Description
Specify the number of samples used to improve a probabilty estimate. If using uni-modal sampling all samples
are assigned to the sampling center. If using multi-modal sampling the samples are split between mutiple samples
according to some internally computed weights.

export points file

• Keywords Area

• method

• polynomial chaos

• export points file

Output file for evaluations of a surrogate model

Specification
Alias: none

Argument(s): STRING
Default: no point export to a file

6.2. METHOD 839

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional(Choose
One)

tabular format
(Group 1)

annotated Selects annotated
tabular file format

custom annotated Selects
custom-annotated
tabular file format

freeform Selects freeform
file format

Description

File of points (input variable values and predicted approximate outputs from the surrogate) evaluated on the
surrogate model. The export points contain test point values and the emulator predictions at these points.

Usage Tips
Dakota exports tabular data in one of three formats:

• annotated (default)

• custom annotated

• freeform

annotated

• Keywords Area

• method

• polynomial chaos

• export points file

• annotated

Selects annotated tabular file format

Topics

This keyword is related to the topics:

• file formats

Specification

Alias: none
Argument(s): none
Default: annotated format

840 CHAPTER 6. KEYWORDS AREA

Description
An annotated tabular file is a whitespace-separated text file with one leading header row of comments/column la-
bels. Each subsequent row contains an evaluation ID and interface ID, followed by data for variables, or variables
followed by responses, depending on context.

Default Behavior
By default, Dakota imports and exports tabular files in annotated format. The annotated keyword can be

used to explicitly specify this.
Usage Tips

• To specify pre-Dakota 6.1 tabular format, which did not include interface id, specify custom annotated
header eval id

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export an annotated top-level tabular data file containing a header row, leading eval id and interface id columns,
and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
annotated

Resulting tabular file:

%eval_id interface x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 NO_ID 0.9 1.1 0.0002 0.26 0.76
2 NO_ID 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 NO_ID 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

custom annotated

• Keywords Area

• method

• polynomial chaos

• export points file

• custom annotated

Selects custom-annotated tabular file format

Topics
This keyword is related to the topics:

• file formats

6.2. METHOD 841

Specification
Alias: none

Argument(s): none
Default: annotated format

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional header Enable header row
in
custom-annotated
tabular file

Optional eval id Enable evaluation
ID column in
custom-annotated
tabular file

Optional interface id Enable interface
ID column in
custom-annotated
tabular file

Description
A custom-annotated tabular file is a whitespace-separated text file typically containing row data for variables, or
variables followed by responses, though the format is used for other tabular exports/imports as well. Custom-
annotated allows user options for whether header row, eval id column, and interface id column appear
in the tabular file, thus bridging freeform and (fully) annotated.

Default Behavior
The annotated format is the default for tabular export/import. To control which header row and columns

are in the input/output, specify custom annotated, followed by options, in the relevant export/import context.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export a custom-annotated tabular file in Dakota 6.0 format, which contained only header and eval id (no interface-
id), and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
custom_annotated header eval_id

Resulting tabular file:

842 CHAPTER 6. KEYWORDS AREA

%eval_id x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 0.9 1.1 0.0002 0.26 0.76
2 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

header

• Keywords Area

• method

• polynomial chaos

• export points file

• custom annotated

• header

Enable header row in custom-annotated tabular file

Specification
Alias: none

Argument(s): none
Default: no header

Description
See description of parent custom annotated

eval id

• Keywords Area

• method

• polynomial chaos

• export points file

• custom annotated

• eval id

Enable evaluation ID column in custom-annotated tabular file

Specification
Alias: none

Argument(s): none
Default: no eval id column

6.2. METHOD 843

Description
See description of parent custom annotated

interface id

• Keywords Area

• method

• polynomial chaos

• export points file

• custom annotated

• interface id

Enable interface ID column in custom-annotated tabular file

Specification
Alias: none

Argument(s): none
Default: no interface id column

Description
See description of parent custom annotated

freeform

• Keywords Area

• method

• polynomial chaos

• export points file

• freeform

Selects freeform file format

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Default: annotated format

844 CHAPTER 6. KEYWORDS AREA

Description
A freeform tabular file is whitespace-separated text file with no leading header row and no leading columns. Most
commonly, each row contains data for variables, or variables followed by responses, though the format is used for
other tabular exports/imports as well.

Default Behavior
The annotated format is the default for tabular export/import. To change this behavior, specify freeform

in the relevant export/import context.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• In freeform, the num rows x num cols total data entries may be separated with any whitespace including
spaces, tabs, and newlines. In this format, vectors may therefore appear as a single row or single column
(or mixture; entries will populate the vector in order).

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export a freeform tabular file containing only data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
freeform

Resulting tabular file:

0.9 1.1 0.0002 0.26 0.76
0.90009 1.1 0.0001996404857 0.2601620081 0.759955
0.89991 1.1 0.0002003604863 0.2598380081 0.760045

...

export expansion file

• Keywords Area

• method

• polynomial chaos

• export expansion file

Export the coefficients and multi-index of a Polynomial Chaos Expansion (PCE) to a file

Specification
Alias: none

Argument(s): STRING

6.2. METHOD 845

Description
Export the coefficients and multi-index of a Polynomial Chaos Expansion (PCE) to a file. The multi-index written
will be sparse. Spcifically the expansion will conists only of the indices corresponding to the non-zero coefficients
of the PCE.

fixed seed

• Keywords Area

• method

• polynomial chaos

• fixed seed

Reuses the same seed value for multiple random sampling sets

Specification
Alias: none

Argument(s): none
Default: not fixed; pattern varies run-to-run

Description
The fixed seed flag is relevant if multiple sampling sets will be generated over the coarse of a Dakota analysis.
This occurs when using advance methods (e.g., surrogate-based optimization, optimization under uncertainty).
The same seed value is reused for each of these multiple sampling sets, which can be important for reducing
variability in the sampling results.

Default Behavior
The default behavior is to not use a fixed seed, as the repetition of the same sampling pattern can result in a

modeling weakness that an optimizer could potentially exploit (resulting in actual reliabilities that are lower than
the estimated reliabilities). For repeatable studies, the seed must also be specified.

Examples
method

sampling
sample_type lhs
samples = 10
fixed_seed

reliability levels

• Keywords Area

• method

• polynomial chaos

• reliability levels

Specify reliability levels at which the response values will be estimated

846 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): REALLIST
Default: No CDF/CCDF response levels to compute

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional num reliability -
levels

Specify which
reliability -
levels
correspond to
which response

Description
Response levels are calculated for specified CDF/CCDF reliabilities by projecting out the prescribed number of
sample standard deviations from the sample mean.

Theory
Sets of response-probability pairs computed with the forward/inverse mappings define either a cumulative distri-
bution function (CDF) or a complementary cumulative distribution function (CCDF) for each response function.

In the case of evidence-based epistemic methods, this is generalized to define either cumulative belief and
plausibility functions (CBF and CPF) or complementary cumulative belief and plausibility functions (CCBF and
CCPF) for each response function.

An inverse mapping involves computing the belief and plausibility response level for either a specified prob-
ability level or a specified generalized reliability level (two results for each level mapping in the evidence-based
epistemic case, instead of the one result for each level mapping in the aleatory case).

num reliability levels

• Keywords Area

• method

• polynomial chaos

• reliability levels

• num reliability levels

Specify which reliability levels correspond to which response

Specification
Alias: none

Argument(s): INTEGERLIST
Default: reliability levels evenly distributed among response functions

Description
See parent page

6.2. METHOD 847

response levels

• Keywords Area

• method

• polynomial chaos

• response levels

Values at which to estimate desired statistics for each response

Specification

Alias: none
Argument(s): REALLIST
Default: No CDF/CCDF probabilities/reliabilities to compute

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional num response -
levels

Number of values
at which to
estimate desired
statistics for each
response

Optional compute Selection of
statistics to
compute at each
response level

Description

The response levels specification provides the target response values for which to compute probabilities,
reliabilities, or generalized reliabilities (forward mapping).

Default Behavior
If response levels are not specified, no statistics will be computed. If they are, probabilities will be

computed by default.
Expected Outputs
The particular statistics reported for each response level depend on the method, and they include:

1. Reliabilities

2. CDF probabilities

3. CCDF probabilities

Usage Tips
The num response levels is used to specify which arguments of the response level correspond to

which response.

848 CHAPTER 6. KEYWORDS AREA

Examples
For example, specifying a response level of 52.3 followed with compute probabilities will result
in the calculation of the probability that the response value is less than or equal to 52.3, given the uncertain
distributions on the inputs.

For an example with multiple responses, the following specification

response_levels = 1. 2. .1 .2 .3 .4 10. 20. 30.
num_response_levels = 2 4 3

would assign the first two response levels (1., 2.) to response function 1, the next four response levels (.1, .2, .3,
.4) to response function 2, and the final three response levels (10., 20., 30.) to response function 3. If the num -
response levels key were omitted from this example, then the response levels would be evenly distributed
among the response functions (three levels each in this case).

Theory
Sets of response-probability pairs computed with the forward/inverse mappings define either a cumulative distri-
bution function (CDF) or a complementary cumulative distribution function (CCDF) for each response function.

In the case of evidence-based epistemic methods, this is generalized to define either cumulative belief and
plausibility functions (CBF and CPF) or complementary cumulative belief and plausibility functions (CCBF and
CCPF) for each response function.

A forward mapping involves computing the belief and plausibility probability level for a specified response
level.

num response levels

• Keywords Area

• method

• polynomial chaos

• response levels

• num response levels

Number of values at which to estimate desired statistics for each response

Specification
Alias: none

Argument(s): INTEGERLIST
Default: response levels evenly distributed among response functions

Description
The num response levels keyword allows the user to specify the number of response values, for each re-
sponse, at which estimated statistics are of interest. Statistics that can be computed are probabilities and relia-
bilities, both according to either a cumulative distribution function or a complementary cumulative distribution
function.

Default Behavior
If num response levels is not specified, the response levels will be evenly distributed among the re-

sponses.

6.2. METHOD 849

Expected Outputs
The specific output will be determined by the type of statistics that are specified. In a general sense, the output

will be a list of response level-statistic pairs that show the estimated value of the desired statistic for each response
level specified.

Examples
method

sampling
samples = 100
seed = 34785
num_response_levels = 1 1 1
response_levels = 0.5 0.5 0.5

compute

• Keywords Area

• method

• polynomial chaos

• response levels

• compute

Selection of statistics to compute at each response level

Specification
Alias: none

Argument(s): none
Default: probabilities

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1
probabilities Computes

probabilities
associated with
response levels

reliabilities Computes
reliabilities
associated with
response levels

850 CHAPTER 6. KEYWORDS AREA

gen reliabilities Computes
generalized
reliabilities
associated with
response levels

Optional system Compute system
reliability (series
or parallel)

Description
The compute keyword is used to select which forward stastical mapping is calculated at each response level.

Default Behavior
If response levels is not specified, no statistics are computed. If response levels is specified

but compute is not, probabilities will be computed by default. If both response levels and compute
are specified, then on of the following must be specified: probabilities, reliabilities, or gen -
reliabilities.

Expected Output
The type of statistics specified by compute will be reported for each response level.
Usage Tips
CDF/CCDF probabilities are calculated for specified response levels using a simple binning approach.
CDF/CCDF reliabilities are calculated for specified response levels by computing the number of sample stan-

dard deviations separating the sample mean from the response level.

Examples
method

sampling
sample_type random
samples = 100 seed = 1
complementary distribution
response_levels = 3.6e+11 4.0e+11 4.4e+11

6.0e+04 6.5e+04 7.0e+04
3.5e+05 4.0e+05 4.5e+05

compute reliabilities

probabilities

• Keywords Area

• method

• polynomial chaos

• response levels

• compute

• probabilities

Computes probabilities associated with response levels

6.2. METHOD 851

Specification

Alias: none
Argument(s): none

Description

The probabilities keyword directs Dakota to compute the probability that the model response will be below
(cumulative) or above (complementary cumulative) a specified response value. This is done for every response
level designated for each response.

Default Behavior
If response levels is specified, the probabilities are computed by default. To explicitly specify it in the

Dakota input file, though, the probabilities keyword should be specified in conjunction with the compute
keyword.

Expected Outputs
The Dakota output is a set of response level-probability pairs that give the probability that the model response

will be below or above the corresponding response level, depending on the distribution defined.

Examples
method

sampling
sample_type random
samples = 100 seed = 1
complementary distribution
response_levels = 3.6e+11 4.0e+11 4.4e+11

6.0e+04 6.5e+04 7.0e+04
3.5e+05 4.0e+05 4.5e+05

compute probabilities

reliabilities

• Keywords Area

• method

• polynomial chaos

• response levels

• compute

• reliabilities

Computes reliabilities associated with response levels

Specification

Alias: none
Argument(s): none

852 CHAPTER 6. KEYWORDS AREA

Description

The reliabilities keyword directs Dakota to compute reliabilities according to the specified distribution for
a specified response value. This is done for every response level designated for each response.

Default Behavior
If response levels is specified, the reliabilities are not computed by default. To change this behavior,

the reliabilities keyword should be specified in conjunction with the compute keyword.
Expected Outputs
The Dakota output is a set of response level-reliability pairs according to the distribution defined.

Examples
method

sampling
sample_type random
samples = 100 seed = 1
complementary distribution
response_levels = 3.6e+11 4.0e+11 4.4e+11

6.0e+04 6.5e+04 7.0e+04
3.5e+05 4.0e+05 4.5e+05

compute reliabilities

gen reliabilities

• Keywords Area

• method

• polynomial chaos

• response levels

• compute

• gen reliabilities

Computes generalized reliabilities associated with response levels

Specification

Alias: none
Argument(s): none

Description

The gen reliabilities keyword directs Dakota to compute generalized reliabilities according to the speci-
fied distribution for a specified response value. This is done for every response level designated for each response.

Default Behavior
If response levels is specified, the generalized reliabilities are not computed by default. To change this

behavior, the gen reliabilities keyword should be specified in conjunction with the compute keyword.
Expected Outputs
The Dakota output is a set of response level-generalized reliability pairs according to the distribution defined.

6.2. METHOD 853

Examples
method

sampling
sample_type random
samples = 100 seed = 1
complementary distribution
response_levels = 3.6e+11 4.0e+11 4.4e+11

6.0e+04 6.5e+04 7.0e+04
3.5e+05 4.0e+05 4.5e+05

compute gen_reliabilities

system

• Keywords Area

• method

• polynomial chaos

• response levels

• compute

• system

Compute system reliability (series or parallel)

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 series Aggregate
response statistics
assuming a series
system

parallel Aggregate
response statistics
assuming a parallel
system

Description
With the system probability/reliability option, statistics for specified response levels are calculated and
reported assuming the response functions combine either in series or parallel to produce a total system response.

For a series system, the system fails when any one component (response) fails. The probability of failure is
the complement of the product of the individual response success probabilities.

For a parallel system, the system fails only when all components (responses) fail. The probability of failure is
the product of the individual response failure probabilities.

854 CHAPTER 6. KEYWORDS AREA

series

• Keywords Area

• method

• polynomial chaos

• response levels

• compute

• system

• series

Aggregate response statistics assuming a series system

Specification
Alias: none

Argument(s): none

Description
See parent keyword system for description.

parallel

• Keywords Area

• method

• polynomial chaos

• response levels

• compute

• system

• parallel

Aggregate response statistics assuming a parallel system

Specification
Alias: none

Argument(s): none

Description
See parent keyword system for description.

6.2. METHOD 855

distribution

• Keywords Area

• method

• polynomial chaos

• distribution

Selection of cumulative or complementary cumulative functions

Specification

Alias: none
Argument(s): none
Default: cumulative (CDF)

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 cumulative Computes statistics
according to
cumulative
functions

complementary Computes statistics
according to
complementary
cumulative
functions

Description

The distribution keyword allows the user to select between a cumulative distribution/belief/plausibility
function and a complementary cumulative distribution/belief/plausibility function. This choice affects how prob-
abilities and reliability indices are reported.

Default Behavior
If the distribution keyword is present, it must be accompanied by either cumulative or complementary.

Otherwise, a cumulative distribution will be used by default.
Expected Outputs
Output will be a set of model response-probability pairs determined according to the choice of distribution.

The choice of distribution also defines the sign of the reliability or generalized reliability indices.

Examples
method

sampling
sample_type lhs
samples = 10
distribution cumulative

856 CHAPTER 6. KEYWORDS AREA

cumulative

• Keywords Area

• method

• polynomial chaos

• distribution

• cumulative

Computes statistics according to cumulative functions

Specification

Alias: none
Argument(s): none

Description

Statistics on model responses will be computed according to a cumulative distribution/belief/plausibility function.
Default Behavior
By default, a cumulative distribution/belief/plausibility function will be used. To explicitly specify it in the

Dakota input file, however, the cumulative keyword must be appear in conjunction with the distribution
keyword.

Expected Outputs
Output will be a set of model response-probability pairs determined according to a cumulative distribu-

tion/belief/plausibility function. The probabilities reported are the probabilities that the model response falls
below given response threshholds.

Examples
method

sampling
sample_type lhs
samples = 10
distribution cumulative

complementary

• Keywords Area

• method

• polynomial chaos

• distribution

• complementary

Computes statistics according to complementary cumulative functions

6.2. METHOD 857

Specification
Alias: none

Argument(s): none

Description
Statistics on model responses will be computed according to a complementary cumulative distribution/belief/plausibility
function.

Default Behavior
By default, a complementary cumulative distribution/belief/plausibility function will not be used. To change

that behavior, the complementary keyword must be appear in conjunction with the distribution keyword.
Expected Outputs
Output will be a set of model response-probability pairs determined according to a complementary cumulative

distribution/belief/plausibility function. The probabilities reported are the probabilities that the model response
falls above given response threshholds.

Examples
method

sampling
sample_type lhs
samples = 10
distribution complementary

probability levels

• Keywords Area

• method

• polynomial chaos

• probability levels

Specify probability levels at which to estimate the corresponding response value

Specification
Alias: none

Argument(s): REALLIST
Default: No CDF/CCDF response levels to compute

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional num probability -
levels

Specify which
probability -
levels
correspond to
which response

Description
Response levels are calculated for specified CDF/CCDF probabilities by indexing into a sorted samples array (the
response levels computed are not interpolated and will correspond to one of the sampled values).

858 CHAPTER 6. KEYWORDS AREA

Theory
Sets of response-probability pairs computed with the forward/inverse mappings define either a cumulative distri-
bution function (CDF) or a complementary cumulative distribution function (CCDF) for each response function.

In the case of evidence-based epistemic methods, this is generalized to define either cumulative belief and
plausibility functions (CBF and CPF) or complementary cumulative belief and plausibility functions (CCBF and
CCPF) for each response function.

An inverse mapping involves computing the belief and plausibility response level for either a specified prob-
ability level or a specified generalized reliability level (two results for each level mapping in the evidence-based
epistemic case, instead of the one result for each level mapping in the aleatory case).

num probability levels

• Keywords Area

• method

• polynomial chaos

• probability levels

• num probability levels

Specify which probability levels correspond to which response

Specification
Alias: none

Argument(s): INTEGERLIST
Default: probability levels evenly distributed among response functions

Description
See parent page

gen reliability levels

• Keywords Area

• method

• polynomial chaos

• gen reliability levels

Specify generalized relability levels at which to estimate the corresponding response value

Specification
Alias: none

Argument(s): REALLIST
Default: No CDF/CCDF response levels to compute

6.2. METHOD 859

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional num gen -
reliability levels

Specify which
gen -
reliability -
levels
correspond to
which response

Description

Response levels are calculated for specified generalized reliabilities by indexing into a sorted samples array (the
response levels computed are not interpolated and will correspond to one of the sampled values).

Theory

Sets of response-probability pairs computed with the forward/inverse mappings define either a cumulative distri-
bution function (CDF) or a complementary cumulative distribution function (CCDF) for each response function.

In the case of evidence-based epistemic methods, this is generalized to define either cumulative belief and
plausibility functions (CBF and CPF) or complementary cumulative belief and plausibility functions (CCBF and
CCPF) for each response function.

An inverse mapping involves computing the belief and plausibility response level for either a specified prob-
ability level or a specified generalized reliability level (two results for each level mapping in the evidence-based
epistemic case, instead of the one result for each level mapping in the aleatory case).

num gen reliability levels

• Keywords Area

• method

• polynomial chaos

• gen reliability levels

• num gen reliability levels

Specify which gen reliability levels correspond to which response

Specification

Alias: none
Argument(s): INTEGERLIST
Default: gen reliability levels evenly distributed among response functions

Description

See parent page

860 CHAPTER 6. KEYWORDS AREA

rng

• Keywords Area

• method

• polynomial chaos

• rng

Selection of a random number generator

Specification
Alias: none

Argument(s): none
Default: Mersenne twister (mt19937)

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 mt19937 Generates random
numbers using the
Mersenne twister

rnum2 Generates
pseudo-random
numbers using the
Pecos package

Description
The rng keyword is used to indicate a choice of random number generator.

Default Behavior
If specified, the rng keyword must be accompanied by either rnum2 (pseudo-random numbers) or mt19937

(random numbers generated by the Mersenne twister). Otherwise, mt19937, the Mersenne twister is used by
default.

Usage Tips
The default is recommended, as the Mersenne twister is a higher quality random number generator.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 98765
rng rnum2

mt19937

• Keywords Area

• method

6.2. METHOD 861

• polynomial chaos

• rng

• mt19937

Generates random numbers using the Mersenne twister

Specification

Alias: none
Argument(s): none

Description

The mt19937 keyword directs Dakota to use the Mersenne twister to generate random numbers. Additional
information can be found on wikipedia: http://en.wikipedia.org/wiki/Mersenne twister.

Default Behavior
mt19937 is the default random number generator. To specify it explicitly in the Dakota input file, however,

it must be specified in conjuction with the rng keyword.
Usage Tips
Use of the Mersenne twister random number generator (mt19937) is recommended.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 98765
rng mt19937

rnum2

• Keywords Area

• method

• polynomial chaos

• rng

• rnum2

Generates pseudo-random numbers using the Pecos package

Specification

Alias: none
Argument(s): none

http://en.wikipedia.org/wiki/Mersenne_twister

862 CHAPTER 6. KEYWORDS AREA

Description
The rnum2 keyword directs Dakota to use pseudo-random numbers generated by the Pecos package.

Default Behavior
rnum2 is not used by default. To change this behavior, it must be specified in conjuction with the rng

keyword.
Usage Tips
Use of the Mersenne twister random number generator (mt19937) is recommended over rnum2.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 98765
rng rnum2

samples

• Keywords Area

• method

• polynomial chaos

• samples

Number of samples for sampling-based methods

Specification
Alias: none

Argument(s): INTEGER
Default: method-dependent

Description
The samples keyword is used to define the number of samples (i.e., randomly chosen sets of variable values) at
which to execute a model.

Default Behavior
By default, Dakota will use the minimum number of samples required by the chosen method.
Usage Tips
To obtain linear sensitivities or to construct a linear response surface, at least dim+1 samples should be used,

where ”dim” is the number of variables. For sensitivities to quadratic terms or quadratic response surfaces, at least
(dim+1)(dim+2)/2 samples are needed. For uncertainty quantification, we recommend at least 10∗dim samples.
For variance based decomp, we recommend hundreds to thousands of samples. Note that for variance-
based decomp, the number of simulations performed will be N∗(dim+2).

Examples
method

sampling
sample_type lhs
samples = 20

6.2. METHOD 863

seed

• Keywords Area

• method

• polynomial chaos

• seed

Seed of the random number generator

Specification

Alias: none
Argument(s): INTEGER
Default: system-generated (non-repeatable)

Description

The random seed control provides a mechanism for making a stochastic method repeatable. That is, the use of
the same random seed in identical studies will generate identical results.

Default Behavior
If not specified, the seed is randomly generated.
Expected Output
If seed is specified, a stochastic study will generate identical results when repeated using the same seed

value. Otherwise, results are not guaranteed to be the same.
Usage Tips
If a stochastic study was run without seed specified, and the user later wishes to repeat the study using the

same seed, the value of the seed used in the original study can be found in the output Dakota prints to the screen.
That value can then be added to the Dakota input file.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 15347

model pointer

• Keywords Area

• method

• polynomial chaos

• model pointer

Identifier for model block to be used by a method

864 CHAPTER 6. KEYWORDS AREA

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

Description
The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single

6.2. METHOD 865

interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses
response_functions = 3
no_gradients
no_hessians

6.2.52 stoch collocation

• Keywords Area

• method

• stoch collocation

Uncertainty quantification with stochastic collocation

Specification

Alias: nond stoch collocation

Argument(s): none

866 CHAPTER 6. KEYWORDS AREA

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional(Choose
One)

Automated
refinement type
(Group 1)

p refinement Automatic
polynomial order
refinement

h refinement Employ
h-refinement to
refine the grid

Optional(Choose
One)

Basis polynomial
family (Group 2)

piecewise Use piecewise
local basis
functions

askey Select the
standardized
random variables
(and associated
basis polynomials)
from the Askey
family that best
match the
user-specified
random variables.

wiener Use standard
normal random
variables (along
with Hermite
orthogonal basis
polynomials) when
transforming to a
standardized
probability space.

Required(Choose
One)

Interpolation grid
type (Group 3)

quadrature order Cubature using
tensor-products of
Gaussian
quadrature rules

sparse grid level Set the sparse grid
level to be used
when peforming
sparse grid
integration or
sparse grid
interpolation

6.2. METHOD 867

Optional dimension -
preference

A set of weights
specifying the
realtive importance
of each uncertain
variable
(dimension)

Optional use derivatives Use derivative data
to construct
surrogate models

Optional(Choose
One)

Nesting of
quadrature rules
(Group 4)

nested Enforce use of
nested quadrature
rules if available

non nested Enforce use of
non-nested
quadrature rules

Optional variance based -
decomp

Activates global
sensitivity analysis
based on
decomposition of
response variance
into main,
interaction, and
total effects

Optional(Choose
One)

Covariance type
(Group 5)

diagonal -
covariance

Display only the
diagonal terms of
the covariance
matrix

full covariance Display the full
covariance matrix

Optional sample type Selection of
sampling strategy

Optional probability -
refinement

Allow refinement
of probability and
generalized
reliability results
using importance
sampling

868 CHAPTER 6. KEYWORDS AREA

Optional export points file Output file for
evaluations of a
surrogate model

Optional fixed seed Reuses the same
seed value for
multiple random
sampling sets

Optional reliability levels Specify reliability
levels at which the
response values
will be estimated

Optional response levels Values at which to
estimate desired
statistics for each
response

Optional distribution Selection of
cumulative or
complementary
cumulative
functions

Optional probability levels Specify probability
levels at which to
estimate the
corresponding
response value

Optional gen reliability -
levels

Specify
generalized
relability levels at
which to estimate
the corresponding
response value

Optional rng Selection of a
random number
generator

Optional samples Number of
samples for
sampling-based
methods

6.2. METHOD 869

Optional seed Seed of the random
number generator

Optional model pointer Identifier for
model block to be
used by a method

Description

Stochastic collocation is a general framework for approximate representation of random response functions in
terms of finite-dimensional interpolation bases.

The stochastic collocation (SC) method is very similar to polynomial chaos, with the key difference that
the orthogonal polynomial basis functions are replaced with interpolation polynomial bases. The interpolation
polynomials may be either local or global and either value-based or gradient-enhanced. In the local case, valued-
based are piecewise linear splines and gradient-enhanced are piecewise cubic splines, and in the global case,
valued-based are Lagrange interpolants and gradient-enhanced are Hermite interpolants. A value-based expansion
takes the form

R =
Np∑
i=1

riLi(ξ)

where Np is the total number of collocation points, ri is a response value at the ith collocation point, Li is the
ith multidimensional interpolation polynomial, and ξ is a vector of standardized random variables.

Thus, in PCE, one forms coefficients for known orthogonal polynomial basis functions, whereas SC forms
multidimensional interpolation functions for known coefficients.

Basis polynomial family (Group 2)
In addition to the askey and wiener basis types also supported by polynomial chaos, SC supports the option of

piecewise local basis functions. These are piecewise linear splines, or in the case of gradient-enhanced inter-
polation via the use derivatives specification, piecewise cubic Hermite splines. Both of these basis options
provide local support only over the range from the interpolated point to its nearest 1D neighbors (within a tensor
grid or within each of the tensor grids underlying a sparse grid), which exchanges the fast convergence of global
bases for smooth functions for robustness in the representation of nonsmooth response functions (that can induce
Gibbs oscillations when using high-order global basis functions). When local basis functions are used, the usage
of nonequidistant collocation points (e.g., the Gauss point selections described above) is not well motivated, so
equidistant Newton-Cotes points are employed in this case, and all random variable types are transformed to stan-
dard uniform probability space. The global gradient-enhanced interpolants (Hermite interpolation polynomials)
are also restricted to uniform or transformed uniform random variables (due to the need to compute collocation
weights by integration of the basis polynomials) and share the variable support shown in variable support for
Piecewise SE. Due to numerical instability in these high-order basis polynomials, they are deactivated by default
but can be activated by developers using a compile-time switch.

Interpolation grid type (Group 3)
To form the multidimensional interpolants Li of the expansion, two options are provided.

1. interpolation on a tensor-product of Gaussian quadrature points (specified with quadrature order and,
optionally, dimension preference for anisotropic tensor grids). As for PCE, non-nested Gauss rules
are employed by default, although the presence of p refinement or h refinement will result in
default usage of nested rules for normal or uniform variables after any variable transformations have been
applied (both defaults can be overridden using explicit nested or non nested specifications).

870 CHAPTER 6. KEYWORDS AREA

2. interpolation on a Smolyak sparse grid (specified with sparse grid level and, optionally, dimension-
preference for anisotropic sparse grids) defined from Gaussian rules. As for sparse PCE, nested rules

are employed unless overridden with the non nested option, and the growth rules are restricted unless
overridden by the unrestricted keyword.

Another distinguishing characteristic of stochastic collocation relative to polynomial chaos is the ability to
reformulate the interpolation problem from a nodal interpolation approach into a hierarchical formulation
in which each new level of interpolation defines a set of incremental refinements (known as hierarchical surpluses)
layered on top of the interpolants from previous levels. This formulation lends itself naturally to uniform or adap-
tive refinement strategies, since the hierarchical surpluses can be interpreted as error estimates for the interpolant.
Either global or local/piecewise interpolants in either value-based or gradient-enhanced approaches can be for-
mulated using hierarchical interpolation. The primary restriction for the hierarchical case is that it currently
requires a sparse grid approach using nested quadrature rules (Genz-Keister, Gauss-Patterson, or Newton-Cotes
for standard normals and standard uniforms in a transformed space: Askey, Wiener, or Piecewise settings may
be required), although this restriction can be relaxed in the future. A selection of hierarchical interpolation
will provide greater precision in the increments to mean, standard deviation, covariance, and reliability-based
level mappings induced by a grid change within uniform or goal-oriented adaptive refinement approaches (see
following section).

It is important to note that, while quadrature order and sparse grid level are array inputs, only
one scalar from these arrays is active at a time for a particular expansion estimation. These scalars can be aug-
mented with a dimension preference to support anisotropy across the random dimension set. The array
inputs are present to support advanced use cases such as multifidelity UQ, where multiple grid resolutions can be
employed.

Automated refinement type (Group 1)
Automated expansion refinement can be selected as either p refinement or h refinement, and either

refinement specification can be either uniform or dimension adaptive. The dimension adaptive
case can be further specified as either sobol or generalized (decay not supported). Each of these auto-
mated refinement approaches makes use of the max iterations and convergence tolerance iteration
controls. The h refinement specification involves use of the same piecewise interpolants (linear or cubic Her-
mite splines) described above for the piecewise specification option (it is not necessary to redundantly specify
piecewise in the case of h refinement). In future releases, the hierarchical interpolation approach
will enable local refinement in addition to the current uniform and dimension adaptive options.

Covariance type (Group 5)
These two keywords are used to specify how this method computes, stores, and outputs the covariance of the

responses. In particular, the diagonal covariance option is provided for reducing post-processing overhead and
output volume in high dimensional applications.

Active Variables
The default behavior is to form expansions over aleatory uncertain continuous variables. To form expansions

over a broader set of variables, one needs to specify active followed by state, epistemic, design, or
all in the variables specification block.

For continuous design, continuous state, and continuous epistemic uncertain variables included in the expan-
sion, interpolation points for these dimensions are based on Gauss-Legendre rules if non-nested, Gauss-Patterson
rules if nested, and Newton-Cotes points in the case of piecewise bases. Again, when probability integrals are
evaluated, only the aleatory random variable domain is integrated, leaving behind a polynomial relationship be-
tween the statistics and the remaining design/state/epistemic variables.

Optional Keywords regarding method outputs
Each of these sampling specifications refer to sampling on the SC approximation for the purposes of generating

approximate statistics.

• sample type

6.2. METHOD 871

• samples

• seed

• fixed seed

• rng

• probability refinement

• distribution

• reliability levels

• response levels

• probability levels

• gen reliability levels

Since SC approximations are formed on structured grids, there should be no ambiguity with simulation sampling
for generating the SC expansion.

When using the probability refinement control, the number of refinement samples is not under the
user’s control (these evaluations are approximation-based, so management of this expense is less critical). This
option allows for refinement of probability and generalized reliability results using importance sampling.

Multi-fidelity UQ
When using multifidelity UQ, the high fidelity expansion generated from combining the low fidelity and dis-

crepancy expansions retains the polynomial form of the low fidelity expansion (only the coefficients are updated).
Refer to polynomial chaos for information on the multifidelity interpretation of array inputs for quadrature-
order and sparse grid level.

Usage Tips
If n is small, then tensor-product Gaussian quadrature is again the preferred choice. For larger n, tensor-

product quadrature quickly becomes too expensive and the sparse grid approach is preferred. For self-consistency
in growth rates, nested rules employ restricted exponential growth (with the exception of the dimension -
adaptive p refinement generalized case) for consistency with the linear growth used for non-nested
Gauss rules (integrand precision i = 4l + 1 for sparse grid level l and i = 2m− 1 for tensor grid order m).

Additional Resources
Dakota provides access to SC methods through the NonDStochCollocation class. Refer to the Uncertainty

Quantification Capabilities chapter of the Users Manual[4] and the Stochastic Expansion Methods chapter of the
Theory Manual[6] for additional information on the SC algorithm.

Examples
method,

stoch_collocation
sparse_grid_level = 2
samples = 10000 seed = 12347 rng rnum2
response_levels = .1 1. 50. 100. 500. 1000.
variance_based_decomp

872 CHAPTER 6. KEYWORDS AREA

Theory
As mentioned above, a value-based expansion takes the form

R =
Np∑
i=1

riLi(ξ)

The ith interpolation polynomial assumes the value of 1 at the ith collocation point and 0 at all other colloca-
tion points, involving either a global Lagrange polynomial basis or local piecewise splines. It is easy to see that
the approximation reproduces the response values at the collocation points and interpolates between these values
at other points. A gradient-enhanced expansion (selected via the use derivatives keyword) involves both
type 1 and type 2 basis functions as follows:

R =
Np∑
i=1

[riH
(1)
i (ξ) +

n∑
j=1

dri
dξj

H
(2)
ij (ξ)]

where the ith type 1 interpolant produces 1 for the value at the ith collocation point, 0 for values at all
other collocation points, and 0 for derivatives (when differentiated) at all collocation points, and the ijth type 2
interpolant produces 0 for values at all collocation points, 1 for the jth derivative component at the ith collocation
point, and 0 for the jth derivative component at all other collocation points. Again, this expansion reproduces
the response values at each of the collocation points, and when differentiated, also reproduces each component of
the gradient at each of the collocation points. Since this technique includes the derivative interpolation explicitly,
it eliminates issues with matrix ill-conditioning that can occur in the gradient-enhanced PCE approach based on
regression. However, the calculation of high-order global polynomials with the desired interpolation properties
can be similarly numerically challenging such that the use of local cubic splines is recommended due to numerical
stability.

See Also
These keywords may also be of interest:

• adaptive sampling

• gpais

• local reliability

• global reliability

• sampling

• importance sampling

• polynomial chaos

p refinement

• Keywords Area

• method

• stoch collocation

• p refinement

Automatic polynomial order refinement

6.2. METHOD 873

Specification

Alias: none
Argument(s): none
Default: no refinement

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

p-refinement type
(Group 1)

uniform Refine an
expansion
uniformly in all
dimensions.

dimension -
adaptive

Perform
anisotropic
expansion
refinement by
preferentially
adapting in
dimensions that are
detected to have
higher
‘importance’.

Description

The p refinement keyword specifies the usage of automated polynomial order refinement, which can be either
uniform or dimension adaptive.

The dimension adaptive option is supported for the tensor-product quadrature and Smolyak sparse grid
options and uniform is supported for tensor and sparse grids as well as regression approaches (collocation-
points or collocation ratio).

Each of these refinement cases makes use of the max iterations and convergence tolerance
method independent controls. The former control limits the number of refinement iterations, and the latter control
terminates refinement when the two-norm of the change in the response covariance matrix (or, in goal-oriented
approaches, the two-norm of change in the statistical quantities of interest (QOI)) falls below the tolerance.

The dimension adaptive case can be further specified to utilize sobol, decay, or generalized
refinement controls. The former two cases employ anisotropic tensor/sparse grids in which the anisotropic di-
mension preference (leading to anisotropic integrations/expansions with differing refinement levels for different
random dimensions) is determined using either total Sobol’ indices from variance-based decomposition (sobol
case: high indices result in high dimension preference) or using spectral coefficient decay rates from a rate
estimation technique similar to Richardson extrapolation (decay case: low decay rates result in high dimen-
sion preference). In these two cases as well as the uniform refinement case, the quadrature order or
sparse grid level are ramped by one on each refinement iteration until either of the two convergence con-
trols is satisfied. For the uniform refinement case with regression approaches, the expansion order is
ramped by one on each iteration while the oversampling ratio (either defined by collocation ratio or in-
ferred from collocation points based on the initial expansion) is held fixed. Finally, the generalized
dimension adaptive case is the default adaptive approach; it refers to the generalized sparse grid algorithm,
a greedy approach in which candidate index sets are evaluated for their impact on the statistical QOI, the most
influential sets are selected and used to generate additional candidates, and the index set frontier of a sparse grid
is evolved in an unstructured and goal-oriented manner (refer to User’s Manual PCE descriptions for additional
specifics).

874 CHAPTER 6. KEYWORDS AREA

For the case of p refinement or the case of an explicit nested override, Gauss-Hermite rules are replaced
with Genz-Keister nested rules and Gauss-Legendre rules are replaced with Gauss-Patterson nested rules, both of
which exchange lower integrand precision for greater point reuse.

uniform

• Keywords Area

• method

• stoch collocation

• p refinement

• uniform

Refine an expansion uniformly in all dimensions.

Specification
Alias: none

Argument(s): none

Description
The quadrature order or sparse grid level are ramped by one on each refinement iteration until either of the two
convergence controls is satisfied. For the uniform refinement case with regression approaches, the expansion-
order is ramped by one on each iteration while the oversampling ratio (either defined by collocation ratio or

inferred from collocation points based on the initial expansion) is held fixed.

dimension adaptive

• Keywords Area

• method

• stoch collocation

• p refinement

• dimension adaptive

Perform anisotropic expansion refinement by preferentially adapting in dimensions that are detected to have
higher ‘importance’.

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

6.2. METHOD 875

Required(Choose
One)

dimension
adaptivity
estimation
approach (Group
1)

sobol Estimate
dimension
preference for
automated
refinement of
stochastic
expansion using
total Sobol’
sensitivity indices.

generalized Use the
generalized sparse
grid dimension
adaptive algorithm
to refine a sparse
grid approximation
of stochastic
expansion.

Description

Perform anisotropic expansion refinement by preferentially adapting in dimensions that are detected to hold higher
‘importance’ in resolving statistical quantities of interest.

Dimension importance must be estimated as part of the refinement process. Techniques include either sobol or
generalized for stochastic collocation and either sobol, decay, or generalized for polynomial chaos. Each of these
automated refinement approaches makes use of the max iterations and convergence tolerance iteration controls.

sobol

• Keywords Area

• method

• stoch collocation

• p refinement

• dimension adaptive

• sobol

Estimate dimension preference for automated refinement of stochastic expansion using total Sobol’ sensitivity
indices.

Specification

Alias: none
Argument(s): none
Default: generalized

876 CHAPTER 6. KEYWORDS AREA

Description

Determine dimension preference for refinement of a stochastic expansion from the total Sobol’ sensitivity indices
obtained from global sensitivity analysis. High indices indicate high importance for resolving statistical quantities
of interest and therefore result in high dimension preference.

Examples
method,

polynomial_chaos
sparse_grid_level = 3
dimension_adaptive p_refinement sobol

max_iterations = 20
convergence_tol = 1.e-4

generalized

• Keywords Area

• method

• stoch collocation

• p refinement

• dimension adaptive

• generalized

Use the generalized sparse grid dimension adaptive algorithm to refine a sparse grid approximation of stochas-
tic expansion.

Specification

Alias: none
Argument(s): none

Description

The generalized sparse grid algorithm is a greedy approach in which candidate index sets are evaluated for their
impact on the statistical QOI, the most influential sets are selected and used to generate additional candidates,
and the index set frontier of a sparse grid is evolved in an unstructured and goal-oriented manner (refer to User’s
Manual PCE descriptions for additional specifics).

Examples
method,

polynomial_chaos
sparse_grid_level = 3
dimension_adaptive p_refinement generalized

max_iterations = 20
convergence_tol = 1.e-4

6.2. METHOD 877

h refinement

• Keywords Area

• method

• stoch collocation

• h refinement

Employ h-refinement to refine the grid

Specification
Alias: none

Argument(s): none
Default: no refinement

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

h-refinement type
(Group 1)

uniform Refine an
expansion
uniformly in all
dimensions.

dimension -
adaptive

Perform
anisotropic
expansion
refinement by
preferentially
adapting in
dimensions that are
detected to have
higher
‘importance’.

local adaptive Planned future
capability for local
pointwise
refinement within a
generalized sparse
grid.

Description
Automated expansion refinement can be selected as either p refinement or h refinement, and either refinement
specification can be either uniform or dimension adaptive. The dimension adaptive case can be further specified
as either sobol or generalized (decay not supported). Each of these automated refinement approaches makes use
of the max iterations and convergence tolerance iteration controls. The h refinement specification involves use of
the same piecewise interpolants (linear or cubic Hermite splines) described above for the piecewise specification
option (it is not necessary to redundantly specify piecewise in the case of h refinement). In future releases, the
hierarchical interpolation approach will enable local refinement in addition to the current uniform and dimension-
adaptive options.

878 CHAPTER 6. KEYWORDS AREA

uniform

• Keywords Area

• method

• stoch collocation

• h refinement

• uniform

Refine an expansion uniformly in all dimensions.

Specification

Alias: none
Argument(s): none

Description

The quadrature order or sparse grid level are ramped by one on each refinement iteration until either of the two
convergence controls is satisfied. For the uniform refinement case with regression approaches, the expansion-
order is ramped by one on each iteration while the oversampling ratio (either defined by collocation ratio or

inferred from collocation points based on the initial expansion) is held fixed.

dimension adaptive

• Keywords Area

• method

• stoch collocation

• h refinement

• dimension adaptive

Perform anisotropic expansion refinement by preferentially adapting in dimensions that are detected to have
higher ‘importance’.

Specification

Alias: none
Argument(s): none

6.2. METHOD 879

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

dimension
adaptivity
estimation
approach (Group
1)

sobol Estimate
dimension
preference for
automated
refinement of
stochastic
expansion using
total Sobol’
sensitivity indices.

generalized Use the
generalized sparse
grid dimension
adaptive algorithm
to refine a sparse
grid approximation
of stochastic
expansion.

Description
Perform anisotropic expansion refinement by preferentially adapting in dimensions that are detected to hold higher
‘importance’ in resolving statistical quantities of interest.

Dimension importance must be estimated as part of the refinement process. Techniques include either sobol or
generalized for stochastic collocation and either sobol, decay, or generalized for polynomial chaos. Each of these
automated refinement approaches makes use of the max iterations and convergence tolerance iteration controls.

sobol

• Keywords Area

• method

• stoch collocation

• h refinement

• dimension adaptive

• sobol

Estimate dimension preference for automated refinement of stochastic expansion using total Sobol’ sensitivity
indices.

Specification
Alias: none

Argument(s): none
Default: generalized

880 CHAPTER 6. KEYWORDS AREA

Description

Determine dimension preference for refinement of a stochastic expansion from the total Sobol’ sensitivity indices
obtained from global sensitivity analysis. High indices indicate high importance for resolving statistical quantities
of interest and therefore result in high dimension preference.

Examples
method,

polynomial_chaos
sparse_grid_level = 3
dimension_adaptive p_refinement sobol

max_iterations = 20
convergence_tol = 1.e-4

generalized

• Keywords Area

• method

• stoch collocation

• h refinement

• dimension adaptive

• generalized

Use the generalized sparse grid dimension adaptive algorithm to refine a sparse grid approximation of stochas-
tic expansion.

Specification

Alias: none
Argument(s): none

Description

The generalized sparse grid algorithm is a greedy approach in which candidate index sets are evaluated for their
impact on the statistical QOI, the most influential sets are selected and used to generate additional candidates,
and the index set frontier of a sparse grid is evolved in an unstructured and goal-oriented manner (refer to User’s
Manual PCE descriptions for additional specifics).

Examples
method,

polynomial_chaos
sparse_grid_level = 3
dimension_adaptive p_refinement generalized

max_iterations = 20
convergence_tol = 1.e-4

6.2. METHOD 881

local adaptive

• Keywords Area

• method

• stoch collocation

• h refinement

• local adaptive

Planned future capability for local pointwise refinement within a generalized sparse grid.

Specification
Alias: none

Argument(s): none

Description
Sparse grid interpolation admits approaches for pointwise local refinement within the general framework of gen-
eralized sparse grids. This algorithmic capability is currently in a partial prototype stage.

piecewise

• Keywords Area

• method

• stoch collocation

• piecewise

Use piecewise local basis functions

Specification
Alias: none

Argument(s): none
Default: extended (Askey + numerically-generated)

Description
SC also supports the option of piecewise local basis functions. These are piecewise linear splines, or in the case
of gradient-enhanced interpolation via the use derivatives specification, piecewise cubic Hermite splines. Both
of these basis selections provide local support only over the range from the interpolated point to its nearest 1D
neighbors (within a tensor grid or within each of the tensor grids underlying a sparse grid), which exchanges the
fast convergence of global bases for smooth functions for robustness in the representation of nonsmooth response
functions (that can induce Gibbs oscillations when using high-order global basis functions). When local basis
functions are used, the usage of nonequidistant collocation points (e.g., the Gauss point selections described
above) is not well motivated, so equidistant Newton-Cotes points are employed in this case, and all random
variable types are transformed to standard uniform probability space.

882 CHAPTER 6. KEYWORDS AREA

askey

• Keywords Area

• method

• stoch collocation

• askey

Select the standardized random variables (and associated basis polynomials) from the Askey family that best
match the user-specified random variables.

Specification

Alias: none
Argument(s): none
Default: extended (Askey + numerically-generated)

Description

The Askey option employs standard normal, standard uniform, standard exponential, standard beta, and standard
gamma random variables in a transformed probability space. These selections correspond to Hermite, Legendre,
Laguerre, Jacobi, and generalized Laguerre orthogonal polynomials, respectively.

Specific mappings for the basis polynomials are based on a closest match criterion, and include Hermite
for normal (optimal) as well as bounded normal, lognormal, bounded lognormal, gumbel, frechet, and weibull
(sub-optimal); Legendre for uniform (optimal) as well as loguniform, triangular, and bin-based histogram (sub-
optimal); Laguerre for exponential (optimal); Jacobi for beta (optimal); and generalized Laguerre for gamma
(optimal).

See Also

These keywords may also be of interest:

• polynomial chaos

• wiener

wiener

• Keywords Area

• method

• stoch collocation

• wiener

Use standard normal random variables (along with Hermite orthogonal basis polynomials) when transforming
to a standardized probability space.

6.2. METHOD 883

Specification
Alias: none

Argument(s): none
Default: extended (Askey + numerically-generated)

Description
The Wiener option employs standard normal random variables in a transformed probability space, corresponding
to a Hermite orthogonal polynomial basis. This is the same nonlinear variable transformation used by local and
global reliability methods (and therefore has the same variable support).

See Also
These keywords may also be of interest:

• polynomial chaos

• askey

quadrature order

• Keywords Area

• method

• stoch collocation

• quadrature order

Cubature using tensor-products of Gaussian quadrature rules

Specification
Alias: none

Argument(s): INTEGERLIST

Description
Multidimensional integration by a tensor-product of Gaussian quadrature rules (specified with quadrature-
order, and, optionally, dimension preference). The default rule selection is to employ non nested

Gauss rules including Gauss-Hermite (for normals or transformed normals), Gauss-Legendre (for uniforms or
transformed uniforms), Gauss-Jacobi (for betas), Gauss-Laguerre (for exponentials), generalized Gauss-Laguerre
(for gammas), and numerically-generated Gauss rules (for other distributions when using an Extended basis).
For the case of p refinement or the case of an explicit nested override, Gauss-Hermite rules are replaced
with Genz-Keister nested rules and Gauss-Legendre rules are replaced with Gauss-Patterson nested rules, both of
which exchange lower integrand precision for greater point reuse. By specifying a dimension preference,
where higher preference leads to higher order polynomial resolution, the tensor grid may be rendered anisotropic.
The dimension specified to have highest preference will be set to the specified quadrature order and all
other dimensions will be reduced in proportion to their reduced preference; any non-integral portion is truncated.
To synchronize with tensor-product integration, a tensor-product expansion is used, where the order pi of the
expansion in each dimension is selected to be half of the integrand precision available from the rule in use,

884 CHAPTER 6. KEYWORDS AREA

rounded down. In the case of non-nested Gauss rules with integrand precision 2mi − 1, pi is one less than the
quadrature order mi in each dimension (a one-dimensional expansion contains the same number of terms, p+ 1,
as the number of Gauss points). The total number of terms, N, in a tensor-product expansion involving n uncertain
input variables is

N = 1 + P =
n∏
i=1

(pi + 1)

In some advanced use cases (e.g., multifidelity UQ), multiple grid resolutions can be employed; for this reason,
the quadrature order specification supports an array input.

sparse grid level

• Keywords Area

• method

• stoch collocation

• sparse grid level

Set the sparse grid level to be used when peforming sparse grid integration or sparse grid interpolation

Specification
Alias: none

Argument(s): INTEGERLIST
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional(Choose
One)

Group 1 restricted Set the sparse grid
level to be used
when peforming
sparse grid
integration or
sparse grid
interpolation

unrestricted Overide the default
restriction of
growth rates for
nested and
non-nested rules
that are by defualt
synchronized for
consistency.

6.2. METHOD 885

Optional(Choose
One)

Group 2 nodal Set the sparse grid
level to be used
when peforming
sparse grid
integration or
sparse grid
interpolation

hierarchical Set the sparse grid
level to be used
when peforming
sparse grid
integration or
sparse grid
interpolation

Description
Multi-dimensional integration by the Smolyak sparse grid method (specified with sparse grid level and, option-
ally, dimension preference). The underlying one-dimensional integration rules are the same as for the tensor-
product quadrature case; however, the default rule selection is nested for sparse grids (Genz-Keister for nor-
mals/transformed normals and Gauss-Patterson for uniforms/transformed uniforms). This default can be over-
ridden with an explicit non nested specification (resulting in Gauss-Hermite for normals/transformed normals
and Gauss-Legendre for uniforms/transformed uniforms). As for tensor quadrature, the dimension preference
specification enables the use of anisotropic sparse grids (refer to the PCE description in the User’s Manual for
the anisotropic index set constraint definition). Similar to anisotropic tensor grids, the dimension with greatest
preference will have resolution at the full sparse grid level and all other dimension resolutions will be reduced in
proportion to their reduced preference. For PCE with either isotropic or anisotropic sparse grids, a summation of
tensor-product expansions is used, where each anisotropic tensor-product quadrature rule underlying the sparse
grid construction results in its own anisotropic tensor-product expansion as described in case 1. These anisotropic
tensor-product expansions are summed into a sparse PCE using the standard Smolyak summation (again, refer to
the User’s Manual for additional details). As for quadrature order, the sparse grid level specification admits an
array input for enabling specification of multiple grid resolutions used by certain advanced solution methodolo-
gies.

This keyword can be used when using sparse grid integration to calculate PCE coefficients or when generating
samples for sparse grid collocation.

restricted

• Keywords Area

• method

• stoch collocation

• sparse grid level

• restricted

Set the sparse grid level to be used when peforming sparse grid integration or sparse grid interpolation

886 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): none
Default: restricted (except for generalized sparse grids)

Description
Multi-dimensional integration by the Smolyak sparse grid method (specified with sparse grid level and, option-
ally, dimension preference). The underlying one-dimensional integration rules are the same as for the tensor-
product quadrature case; however, the default rule selection is nested for sparse grids (Genz-Keister for nor-
mals/transformed normals and Gauss-Patterson for uniforms/transformed uniforms). This default can be over-
ridden with an explicit non nested specification (resulting in Gauss-Hermite for normals/transformed normals
and Gauss-Legendre for uniforms/transformed uniforms). As for tensor quadrature, the dimension preference
specification enables the use of anisotropic sparse grids (refer to the PCE description in the User’s Manual for
the anisotropic index set constraint definition). Similar to anisotropic tensor grids, the dimension with greatest
preference will have resolution at the full sparse grid level and all other dimension resolutions will be reduced in
proportion to their reduced preference. For PCE with either isotropic or anisotropic sparse grids, a summation of
tensor-product expansions is used, where each anisotropic tensor-product quadrature rule underlying the sparse
grid construction results in its own anisotropic tensor-product expansion as described in case 1. These anisotropic
tensor-product expansions are summed into a sparse PCE using the standard Smolyak summation (again, refer to
the User’s Manual for additional details). As for quadrature order, the sparse grid level specification admits an
array input for enabling specification of multiple grid resolutions used by certain advanced solution methodolo-
gies.

This keyword can be used when using sparse grid integration to calculate PCE coefficients or when generating
samples for sparse grid collocation.

unrestricted

• Keywords Area

• method

• stoch collocation

• sparse grid level

• unrestricted

Overide the default restriction of growth rates for nested and non-nested rules that are by defualt synchronized
for consistency.

Specification
Alias: none

Argument(s): none

Description
In the quadrature and sparse grid cases, growth rates for nested and non-nested rules can be synchronized for
consistency. For a non-nested Gauss rule used within a sparse grid, linear one-dimensional growth rules of m =
2l + 1 are used to enforce odd quadrature orders, where l is the grid level and m is the number of points in the

6.2. METHOD 887

rule. The precision of this Gauss rule is then i = 2m − 1 = 4l + 1. For nested rules, order growth with level is
typically exponential; however, the default behavior is to restrict the number of points to be the lowest order rule
that is available that meets the one-dimensional precision requirement implied by either a level l for a sparse grid
(i = 4l + 1) or an order m for a tensor grid (i = 2m − 1). This behavior is known as ”restricted growth” or
”delayed sequences.” To override this default behavior in the case of sparse grids, the unrestricted keyword can be
used; it cannot be overridden for tensor grids using nested rules since it also provides a mapping to the available
nested rule quadrature orders. An exception to the default usage of restricted growth is the dimension adaptive p-
refinement generalized sparse grid case described previously, since the ability to evolve the index sets of a sparse

grid in an unstructured manner eliminates the motivation for restricting the exponential growth of nested rules.

nodal

• Keywords Area

• method

• stoch collocation

• sparse grid level

• nodal

Set the sparse grid level to be used when peforming sparse grid integration or sparse grid interpolation

Specification

Alias: none
Argument(s): none
Default: nodal

Description

Multi-dimensional integration by the Smolyak sparse grid method (specified with sparse grid level and, option-
ally, dimension preference). The underlying one-dimensional integration rules are the same as for the tensor-
product quadrature case; however, the default rule selection is nested for sparse grids (Genz-Keister for nor-
mals/transformed normals and Gauss-Patterson for uniforms/transformed uniforms). This default can be over-
ridden with an explicit non nested specification (resulting in Gauss-Hermite for normals/transformed normals
and Gauss-Legendre for uniforms/transformed uniforms). As for tensor quadrature, the dimension preference
specification enables the use of anisotropic sparse grids (refer to the PCE description in the User’s Manual for
the anisotropic index set constraint definition). Similar to anisotropic tensor grids, the dimension with greatest
preference will have resolution at the full sparse grid level and all other dimension resolutions will be reduced in
proportion to their reduced preference. For PCE with either isotropic or anisotropic sparse grids, a summation of
tensor-product expansions is used, where each anisotropic tensor-product quadrature rule underlying the sparse
grid construction results in its own anisotropic tensor-product expansion as described in case 1. These anisotropic
tensor-product expansions are summed into a sparse PCE using the standard Smolyak summation (again, refer to
the User’s Manual for additional details). As for quadrature order, the sparse grid level specification admits an
array input for enabling specification of multiple grid resolutions used by certain advanced solution methodolo-
gies.

This keyword can be used when using sparse grid integration to calculate PCE coefficients or when generating
samples for sparse grid collocation.

888 CHAPTER 6. KEYWORDS AREA

hierarchical

• Keywords Area

• method

• stoch collocation

• sparse grid level

• hierarchical

Set the sparse grid level to be used when peforming sparse grid integration or sparse grid interpolation

Specification

Alias: none
Argument(s): none

Description

Multi-dimensional integration by the Smolyak sparse grid method (specified with sparse grid level and, option-
ally, dimension preference). The underlying one-dimensional integration rules are the same as for the tensor-
product quadrature case; however, the default rule selection is nested for sparse grids (Genz-Keister for nor-
mals/transformed normals and Gauss-Patterson for uniforms/transformed uniforms). This default can be over-
ridden with an explicit non nested specification (resulting in Gauss-Hermite for normals/transformed normals
and Gauss-Legendre for uniforms/transformed uniforms). As for tensor quadrature, the dimension preference
specification enables the use of anisotropic sparse grids (refer to the PCE description in the User’s Manual for
the anisotropic index set constraint definition). Similar to anisotropic tensor grids, the dimension with greatest
preference will have resolution at the full sparse grid level and all other dimension resolutions will be reduced in
proportion to their reduced preference. For PCE with either isotropic or anisotropic sparse grids, a summation of
tensor-product expansions is used, where each anisotropic tensor-product quadrature rule underlying the sparse
grid construction results in its own anisotropic tensor-product expansion as described in case 1. These anisotropic
tensor-product expansions are summed into a sparse PCE using the standard Smolyak summation (again, refer to
the User’s Manual for additional details). As for quadrature order, the sparse grid level specification admits an
array input for enabling specification of multiple grid resolutions used by certain advanced solution methodolo-
gies.

This keyword can be used when using sparse grid integration to calculate PCE coefficients or when generating
samples for sparse grid collocation.

dimension preference

• Keywords Area

• method

• stoch collocation

• dimension preference

A set of weights specifying the realtive importance of each uncertain variable (dimension)

6.2. METHOD 889

Specification
Alias: none

Argument(s): REALLIST
Default: isotropic grids

Description
A set of weights specifying the realtive importance of each uncertain variable (dimension). Using this specification
leada to anisotropic integrations with differing refinement levels for different random dimensions.

See Also
These keywords may also be of interest:

• sobol

• decay

use derivatives

• Keywords Area

• method

• stoch collocation

• use derivatives

Use derivative data to construct surrogate models

Specification
Alias: none

Argument(s): none
Default: use function values only

Description
The use derivatives flag specifies that any available derivative information should be used in global approx-
imation builds, for those global surrogate types that support it (currently, polynomial regression and the Surfpack
Gaussian process).

However, it’s use with Surfpack Gaussian process is not recommended.

nested

• Keywords Area

• method

• stoch collocation

• nested

Enforce use of nested quadrature rules if available

890 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): none
Default: quadrature: non nested unless automated refinement; sparse grids: nested

Description
Enforce use of nested quadrature rules if available. For instance if the aleatory variables are Gaussian use the
Nested Genz-Keister rule instead of the default non-nested Gauss-Hermite rule variables are

non nested

• Keywords Area

• method

• stoch collocation

• non nested

Enforce use of non-nested quadrature rules

Specification
Alias: none

Argument(s): none

Description
Enforce use of non-nested quadrature rules if available. For instance if the aleatory variables are Gaussian use the
non-nested Gauss-Hermite rule

variance based decomp

• Keywords Area

• method

• stoch collocation

• variance based decomp

Activates global sensitivity analysis based on decomposition of response variance into main, interaction, and
total effects

Specification
Alias: none

Argument(s): none
Default: no variance-based decomposition

6.2. METHOD 891

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional interaction order Specify the
maximum number
of variables
allowed in an
interaction when
reporting
interaction metrics.

Optional drop tolerance Suppresses output
of sensitivity
indices with values
lower than this
tolerance

Description
Dakota can calculate sensitivity indices through variance-based decomposition using the keyword variance-
based decomp. This approach decomposes main, interaction, and total effects in order to identify the most

important variables and combinations of variables in contributing to the variance of output quantities of interest.
Default Behavior
Because of processing overhead and output volume, variance based decomp is inactive by default,

unless required for dimension-adaptive refinement using Sobol’ indices.
Expected Outputs
When variance based decomp is specified, sensitivity indices for main effects, total effects, and any

interaction effects will be reported. Each of these effects represents the percent contribution to the variance
in the model response, where main effects include the aggregated set of univariate terms for each individual
variable, interaction effects represent the set of mixed terms (the complement of the univariate set), and total effects
represent the complete set of terms (univariate and mixed) that contain each individual variable. The aggregated
set of main and interaction sensitivity indices will sum to one, whereas the sum of total effects sensitivity indices
will be greater than one due to redundant counting of mixed terms.

Usage Tips
An important consideration is that the number of possible interaction terms grows exponentially with dimen-

sion and expansion order. To mitigate this, both in terms of compute time and output volume, possible interaction
effects are suppressed whenever no contributions are present due to the particular form of an expansion. In addi-
tion, the interaction order and drop tolerance controls can further limit the computational and output
requirements.

Examples
method,

polynomial_chaos # or stoch_collocation
sparse_grid_level = 3
variance_based_decomp interaction_order = 2

Theory
In this context, we take sensitivity analysis to be global, not local as when calculating derivatives of output
variables with respect to input variables. Our definition is similar to that of[73] : ”The study of how uncertainty
in the output of a model can be apportioned to different sources of uncertainty in the model input.”

892 CHAPTER 6. KEYWORDS AREA

Variance based decomposition is a way of using sets of samples to understand how the variance of the output
behaves, with respect to each input variable. A larger value of the sensitivity index, Si, means that the uncertainty
in the input variable i has a larger effect on the variance of the output. More details on the calculations and
interpretation of the sensitivity indices can be found in[87].

interaction order

• Keywords Area

• method

• stoch collocation

• variance based decomp

• interaction order

Specify the maximum number of variables allowed in an interaction when reporting interaction metrics.

Specification
Alias: none

Argument(s): INTEGER
Default: Unrestricted (VBD includes all interaction orders present in the expansion)

Description
The interaction order option has been added to allow suppression of higher-order interactions, since the out-
put volume (and memory and compute consumption) of these results could be extensive for high dimensional
problems (note: the previous univariate effects specification is equivalent to interaction order = 1 in the cur-
rent specification). Similar to suppression of interactions is the covariance control, which can be selected to be
diagonal covariance or full covariance, with the former supporting suppression of the off-diagonal covariance
terms (to again save compute and memory resources and reduce output volume)

drop tolerance

• Keywords Area

• method

• stoch collocation

• variance based decomp

• drop tolerance

Suppresses output of sensitivity indices with values lower than this tolerance

Specification
Alias: none

Argument(s): REAL
Default: All VBD indices displayed

6.2. METHOD 893

Description
The drop tolerance keyword allows the user to specify a value below which sensitivity indices generated by
variance based decomp are not displayed.

Default Behavior
By default, all sensitivity indices generated by variance based decomp are displayed.
Usage Tips
For polynomial chaos, which outputs main, interaction, and total effects by default, the univariate-

effects may be a more appropriate option. It allows suppression of the interaction effects since the output
volume of these results can be prohibitive for high dimensional problems. Similar to suppression of these inter-
actions is the covariance control, which can be selected to be diagonal covariance or full covariance, with the
former supporting suppression of the off-diagonal covariance terms (to save compute and memory resources and
reduce output volume).

Examples
method,

sampling
sample_type lhs
samples = 100
variance_based_decomp
drop_tolerance = 0.001

diagonal covariance

• Keywords Area

• method

• stoch collocation

• diagonal covariance

Display only the diagonal terms of the covariance matrix

Specification
Alias: none

Argument(s): none
Default: diagonal covariance for response vector > 10; else full covariance

Description
With a large number of responses, the covariance matrix can be very large. diagonal covariance is used to
suppress the off-diagonal covariance terms (to save compute and memory resources and reduce output volume).

full covariance

• Keywords Area

• method

• stoch collocation

894 CHAPTER 6. KEYWORDS AREA

• full covariance

Display the full covariance matrix

Specification
Alias: none

Argument(s): none

Description
With a large number of responses, the covariance matrix can be very large. full covariance is used to force
Dakota to output the full covariance matrix.

sample type

• Keywords Area

• method

• stoch collocation

• sample type

Selection of sampling strategy

Specification
Alias: none

Argument(s): none
Default: lhs

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 lhs Uses Latin
Hypercube
Sampling (LHS) to
sample variables

random Uses purely
random Monte
Carlo sampling to
sample variables

Description
The sample type keyword allows the user to select between multiple random sampling approaches. There are
two primary types of sampling: Monte Carlo (pure random) and Latin Hypercube Sampling. Additionally, these
methods have incremental variants that allow an existing study to be augmented with additional samples to get
better estimates of mean, variance, and percentiles.

Default Behavior
If the sample type keyword is present, it must be accompanied by lhs, random, incremental lhs,

or incremental random. Otherwise, lhs will be used by default.

6.2. METHOD 895

Examples
method

sampling
sample_type lhs
samples = 20

lhs

• Keywords Area

• method

• stoch collocation

• sample type

• lhs

Uses Latin Hypercube Sampling (LHS) to sample variables

Specification
Alias: none

Argument(s): none

Description
The lhs keyword invokes Latin Hypercube Sampling as the means of drawing samples of uncertain variables
according to their probability distributions. This is a stratified, space-filling approach that selects variable values
from a set of equi-probable bins.

Default Behavior
By default, Latin Hypercube Sampling is used. To explicitly specify this in the Dakota input file, however, the

lhs keyword must appear in conjunction with the sample type keyword.
Usage Tips
Latin Hypercube Sampling is very robust and can be applied to any problem. It is fairly effective at estimating

the mean of model responses and linear correlations with a reasonably small number of samples relative to the
number of variables.

Examples
method

sampling
sample_type lhs
samples = 20

random

• Keywords Area

• method

• stoch collocation

• sample type

896 CHAPTER 6. KEYWORDS AREA

• random

Uses purely random Monte Carlo sampling to sample variables

Specification
Alias: none

Argument(s): none

Description
The random keyword invokes Monte Carlo sampling as the means of drawing samples of uncertain variables
according to their probability distributions.

Default Behavior
Monte Carlo sampling is not used by default. To change this behavior, the random keyword must be specified

in conjuction with the sample type keyword.
Usage Tips
Monte Carlo sampling is more computationally expensive than Latin Hypercube Sampling as it requires a

larger number of samples to accurately estimate statistics.

Examples
method

sampling
sample_type random
samples = 200

probability refinement

• Keywords Area

• method

• stoch collocation

• probability refinement

Allow refinement of probability and generalized reliability results using importance sampling

Topics
This keyword is related to the topics:

• reliability methods

Specification
Alias: sample refinement

Argument(s): none

6.2. METHOD 897

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1
import Sampling option
adapt import Importance

sampling option
mm adapt import Sampling option

Optional refinement -
samples

Specify the
number of samples
used to improve a
probabilty
estimate.

Description
The probability refinement allows refinement of probability and generalized reliability results using
importance sampling. If one specifies probability refinement, there are some additional options. One
can specify which type of importance sampling to use (import, adapt import, or mm adapt import).
Additionally, one can specify the number of refinement samples to use with refinement samples and the
seed to use with seed.

The probability refinement density reweighting accounts originally was developed based on Gaus-
sian distributions. It now accounts for additional non-Gaussian cases.

import

• Keywords Area

• method

• stoch collocation

• probability refinement

• import

Sampling option

Specification
Alias: none

Argument(s): none

Description
import centers a sampling density at one of the initial LHS samples identified in the failure region. It then
generates the importance samples, weights them by their probability of occurence given the original density, and
calculates the required probability (CDF or CCDF level).

adapt import

• Keywords Area

• method

898 CHAPTER 6. KEYWORDS AREA

• stoch collocation

• probability refinement

• adapt import

Importance sampling option

Specification

Alias: none
Argument(s): none

Description

adapt import centers a sampling density at one of the initial LHS samples identified in the failure region. It
then generates the importance samples, weights them by their probability of occurence given the original density,
and calculates the required probability (CDF or CCDF level). This continues iteratively until the failure probability
estimate converges.

mm adapt import

• Keywords Area

• method

• stoch collocation

• probability refinement

• mm adapt import

Sampling option

Specification

Alias: none
Argument(s): none

Description

mm adapt import starts with all of the samples located in the failure region to build a multimodal sampling
density. First, it uses a small number of samples around each of the initial samples in the failure region. Note
that these samples are allocated to the different points based on their relative probabilities of occurrence: more
probable points get more samples. This early part of the approach is done to search for ”representative” points.
Once these are located, the multimodal sampling density is set and then mm adapt import proceeds similarly
to adapt import (sample until convergence).

6.2. METHOD 899

refinement samples

• Keywords Area

• method

• stoch collocation

• probability refinement

• refinement samples

Specify the number of samples used to improve a probabilty estimate.

Specification
Alias: none

Argument(s): INTEGER

Description
Specify the number of samples used to improve a probabilty estimate. If using uni-modal sampling all samples
are assigned to the sampling center. If using multi-modal sampling the samples are split between mutiple samples
according to some internally computed weights.

export points file

• Keywords Area

• method

• stoch collocation

• export points file

Output file for evaluations of a surrogate model

Specification
Alias: none

Argument(s): STRING
Default: no point export to a file

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional(Choose
One)

tabular format
(Group 1)

annotated Selects annotated
tabular file format

900 CHAPTER 6. KEYWORDS AREA

custom annotated Selects
custom-annotated
tabular file format

freeform Selects freeform
file format

Description

File of points (input variable values and predicted approximate outputs from the surrogate) evaluated on the
surrogate model. The export points contain test point values and the emulator predictions at these points.

Usage Tips
Dakota exports tabular data in one of three formats:

• annotated (default)

• custom annotated

• freeform

annotated

• Keywords Area

• method

• stoch collocation

• export points file

• annotated

Selects annotated tabular file format

Topics

This keyword is related to the topics:

• file formats

Specification

Alias: none
Argument(s): none
Default: annotated format

6.2. METHOD 901

Description
An annotated tabular file is a whitespace-separated text file with one leading header row of comments/column la-
bels. Each subsequent row contains an evaluation ID and interface ID, followed by data for variables, or variables
followed by responses, depending on context.

Default Behavior
By default, Dakota imports and exports tabular files in annotated format. The annotated keyword can be

used to explicitly specify this.
Usage Tips

• To specify pre-Dakota 6.1 tabular format, which did not include interface id, specify custom annotated
header eval id

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export an annotated top-level tabular data file containing a header row, leading eval id and interface id columns,
and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
annotated

Resulting tabular file:

%eval_id interface x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 NO_ID 0.9 1.1 0.0002 0.26 0.76
2 NO_ID 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 NO_ID 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

custom annotated

• Keywords Area

• method

• stoch collocation

• export points file

• custom annotated

Selects custom-annotated tabular file format

Topics
This keyword is related to the topics:

• file formats

902 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): none
Default: annotated format

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional header Enable header row
in
custom-annotated
tabular file

Optional eval id Enable evaluation
ID column in
custom-annotated
tabular file

Optional interface id Enable interface
ID column in
custom-annotated
tabular file

Description
A custom-annotated tabular file is a whitespace-separated text file typically containing row data for variables, or
variables followed by responses, though the format is used for other tabular exports/imports as well. Custom-
annotated allows user options for whether header row, eval id column, and interface id column appear
in the tabular file, thus bridging freeform and (fully) annotated.

Default Behavior
The annotated format is the default for tabular export/import. To control which header row and columns

are in the input/output, specify custom annotated, followed by options, in the relevant export/import context.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export a custom-annotated tabular file in Dakota 6.0 format, which contained only header and eval id (no interface-
id), and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
custom_annotated header eval_id

Resulting tabular file:

6.2. METHOD 903

%eval_id x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 0.9 1.1 0.0002 0.26 0.76
2 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

header

• Keywords Area

• method

• stoch collocation

• export points file

• custom annotated

• header

Enable header row in custom-annotated tabular file

Specification
Alias: none

Argument(s): none
Default: no header

Description
See description of parent custom annotated

eval id

• Keywords Area

• method

• stoch collocation

• export points file

• custom annotated

• eval id

Enable evaluation ID column in custom-annotated tabular file

Specification
Alias: none

Argument(s): none
Default: no eval id column

904 CHAPTER 6. KEYWORDS AREA

Description
See description of parent custom annotated

interface id

• Keywords Area

• method

• stoch collocation

• export points file

• custom annotated

• interface id

Enable interface ID column in custom-annotated tabular file

Specification
Alias: none

Argument(s): none
Default: no interface id column

Description
See description of parent custom annotated

freeform

• Keywords Area

• method

• stoch collocation

• export points file

• freeform

Selects freeform file format

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Default: annotated format

6.2. METHOD 905

Description
A freeform tabular file is whitespace-separated text file with no leading header row and no leading columns. Most
commonly, each row contains data for variables, or variables followed by responses, though the format is used for
other tabular exports/imports as well.

Default Behavior
The annotated format is the default for tabular export/import. To change this behavior, specify freeform

in the relevant export/import context.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• In freeform, the num rows x num cols total data entries may be separated with any whitespace including
spaces, tabs, and newlines. In this format, vectors may therefore appear as a single row or single column
(or mixture; entries will populate the vector in order).

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export a freeform tabular file containing only data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
freeform

Resulting tabular file:

0.9 1.1 0.0002 0.26 0.76
0.90009 1.1 0.0001996404857 0.2601620081 0.759955
0.89991 1.1 0.0002003604863 0.2598380081 0.760045

...

fixed seed

• Keywords Area

• method

• stoch collocation

• fixed seed

Reuses the same seed value for multiple random sampling sets

Specification
Alias: none

Argument(s): none
Default: not fixed; pattern varies run-to-run

906 CHAPTER 6. KEYWORDS AREA

Description

The fixed seed flag is relevant if multiple sampling sets will be generated over the coarse of a Dakota analysis.
This occurs when using advance methods (e.g., surrogate-based optimization, optimization under uncertainty).
The same seed value is reused for each of these multiple sampling sets, which can be important for reducing
variability in the sampling results.

Default Behavior
The default behavior is to not use a fixed seed, as the repetition of the same sampling pattern can result in a

modeling weakness that an optimizer could potentially exploit (resulting in actual reliabilities that are lower than
the estimated reliabilities). For repeatable studies, the seed must also be specified.

Examples
method

sampling
sample_type lhs
samples = 10
fixed_seed

reliability levels

• Keywords Area

• method

• stoch collocation

• reliability levels

Specify reliability levels at which the response values will be estimated

Specification

Alias: none
Argument(s): REALLIST
Default: No CDF/CCDF response levels to compute

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional num reliability -
levels

Specify which
reliability -
levels
correspond to
which response

Description

Response levels are calculated for specified CDF/CCDF reliabilities by projecting out the prescribed number of
sample standard deviations from the sample mean.

6.2. METHOD 907

Theory
Sets of response-probability pairs computed with the forward/inverse mappings define either a cumulative distri-
bution function (CDF) or a complementary cumulative distribution function (CCDF) for each response function.

In the case of evidence-based epistemic methods, this is generalized to define either cumulative belief and
plausibility functions (CBF and CPF) or complementary cumulative belief and plausibility functions (CCBF and
CCPF) for each response function.

An inverse mapping involves computing the belief and plausibility response level for either a specified prob-
ability level or a specified generalized reliability level (two results for each level mapping in the evidence-based
epistemic case, instead of the one result for each level mapping in the aleatory case).

num reliability levels

• Keywords Area

• method

• stoch collocation

• reliability levels

• num reliability levels

Specify which reliability levels correspond to which response

Specification
Alias: none

Argument(s): INTEGERLIST
Default: reliability levels evenly distributed among response functions

Description
See parent page

response levels

• Keywords Area

• method

• stoch collocation

• response levels

Values at which to estimate desired statistics for each response

Specification
Alias: none

Argument(s): REALLIST
Default: No CDF/CCDF probabilities/reliabilities to compute

908 CHAPTER 6. KEYWORDS AREA

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional num response -
levels

Number of values
at which to
estimate desired
statistics for each
response

Optional compute Selection of
statistics to
compute at each
response level

Description

The response levels specification provides the target response values for which to compute probabilities,
reliabilities, or generalized reliabilities (forward mapping).

Default Behavior
If response levels are not specified, no statistics will be computed. If they are, probabilities will be

computed by default.
Expected Outputs
The particular statistics reported for each response level depend on the method, and they include:

1. Reliabilities

2. CDF probabilities

3. CCDF probabilities

Usage Tips
The num response levels is used to specify which arguments of the response level correspond to

which response.

Examples

For example, specifying a response level of 52.3 followed with compute probabilities will result
in the calculation of the probability that the response value is less than or equal to 52.3, given the uncertain
distributions on the inputs.

For an example with multiple responses, the following specification

response_levels = 1. 2. .1 .2 .3 .4 10. 20. 30.
num_response_levels = 2 4 3

would assign the first two response levels (1., 2.) to response function 1, the next four response levels (.1, .2, .3,
.4) to response function 2, and the final three response levels (10., 20., 30.) to response function 3. If the num -
response levels key were omitted from this example, then the response levels would be evenly distributed
among the response functions (three levels each in this case).

6.2. METHOD 909

Theory
Sets of response-probability pairs computed with the forward/inverse mappings define either a cumulative distri-
bution function (CDF) or a complementary cumulative distribution function (CCDF) for each response function.

In the case of evidence-based epistemic methods, this is generalized to define either cumulative belief and
plausibility functions (CBF and CPF) or complementary cumulative belief and plausibility functions (CCBF and
CCPF) for each response function.

A forward mapping involves computing the belief and plausibility probability level for a specified response
level.

num response levels

• Keywords Area

• method

• stoch collocation

• response levels

• num response levels

Number of values at which to estimate desired statistics for each response

Specification
Alias: none

Argument(s): INTEGERLIST
Default: response levels evenly distributed among response functions

Description
The num response levels keyword allows the user to specify the number of response values, for each re-
sponse, at which estimated statistics are of interest. Statistics that can be computed are probabilities and relia-
bilities, both according to either a cumulative distribution function or a complementary cumulative distribution
function.

Default Behavior
If num response levels is not specified, the response levels will be evenly distributed among the re-

sponses.
Expected Outputs
The specific output will be determined by the type of statistics that are specified. In a general sense, the output

will be a list of response level-statistic pairs that show the estimated value of the desired statistic for each response
level specified.

Examples
method

sampling
samples = 100
seed = 34785
num_response_levels = 1 1 1
response_levels = 0.5 0.5 0.5

910 CHAPTER 6. KEYWORDS AREA

compute

• Keywords Area

• method

• stoch collocation

• response levels

• compute

Selection of statistics to compute at each response level

Specification
Alias: none

Argument(s): none
Default: probabilities

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1
probabilities Computes

probabilities
associated with
response levels

reliabilities Computes
reliabilities
associated with
response levels

gen reliabilities Computes
generalized
reliabilities
associated with
response levels

Optional system Compute system
reliability (series
or parallel)

Description
The compute keyword is used to select which forward stastical mapping is calculated at each response level.

Default Behavior
If response levels is not specified, no statistics are computed. If response levels is specified

but compute is not, probabilities will be computed by default. If both response levels and compute
are specified, then on of the following must be specified: probabilities, reliabilities, or gen -
reliabilities.

Expected Output
The type of statistics specified by compute will be reported for each response level.

6.2. METHOD 911

Usage Tips
CDF/CCDF probabilities are calculated for specified response levels using a simple binning approach.
CDF/CCDF reliabilities are calculated for specified response levels by computing the number of sample stan-

dard deviations separating the sample mean from the response level.

Examples
method

sampling
sample_type random
samples = 100 seed = 1
complementary distribution
response_levels = 3.6e+11 4.0e+11 4.4e+11

6.0e+04 6.5e+04 7.0e+04
3.5e+05 4.0e+05 4.5e+05

compute reliabilities

probabilities

• Keywords Area

• method

• stoch collocation

• response levels

• compute

• probabilities

Computes probabilities associated with response levels

Specification

Alias: none
Argument(s): none

Description

The probabilities keyword directs Dakota to compute the probability that the model response will be below
(cumulative) or above (complementary cumulative) a specified response value. This is done for every response
level designated for each response.

Default Behavior
If response levels is specified, the probabilities are computed by default. To explicitly specify it in the

Dakota input file, though, the probabilities keyword should be specified in conjunction with the compute
keyword.

Expected Outputs
The Dakota output is a set of response level-probability pairs that give the probability that the model response

will be below or above the corresponding response level, depending on the distribution defined.

912 CHAPTER 6. KEYWORDS AREA

Examples
method

sampling
sample_type random
samples = 100 seed = 1
complementary distribution
response_levels = 3.6e+11 4.0e+11 4.4e+11

6.0e+04 6.5e+04 7.0e+04
3.5e+05 4.0e+05 4.5e+05

compute probabilities

reliabilities

• Keywords Area

• method

• stoch collocation

• response levels

• compute

• reliabilities

Computes reliabilities associated with response levels

Specification

Alias: none
Argument(s): none

Description

The reliabilities keyword directs Dakota to compute reliabilities according to the specified distribution for
a specified response value. This is done for every response level designated for each response.

Default Behavior
If response levels is specified, the reliabilities are not computed by default. To change this behavior,

the reliabilities keyword should be specified in conjunction with the compute keyword.
Expected Outputs
The Dakota output is a set of response level-reliability pairs according to the distribution defined.

Examples
method

sampling
sample_type random
samples = 100 seed = 1
complementary distribution
response_levels = 3.6e+11 4.0e+11 4.4e+11

6.0e+04 6.5e+04 7.0e+04
3.5e+05 4.0e+05 4.5e+05

compute reliabilities

6.2. METHOD 913

gen reliabilities

• Keywords Area

• method

• stoch collocation

• response levels

• compute

• gen reliabilities

Computes generalized reliabilities associated with response levels

Specification
Alias: none

Argument(s): none

Description
The gen reliabilities keyword directs Dakota to compute generalized reliabilities according to the speci-
fied distribution for a specified response value. This is done for every response level designated for each response.

Default Behavior
If response levels is specified, the generalized reliabilities are not computed by default. To change this

behavior, the gen reliabilities keyword should be specified in conjunction with the compute keyword.
Expected Outputs
The Dakota output is a set of response level-generalized reliability pairs according to the distribution defined.

Examples
method

sampling
sample_type random
samples = 100 seed = 1
complementary distribution
response_levels = 3.6e+11 4.0e+11 4.4e+11

6.0e+04 6.5e+04 7.0e+04
3.5e+05 4.0e+05 4.5e+05

compute gen_reliabilities

system

• Keywords Area

• method

• stoch collocation

• response levels

• compute

• system

Compute system reliability (series or parallel)

914 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 series Aggregate
response statistics
assuming a series
system

parallel Aggregate
response statistics
assuming a parallel
system

Description
With the system probability/reliability option, statistics for specified response levels are calculated and
reported assuming the response functions combine either in series or parallel to produce a total system response.

For a series system, the system fails when any one component (response) fails. The probability of failure is
the complement of the product of the individual response success probabilities.

For a parallel system, the system fails only when all components (responses) fail. The probability of failure is
the product of the individual response failure probabilities.

series

• Keywords Area

• method

• stoch collocation

• response levels

• compute

• system

• series

Aggregate response statistics assuming a series system

Specification
Alias: none

Argument(s): none

Description
See parent keyword system for description.

6.2. METHOD 915

parallel

• Keywords Area

• method

• stoch collocation

• response levels

• compute

• system

• parallel

Aggregate response statistics assuming a parallel system

Specification
Alias: none

Argument(s): none

Description
See parent keyword system for description.

distribution

• Keywords Area

• method

• stoch collocation

• distribution

Selection of cumulative or complementary cumulative functions

Specification
Alias: none

Argument(s): none
Default: cumulative (CDF)

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 cumulative Computes statistics
according to
cumulative
functions

916 CHAPTER 6. KEYWORDS AREA

complementary Computes statistics
according to
complementary
cumulative
functions

Description
The distribution keyword allows the user to select between a cumulative distribution/belief/plausibility
function and a complementary cumulative distribution/belief/plausibility function. This choice affects how prob-
abilities and reliability indices are reported.

Default Behavior
If the distribution keyword is present, it must be accompanied by either cumulative or complementary.

Otherwise, a cumulative distribution will be used by default.
Expected Outputs
Output will be a set of model response-probability pairs determined according to the choice of distribution.

The choice of distribution also defines the sign of the reliability or generalized reliability indices.

Examples
method

sampling
sample_type lhs
samples = 10
distribution cumulative

cumulative

• Keywords Area

• method

• stoch collocation

• distribution

• cumulative

Computes statistics according to cumulative functions

Specification
Alias: none

Argument(s): none

Description
Statistics on model responses will be computed according to a cumulative distribution/belief/plausibility function.

Default Behavior
By default, a cumulative distribution/belief/plausibility function will be used. To explicitly specify it in the

Dakota input file, however, the cumulative keyword must be appear in conjunction with the distribution
keyword.

6.2. METHOD 917

Expected Outputs
Output will be a set of model response-probability pairs determined according to a cumulative distribu-

tion/belief/plausibility function. The probabilities reported are the probabilities that the model response falls
below given response threshholds.

Examples
method

sampling
sample_type lhs
samples = 10
distribution cumulative

complementary

• Keywords Area

• method

• stoch collocation

• distribution

• complementary

Computes statistics according to complementary cumulative functions

Specification

Alias: none
Argument(s): none

Description

Statistics on model responses will be computed according to a complementary cumulative distribution/belief/plausibility
function.

Default Behavior
By default, a complementary cumulative distribution/belief/plausibility function will not be used. To change

that behavior, the complementary keyword must be appear in conjunction with the distribution keyword.
Expected Outputs
Output will be a set of model response-probability pairs determined according to a complementary cumulative

distribution/belief/plausibility function. The probabilities reported are the probabilities that the model response
falls above given response threshholds.

Examples
method

sampling
sample_type lhs
samples = 10
distribution complementary

918 CHAPTER 6. KEYWORDS AREA

probability levels

• Keywords Area

• method

• stoch collocation

• probability levels

Specify probability levels at which to estimate the corresponding response value

Specification
Alias: none

Argument(s): REALLIST
Default: No CDF/CCDF response levels to compute

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional num probability -
levels

Specify which
probability -
levels
correspond to
which response

Description
Response levels are calculated for specified CDF/CCDF probabilities by indexing into a sorted samples array (the
response levels computed are not interpolated and will correspond to one of the sampled values).

Theory
Sets of response-probability pairs computed with the forward/inverse mappings define either a cumulative distri-
bution function (CDF) or a complementary cumulative distribution function (CCDF) for each response function.

In the case of evidence-based epistemic methods, this is generalized to define either cumulative belief and
plausibility functions (CBF and CPF) or complementary cumulative belief and plausibility functions (CCBF and
CCPF) for each response function.

An inverse mapping involves computing the belief and plausibility response level for either a specified prob-
ability level or a specified generalized reliability level (two results for each level mapping in the evidence-based
epistemic case, instead of the one result for each level mapping in the aleatory case).

num probability levels

• Keywords Area

• method

• stoch collocation

• probability levels

• num probability levels

Specify which probability levels correspond to which response

6.2. METHOD 919

Specification
Alias: none

Argument(s): INTEGERLIST
Default: probability levels evenly distributed among response functions

Description
See parent page

gen reliability levels

• Keywords Area

• method

• stoch collocation

• gen reliability levels

Specify generalized relability levels at which to estimate the corresponding response value

Specification
Alias: none

Argument(s): REALLIST
Default: No CDF/CCDF response levels to compute

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional num gen -
reliability levels

Specify which
gen -
reliability -
levels
correspond to
which response

Description
Response levels are calculated for specified generalized reliabilities by indexing into a sorted samples array (the
response levels computed are not interpolated and will correspond to one of the sampled values).

Theory
Sets of response-probability pairs computed with the forward/inverse mappings define either a cumulative distri-
bution function (CDF) or a complementary cumulative distribution function (CCDF) for each response function.

In the case of evidence-based epistemic methods, this is generalized to define either cumulative belief and
plausibility functions (CBF and CPF) or complementary cumulative belief and plausibility functions (CCBF and
CCPF) for each response function.

An inverse mapping involves computing the belief and plausibility response level for either a specified prob-
ability level or a specified generalized reliability level (two results for each level mapping in the evidence-based
epistemic case, instead of the one result for each level mapping in the aleatory case).

920 CHAPTER 6. KEYWORDS AREA

num gen reliability levels

• Keywords Area

• method

• stoch collocation

• gen reliability levels

• num gen reliability levels

Specify which gen reliability levels correspond to which response

Specification
Alias: none

Argument(s): INTEGERLIST
Default: gen reliability levels evenly distributed among response functions

Description
See parent page

rng

• Keywords Area

• method

• stoch collocation

• rng

Selection of a random number generator

Specification
Alias: none

Argument(s): none
Default: Mersenne twister (mt19937)

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 mt19937 Generates random
numbers using the
Mersenne twister

rnum2 Generates
pseudo-random
numbers using the
Pecos package

6.2. METHOD 921

Description
The rng keyword is used to indicate a choice of random number generator.

Default Behavior
If specified, the rng keyword must be accompanied by either rnum2 (pseudo-random numbers) or mt19937

(random numbers generated by the Mersenne twister). Otherwise, mt19937, the Mersenne twister is used by
default.

Usage Tips
The default is recommended, as the Mersenne twister is a higher quality random number generator.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 98765
rng rnum2

mt19937

• Keywords Area

• method

• stoch collocation

• rng

• mt19937

Generates random numbers using the Mersenne twister

Specification
Alias: none

Argument(s): none

Description
The mt19937 keyword directs Dakota to use the Mersenne twister to generate random numbers. Additional
information can be found on wikipedia: http://en.wikipedia.org/wiki/Mersenne twister.

Default Behavior
mt19937 is the default random number generator. To specify it explicitly in the Dakota input file, however,

it must be specified in conjuction with the rng keyword.
Usage Tips
Use of the Mersenne twister random number generator (mt19937) is recommended.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 98765
rng mt19937

http://en.wikipedia.org/wiki/Mersenne_twister

922 CHAPTER 6. KEYWORDS AREA

rnum2

• Keywords Area

• method

• stoch collocation

• rng

• rnum2

Generates pseudo-random numbers using the Pecos package

Specification
Alias: none

Argument(s): none

Description
The rnum2 keyword directs Dakota to use pseudo-random numbers generated by the Pecos package.

Default Behavior
rnum2 is not used by default. To change this behavior, it must be specified in conjuction with the rng

keyword.
Usage Tips
Use of the Mersenne twister random number generator (mt19937) is recommended over rnum2.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 98765
rng rnum2

samples

• Keywords Area

• method

• stoch collocation

• samples

Number of samples for sampling-based methods

Specification
Alias: none

Argument(s): INTEGER
Default: method-dependent

6.2. METHOD 923

Description
The samples keyword is used to define the number of samples (i.e., randomly chosen sets of variable values) at
which to execute a model.

Default Behavior
By default, Dakota will use the minimum number of samples required by the chosen method.
Usage Tips
To obtain linear sensitivities or to construct a linear response surface, at least dim+1 samples should be used,

where ”dim” is the number of variables. For sensitivities to quadratic terms or quadratic response surfaces, at least
(dim+1)(dim+2)/2 samples are needed. For uncertainty quantification, we recommend at least 10∗dim samples.
For variance based decomp, we recommend hundreds to thousands of samples. Note that for variance-
based decomp, the number of simulations performed will be N∗(dim+2).

Examples
method

sampling
sample_type lhs
samples = 20

seed

• Keywords Area

• method

• stoch collocation

• seed

Seed of the random number generator

Specification
Alias: none

Argument(s): INTEGER
Default: system-generated (non-repeatable)

Description
The random seed control provides a mechanism for making a stochastic method repeatable. That is, the use of
the same random seed in identical studies will generate identical results.

Default Behavior
If not specified, the seed is randomly generated.
Expected Output
If seed is specified, a stochastic study will generate identical results when repeated using the same seed

value. Otherwise, results are not guaranteed to be the same.
Usage Tips
If a stochastic study was run without seed specified, and the user later wishes to repeat the study using the

same seed, the value of the seed used in the original study can be found in the output Dakota prints to the screen.
That value can then be added to the Dakota input file.

924 CHAPTER 6. KEYWORDS AREA

Examples
method

sampling
sample_type lhs
samples = 10
seed = 15347

model pointer

• Keywords Area

• method

• stoch collocation

• model pointer

Identifier for model block to be used by a method

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

Description
The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10

6.2. METHOD 925

seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses
response_functions = 3
no_gradients
no_hessians

6.2.53 sampling

• Keywords Area

• method

• sampling

Randomly samples variables according to their distributions

Topics

This keyword is related to the topics:

• uncertainty quantification

• sampling

926 CHAPTER 6. KEYWORDS AREA

Specification
Alias: nond sampling

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional sample type Selection of
sampling strategy

Optional variance based -
decomp

Activates global
sensitivity analysis
based on
decomposition of
response variance
into contributions
from variables

Optional backfill Ensures that the
samples of discrete
variables with
finite support are
unique

Optional fixed seed Reuses the same
seed value for
multiple random
sampling sets

Optional reliability levels Specify reliability
levels at which the
response values
will be estimated

Optional response levels Values at which to
estimate desired
statistics for each
response

Optional distribution Selection of
cumulative or
complementary
cumulative
functions

6.2. METHOD 927

Optional probability levels Specify probability
levels at which to
estimate the
corresponding
response value

Optional gen reliability -
levels

Specify
generalized
relability levels at
which to estimate
the corresponding
response value

Optional rng Selection of a
random number
generator

Optional samples Number of
samples for
sampling-based
methods

Optional seed Seed of the random
number generator

Optional model pointer Identifier for
model block to be
used by a method

Description
This method generates parameter values by drawing samples from the specified uncertain variable probability
distributions. The computational model is executed over all generated parameter values to compute the responses
for which statistics are computed. The statistics support sensitivity analysis and uncertainty quantification.

Default Behavior
By default, sampling methods operate on aleatory and epistemic uncertain variables. The types of variables

can be restricted or expanded (to include design or state variables) through use of the active keyword in the
variables block in the Dakota input file. If continuous design and/or state variables are designated as active, the
sampling algorithm will treat them as parameters with uniform probability distributions between their upper and
lower bounds. Refer to variable support for additional information on supported variable types, with and without
correlation.

The following keywords change how the samples are selected:

• sample type

• fixed seed

• rng

• samples

• seed

928 CHAPTER 6. KEYWORDS AREA

• variance based decomp

Expected Outputs
As a default, Dakota provides correlation analyses when running LHS. Correlation tables are printed with the

simple, partial, and rank correlations between inputs and outputs. These can be useful to get a quick sense of how
correlated the inputs are to each other, and how correlated various outputs are to inputs. variance based -
decomp is used to request more sensitivity information, with additional cost.

Additional statistics can be computed from the samples using the following keywords:

• response levels

• reliability levels

• probability levels

• gen reliability levels

response levels computes statistics at the specified response value. The other three allow the specification
of the statistic value, and will estimate the corresponding response value.

distribution is used to specify whether the statistic values are from cumulative or complementary cu-
mulative functions.

Usage Tips
sampling is a robust approach to doing sensitivity analysis and uncertainty quantification that can be ap-

plied to any problem. It requires more simulations than newer, advanced methods. Thus, an alternative may be
preferable if the simulation is computationally expensive.

Examples
tested on Dakota 6.0 on 140501

environment
tabular_data

tabular_data_file = ’Sampling_basic.dat’

method
sampling

sample_type lhs
samples = 20

model
single

variables
active uncertain
uniform_uncertain = 2

descriptors = ’input1’ ’input2’
lower_bounds = -2.0 -2.0
upper_bounds = 2.0 2.0

continuous_state = 1
descriptors = ’constant1’
initial_state = 100

interface
analysis_drivers ’text_book’

fork

responses
response_functions = 1

6.2. METHOD 929

no_gradients
no_hessians

This example illustrates a basic sampling Dakota input file.

• LHS is used instead of purely random sampling.

• The default random number generator is used.

• Without a seed specified, this will not be reproducable

• In the variables block, two types of variables are used

• Only the uncertain variables are varied, this is the default behavior, and is also specified by the active
keyword, w/ the uncertain option

See Also

These keywords may also be of interest:

• active

• incremental lhs

FAQ

Q: Do I need to keep the LHS∗ and S4 files? A: No

sample type

• Keywords Area

• method

• sampling

• sample type

Selection of sampling strategy

Specification

Alias: none
Argument(s): none
Default: lhs

930 CHAPTER 6. KEYWORDS AREA

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1

random Uses purely
random Monte
Carlo sampling to
sample variables

lhs Uses Latin
Hypercube
Sampling (LHS) to
sample variables

incremental lhs Augments an
existing Latin
Hypercube
Sampling (LHS)
study

incremental -
random

Augments an
existing random
sampling study

Description
The sample type keyword allows the user to select between multiple random sampling approaches. There are
two primary types of sampling: Monte Carlo (pure random) and Latin Hypercube Sampling. Additionally, these
methods have incremental variants that allow an existing study to be augmented with additional samples to get
better estimates of mean, variance, and percentiles.

Default Behavior
If the sample type keyword is present, it must be accompanied by lhs, random, incremental lhs,

or incremental random. Otherwise, lhs will be used by default.

Examples
method

sampling
sample_type lhs
samples = 20

random

• Keywords Area

• method

• sampling

• sample type

• random

Uses purely random Monte Carlo sampling to sample variables

6.2. METHOD 931

Specification
Alias: none

Argument(s): none

Description
The random keyword invokes Monte Carlo sampling as the means of drawing samples of uncertain variables
according to their probability distributions.

Default Behavior
Monte Carlo sampling is not used by default. To change this behavior, the random keyword must be specified

in conjuction with the sample type keyword.
Usage Tips
Monte Carlo sampling is more computationally expensive than Latin Hypercube Sampling as it requires a

larger number of samples to accurately estimate statistics.

Examples
method

sampling
sample_type random
samples = 200

lhs

• Keywords Area

• method

• sampling

• sample type

• lhs

Uses Latin Hypercube Sampling (LHS) to sample variables

Specification
Alias: none

Argument(s): none

Description
The lhs keyword invokes Latin Hypercube Sampling as the means of drawing samples of uncertain variables
according to their probability distributions. This is a stratified, space-filling approach that selects variable values
from a set of equi-probable bins.

Default Behavior
By default, Latin Hypercube Sampling is used. To explicitly specify this in the Dakota input file, however, the

lhs keyword must appear in conjunction with the sample type keyword.
Usage Tips
Latin Hypercube Sampling is very robust and can be applied to any problem. It is fairly effective at estimating

the mean of model responses and linear correlations with a reasonably small number of samples relative to the
number of variables.

932 CHAPTER 6. KEYWORDS AREA

Examples
method

sampling
sample_type lhs
samples = 20

incremental lhs

• Keywords Area

• method

• sampling

• sample type

• incremental lhs

Augments an existing Latin Hypercube Sampling (LHS) study

Specification

Alias: none
Argument(s): none
Default: no sample reuse in coefficient estimation

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required previous samples Number of
samples from an
already-completed
sampling study

Description

incremental lhs will augment an existing LHS sampling study with more samples to get better estimates
of mean, variance, and percentiles. The number of samples in the second set MUST currently be 2 times the
number of previous samples, although incremental sampling based on any power of two may be supported in
future releases.

Default Behavior
Incremental Latin Hypercube Sampling is not used by default. To change this behavior, the incremental-

lhs keyword must be specified in conjuction with the sample type keyword. Additionally, a previous LHS
(or incremental LHS) sampling study with sample size N must have already been performed, and the dakota
restart file must be available from this previous study. The variables and responses specifications must be the
same in both studies.

Usage Tips
The incremental approach is useful if it is uncertain how many simulations can be completed within available

time.
See the examples below and the Usage and Restarting Dakota Studies pages.

6.2. METHOD 933

Examples
For example, say a user performs an initial study using lhs as the sample type, and generates 10 samples.

One way to ensure the restart file is saved is to specify a non-default name, via a command line option:

dakota -i LHS_10.in -w LHS_10.rst

which uses the input file:

LHS_10.in

environment
tabular_data

tabular_data_file = ’lhs10.dat’

method
sampling

sample_type lhs
samples = 10

model
single

variables
uniform_uncertain = 2

descriptors = ’input1’ ’input2’
lower_bounds = -2.0 -2.0
upper_bounds = 2.0 2.0

interface
analysis_drivers ’text_book’

fork

responses
response_functions = 1
no_gradients
no_hessians

and the restart file is written to LHS 10.rst.
Then an incremental LHS study can be run with:

dakota -i LHS_20.in -r LHS_10.rst -w LHS_20.rst

where LHS 20.in is shown below, and LHS 10.rst is the restart file containing the results of the previous LHS
study.

LHS_20.in

environment
tabular_data

tabular_data_file = ’lhs_incremental_20.dat’

method
sampling

sample_type incremental_lhs
samples = 20
previous_samples = 10

model
single

variables
uniform_uncertain = 2

934 CHAPTER 6. KEYWORDS AREA

descriptors = ’input1’ ’input2’
lower_bounds = -2.0 -2.0
upper_bounds = 2.0 2.0

interface
analysis_drivers ’text_book’

fork

responses
response_functions = 1
no_gradients
no_hessians

The user will get 10 new LHS samples which maintain both the correlation and stratification of the original
LHS sample. The new samples will be combined with the original samples to generate a combined sample of size
20.

This is clearly seen by comparing the two tabular data files.

previous samples

• Keywords Area

• method

• sampling

• sample type

• incremental lhs

• previous samples

Number of samples from an already-completed sampling study

Specification
Alias: none

Argument(s): INTEGER
Default: 0 (no previous samples)

Description
The previous samples keyword allows the user to specify the number of samples in an existing sample set
that is to be augmented using the incremental lhs or incremental random approach.

Default Behavior
If not specified, Dakota will assume that there are no existing samples. If specified, there must be a Dakota

restart file available that contains the samples.

Examples
method

sampling
sample_type incremental_lhs
samples = 20
previous_samples = 10

6.2. METHOD 935

incremental random

• Keywords Area

• method

• sampling

• sample type

• incremental random

Augments an existing random sampling study

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required previous samples Number of
samples from an
already-completed
sampling study

Description
incremental random will augment an existing random sampling study with more samples to get better esti-
mates of mean, variance, and percentiles. The number of samples in the second set MUST currently be 2 times
the number of previous samples, although incremental sampling based on any power of two may be supported in
future releases.

Default Behavior
Incremental random sampling is not used by default. To change this behavior, the incremental random

keyword must be specified in conjuction with the sample type keyword. Additionally, a previous random
sampling study with sample size N must have already been performed, and the dakota restart file must be available
from this previous study. The variables and responses specifications must be the same in both studies.

Usage Tips
The incremental approach is useful if it is uncertain how many simulations can be completed within available

time.

Examples
For example, say a user performs an initial study using random as the sample type, and generates 50 samples.
If the user creates a new input file where samples is now specified to be 100, the sample type is defined to
be incremental random, and previous samples is specified to be 50, the user will get 50 new random
samples. The N new samples will be combined with the N previous samples to generate a combined sample of
size 2N.

The method block would be the following:
method

sampling
sample_type incremental_random
samples = 100
previous_samples = 50

936 CHAPTER 6. KEYWORDS AREA

The syntax for running the second sample set is:

dakota -i input2.in -r dakota.rst

where input2.in is the file which specifies incremental sampling and dakota.rst is the restart file containing
the results of the previous study.

previous samples

• Keywords Area

• method

• sampling

• sample type

• incremental random

• previous samples

Number of samples from an already-completed sampling study

Specification
Alias: none

Argument(s): INTEGER
Default: 0 (no previous samples)

Description
The previous samples keyword allows the user to specify the number of samples in an existing sample set
that is to be augmented using the incremental lhs or incremental random approach.

Default Behavior
If not specified, Dakota will assume that there are no existing samples. If specified, there must be a Dakota

restart file available that contains the samples.

Examples
method

sampling
sample_type incremental_lhs
samples = 20
previous_samples = 10

variance based decomp

• Keywords Area

• method

• sampling

• variance based decomp

Activates global sensitivity analysis based on decomposition of response variance into contributions from
variables

6.2. METHOD 937

Specification
Alias: none

Argument(s): none
Default: no variance-based decomposition

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional drop tolerance Suppresses output
of sensitivity
indices with values
lower than this
tolerance

Description
Dakota can calculate sensitivity indices through variance based decomposition using the keyword variance-
based decomp. These indicate how important the uncertainty in each input variable is in contributing to the

output variance.
Default Behavior
Because of the computational cost, variance based decomp is turned off as a default.
If the user specified a number of samples, N, and a number of nondeterministic variables, M, variance-based

decomposition requires the evaluation of N∗(M+2) samples. Note that specifying this keyword will increase the
number of function evaluations above the number requested with the samples keyword since replicated
sets of sample values are evaluated.

Expected Outputs
When variance based decomp is specified, sensitivity indices for main effects and total effects will be

reported. Main effects (roughly) represent the percent contribution of each individual variable to the variance in
the model response. Total effects represent the percent contribution of each individual variable in combination
with all other variables to the variance in the model response

Usage Tips
To obtain sensitivity indices that are reasonably accurate, we recommend that N, the number of samples, be at

least one hundred and preferably several hundred or thousands.

Examples
method,

sampling
sample_type lhs
samples = 100
variance_based_decomp

Theory
In this context, we take sensitivity analysis to be global, not local as when calculating derivatives of output
variables with respect to input variables. Our definition is similar to that of[73] : ”The study of how uncertainty
in the output of a model can be apportioned to different sources of uncertainty in the model input.”

Variance based decomposition is a way of using sets of samples to understand how the variance of the output
behaves, with respect to each input variable. A larger value of the sensitivity index, Si, means that the uncertainty
in the input variable i has a larger effect on the variance of the output. More details on the calculations and
interpretation of the sensitivity indices can be found in[73] and[87].

938 CHAPTER 6. KEYWORDS AREA

drop tolerance

• Keywords Area

• method

• sampling

• variance based decomp

• drop tolerance

Suppresses output of sensitivity indices with values lower than this tolerance

Specification
Alias: none

Argument(s): REAL
Default: All VBD indices displayed

Description
The drop tolerance keyword allows the user to specify a value below which sensitivity indices generated by
variance based decomp are not displayed.

Default Behavior
By default, all sensitivity indices generated by variance based decomp are displayed.
Usage Tips
For polynomial chaos, which outputs main, interaction, and total effects by default, the univariate-

effects may be a more appropriate option. It allows suppression of the interaction effects since the output
volume of these results can be prohibitive for high dimensional problems. Similar to suppression of these inter-
actions is the covariance control, which can be selected to be diagonal covariance or full covariance, with the
former supporting suppression of the off-diagonal covariance terms (to save compute and memory resources and
reduce output volume).

Examples
method,

sampling
sample_type lhs
samples = 100
variance_based_decomp
drop_tolerance = 0.001

backfill

• Keywords Area

• method

• sampling

• backfill

Ensures that the samples of discrete variables with finite support are unique

6.2. METHOD 939

Specification

Alias: none
Argument(s): none

Description

Traditional LHS can generate replicate samples when applied to discrete variables. This keyword enforces unique-
ness, which is determined only over the set of discrete variables with finite support. This allows one to generate
LHS for a mixed set of continuous and discrete variables whilst still enforcing that the set of discrete LHS com-
ponents of all the samples are unique.

Default Behavior
Uniqueness of samples over discrete variables is not enforced.
Usage Tips
Uniqueness can be useful when applying discrete LHS to simulations without noise.

Examples
method,

sampling
samples = 12
seed = 123456
sample_type lhs backfill

variables,
active all
uniform_uncertain = 1
lower_bounds = 0.
upper_bounds = 1.
descriptors = ’continuous-uniform’

discrete_uncertain_set
integer = 1
elements_per_variable = 4
elements 1 3 5 7
descriptors = ’design-set-int’

real = 1
initial_point = 0.50
set_values = 0.25 0.50 0.75 1.00
descriptors = ’design-set-real’

interface,
direct analysis_driver = ’text_book’

responses,
response_functions = 3
no_gradients
no_hessians

See Also

These keywords may also be of interest:

• lhs

940 CHAPTER 6. KEYWORDS AREA

fixed seed

• Keywords Area

• method

• sampling

• fixed seed

Reuses the same seed value for multiple random sampling sets

Specification
Alias: none

Argument(s): none
Default: not fixed; pattern varies run-to-run

Description
The fixed seed flag is relevant if multiple sampling sets will be generated over the coarse of a Dakota analysis.
This occurs when using advance methods (e.g., surrogate-based optimization, optimization under uncertainty).
The same seed value is reused for each of these multiple sampling sets, which can be important for reducing
variability in the sampling results.

Default Behavior
The default behavior is to not use a fixed seed, as the repetition of the same sampling pattern can result in a

modeling weakness that an optimizer could potentially exploit (resulting in actual reliabilities that are lower than
the estimated reliabilities). For repeatable studies, the seed must also be specified.

Examples
method

sampling
sample_type lhs
samples = 10
fixed_seed

reliability levels

• Keywords Area

• method

• sampling

• reliability levels

Specify reliability levels at which the response values will be estimated

Specification
Alias: none

Argument(s): REALLIST
Default: No CDF/CCDF response levels to compute

6.2. METHOD 941

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional num reliability -
levels

Specify which
reliability -
levels
correspond to
which response

Description

Response levels are calculated for specified CDF/CCDF reliabilities by projecting out the prescribed number of
sample standard deviations from the sample mean.

Theory

Sets of response-probability pairs computed with the forward/inverse mappings define either a cumulative distri-
bution function (CDF) or a complementary cumulative distribution function (CCDF) for each response function.

In the case of evidence-based epistemic methods, this is generalized to define either cumulative belief and
plausibility functions (CBF and CPF) or complementary cumulative belief and plausibility functions (CCBF and
CCPF) for each response function.

An inverse mapping involves computing the belief and plausibility response level for either a specified prob-
ability level or a specified generalized reliability level (two results for each level mapping in the evidence-based
epistemic case, instead of the one result for each level mapping in the aleatory case).

num reliability levels

• Keywords Area

• method

• sampling

• reliability levels

• num reliability levels

Specify which reliability levels correspond to which response

Specification

Alias: none
Argument(s): INTEGERLIST
Default: reliability levels evenly distributed among response functions

Description

See parent page

942 CHAPTER 6. KEYWORDS AREA

response levels

• Keywords Area

• method

• sampling

• response levels

Values at which to estimate desired statistics for each response

Specification

Alias: none
Argument(s): REALLIST
Default: No CDF/CCDF probabilities/reliabilities to compute

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional num response -
levels

Number of values
at which to
estimate desired
statistics for each
response

Optional compute Selection of
statistics to
compute at each
response level

Description

The response levels specification provides the target response values for which to compute probabilities,
reliabilities, or generalized reliabilities (forward mapping).

Default Behavior
If response levels are not specified, no statistics will be computed. If they are, probabilities will be

computed by default.
Expected Outputs
The particular statistics reported for each response level depend on the method, and they include:

1. Reliabilities

2. CDF probabilities

3. CCDF probabilities

Usage Tips
The num response levels is used to specify which arguments of the response level correspond to

which response.

6.2. METHOD 943

Examples
For example, specifying a response level of 52.3 followed with compute probabilities will result
in the calculation of the probability that the response value is less than or equal to 52.3, given the uncertain
distributions on the inputs.

For an example with multiple responses, the following specification

response_levels = 1. 2. .1 .2 .3 .4 10. 20. 30.
num_response_levels = 2 4 3

would assign the first two response levels (1., 2.) to response function 1, the next four response levels (.1, .2, .3,
.4) to response function 2, and the final three response levels (10., 20., 30.) to response function 3. If the num -
response levels key were omitted from this example, then the response levels would be evenly distributed
among the response functions (three levels each in this case).

Theory
Sets of response-probability pairs computed with the forward/inverse mappings define either a cumulative distri-
bution function (CDF) or a complementary cumulative distribution function (CCDF) for each response function.

In the case of evidence-based epistemic methods, this is generalized to define either cumulative belief and
plausibility functions (CBF and CPF) or complementary cumulative belief and plausibility functions (CCBF and
CCPF) for each response function.

A forward mapping involves computing the belief and plausibility probability level for a specified response
level.

num response levels

• Keywords Area

• method

• sampling

• response levels

• num response levels

Number of values at which to estimate desired statistics for each response

Specification
Alias: none

Argument(s): INTEGERLIST
Default: response levels evenly distributed among response functions

Description
The num response levels keyword allows the user to specify the number of response values, for each re-
sponse, at which estimated statistics are of interest. Statistics that can be computed are probabilities and relia-
bilities, both according to either a cumulative distribution function or a complementary cumulative distribution
function.

Default Behavior
If num response levels is not specified, the response levels will be evenly distributed among the re-

sponses.

944 CHAPTER 6. KEYWORDS AREA

Expected Outputs
The specific output will be determined by the type of statistics that are specified. In a general sense, the output

will be a list of response level-statistic pairs that show the estimated value of the desired statistic for each response
level specified.

Examples
method

sampling
samples = 100
seed = 34785
num_response_levels = 1 1 1
response_levels = 0.5 0.5 0.5

compute

• Keywords Area

• method

• sampling

• response levels

• compute

Selection of statistics to compute at each response level

Specification
Alias: none

Argument(s): none
Default: probabilities

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1
probabilities Computes

probabilities
associated with
response levels

reliabilities Computes
reliabilities
associated with
response levels

6.2. METHOD 945

gen reliabilities Computes
generalized
reliabilities
associated with
response levels

Optional system Compute system
reliability (series
or parallel)

Description
The compute keyword is used to select which forward stastical mapping is calculated at each response level.

Default Behavior
If response levels is not specified, no statistics are computed. If response levels is specified

but compute is not, probabilities will be computed by default. If both response levels and compute
are specified, then on of the following must be specified: probabilities, reliabilities, or gen -
reliabilities.

Expected Output
The type of statistics specified by compute will be reported for each response level.
Usage Tips
CDF/CCDF probabilities are calculated for specified response levels using a simple binning approach.
CDF/CCDF reliabilities are calculated for specified response levels by computing the number of sample stan-

dard deviations separating the sample mean from the response level.

Examples
method

sampling
sample_type random
samples = 100 seed = 1
complementary distribution
response_levels = 3.6e+11 4.0e+11 4.4e+11

6.0e+04 6.5e+04 7.0e+04
3.5e+05 4.0e+05 4.5e+05

compute reliabilities

probabilities

• Keywords Area

• method

• sampling

• response levels

• compute

• probabilities

Computes probabilities associated with response levels

946 CHAPTER 6. KEYWORDS AREA

Specification

Alias: none
Argument(s): none

Description

The probabilities keyword directs Dakota to compute the probability that the model response will be below
(cumulative) or above (complementary cumulative) a specified response value. This is done for every response
level designated for each response.

Default Behavior
If response levels is specified, the probabilities are computed by default. To explicitly specify it in the

Dakota input file, though, the probabilities keyword should be specified in conjunction with the compute
keyword.

Expected Outputs
The Dakota output is a set of response level-probability pairs that give the probability that the model response

will be below or above the corresponding response level, depending on the distribution defined.

Examples
method

sampling
sample_type random
samples = 100 seed = 1
complementary distribution
response_levels = 3.6e+11 4.0e+11 4.4e+11

6.0e+04 6.5e+04 7.0e+04
3.5e+05 4.0e+05 4.5e+05

compute probabilities

reliabilities

• Keywords Area

• method

• sampling

• response levels

• compute

• reliabilities

Computes reliabilities associated with response levels

Specification

Alias: none
Argument(s): none

6.2. METHOD 947

Description

The reliabilities keyword directs Dakota to compute reliabilities according to the specified distribution for
a specified response value. This is done for every response level designated for each response.

Default Behavior
If response levels is specified, the reliabilities are not computed by default. To change this behavior,

the reliabilities keyword should be specified in conjunction with the compute keyword.
Expected Outputs
The Dakota output is a set of response level-reliability pairs according to the distribution defined.

Examples
method

sampling
sample_type random
samples = 100 seed = 1
complementary distribution
response_levels = 3.6e+11 4.0e+11 4.4e+11

6.0e+04 6.5e+04 7.0e+04
3.5e+05 4.0e+05 4.5e+05

compute reliabilities

gen reliabilities

• Keywords Area

• method

• sampling

• response levels

• compute

• gen reliabilities

Computes generalized reliabilities associated with response levels

Specification

Alias: none
Argument(s): none

Description

The gen reliabilities keyword directs Dakota to compute generalized reliabilities according to the speci-
fied distribution for a specified response value. This is done for every response level designated for each response.

Default Behavior
If response levels is specified, the generalized reliabilities are not computed by default. To change this

behavior, the gen reliabilities keyword should be specified in conjunction with the compute keyword.
Expected Outputs
The Dakota output is a set of response level-generalized reliability pairs according to the distribution defined.

948 CHAPTER 6. KEYWORDS AREA

Examples
method

sampling
sample_type random
samples = 100 seed = 1
complementary distribution
response_levels = 3.6e+11 4.0e+11 4.4e+11

6.0e+04 6.5e+04 7.0e+04
3.5e+05 4.0e+05 4.5e+05

compute gen_reliabilities

system

• Keywords Area

• method

• sampling

• response levels

• compute

• system

Compute system reliability (series or parallel)

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 series Aggregate
response statistics
assuming a series
system

parallel Aggregate
response statistics
assuming a parallel
system

Description
With the system probability/reliability option, statistics for specified response levels are calculated and
reported assuming the response functions combine either in series or parallel to produce a total system response.

For a series system, the system fails when any one component (response) fails. The probability of failure is
the complement of the product of the individual response success probabilities.

For a parallel system, the system fails only when all components (responses) fail. The probability of failure is
the product of the individual response failure probabilities.

6.2. METHOD 949

series

• Keywords Area

• method

• sampling

• response levels

• compute

• system

• series

Aggregate response statistics assuming a series system

Specification
Alias: none

Argument(s): none

Description
See parent keyword system for description.

parallel

• Keywords Area

• method

• sampling

• response levels

• compute

• system

• parallel

Aggregate response statistics assuming a parallel system

Specification
Alias: none

Argument(s): none

Description
See parent keyword system for description.

950 CHAPTER 6. KEYWORDS AREA

distribution

• Keywords Area

• method

• sampling

• distribution

Selection of cumulative or complementary cumulative functions

Specification

Alias: none
Argument(s): none
Default: cumulative (CDF)

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 cumulative Computes statistics
according to
cumulative
functions

complementary Computes statistics
according to
complementary
cumulative
functions

Description

The distribution keyword allows the user to select between a cumulative distribution/belief/plausibility
function and a complementary cumulative distribution/belief/plausibility function. This choice affects how prob-
abilities and reliability indices are reported.

Default Behavior
If the distribution keyword is present, it must be accompanied by either cumulative or complementary.

Otherwise, a cumulative distribution will be used by default.
Expected Outputs
Output will be a set of model response-probability pairs determined according to the choice of distribution.

The choice of distribution also defines the sign of the reliability or generalized reliability indices.

Examples
method

sampling
sample_type lhs
samples = 10
distribution cumulative

6.2. METHOD 951

cumulative

• Keywords Area

• method

• sampling

• distribution

• cumulative

Computes statistics according to cumulative functions

Specification

Alias: none
Argument(s): none

Description

Statistics on model responses will be computed according to a cumulative distribution/belief/plausibility function.
Default Behavior
By default, a cumulative distribution/belief/plausibility function will be used. To explicitly specify it in the

Dakota input file, however, the cumulative keyword must be appear in conjunction with the distribution
keyword.

Expected Outputs
Output will be a set of model response-probability pairs determined according to a cumulative distribu-

tion/belief/plausibility function. The probabilities reported are the probabilities that the model response falls
below given response threshholds.

Examples
method

sampling
sample_type lhs
samples = 10
distribution cumulative

complementary

• Keywords Area

• method

• sampling

• distribution

• complementary

Computes statistics according to complementary cumulative functions

952 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): none

Description
Statistics on model responses will be computed according to a complementary cumulative distribution/belief/plausibility
function.

Default Behavior
By default, a complementary cumulative distribution/belief/plausibility function will not be used. To change

that behavior, the complementary keyword must be appear in conjunction with the distribution keyword.
Expected Outputs
Output will be a set of model response-probability pairs determined according to a complementary cumulative

distribution/belief/plausibility function. The probabilities reported are the probabilities that the model response
falls above given response threshholds.

Examples
method

sampling
sample_type lhs
samples = 10
distribution complementary

probability levels

• Keywords Area

• method

• sampling

• probability levels

Specify probability levels at which to estimate the corresponding response value

Specification
Alias: none

Argument(s): REALLIST
Default: No CDF/CCDF response levels to compute

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional num probability -
levels

Specify which
probability -
levels
correspond to
which response

Description
Response levels are calculated for specified CDF/CCDF probabilities by indexing into a sorted samples array (the
response levels computed are not interpolated and will correspond to one of the sampled values).

6.2. METHOD 953

Theory
Sets of response-probability pairs computed with the forward/inverse mappings define either a cumulative distri-
bution function (CDF) or a complementary cumulative distribution function (CCDF) for each response function.

In the case of evidence-based epistemic methods, this is generalized to define either cumulative belief and
plausibility functions (CBF and CPF) or complementary cumulative belief and plausibility functions (CCBF and
CCPF) for each response function.

An inverse mapping involves computing the belief and plausibility response level for either a specified prob-
ability level or a specified generalized reliability level (two results for each level mapping in the evidence-based
epistemic case, instead of the one result for each level mapping in the aleatory case).

num probability levels

• Keywords Area

• method

• sampling

• probability levels

• num probability levels

Specify which probability levels correspond to which response

Specification
Alias: none

Argument(s): INTEGERLIST
Default: probability levels evenly distributed among response functions

Description
See parent page

gen reliability levels

• Keywords Area

• method

• sampling

• gen reliability levels

Specify generalized relability levels at which to estimate the corresponding response value

Specification
Alias: none

Argument(s): REALLIST
Default: No CDF/CCDF response levels to compute

954 CHAPTER 6. KEYWORDS AREA

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional num gen -
reliability levels

Specify which
gen -
reliability -
levels
correspond to
which response

Description

Response levels are calculated for specified generalized reliabilities by indexing into a sorted samples array (the
response levels computed are not interpolated and will correspond to one of the sampled values).

Theory

Sets of response-probability pairs computed with the forward/inverse mappings define either a cumulative distri-
bution function (CDF) or a complementary cumulative distribution function (CCDF) for each response function.

In the case of evidence-based epistemic methods, this is generalized to define either cumulative belief and
plausibility functions (CBF and CPF) or complementary cumulative belief and plausibility functions (CCBF and
CCPF) for each response function.

An inverse mapping involves computing the belief and plausibility response level for either a specified prob-
ability level or a specified generalized reliability level (two results for each level mapping in the evidence-based
epistemic case, instead of the one result for each level mapping in the aleatory case).

num gen reliability levels

• Keywords Area

• method

• sampling

• gen reliability levels

• num gen reliability levels

Specify which gen reliability levels correspond to which response

Specification

Alias: none
Argument(s): INTEGERLIST
Default: gen reliability levels evenly distributed among response functions

Description

See parent page

6.2. METHOD 955

rng

• Keywords Area

• method

• sampling

• rng

Selection of a random number generator

Specification
Alias: none

Argument(s): none
Default: Mersenne twister (mt19937)

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 mt19937 Generates random
numbers using the
Mersenne twister

rnum2 Generates
pseudo-random
numbers using the
Pecos package

Description
The rng keyword is used to indicate a choice of random number generator.

Default Behavior
If specified, the rng keyword must be accompanied by either rnum2 (pseudo-random numbers) or mt19937

(random numbers generated by the Mersenne twister). Otherwise, mt19937, the Mersenne twister is used by
default.

Usage Tips
The default is recommended, as the Mersenne twister is a higher quality random number generator.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 98765
rng rnum2

mt19937

• Keywords Area

• method

956 CHAPTER 6. KEYWORDS AREA

• sampling

• rng

• mt19937

Generates random numbers using the Mersenne twister

Specification

Alias: none
Argument(s): none

Description

The mt19937 keyword directs Dakota to use the Mersenne twister to generate random numbers. Additional
information can be found on wikipedia: http://en.wikipedia.org/wiki/Mersenne twister.

Default Behavior
mt19937 is the default random number generator. To specify it explicitly in the Dakota input file, however,

it must be specified in conjuction with the rng keyword.
Usage Tips
Use of the Mersenne twister random number generator (mt19937) is recommended.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 98765
rng mt19937

rnum2

• Keywords Area

• method

• sampling

• rng

• rnum2

Generates pseudo-random numbers using the Pecos package

Specification

Alias: none
Argument(s): none

http://en.wikipedia.org/wiki/Mersenne_twister

6.2. METHOD 957

Description
The rnum2 keyword directs Dakota to use pseudo-random numbers generated by the Pecos package.

Default Behavior
rnum2 is not used by default. To change this behavior, it must be specified in conjuction with the rng

keyword.
Usage Tips
Use of the Mersenne twister random number generator (mt19937) is recommended over rnum2.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 98765
rng rnum2

samples

• Keywords Area

• method

• sampling

• samples

Number of samples for sampling-based methods

Specification
Alias: none

Argument(s): INTEGER
Default: method-dependent

Description
The samples keyword is used to define the number of samples (i.e., randomly chosen sets of variable values) at
which to execute a model.

Default Behavior
By default, Dakota will use the minimum number of samples required by the chosen method.
Usage Tips
To obtain linear sensitivities or to construct a linear response surface, at least dim+1 samples should be used,

where ”dim” is the number of variables. For sensitivities to quadratic terms or quadratic response surfaces, at least
(dim+1)(dim+2)/2 samples are needed. For uncertainty quantification, we recommend at least 10∗dim samples.
For variance based decomp, we recommend hundreds to thousands of samples. Note that for variance-
based decomp, the number of simulations performed will be N∗(dim+2).

Examples
method

sampling
sample_type lhs
samples = 20

958 CHAPTER 6. KEYWORDS AREA

seed

• Keywords Area

• method

• sampling

• seed

Seed of the random number generator

Specification

Alias: none
Argument(s): INTEGER
Default: system-generated (non-repeatable)

Description

The random seed control provides a mechanism for making a stochastic method repeatable. That is, the use of
the same random seed in identical studies will generate identical results.

Default Behavior
If not specified, the seed is randomly generated.
Expected Output
If seed is specified, a stochastic study will generate identical results when repeated using the same seed

value. Otherwise, results are not guaranteed to be the same.
Usage Tips
If a stochastic study was run without seed specified, and the user later wishes to repeat the study using the

same seed, the value of the seed used in the original study can be found in the output Dakota prints to the screen.
That value can then be added to the Dakota input file.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 15347

model pointer

• Keywords Area

• method

• sampling

• model pointer

Identifier for model block to be used by a method

6.2. METHOD 959

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

Description
The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single

960 CHAPTER 6. KEYWORDS AREA

interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses
response_functions = 3
no_gradients
no_hessians

6.2.54 importance sampling

• Keywords Area

• method

• importance sampling

Importance sampling

Topics

This keyword is related to the topics:

• uncertainty quantification

• aleatory uncertainty quantification methods

• sampling

Specification

Alias: nond importance sampling

Argument(s): none

6.2. METHOD 961

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1
import Sampling option
adapt import Importance

sampling option
mm adapt import Sampling option

Optional refinement -
samples

Specify the
number of samples
used to improve a
probabilty
estimate.

Optional response levels Values at which to
estimate desired
statistics for each
response

Optional distribution Selection of
cumulative or
complementary
cumulative
functions

Optional probability levels Specify probability
levels at which to
estimate the
corresponding
response value

Optional gen reliability -
levels

Specify
generalized
relability levels at
which to estimate
the corresponding
response value

Optional rng Selection of a
random number
generator

Optional samples Number of
samples for
sampling-based
methods

962 CHAPTER 6. KEYWORDS AREA

Optional seed Seed of the random
number generator

Optional model pointer Identifier for
model block to be
used by a method

Description
The importance sampling method is based on ideas in reliability modeling.

An initial Latin Hypercube sampling is performed to generate an initial set of samples. These initial samples
are augmented with samples from an importance density as follows:

• The variables are transformed to standard normal space.

• In the transformed space, the importance density is a set of normal densities centered around points which
are in the failure region.

• Note that this is similar in spirit to the reliability methods, in which importance sampling is centered around
a Most Probable Point (MPP).

• In the case of the LHS samples, the importance sampling density will simply by a mixture of normal
distributions centered around points in the failure region.

Options
Choose one of the importance sampling options:

• import

• adapt import

• mm adapt import

The options for importance sampling are as follows: import centers a sampling density at one of the initial
LHS samples identified in the failure region. It then generates the importance samples, weights them by their
probability of occurence given the original density, and calculates the required probability (CDF or CCDF level).
adapt import is the same as import but is performed iteratively until the failure probability estimate con-
verges. mm adapt import starts with all of the samples located in the failure region to build a multimodal
sampling density. First, it uses a small number of samples around each of the initial samples in the failure region.
Note that these samples are allocated to the different points based on their relative probabilities of occurrence:
more probable points get more samples. This early part of the approach is done to search for ”representative”
points. Once these are located, the multimodal sampling density is set and then mm adapt import proceeds
similarly to adapt import (sample until convergence).

Theory
Importance sampling is a method that allows one to estimate statistical quantities such as failure probabilities (e.g.
the probability that a response quantity will exceed a threshold or fall below a threshold value) in a way that is
more efficient than Monte Carlo sampling. The core idea in importance sampling is that one generates samples
that preferentially samples important regions in the space (e.g. in or near the failure region or user-defined region
of interest), and then appropriately weights the samples to obtain an unbiased estimate of the failure probability
[76]. In importance sampling, the samples are generated from a density which is called the importance density:

6.2. METHOD 963

it is not the original probability density of the input distributions. The importance density should be centered
near the failure region of interest. For black-box simulations such as those commonly interfaced with Dakota, it
is difficult to specify the importance density a priori: the user often does not know where the failure region lies,
especially in a high-dimensional space.[78]. We have developed two importance sampling approaches which do
not rely on the user explicitly specifying an importance density.

See Also
These keywords may also be of interest:

• adaptive sampling

• gpais

• local reliability

• global reliability

• sampling

• polynomial chaos

• stoch collocation

import

• Keywords Area

• method

• importance sampling

• import

Sampling option

Specification
Alias: none

Argument(s): none

Description
import centers a sampling density at one of the initial LHS samples identified in the failure region. It then
generates the importance samples, weights them by their probability of occurence given the original density, and
calculates the required probability (CDF or CCDF level).

adapt import

• Keywords Area

• method

• importance sampling

• adapt import

Importance sampling option

964 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): none

Description
adapt import centers a sampling density at one of the initial LHS samples identified in the failure region. It
then generates the importance samples, weights them by their probability of occurence given the original density,
and calculates the required probability (CDF or CCDF level). This continues iteratively until the failure probability
estimate converges.

mm adapt import

• Keywords Area

• method

• importance sampling

• mm adapt import

Sampling option

Specification
Alias: none

Argument(s): none

Description
mm adapt import starts with all of the samples located in the failure region to build a multimodal sampling
density. First, it uses a small number of samples around each of the initial samples in the failure region. Note
that these samples are allocated to the different points based on their relative probabilities of occurrence: more
probable points get more samples. This early part of the approach is done to search for ”representative” points.
Once these are located, the multimodal sampling density is set and then mm adapt import proceeds similarly
to adapt import (sample until convergence).

refinement samples

• Keywords Area

• method

• importance sampling

• refinement samples

Specify the number of samples used to improve a probabilty estimate.

Specification
Alias: none

Argument(s): INTEGER

6.2. METHOD 965

Description
Specify the number of samples used to improve a probabilty estimate. If using uni-modal sampling all samples
are assigned to the sampling center. If using multi-modal sampling the samples are split between mutiple samples
according to some internally computed weights.

response levels

• Keywords Area

• method

• importance sampling

• response levels

Values at which to estimate desired statistics for each response

Specification
Alias: none

Argument(s): REALLIST
Default: No CDF/CCDF probabilities/reliabilities to compute

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional num response -
levels

Number of values
at which to
estimate desired
statistics for each
response

Optional compute Selection of
statistics to
compute at each
response level

Description
The response levels specification provides the target response values for which to compute probabilities,
reliabilities, or generalized reliabilities (forward mapping).

Default Behavior
If response levels are not specified, no statistics will be computed. If they are, probabilities will be

computed by default.
Expected Outputs
The particular statistics reported for each response level depend on the method, and they include:

1. Reliabilities

2. CDF probabilities

3. CCDF probabilities

966 CHAPTER 6. KEYWORDS AREA

Usage Tips
The num response levels is used to specify which arguments of the response level correspond to

which response.

Examples

For example, specifying a response level of 52.3 followed with compute probabilities will result
in the calculation of the probability that the response value is less than or equal to 52.3, given the uncertain
distributions on the inputs.

For an example with multiple responses, the following specification

response_levels = 1. 2. .1 .2 .3 .4 10. 20. 30.
num_response_levels = 2 4 3

would assign the first two response levels (1., 2.) to response function 1, the next four response levels (.1, .2, .3,
.4) to response function 2, and the final three response levels (10., 20., 30.) to response function 3. If the num -
response levels key were omitted from this example, then the response levels would be evenly distributed
among the response functions (three levels each in this case).

Theory

Sets of response-probability pairs computed with the forward/inverse mappings define either a cumulative distri-
bution function (CDF) or a complementary cumulative distribution function (CCDF) for each response function.

In the case of evidence-based epistemic methods, this is generalized to define either cumulative belief and
plausibility functions (CBF and CPF) or complementary cumulative belief and plausibility functions (CCBF and
CCPF) for each response function.

A forward mapping involves computing the belief and plausibility probability level for a specified response
level.

num response levels

• Keywords Area

• method

• importance sampling

• response levels

• num response levels

Number of values at which to estimate desired statistics for each response

Specification

Alias: none
Argument(s): INTEGERLIST
Default: response levels evenly distributed among response functions

6.2. METHOD 967

Description
The num response levels keyword allows the user to specify the number of response values, for each re-
sponse, at which estimated statistics are of interest. Statistics that can be computed are probabilities and relia-
bilities, both according to either a cumulative distribution function or a complementary cumulative distribution
function.

Default Behavior
If num response levels is not specified, the response levels will be evenly distributed among the re-

sponses.
Expected Outputs
The specific output will be determined by the type of statistics that are specified. In a general sense, the output

will be a list of response level-statistic pairs that show the estimated value of the desired statistic for each response
level specified.

Examples
method

sampling
samples = 100
seed = 34785
num_response_levels = 1 1 1
response_levels = 0.5 0.5 0.5

compute

• Keywords Area

• method

• importance sampling

• response levels

• compute

Selection of statistics to compute at each response level

Specification
Alias: none

Argument(s): none
Default: probabilities

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 probabilities Computes
probabilities
associated with
response levels

968 CHAPTER 6. KEYWORDS AREA

gen reliabilities Computes
generalized
reliabilities
associated with
response levels

Optional system Compute system
reliability (series
or parallel)

Description
The compute keyword is used to select which forward stastical mapping is calculated at each response level.

Default Behavior
If response levels is not specified, no statistics are computed. If response levels is specified

but compute is not, probabilities will be computed by default. If both response levels and compute
are specified, then on of the following must be specified: probabilities, reliabilities, or gen -
reliabilities.

Expected Output
The type of statistics specified by compute will be reported for each response level.
Usage Tips
CDF/CCDF probabilities are calculated for specified response levels using a simple binning approach.
CDF/CCDF reliabilities are calculated for specified response levels by computing the number of sample stan-

dard deviations separating the sample mean from the response level.

Examples
method

sampling
sample_type random
samples = 100 seed = 1
complementary distribution
response_levels = 3.6e+11 4.0e+11 4.4e+11

6.0e+04 6.5e+04 7.0e+04
3.5e+05 4.0e+05 4.5e+05

compute reliabilities

probabilities

• Keywords Area

• method

• importance sampling

• response levels

• compute

• probabilities

Computes probabilities associated with response levels

6.2. METHOD 969

Specification

Alias: none
Argument(s): none

Description

The probabilities keyword directs Dakota to compute the probability that the model response will be below
(cumulative) or above (complementary cumulative) a specified response value. This is done for every response
level designated for each response.

Default Behavior
If response levels is specified, the probabilities are computed by default. To explicitly specify it in the

Dakota input file, though, the probabilities keyword should be specified in conjunction with the compute
keyword.

Expected Outputs
The Dakota output is a set of response level-probability pairs that give the probability that the model response

will be below or above the corresponding response level, depending on the distribution defined.

Examples
method

sampling
sample_type random
samples = 100 seed = 1
complementary distribution
response_levels = 3.6e+11 4.0e+11 4.4e+11

6.0e+04 6.5e+04 7.0e+04
3.5e+05 4.0e+05 4.5e+05

compute probabilities

gen reliabilities

• Keywords Area

• method

• importance sampling

• response levels

• compute

• gen reliabilities

Computes generalized reliabilities associated with response levels

Specification

Alias: none
Argument(s): none

970 CHAPTER 6. KEYWORDS AREA

Description
The gen reliabilities keyword directs Dakota to compute generalized reliabilities according to the speci-
fied distribution for a specified response value. This is done for every response level designated for each response.

Default Behavior
If response levels is specified, the generalized reliabilities are not computed by default. To change this

behavior, the gen reliabilities keyword should be specified in conjunction with the compute keyword.
Expected Outputs
The Dakota output is a set of response level-generalized reliability pairs according to the distribution defined.

Examples
method

sampling
sample_type random
samples = 100 seed = 1
complementary distribution
response_levels = 3.6e+11 4.0e+11 4.4e+11

6.0e+04 6.5e+04 7.0e+04
3.5e+05 4.0e+05 4.5e+05

compute gen_reliabilities

system

• Keywords Area

• method

• importance sampling

• response levels

• compute

• system

Compute system reliability (series or parallel)

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 series Aggregate
response statistics
assuming a series
system

6.2. METHOD 971

parallel Aggregate
response statistics
assuming a parallel
system

Description
With the system probability/reliability option, statistics for specified response levels are calculated and
reported assuming the response functions combine either in series or parallel to produce a total system response.

For a series system, the system fails when any one component (response) fails. The probability of failure is
the complement of the product of the individual response success probabilities.

For a parallel system, the system fails only when all components (responses) fail. The probability of failure is
the product of the individual response failure probabilities.

series

• Keywords Area

• method

• importance sampling

• response levels

• compute

• system

• series

Aggregate response statistics assuming a series system

Specification
Alias: none

Argument(s): none

Description
See parent keyword system for description.

parallel

• Keywords Area

• method

• importance sampling

• response levels

• compute

• system

972 CHAPTER 6. KEYWORDS AREA

• parallel

Aggregate response statistics assuming a parallel system

Specification
Alias: none

Argument(s): none

Description
See parent keyword system for description.

distribution

• Keywords Area

• method

• importance sampling

• distribution

Selection of cumulative or complementary cumulative functions

Specification
Alias: none

Argument(s): none
Default: cumulative (CDF)

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 cumulative Computes statistics
according to
cumulative
functions

complementary Computes statistics
according to
complementary
cumulative
functions

Description
The distribution keyword allows the user to select between a cumulative distribution/belief/plausibility
function and a complementary cumulative distribution/belief/plausibility function. This choice affects how prob-
abilities and reliability indices are reported.

Default Behavior
If the distribution keyword is present, it must be accompanied by either cumulative or complementary.

Otherwise, a cumulative distribution will be used by default.

6.2. METHOD 973

Expected Outputs
Output will be a set of model response-probability pairs determined according to the choice of distribution.

The choice of distribution also defines the sign of the reliability or generalized reliability indices.

Examples
method

sampling
sample_type lhs
samples = 10
distribution cumulative

cumulative

• Keywords Area

• method

• importance sampling

• distribution

• cumulative

Computes statistics according to cumulative functions

Specification

Alias: none
Argument(s): none

Description

Statistics on model responses will be computed according to a cumulative distribution/belief/plausibility function.
Default Behavior
By default, a cumulative distribution/belief/plausibility function will be used. To explicitly specify it in the

Dakota input file, however, the cumulative keyword must be appear in conjunction with the distribution
keyword.

Expected Outputs
Output will be a set of model response-probability pairs determined according to a cumulative distribu-

tion/belief/plausibility function. The probabilities reported are the probabilities that the model response falls
below given response threshholds.

Examples
method

sampling
sample_type lhs
samples = 10
distribution cumulative

974 CHAPTER 6. KEYWORDS AREA

complementary

• Keywords Area

• method

• importance sampling

• distribution

• complementary

Computes statistics according to complementary cumulative functions

Specification
Alias: none

Argument(s): none

Description
Statistics on model responses will be computed according to a complementary cumulative distribution/belief/plausibility
function.

Default Behavior
By default, a complementary cumulative distribution/belief/plausibility function will not be used. To change

that behavior, the complementary keyword must be appear in conjunction with the distribution keyword.
Expected Outputs
Output will be a set of model response-probability pairs determined according to a complementary cumulative

distribution/belief/plausibility function. The probabilities reported are the probabilities that the model response
falls above given response threshholds.

Examples
method

sampling
sample_type lhs
samples = 10
distribution complementary

probability levels

• Keywords Area

• method

• importance sampling

• probability levels

Specify probability levels at which to estimate the corresponding response value

Specification
Alias: none

Argument(s): REALLIST
Default: No CDF/CCDF response levels to compute

6.2. METHOD 975

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional num probability -
levels

Specify which
probability -
levels
correspond to
which response

Description

Response levels are calculated for specified CDF/CCDF probabilities by indexing into a sorted samples array (the
response levels computed are not interpolated and will correspond to one of the sampled values).

Theory

Sets of response-probability pairs computed with the forward/inverse mappings define either a cumulative distri-
bution function (CDF) or a complementary cumulative distribution function (CCDF) for each response function.

In the case of evidence-based epistemic methods, this is generalized to define either cumulative belief and
plausibility functions (CBF and CPF) or complementary cumulative belief and plausibility functions (CCBF and
CCPF) for each response function.

An inverse mapping involves computing the belief and plausibility response level for either a specified prob-
ability level or a specified generalized reliability level (two results for each level mapping in the evidence-based
epistemic case, instead of the one result for each level mapping in the aleatory case).

num probability levels

• Keywords Area

• method

• importance sampling

• probability levels

• num probability levels

Specify which probability levels correspond to which response

Specification

Alias: none
Argument(s): INTEGERLIST
Default: probability levels evenly distributed among response functions

Description

See parent page

976 CHAPTER 6. KEYWORDS AREA

gen reliability levels

• Keywords Area

• method

• importance sampling

• gen reliability levels

Specify generalized relability levels at which to estimate the corresponding response value

Specification
Alias: none

Argument(s): REALLIST
Default: No CDF/CCDF response levels to compute

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional num gen -
reliability levels

Specify which
gen -
reliability -
levels
correspond to
which response

Description
Response levels are calculated for specified generalized reliabilities by indexing into a sorted samples array (the
response levels computed are not interpolated and will correspond to one of the sampled values).

Theory
Sets of response-probability pairs computed with the forward/inverse mappings define either a cumulative distri-
bution function (CDF) or a complementary cumulative distribution function (CCDF) for each response function.

In the case of evidence-based epistemic methods, this is generalized to define either cumulative belief and
plausibility functions (CBF and CPF) or complementary cumulative belief and plausibility functions (CCBF and
CCPF) for each response function.

An inverse mapping involves computing the belief and plausibility response level for either a specified prob-
ability level or a specified generalized reliability level (two results for each level mapping in the evidence-based
epistemic case, instead of the one result for each level mapping in the aleatory case).

num gen reliability levels

• Keywords Area

• method

• importance sampling

• gen reliability levels

• num gen reliability levels

Specify which gen reliability levels correspond to which response

6.2. METHOD 977

Specification

Alias: none
Argument(s): INTEGERLIST
Default: gen reliability levels evenly distributed among response functions

Description

See parent page

rng

• Keywords Area

• method

• importance sampling

• rng

Selection of a random number generator

Specification

Alias: none
Argument(s): none
Default: Mersenne twister (mt19937)

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 mt19937 Generates random
numbers using the
Mersenne twister

rnum2 Generates
pseudo-random
numbers using the
Pecos package

Description

The rng keyword is used to indicate a choice of random number generator.
Default Behavior
If specified, the rng keyword must be accompanied by either rnum2 (pseudo-random numbers) or mt19937

(random numbers generated by the Mersenne twister). Otherwise, mt19937, the Mersenne twister is used by
default.

Usage Tips
The default is recommended, as the Mersenne twister is a higher quality random number generator.

978 CHAPTER 6. KEYWORDS AREA

Examples
method

sampling
sample_type lhs
samples = 10
seed = 98765
rng rnum2

mt19937

• Keywords Area

• method

• importance sampling

• rng

• mt19937

Generates random numbers using the Mersenne twister

Specification
Alias: none

Argument(s): none

Description
The mt19937 keyword directs Dakota to use the Mersenne twister to generate random numbers. Additional
information can be found on wikipedia: http://en.wikipedia.org/wiki/Mersenne twister.

Default Behavior
mt19937 is the default random number generator. To specify it explicitly in the Dakota input file, however,

it must be specified in conjuction with the rng keyword.
Usage Tips
Use of the Mersenne twister random number generator (mt19937) is recommended.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 98765
rng mt19937

rnum2

• Keywords Area

• method

• importance sampling

• rng

http://en.wikipedia.org/wiki/Mersenne_twister

6.2. METHOD 979

• rnum2

Generates pseudo-random numbers using the Pecos package

Specification
Alias: none

Argument(s): none

Description
The rnum2 keyword directs Dakota to use pseudo-random numbers generated by the Pecos package.

Default Behavior
rnum2 is not used by default. To change this behavior, it must be specified in conjuction with the rng

keyword.
Usage Tips
Use of the Mersenne twister random number generator (mt19937) is recommended over rnum2.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 98765
rng rnum2

samples

• Keywords Area

• method

• importance sampling

• samples

Number of samples for sampling-based methods

Specification
Alias: none

Argument(s): INTEGER
Default: method-dependent

Description
The samples keyword is used to define the number of samples (i.e., randomly chosen sets of variable values) at
which to execute a model.

Default Behavior
By default, Dakota will use the minimum number of samples required by the chosen method.
Usage Tips

980 CHAPTER 6. KEYWORDS AREA

To obtain linear sensitivities or to construct a linear response surface, at least dim+1 samples should be used,
where ”dim” is the number of variables. For sensitivities to quadratic terms or quadratic response surfaces, at least
(dim+1)(dim+2)/2 samples are needed. For uncertainty quantification, we recommend at least 10∗dim samples.
For variance based decomp, we recommend hundreds to thousands of samples. Note that for variance-
based decomp, the number of simulations performed will be N∗(dim+2).

Examples
method

sampling
sample_type lhs
samples = 20

seed

• Keywords Area

• method

• importance sampling

• seed

Seed of the random number generator

Specification
Alias: none

Argument(s): INTEGER
Default: system-generated (non-repeatable)

Description
The random seed control provides a mechanism for making a stochastic method repeatable. That is, the use of
the same random seed in identical studies will generate identical results.

Default Behavior
If not specified, the seed is randomly generated.
Expected Output
If seed is specified, a stochastic study will generate identical results when repeated using the same seed

value. Otherwise, results are not guaranteed to be the same.
Usage Tips
If a stochastic study was run without seed specified, and the user later wishes to repeat the study using the

same seed, the value of the seed used in the original study can be found in the output Dakota prints to the screen.
That value can then be added to the Dakota input file.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 15347

6.2. METHOD 981

model pointer

• Keywords Area

• method

• importance sampling

• model pointer

Identifier for model block to be used by a method

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

Description
The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

982 CHAPTER 6. KEYWORDS AREA

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses
response_functions = 3
no_gradients
no_hessians

6.2.55 gpais
• Keywords Area

• method

• gpais

Gaussian Process Adaptive Importance Sampling

Topics
This keyword is related to the topics:

• uncertainty quantification

Specification
Alias: gaussian process adaptive importance sampling

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

6.2. METHOD 983

Optional emulator samples Number of data
points used to train
the surrogate
model or emulator

Optional import points file File containing
variable values and
corresponding
responses

Optional export points file Output file for
evaluations of a
surrogate model

Optional response levels Values at which to
estimate desired
statistics for each
response

Optional distribution Selection of
cumulative or
complementary
cumulative
functions

Optional probability levels Specify probability
levels at which to
estimate the
corresponding
response value

Optional gen reliability -
levels

Specify
generalized
relability levels at
which to estimate
the corresponding
response value

Optional rng Selection of a
random number
generator

Optional samples Number of
samples for
sampling-based
methods

984 CHAPTER 6. KEYWORDS AREA

Optional seed Seed of the random
number generator

Optional model pointer Identifier for
model block to be
used by a method

Description
gpais is recommended for problems that have a relatively small number of input variables (e.g. less than 10-20).
This method, Gaussian Process Adaptive Importance Sampling, is outlined in the paper[?].

This method starts with an initial set of LHS samples and adds samples one at a time, with the goal of adap-
tively improving the estimate of the ideal importance density during the process. The approach uses a mixture of
component densities. An iterative process is used to construct the sequence of improving component densities. At
each iteration, a Gaussian process (GP) surrogate is used to help identify areas in the space where failure is likely
to occur. The GPs are not used to directly calculate the failure probability; they are only used to approximate the
importance density. Thus, the Gaussian process adaptive importance sampling algorithm overcomes limitations
involving using a potentially inaccurate surrogate model directly in importance sampling calculations.

See Also
These keywords may also be of interest:

• adaptive sampling

• local reliability

• global reliability

• sampling

• importance sampling

• polynomial chaos

• stoch collocation

emulator samples

• Keywords Area

• method

• gpais

• emulator samples

Number of data points used to train the surrogate model or emulator

Specification
Alias: none

Argument(s): INTEGER
Default: 10000

6.2. METHOD 985

Description
This keyword refers to the number of build points or training points used to construct a Gaussian process emulator.
If the user specifies a number of emulator samples that is less than the minimum number of points required
to build the GP surrogate, Dakota will augment the samples to obtain the minimum required.

import points file

• Keywords Area

• method

• gpais

• import points file

File containing variable values and corresponding responses

Specification
Alias: none

Argument(s): STRING
Default: no point import from a file

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional(Choose
One)

tabular format
(Group 1)

annotated Selects annotated
tabular file format

custom annotated Selects
custom-annotated
tabular file format

freeform Selects freeform
file format

Optional active only Import only active
variables from
tabular data file

Description
The import points file allows the user to specify a file that contains a list of variable values and the model
responses computed at those values. These can be used by a number of methods in place of model evaluations.
When used to construct surrogate models or emulators these are often called build points or training data.

Default Behavior
Be default, methods do not import points from a file.
Usage Tips
Dakota parses input files without regard to whitespace, but the import points file must be in one of three

formats:

• annotated (default)

986 CHAPTER 6. KEYWORDS AREA

• custom annotated

• freeform

Examples
method

list_parameter_study
import_points_file = ’dakota_pstudy.3.dat’

annotated

• Keywords Area

• method

• gpais

• import points file

• annotated

Selects annotated tabular file format

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Default: annotated format

Description
An annotated tabular file is a whitespace-separated text file with one leading header row of comments/column la-
bels. Each subsequent row contains an evaluation ID and interface ID, followed by data for variables, or variables
followed by responses, depending on context.

Default Behavior
By default, Dakota imports and exports tabular files in annotated format. The annotated keyword can be

used to explicitly specify this.
Usage Tips

• To specify pre-Dakota 6.1 tabular format, which did not include interface id, specify custom annotated
header eval id

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

6.2. METHOD 987

Examples
Export an annotated top-level tabular data file containing a header row, leading eval id and interface id columns,
and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
annotated

Resulting tabular file:

%eval_id interface x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 NO_ID 0.9 1.1 0.0002 0.26 0.76
2 NO_ID 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 NO_ID 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

custom annotated

• Keywords Area

• method

• gpais

• import points file

• custom annotated

Selects custom-annotated tabular file format

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Default: annotated format

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional header Enable header row
in
custom-annotated
tabular file

988 CHAPTER 6. KEYWORDS AREA

Optional eval id Enable evaluation
ID column in
custom-annotated
tabular file

Optional interface id Enable interface
ID column in
custom-annotated
tabular file

Description
A custom-annotated tabular file is a whitespace-separated text file typically containing row data for variables, or
variables followed by responses, though the format is used for other tabular exports/imports as well. Custom-
annotated allows user options for whether header row, eval id column, and interface id column appear
in the tabular file, thus bridging freeform and (fully) annotated.

Default Behavior
The annotated format is the default for tabular export/import. To control which header row and columns

are in the input/output, specify custom annotated, followed by options, in the relevant export/import context.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export a custom-annotated tabular file in Dakota 6.0 format, which contained only header and eval id (no interface-
id), and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
custom_annotated header eval_id

Resulting tabular file:

%eval_id x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 0.9 1.1 0.0002 0.26 0.76
2 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

header

• Keywords Area

• method

• gpais

6.2. METHOD 989

• import points file

• custom annotated

• header

Enable header row in custom-annotated tabular file

Specification
Alias: none

Argument(s): none
Default: no header

Description
See description of parent custom annotated

eval id

• Keywords Area

• method

• gpais

• import points file

• custom annotated

• eval id

Enable evaluation ID column in custom-annotated tabular file

Specification
Alias: none

Argument(s): none
Default: no eval id column

Description
See description of parent custom annotated

interface id

• Keywords Area

• method

• gpais

• import points file

• custom annotated

• interface id

Enable interface ID column in custom-annotated tabular file

990 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): none
Default: no interface id column

Description
See description of parent custom annotated

freeform

• Keywords Area

• method

• gpais

• import points file

• freeform

Selects freeform file format

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Default: annotated format

Description
A freeform tabular file is whitespace-separated text file with no leading header row and no leading columns. Most
commonly, each row contains data for variables, or variables followed by responses, though the format is used for
other tabular exports/imports as well.

Default Behavior
The annotated format is the default for tabular export/import. To change this behavior, specify freeform

in the relevant export/import context.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

6.2. METHOD 991

• In freeform, the num rows x num cols total data entries may be separated with any whitespace including
spaces, tabs, and newlines. In this format, vectors may therefore appear as a single row or single column
(or mixture; entries will populate the vector in order).

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export a freeform tabular file containing only data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
freeform

Resulting tabular file:

0.9 1.1 0.0002 0.26 0.76
0.90009 1.1 0.0001996404857 0.2601620081 0.759955
0.89991 1.1 0.0002003604863 0.2598380081 0.760045

...

active only

• Keywords Area

• method

• gpais

• import points file

• active only

Import only active variables from tabular data file

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none

Description
By default, files for tabular data imports are expected to contain columns for all variables, active and inactive. The
keyword active only indicates that the file to import contains only the active variables.

This option should only be used in contexts where the inactive variables have no influence, for example,
building a surrogate over active variables, with the state variables held at nominal. It should not be used in more
complex nested contexts, where the values of inactive variables are relevant to the function evaluations used to
build the surrogate.

992 CHAPTER 6. KEYWORDS AREA

export points file

• Keywords Area

• method

• gpais

• export points file

Output file for evaluations of a surrogate model

Specification
Alias: none

Argument(s): STRING
Default: no point export to a file

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional(Choose
One)

tabular format
(Group 1)

annotated Selects annotated
tabular file format

custom annotated Selects
custom-annotated
tabular file format

freeform Selects freeform
file format

Description
File of points (input variable values and predicted approximate outputs from the surrogate) evaluated on the
surrogate model. The export points contain test point values and the emulator predictions at these points.

Usage Tips
Dakota exports tabular data in one of three formats:

• annotated (default)

• custom annotated

• freeform

annotated

• Keywords Area

• method

• gpais

• export points file

• annotated

Selects annotated tabular file format

6.2. METHOD 993

Topics

This keyword is related to the topics:

• file formats

Specification

Alias: none
Argument(s): none
Default: annotated format

Description

An annotated tabular file is a whitespace-separated text file with one leading header row of comments/column la-
bels. Each subsequent row contains an evaluation ID and interface ID, followed by data for variables, or variables
followed by responses, depending on context.

Default Behavior
By default, Dakota imports and exports tabular files in annotated format. The annotated keyword can be

used to explicitly specify this.
Usage Tips

• To specify pre-Dakota 6.1 tabular format, which did not include interface id, specify custom annotated
header eval id

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export an annotated top-level tabular data file containing a header row, leading eval id and interface id columns,
and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
annotated

Resulting tabular file:

%eval_id interface x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 NO_ID 0.9 1.1 0.0002 0.26 0.76
2 NO_ID 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 NO_ID 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

994 CHAPTER 6. KEYWORDS AREA

custom annotated

• Keywords Area

• method

• gpais

• export points file

• custom annotated

Selects custom-annotated tabular file format

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Default: annotated format

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional header Enable header row
in
custom-annotated
tabular file

Optional eval id Enable evaluation
ID column in
custom-annotated
tabular file

Optional interface id Enable interface
ID column in
custom-annotated
tabular file

Description
A custom-annotated tabular file is a whitespace-separated text file typically containing row data for variables, or
variables followed by responses, though the format is used for other tabular exports/imports as well. Custom-
annotated allows user options for whether header row, eval id column, and interface id column appear
in the tabular file, thus bridging freeform and (fully) annotated.

Default Behavior
The annotated format is the default for tabular export/import. To control which header row and columns

are in the input/output, specify custom annotated, followed by options, in the relevant export/import context.
Usage Tips

6.2. METHOD 995

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export a custom-annotated tabular file in Dakota 6.0 format, which contained only header and eval id (no interface-
id), and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
custom_annotated header eval_id

Resulting tabular file:

%eval_id x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 0.9 1.1 0.0002 0.26 0.76
2 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

header

• Keywords Area

• method

• gpais

• export points file

• custom annotated

• header

Enable header row in custom-annotated tabular file

Specification

Alias: none
Argument(s): none
Default: no header

Description

See description of parent custom annotated

996 CHAPTER 6. KEYWORDS AREA

eval id

• Keywords Area

• method

• gpais

• export points file

• custom annotated

• eval id

Enable evaluation ID column in custom-annotated tabular file

Specification

Alias: none
Argument(s): none
Default: no eval id column

Description

See description of parent custom annotated

interface id

• Keywords Area

• method

• gpais

• export points file

• custom annotated

• interface id

Enable interface ID column in custom-annotated tabular file

Specification

Alias: none
Argument(s): none
Default: no interface id column

Description

See description of parent custom annotated

6.2. METHOD 997

freeform

• Keywords Area

• method

• gpais

• export points file

• freeform

Selects freeform file format

Topics

This keyword is related to the topics:

• file formats

Specification

Alias: none
Argument(s): none
Default: annotated format

Description

A freeform tabular file is whitespace-separated text file with no leading header row and no leading columns. Most
commonly, each row contains data for variables, or variables followed by responses, though the format is used for
other tabular exports/imports as well.

Default Behavior
The annotated format is the default for tabular export/import. To change this behavior, specify freeform

in the relevant export/import context.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• In freeform, the num rows x num cols total data entries may be separated with any whitespace including
spaces, tabs, and newlines. In this format, vectors may therefore appear as a single row or single column
(or mixture; entries will populate the vector in order).

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

998 CHAPTER 6. KEYWORDS AREA

Examples
Export a freeform tabular file containing only data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
freeform

Resulting tabular file:

0.9 1.1 0.0002 0.26 0.76
0.90009 1.1 0.0001996404857 0.2601620081 0.759955
0.89991 1.1 0.0002003604863 0.2598380081 0.760045

...

response levels

• Keywords Area

• method

• gpais

• response levels

Values at which to estimate desired statistics for each response

Specification
Alias: none

Argument(s): REALLIST
Default: No CDF/CCDF probabilities/reliabilities to compute

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional num response -
levels

Number of values
at which to
estimate desired
statistics for each
response

Optional compute Selection of
statistics to
compute at each
response level

Description
The response levels specification provides the target response values for which to compute probabilities,
reliabilities, or generalized reliabilities (forward mapping).

Default Behavior
If response levels are not specified, no statistics will be computed. If they are, probabilities will be

computed by default.
Expected Outputs
The particular statistics reported for each response level depend on the method, and they include:

6.2. METHOD 999

1. Reliabilities

2. CDF probabilities

3. CCDF probabilities

Usage Tips
The num response levels is used to specify which arguments of the response level correspond to

which response.

Examples
For example, specifying a response level of 52.3 followed with compute probabilities will result
in the calculation of the probability that the response value is less than or equal to 52.3, given the uncertain
distributions on the inputs.

For an example with multiple responses, the following specification

response_levels = 1. 2. .1 .2 .3 .4 10. 20. 30.
num_response_levels = 2 4 3

would assign the first two response levels (1., 2.) to response function 1, the next four response levels (.1, .2, .3,
.4) to response function 2, and the final three response levels (10., 20., 30.) to response function 3. If the num -
response levels key were omitted from this example, then the response levels would be evenly distributed
among the response functions (three levels each in this case).

Theory
Sets of response-probability pairs computed with the forward/inverse mappings define either a cumulative distri-
bution function (CDF) or a complementary cumulative distribution function (CCDF) for each response function.

In the case of evidence-based epistemic methods, this is generalized to define either cumulative belief and
plausibility functions (CBF and CPF) or complementary cumulative belief and plausibility functions (CCBF and
CCPF) for each response function.

A forward mapping involves computing the belief and plausibility probability level for a specified response
level.

num response levels

• Keywords Area

• method

• gpais

• response levels

• num response levels

Number of values at which to estimate desired statistics for each response

Specification
Alias: none

Argument(s): INTEGERLIST
Default: response levels evenly distributed among response functions

1000 CHAPTER 6. KEYWORDS AREA

Description
The num response levels keyword allows the user to specify the number of response values, for each re-
sponse, at which estimated statistics are of interest. Statistics that can be computed are probabilities and relia-
bilities, both according to either a cumulative distribution function or a complementary cumulative distribution
function.

Default Behavior
If num response levels is not specified, the response levels will be evenly distributed among the re-

sponses.
Expected Outputs
The specific output will be determined by the type of statistics that are specified. In a general sense, the output

will be a list of response level-statistic pairs that show the estimated value of the desired statistic for each response
level specified.

Examples
method

sampling
samples = 100
seed = 34785
num_response_levels = 1 1 1
response_levels = 0.5 0.5 0.5

compute

• Keywords Area

• method

• gpais

• response levels

• compute

Selection of statistics to compute at each response level

Specification
Alias: none

Argument(s): none
Default: probabilities

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 probabilities Computes
probabilities
associated with
response levels

6.2. METHOD 1001

gen reliabilities Computes
generalized
reliabilities
associated with
response levels

Optional system Compute system
reliability (series
or parallel)

Description
The compute keyword is used to select which forward stastical mapping is calculated at each response level.

Default Behavior
If response levels is not specified, no statistics are computed. If response levels is specified

but compute is not, probabilities will be computed by default. If both response levels and compute
are specified, then on of the following must be specified: probabilities, reliabilities, or gen -
reliabilities.

Expected Output
The type of statistics specified by compute will be reported for each response level.
Usage Tips
CDF/CCDF probabilities are calculated for specified response levels using a simple binning approach.
CDF/CCDF reliabilities are calculated for specified response levels by computing the number of sample stan-

dard deviations separating the sample mean from the response level.

Examples
method

sampling
sample_type random
samples = 100 seed = 1
complementary distribution
response_levels = 3.6e+11 4.0e+11 4.4e+11

6.0e+04 6.5e+04 7.0e+04
3.5e+05 4.0e+05 4.5e+05

compute reliabilities

probabilities

• Keywords Area

• method

• gpais

• response levels

• compute

• probabilities

Computes probabilities associated with response levels

1002 CHAPTER 6. KEYWORDS AREA

Specification

Alias: none
Argument(s): none

Description

The probabilities keyword directs Dakota to compute the probability that the model response will be below
(cumulative) or above (complementary cumulative) a specified response value. This is done for every response
level designated for each response.

Default Behavior
If response levels is specified, the probabilities are computed by default. To explicitly specify it in the

Dakota input file, though, the probabilities keyword should be specified in conjunction with the compute
keyword.

Expected Outputs
The Dakota output is a set of response level-probability pairs that give the probability that the model response

will be below or above the corresponding response level, depending on the distribution defined.

Examples
method

sampling
sample_type random
samples = 100 seed = 1
complementary distribution
response_levels = 3.6e+11 4.0e+11 4.4e+11

6.0e+04 6.5e+04 7.0e+04
3.5e+05 4.0e+05 4.5e+05

compute probabilities

gen reliabilities

• Keywords Area

• method

• gpais

• response levels

• compute

• gen reliabilities

Computes generalized reliabilities associated with response levels

Specification

Alias: none
Argument(s): none

6.2. METHOD 1003

Description
The gen reliabilities keyword directs Dakota to compute generalized reliabilities according to the speci-
fied distribution for a specified response value. This is done for every response level designated for each response.

Default Behavior
If response levels is specified, the generalized reliabilities are not computed by default. To change this

behavior, the gen reliabilities keyword should be specified in conjunction with the compute keyword.
Expected Outputs
The Dakota output is a set of response level-generalized reliability pairs according to the distribution defined.

Examples
method

sampling
sample_type random
samples = 100 seed = 1
complementary distribution
response_levels = 3.6e+11 4.0e+11 4.4e+11

6.0e+04 6.5e+04 7.0e+04
3.5e+05 4.0e+05 4.5e+05

compute gen_reliabilities

system

• Keywords Area

• method

• gpais

• response levels

• compute

• system

Compute system reliability (series or parallel)

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 series Aggregate
response statistics
assuming a series
system

1004 CHAPTER 6. KEYWORDS AREA

parallel Aggregate
response statistics
assuming a parallel
system

Description
With the system probability/reliability option, statistics for specified response levels are calculated and
reported assuming the response functions combine either in series or parallel to produce a total system response.

For a series system, the system fails when any one component (response) fails. The probability of failure is
the complement of the product of the individual response success probabilities.

For a parallel system, the system fails only when all components (responses) fail. The probability of failure is
the product of the individual response failure probabilities.

series

• Keywords Area

• method

• gpais

• response levels

• compute

• system

• series

Aggregate response statistics assuming a series system

Specification
Alias: none

Argument(s): none

Description
See parent keyword system for description.

parallel

• Keywords Area

• method

• gpais

• response levels

• compute

• system

6.2. METHOD 1005

• parallel

Aggregate response statistics assuming a parallel system

Specification
Alias: none

Argument(s): none

Description
See parent keyword system for description.

distribution

• Keywords Area

• method

• gpais

• distribution

Selection of cumulative or complementary cumulative functions

Specification
Alias: none

Argument(s): none
Default: cumulative (CDF)

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 cumulative Computes statistics
according to
cumulative
functions

complementary Computes statistics
according to
complementary
cumulative
functions

Description
The distribution keyword allows the user to select between a cumulative distribution/belief/plausibility
function and a complementary cumulative distribution/belief/plausibility function. This choice affects how prob-
abilities and reliability indices are reported.

Default Behavior
If the distribution keyword is present, it must be accompanied by either cumulative or complementary.

Otherwise, a cumulative distribution will be used by default.

1006 CHAPTER 6. KEYWORDS AREA

Expected Outputs
Output will be a set of model response-probability pairs determined according to the choice of distribution.

The choice of distribution also defines the sign of the reliability or generalized reliability indices.

Examples
method

sampling
sample_type lhs
samples = 10
distribution cumulative

cumulative

• Keywords Area

• method

• gpais

• distribution

• cumulative

Computes statistics according to cumulative functions

Specification

Alias: none
Argument(s): none

Description

Statistics on model responses will be computed according to a cumulative distribution/belief/plausibility function.
Default Behavior
By default, a cumulative distribution/belief/plausibility function will be used. To explicitly specify it in the

Dakota input file, however, the cumulative keyword must be appear in conjunction with the distribution
keyword.

Expected Outputs
Output will be a set of model response-probability pairs determined according to a cumulative distribu-

tion/belief/plausibility function. The probabilities reported are the probabilities that the model response falls
below given response threshholds.

Examples
method

sampling
sample_type lhs
samples = 10
distribution cumulative

6.2. METHOD 1007

complementary

• Keywords Area

• method

• gpais

• distribution

• complementary

Computes statistics according to complementary cumulative functions

Specification
Alias: none

Argument(s): none

Description
Statistics on model responses will be computed according to a complementary cumulative distribution/belief/plausibility
function.

Default Behavior
By default, a complementary cumulative distribution/belief/plausibility function will not be used. To change

that behavior, the complementary keyword must be appear in conjunction with the distribution keyword.
Expected Outputs
Output will be a set of model response-probability pairs determined according to a complementary cumulative

distribution/belief/plausibility function. The probabilities reported are the probabilities that the model response
falls above given response threshholds.

Examples
method

sampling
sample_type lhs
samples = 10
distribution complementary

probability levels

• Keywords Area

• method

• gpais

• probability levels

Specify probability levels at which to estimate the corresponding response value

Specification
Alias: none

Argument(s): REALLIST
Default: No CDF/CCDF response levels to compute

1008 CHAPTER 6. KEYWORDS AREA

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional num probability -
levels

Specify which
probability -
levels
correspond to
which response

Description

Response levels are calculated for specified CDF/CCDF probabilities by indexing into a sorted samples array (the
response levels computed are not interpolated and will correspond to one of the sampled values).

Theory

Sets of response-probability pairs computed with the forward/inverse mappings define either a cumulative distri-
bution function (CDF) or a complementary cumulative distribution function (CCDF) for each response function.

In the case of evidence-based epistemic methods, this is generalized to define either cumulative belief and
plausibility functions (CBF and CPF) or complementary cumulative belief and plausibility functions (CCBF and
CCPF) for each response function.

An inverse mapping involves computing the belief and plausibility response level for either a specified prob-
ability level or a specified generalized reliability level (two results for each level mapping in the evidence-based
epistemic case, instead of the one result for each level mapping in the aleatory case).

num probability levels

• Keywords Area

• method

• gpais

• probability levels

• num probability levels

Specify which probability levels correspond to which response

Specification

Alias: none
Argument(s): INTEGERLIST
Default: probability levels evenly distributed among response functions

Description

See parent page

6.2. METHOD 1009

gen reliability levels

• Keywords Area

• method

• gpais

• gen reliability levels

Specify generalized relability levels at which to estimate the corresponding response value

Specification
Alias: none

Argument(s): REALLIST
Default: No CDF/CCDF response levels to compute

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional num gen -
reliability levels

Specify which
gen -
reliability -
levels
correspond to
which response

Description
Response levels are calculated for specified generalized reliabilities by indexing into a sorted samples array (the
response levels computed are not interpolated and will correspond to one of the sampled values).

Theory
Sets of response-probability pairs computed with the forward/inverse mappings define either a cumulative distri-
bution function (CDF) or a complementary cumulative distribution function (CCDF) for each response function.

In the case of evidence-based epistemic methods, this is generalized to define either cumulative belief and
plausibility functions (CBF and CPF) or complementary cumulative belief and plausibility functions (CCBF and
CCPF) for each response function.

An inverse mapping involves computing the belief and plausibility response level for either a specified prob-
ability level or a specified generalized reliability level (two results for each level mapping in the evidence-based
epistemic case, instead of the one result for each level mapping in the aleatory case).

num gen reliability levels

• Keywords Area

• method

• gpais

• gen reliability levels

• num gen reliability levels

Specify which gen reliability levels correspond to which response

1010 CHAPTER 6. KEYWORDS AREA

Specification

Alias: none
Argument(s): INTEGERLIST
Default: gen reliability levels evenly distributed among response functions

Description

See parent page

rng

• Keywords Area

• method

• gpais

• rng

Selection of a random number generator

Specification

Alias: none
Argument(s): none
Default: Mersenne twister (mt19937)

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 mt19937 Generates random
numbers using the
Mersenne twister

rnum2 Generates
pseudo-random
numbers using the
Pecos package

Description

The rng keyword is used to indicate a choice of random number generator.
Default Behavior
If specified, the rng keyword must be accompanied by either rnum2 (pseudo-random numbers) or mt19937

(random numbers generated by the Mersenne twister). Otherwise, mt19937, the Mersenne twister is used by
default.

Usage Tips
The default is recommended, as the Mersenne twister is a higher quality random number generator.

6.2. METHOD 1011

Examples
method

sampling
sample_type lhs
samples = 10
seed = 98765
rng rnum2

mt19937

• Keywords Area

• method

• gpais

• rng

• mt19937

Generates random numbers using the Mersenne twister

Specification
Alias: none

Argument(s): none

Description
The mt19937 keyword directs Dakota to use the Mersenne twister to generate random numbers. Additional
information can be found on wikipedia: http://en.wikipedia.org/wiki/Mersenne twister.

Default Behavior
mt19937 is the default random number generator. To specify it explicitly in the Dakota input file, however,

it must be specified in conjuction with the rng keyword.
Usage Tips
Use of the Mersenne twister random number generator (mt19937) is recommended.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 98765
rng mt19937

rnum2

• Keywords Area

• method

• gpais

• rng

http://en.wikipedia.org/wiki/Mersenne_twister

1012 CHAPTER 6. KEYWORDS AREA

• rnum2

Generates pseudo-random numbers using the Pecos package

Specification
Alias: none

Argument(s): none

Description
The rnum2 keyword directs Dakota to use pseudo-random numbers generated by the Pecos package.

Default Behavior
rnum2 is not used by default. To change this behavior, it must be specified in conjuction with the rng

keyword.
Usage Tips
Use of the Mersenne twister random number generator (mt19937) is recommended over rnum2.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 98765
rng rnum2

samples

• Keywords Area

• method

• gpais

• samples

Number of samples for sampling-based methods

Specification
Alias: none

Argument(s): INTEGER
Default: method-dependent

Description
The samples keyword is used to define the number of samples (i.e., randomly chosen sets of variable values) at
which to execute a model.

Default Behavior
By default, Dakota will use the minimum number of samples required by the chosen method.
Usage Tips

6.2. METHOD 1013

To obtain linear sensitivities or to construct a linear response surface, at least dim+1 samples should be used,
where ”dim” is the number of variables. For sensitivities to quadratic terms or quadratic response surfaces, at least
(dim+1)(dim+2)/2 samples are needed. For uncertainty quantification, we recommend at least 10∗dim samples.
For variance based decomp, we recommend hundreds to thousands of samples. Note that for variance-
based decomp, the number of simulations performed will be N∗(dim+2).

Examples
method

sampling
sample_type lhs
samples = 20

seed

• Keywords Area

• method

• gpais

• seed

Seed of the random number generator

Specification
Alias: none

Argument(s): INTEGER
Default: system-generated (non-repeatable)

Description
The random seed control provides a mechanism for making a stochastic method repeatable. That is, the use of
the same random seed in identical studies will generate identical results.

Default Behavior
If not specified, the seed is randomly generated.
Expected Output
If seed is specified, a stochastic study will generate identical results when repeated using the same seed

value. Otherwise, results are not guaranteed to be the same.
Usage Tips
If a stochastic study was run without seed specified, and the user later wishes to repeat the study using the

same seed, the value of the seed used in the original study can be found in the output Dakota prints to the screen.
That value can then be added to the Dakota input file.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 15347

1014 CHAPTER 6. KEYWORDS AREA

model pointer

• Keywords Area

• method

• gpais

• model pointer

Identifier for model block to be used by a method

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

Description
The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

6.2. METHOD 1015

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses
response_functions = 3
no_gradients
no_hessians

6.2.56 adaptive sampling
• Keywords Area

• method

• adaptive sampling

(Experimental) Build a GP surrogate and refine it adaptively

Topics
This keyword is related to the topics:

• uncertainty quantification

Specification
Alias: nond adaptive sampling

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

1016 CHAPTER 6. KEYWORDS AREA

Optional emulator samples Number of data
points used to train
the surrogate
model or emulator

Optional fitness metric (Experimental)
Specify the
fitness -
metric used to
select the next
point

Optional batch selection (Experimental)
How to select new
points

Optional batch size The number of
points to add in
each batch.

Optional import points file File containing
variable values and
corresponding
responses

Optional export points file Output file for
evaluations of a
surrogate model

Optional response levels Values at which to
estimate desired
statistics for each
response

Optional misc options (Experimental)
This is a capability
used to send the
adaptive sampling
algorithm specific
options.

Optional distribution Selection of
cumulative or
complementary
cumulative
functions

6.2. METHOD 1017

Optional probability levels Specify probability
levels at which to
estimate the
corresponding
response value

Optional gen reliability -
levels

Specify
generalized
relability levels at
which to estimate
the corresponding
response value

Optional rng Selection of a
random number
generator

Optional samples Number of
samples for
sampling-based
methods

Optional seed Seed of the random
number generator

Optional model pointer Identifier for
model block to be
used by a method

Description
This is an experimental capability that is not ready for production use at this point.

The goal in performing adaptive sampling is to construct a surrogate model that can be used as an accurate
predictor to some expensive simulation, thus it is to one’s advantage to build a surrogate that minimizes the error
over the entire domain of interest using as little data as possible from the expensive simulation. The adaptive part
alludes to the fact that the surrogate will be refined by focusing samples of the expensive simulation on particular
areas of interest rather than rely on random selection or standard space-filling techniques.

At a high-level, the adaptive sampling pipeline is a four-step process:

• Evaluate the expensive simulation (referred to as the true model) at initial sample point

1. Fit a surrogate model

2. Create a candidate set and score based on information from surrogate

3. Select a candidate point to evaluate the true model

4. Loop until done

In terms of the Dakota implementation, the adaptive sampling method currently uses Latin Hypercube sam-
pling (LHS) to generate the initial points in Step 1 above. For Step 2, we use a Gaussian process model.

The default behavior is to add one point at a time. At each iteration (e.g. each loop of Steps 2-4 above), a
Latin Hypercube sample is generated (a new one, different from the initial sample) and the surrogate model is
evaluated at this points. These are the candidate points that are then evaluated according to the fitness metric. The

1018 CHAPTER 6. KEYWORDS AREA

number of candidates used in practice should be high enough to fill most of the input domain: we recommend at
least hundreds of points for a low-dimensional problem. All of the candidates (samples on the emulator) are given
a score and then the highest-scoring candidate is selected to be evaluated on the true model.

The adaptive sampling method also can generate batches of points to add at a time using the batch -
selection and batch size keywords.

See Also

These keywords may also be of interest:

• gpais

• local reliability

• global reliability

• sampling

• importance sampling

• polynomial chaos

• stoch collocation

emulator samples

• Keywords Area

• method

• adaptive sampling

• emulator samples

Number of data points used to train the surrogate model or emulator

Specification

Alias: none
Argument(s): INTEGER
Default: 400

Description

This keyword refers to the number of build points or training points used to construct a Gaussian process emulator.
If the user specifies a number of emulator samples that is less than the minimum number of points required
to build the GP surrogate, Dakota will augment the samples to obtain the minimum required.

6.2. METHOD 1019

fitness metric

• Keywords Area

• method

• adaptive sampling

• fitness metric

(Experimental) Specify the fitness metric used to select the next point

Specification
Alias: none

Argument(s): none
Default: predicted variance

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1
predicted variance Pick points with

highest variance
distance Space filling

metric
gradient Fill the range space

of the surrogate

Description
The adaptive sampling is an experimental capability that is not ready for production use at this time.

The user can specify the fitness metric used to select the next point (or points) to evaluate and add to
the set. The fitness metrics used for scoring candidate points include:

• predicted variance

• distance

• gradient

predicted variance

• Keywords Area

• method

• adaptive sampling

• fitness metric

• predicted variance

Pick points with highest variance

Specification
Alias: none

Argument(s): none

1020 CHAPTER 6. KEYWORDS AREA

Description
The predicted variance metric uses the predicted variance of the Gaussian process surrogate as the score of a
candidate point. Thus, the adaptively chosen points will be in areas of highest uncertainty according to the
Gaussian process model.

distance

• Keywords Area

• method

• adaptive sampling

• fitness metric

• distance

Space filling metric

Specification
Alias: none

Argument(s): none

Description
The distance metric calculates the Euclidean distance in domain space between the candidate and its nearest
neighbor in the set of points already evaluated on the true model. Therefore, the most undersampled area of the
domain will always be selected. Note that this is a space-filling metric.

gradient

• Keywords Area

• method

• adaptive sampling

• fitness metric

• gradient

Fill the range space of the surrogate

Specification
Alias: none

Argument(s): none

Description
The gradient metric calculates the score as the absolute value of the difference in range space (the outputs) of the
two points. The output values used are predicted from the surrogate model. This method attempts to evenly fill
the range space of the surrogate.

6.2. METHOD 1021

batch selection

• Keywords Area

• method

• adaptive sampling

• batch selection

(Experimental) How to select new points

Specification
Alias: none

Argument(s): none
Default: naive

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1

naive Take the highest
scoring candidates

distance penalty Add a penalty to
spread out the
points in the batch

topology In this selection
strategy, we use
information about
the topology of the
space from the
Morse-Smale
complex to
identify next points
to select.

constant liar Use information
from the existing
surrogate model to
predict what the
surrogate upgrade
will be with new
points.

1022 CHAPTER 6. KEYWORDS AREA

Description
The adaptive sampling is an experimental capability that is not ready for production use at this time.

With batch or multi-point selection, the true model can be evaluated in parallel and thus increase throughput
before refitting our surrogate model. This proposes a new challenge as the problem of choosing a single point
and choosing multiple points off a surrogate are fundamentally different. Selecting the n best scoring candidates
is more than likely to generate a set of points clustered in one area which will not be conducive to adapting the
surrogate.

We have implemented several strategies for batch selection of points. These are described in the User’s manual
and are the subject of active research.

The batch selection strategies include:

1. naive:

2. distance penalty

3. constant liar

4. topology

naive

• Keywords Area

• method

• adaptive sampling

• batch selection

• naive

Take the highest scoring candidates

Specification
Alias: none

Argument(s): none

Description
This strategy will select the n highest scoring candidates regardless of their position. This tends to group an entire
round of points in the same area.

distance penalty

• Keywords Area

• method

• adaptive sampling

6.2. METHOD 1023

• batch selection

• distance penalty

Add a penalty to spread out the points in the batch

Specification
Alias: none

Argument(s): none

Description
In this strategy, the highest scoring candidate is selected and then all remaining candidates are re-scored with a
distance penalization factor added in to the score.

topology

• Keywords Area

• method

• adaptive sampling

• batch selection

• topology

In this selection strategy, we use information about the topology of the space from the Morse-Smale complex
to identify next points to select.

Specification
Alias: none

Argument(s): none

Description
In this strategy we look at the topology of the scoring function and select the n highest maxima in the topology.
To determine local maxima, we construct the approximate Morse-Smale complex. This strategy does require the
user to have the Morse-Smale package.

constant liar

• Keywords Area

• method

• adaptive sampling

• batch selection

• constant liar

Use information from the existing surrogate model to predict what the surrogate upgrade will be with new
points.

1024 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): none

Description
The strategy first selects the highest scoring candidate, and then refits the surrogate using a ”lie” value at the point
selected. The ’lie’ value is based on the surrogate predictions and not the simulation. This process repeats until
n points have been selected whereupon the lie values are removed from the surrogate and the selected points are
evaluated on the true model and the surrogate is refit with these values.

batch size

• Keywords Area

• method

• adaptive sampling

• batch size

The number of points to add in each batch.

Specification
Alias: none

Argument(s): INTEGER
Default: 1

Description
The number of points to add in each batch.

import points file

• Keywords Area

• method

• adaptive sampling

• import points file

File containing variable values and corresponding responses

Specification
Alias: none

Argument(s): STRING
Default: no point import from a file

6.2. METHOD 1025

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional(Choose
One)

tabular format
(Group 1)

annotated Selects annotated
tabular file format

custom annotated Selects
custom-annotated
tabular file format

freeform Selects freeform
file format

Optional active only Import only active
variables from
tabular data file

Description
The import points file allows the user to specify a file that contains a list of variable values and the model
responses computed at those values. These can be used by a number of methods in place of model evaluations.
When used to construct surrogate models or emulators these are often called build points or training data.

Default Behavior
Be default, methods do not import points from a file.
Usage Tips
Dakota parses input files without regard to whitespace, but the import points file must be in one of three

formats:

• annotated (default)

• custom annotated

• freeform

Examples
method

list_parameter_study
import_points_file = ’dakota_pstudy.3.dat’

annotated

• Keywords Area

• method

• adaptive sampling

• import points file

• annotated

Selects annotated tabular file format

1026 CHAPTER 6. KEYWORDS AREA

Topics

This keyword is related to the topics:

• file formats

Specification

Alias: none
Argument(s): none
Default: annotated format

Description

An annotated tabular file is a whitespace-separated text file with one leading header row of comments/column la-
bels. Each subsequent row contains an evaluation ID and interface ID, followed by data for variables, or variables
followed by responses, depending on context.

Default Behavior
By default, Dakota imports and exports tabular files in annotated format. The annotated keyword can be

used to explicitly specify this.
Usage Tips

• To specify pre-Dakota 6.1 tabular format, which did not include interface id, specify custom annotated
header eval id

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export an annotated top-level tabular data file containing a header row, leading eval id and interface id columns,
and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
annotated

Resulting tabular file:

%eval_id interface x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 NO_ID 0.9 1.1 0.0002 0.26 0.76
2 NO_ID 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 NO_ID 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

6.2. METHOD 1027

custom annotated

• Keywords Area

• method

• adaptive sampling

• import points file

• custom annotated

Selects custom-annotated tabular file format

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Default: annotated format

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional header Enable header row
in
custom-annotated
tabular file

Optional eval id Enable evaluation
ID column in
custom-annotated
tabular file

Optional interface id Enable interface
ID column in
custom-annotated
tabular file

Description
A custom-annotated tabular file is a whitespace-separated text file typically containing row data for variables, or
variables followed by responses, though the format is used for other tabular exports/imports as well. Custom-
annotated allows user options for whether header row, eval id column, and interface id column appear
in the tabular file, thus bridging freeform and (fully) annotated.

Default Behavior
The annotated format is the default for tabular export/import. To control which header row and columns

are in the input/output, specify custom annotated, followed by options, in the relevant export/import context.
Usage Tips

1028 CHAPTER 6. KEYWORDS AREA

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export a custom-annotated tabular file in Dakota 6.0 format, which contained only header and eval id (no interface-
id), and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
custom_annotated header eval_id

Resulting tabular file:

%eval_id x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 0.9 1.1 0.0002 0.26 0.76
2 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

header

• Keywords Area

• method

• adaptive sampling

• import points file

• custom annotated

• header

Enable header row in custom-annotated tabular file

Specification

Alias: none
Argument(s): none
Default: no header

Description

See description of parent custom annotated

6.2. METHOD 1029

eval id

• Keywords Area

• method

• adaptive sampling

• import points file

• custom annotated

• eval id

Enable evaluation ID column in custom-annotated tabular file

Specification

Alias: none
Argument(s): none
Default: no eval id column

Description

See description of parent custom annotated

interface id

• Keywords Area

• method

• adaptive sampling

• import points file

• custom annotated

• interface id

Enable interface ID column in custom-annotated tabular file

Specification

Alias: none
Argument(s): none
Default: no interface id column

Description

See description of parent custom annotated

1030 CHAPTER 6. KEYWORDS AREA

freeform

• Keywords Area

• method

• adaptive sampling

• import points file

• freeform

Selects freeform file format

Topics

This keyword is related to the topics:

• file formats

Specification

Alias: none
Argument(s): none
Default: annotated format

Description

A freeform tabular file is whitespace-separated text file with no leading header row and no leading columns. Most
commonly, each row contains data for variables, or variables followed by responses, though the format is used for
other tabular exports/imports as well.

Default Behavior
The annotated format is the default for tabular export/import. To change this behavior, specify freeform

in the relevant export/import context.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• In freeform, the num rows x num cols total data entries may be separated with any whitespace including
spaces, tabs, and newlines. In this format, vectors may therefore appear as a single row or single column
(or mixture; entries will populate the vector in order).

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

6.2. METHOD 1031

Examples
Export a freeform tabular file containing only data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
freeform

Resulting tabular file:

0.9 1.1 0.0002 0.26 0.76
0.90009 1.1 0.0001996404857 0.2601620081 0.759955
0.89991 1.1 0.0002003604863 0.2598380081 0.760045

...

active only

• Keywords Area

• method

• adaptive sampling

• import points file

• active only

Import only active variables from tabular data file

Topics

This keyword is related to the topics:

• file formats

Specification

Alias: none
Argument(s): none

Description

By default, files for tabular data imports are expected to contain columns for all variables, active and inactive. The
keyword active only indicates that the file to import contains only the active variables.

This option should only be used in contexts where the inactive variables have no influence, for example,
building a surrogate over active variables, with the state variables held at nominal. It should not be used in more
complex nested contexts, where the values of inactive variables are relevant to the function evaluations used to
build the surrogate.

1032 CHAPTER 6. KEYWORDS AREA

export points file

• Keywords Area

• method

• adaptive sampling

• export points file

Output file for evaluations of a surrogate model

Specification
Alias: none

Argument(s): STRING
Default: no point export to a file

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional(Choose
One)

tabular format
(Group 1)

annotated Selects annotated
tabular file format

custom annotated Selects
custom-annotated
tabular file format

freeform Selects freeform
file format

Description
File of points (input variable values and predicted approximate outputs from the surrogate) evaluated on the
surrogate model. The export points contain test point values and the emulator predictions at these points.

Usage Tips
Dakota exports tabular data in one of three formats:

• annotated (default)

• custom annotated

• freeform

annotated

• Keywords Area

• method

• adaptive sampling

• export points file

• annotated

Selects annotated tabular file format

6.2. METHOD 1033

Topics

This keyword is related to the topics:

• file formats

Specification

Alias: none
Argument(s): none
Default: annotated format

Description

An annotated tabular file is a whitespace-separated text file with one leading header row of comments/column la-
bels. Each subsequent row contains an evaluation ID and interface ID, followed by data for variables, or variables
followed by responses, depending on context.

Default Behavior
By default, Dakota imports and exports tabular files in annotated format. The annotated keyword can be

used to explicitly specify this.
Usage Tips

• To specify pre-Dakota 6.1 tabular format, which did not include interface id, specify custom annotated
header eval id

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export an annotated top-level tabular data file containing a header row, leading eval id and interface id columns,
and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
annotated

Resulting tabular file:

%eval_id interface x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 NO_ID 0.9 1.1 0.0002 0.26 0.76
2 NO_ID 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 NO_ID 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

1034 CHAPTER 6. KEYWORDS AREA

custom annotated

• Keywords Area

• method

• adaptive sampling

• export points file

• custom annotated

Selects custom-annotated tabular file format

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Default: annotated format

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional header Enable header row
in
custom-annotated
tabular file

Optional eval id Enable evaluation
ID column in
custom-annotated
tabular file

Optional interface id Enable interface
ID column in
custom-annotated
tabular file

Description
A custom-annotated tabular file is a whitespace-separated text file typically containing row data for variables, or
variables followed by responses, though the format is used for other tabular exports/imports as well. Custom-
annotated allows user options for whether header row, eval id column, and interface id column appear
in the tabular file, thus bridging freeform and (fully) annotated.

Default Behavior
The annotated format is the default for tabular export/import. To control which header row and columns

are in the input/output, specify custom annotated, followed by options, in the relevant export/import context.
Usage Tips

6.2. METHOD 1035

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export a custom-annotated tabular file in Dakota 6.0 format, which contained only header and eval id (no interface-
id), and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
custom_annotated header eval_id

Resulting tabular file:

%eval_id x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 0.9 1.1 0.0002 0.26 0.76
2 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

header

• Keywords Area

• method

• adaptive sampling

• export points file

• custom annotated

• header

Enable header row in custom-annotated tabular file

Specification

Alias: none
Argument(s): none
Default: no header

Description

See description of parent custom annotated

1036 CHAPTER 6. KEYWORDS AREA

eval id

• Keywords Area

• method

• adaptive sampling

• export points file

• custom annotated

• eval id

Enable evaluation ID column in custom-annotated tabular file

Specification

Alias: none
Argument(s): none
Default: no eval id column

Description

See description of parent custom annotated

interface id

• Keywords Area

• method

• adaptive sampling

• export points file

• custom annotated

• interface id

Enable interface ID column in custom-annotated tabular file

Specification

Alias: none
Argument(s): none
Default: no interface id column

Description

See description of parent custom annotated

6.2. METHOD 1037

freeform

• Keywords Area

• method

• adaptive sampling

• export points file

• freeform

Selects freeform file format

Topics

This keyword is related to the topics:

• file formats

Specification

Alias: none
Argument(s): none
Default: annotated format

Description

A freeform tabular file is whitespace-separated text file with no leading header row and no leading columns. Most
commonly, each row contains data for variables, or variables followed by responses, though the format is used for
other tabular exports/imports as well.

Default Behavior
The annotated format is the default for tabular export/import. To change this behavior, specify freeform

in the relevant export/import context.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• In freeform, the num rows x num cols total data entries may be separated with any whitespace including
spaces, tabs, and newlines. In this format, vectors may therefore appear as a single row or single column
(or mixture; entries will populate the vector in order).

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

1038 CHAPTER 6. KEYWORDS AREA

Examples
Export a freeform tabular file containing only data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
freeform

Resulting tabular file:

0.9 1.1 0.0002 0.26 0.76
0.90009 1.1 0.0001996404857 0.2601620081 0.759955
0.89991 1.1 0.0002003604863 0.2598380081 0.760045

...

response levels

• Keywords Area

• method

• adaptive sampling

• response levels

Values at which to estimate desired statistics for each response

Specification
Alias: none

Argument(s): REALLIST
Default: No CDF/CCDF probabilities/reliabilities to compute

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional num response -
levels

Number of values
at which to
estimate desired
statistics for each
response

Optional compute Selection of
statistics to
compute at each
response level

Description
The response levels specification provides the target response values for which to compute probabilities,
reliabilities, or generalized reliabilities (forward mapping).

Default Behavior
If response levels are not specified, no statistics will be computed. If they are, probabilities will be

computed by default.
Expected Outputs
The particular statistics reported for each response level depend on the method, and they include:

6.2. METHOD 1039

1. Reliabilities

2. CDF probabilities

3. CCDF probabilities

Usage Tips
The num response levels is used to specify which arguments of the response level correspond to

which response.

Examples
For example, specifying a response level of 52.3 followed with compute probabilities will result
in the calculation of the probability that the response value is less than or equal to 52.3, given the uncertain
distributions on the inputs.

For an example with multiple responses, the following specification

response_levels = 1. 2. .1 .2 .3 .4 10. 20. 30.
num_response_levels = 2 4 3

would assign the first two response levels (1., 2.) to response function 1, the next four response levels (.1, .2, .3,
.4) to response function 2, and the final three response levels (10., 20., 30.) to response function 3. If the num -
response levels key were omitted from this example, then the response levels would be evenly distributed
among the response functions (three levels each in this case).

Theory
Sets of response-probability pairs computed with the forward/inverse mappings define either a cumulative distri-
bution function (CDF) or a complementary cumulative distribution function (CCDF) for each response function.

In the case of evidence-based epistemic methods, this is generalized to define either cumulative belief and
plausibility functions (CBF and CPF) or complementary cumulative belief and plausibility functions (CCBF and
CCPF) for each response function.

A forward mapping involves computing the belief and plausibility probability level for a specified response
level.

num response levels

• Keywords Area

• method

• adaptive sampling

• response levels

• num response levels

Number of values at which to estimate desired statistics for each response

Specification
Alias: none

Argument(s): INTEGERLIST
Default: response levels evenly distributed among response functions

1040 CHAPTER 6. KEYWORDS AREA

Description
The num response levels keyword allows the user to specify the number of response values, for each re-
sponse, at which estimated statistics are of interest. Statistics that can be computed are probabilities and relia-
bilities, both according to either a cumulative distribution function or a complementary cumulative distribution
function.

Default Behavior
If num response levels is not specified, the response levels will be evenly distributed among the re-

sponses.
Expected Outputs
The specific output will be determined by the type of statistics that are specified. In a general sense, the output

will be a list of response level-statistic pairs that show the estimated value of the desired statistic for each response
level specified.

Examples
method

sampling
samples = 100
seed = 34785
num_response_levels = 1 1 1
response_levels = 0.5 0.5 0.5

compute

• Keywords Area

• method

• adaptive sampling

• response levels

• compute

Selection of statistics to compute at each response level

Specification
Alias: none

Argument(s): none
Default: probabilities

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 probabilities Computes
probabilities
associated with
response levels

6.2. METHOD 1041

gen reliabilities Computes
generalized
reliabilities
associated with
response levels

Optional system Compute system
reliability (series
or parallel)

Description
The compute keyword is used to select which forward stastical mapping is calculated at each response level.

Default Behavior
If response levels is not specified, no statistics are computed. If response levels is specified

but compute is not, probabilities will be computed by default. If both response levels and compute
are specified, then on of the following must be specified: probabilities, reliabilities, or gen -
reliabilities.

Expected Output
The type of statistics specified by compute will be reported for each response level.
Usage Tips
CDF/CCDF probabilities are calculated for specified response levels using a simple binning approach.
CDF/CCDF reliabilities are calculated for specified response levels by computing the number of sample stan-

dard deviations separating the sample mean from the response level.

Examples
method

sampling
sample_type random
samples = 100 seed = 1
complementary distribution
response_levels = 3.6e+11 4.0e+11 4.4e+11

6.0e+04 6.5e+04 7.0e+04
3.5e+05 4.0e+05 4.5e+05

compute reliabilities

probabilities

• Keywords Area

• method

• adaptive sampling

• response levels

• compute

• probabilities

Computes probabilities associated with response levels

1042 CHAPTER 6. KEYWORDS AREA

Specification

Alias: none
Argument(s): none

Description

The probabilities keyword directs Dakota to compute the probability that the model response will be below
(cumulative) or above (complementary cumulative) a specified response value. This is done for every response
level designated for each response.

Default Behavior
If response levels is specified, the probabilities are computed by default. To explicitly specify it in the

Dakota input file, though, the probabilities keyword should be specified in conjunction with the compute
keyword.

Expected Outputs
The Dakota output is a set of response level-probability pairs that give the probability that the model response

will be below or above the corresponding response level, depending on the distribution defined.

Examples
method

sampling
sample_type random
samples = 100 seed = 1
complementary distribution
response_levels = 3.6e+11 4.0e+11 4.4e+11

6.0e+04 6.5e+04 7.0e+04
3.5e+05 4.0e+05 4.5e+05

compute probabilities

gen reliabilities

• Keywords Area

• method

• adaptive sampling

• response levels

• compute

• gen reliabilities

Computes generalized reliabilities associated with response levels

Specification

Alias: none
Argument(s): none

6.2. METHOD 1043

Description
The gen reliabilities keyword directs Dakota to compute generalized reliabilities according to the speci-
fied distribution for a specified response value. This is done for every response level designated for each response.

Default Behavior
If response levels is specified, the generalized reliabilities are not computed by default. To change this

behavior, the gen reliabilities keyword should be specified in conjunction with the compute keyword.
Expected Outputs
The Dakota output is a set of response level-generalized reliability pairs according to the distribution defined.

Examples
method

sampling
sample_type random
samples = 100 seed = 1
complementary distribution
response_levels = 3.6e+11 4.0e+11 4.4e+11

6.0e+04 6.5e+04 7.0e+04
3.5e+05 4.0e+05 4.5e+05

compute gen_reliabilities

system

• Keywords Area

• method

• adaptive sampling

• response levels

• compute

• system

Compute system reliability (series or parallel)

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 series Aggregate
response statistics
assuming a series
system

1044 CHAPTER 6. KEYWORDS AREA

parallel Aggregate
response statistics
assuming a parallel
system

Description
With the system probability/reliability option, statistics for specified response levels are calculated and
reported assuming the response functions combine either in series or parallel to produce a total system response.

For a series system, the system fails when any one component (response) fails. The probability of failure is
the complement of the product of the individual response success probabilities.

For a parallel system, the system fails only when all components (responses) fail. The probability of failure is
the product of the individual response failure probabilities.

series

• Keywords Area

• method

• adaptive sampling

• response levels

• compute

• system

• series

Aggregate response statistics assuming a series system

Specification
Alias: none

Argument(s): none

Description
See parent keyword system for description.

parallel

• Keywords Area

• method

• adaptive sampling

• response levels

• compute

• system

6.2. METHOD 1045

• parallel

Aggregate response statistics assuming a parallel system

Specification
Alias: none

Argument(s): none

Description
See parent keyword system for description.

misc options

• Keywords Area

• method

• adaptive sampling

• misc options

(Experimental) This is a capability used to send the adaptive sampling algorithm specific options.

Specification
Alias: none

Argument(s): STRINGLIST
Default: no misc options

Description
The adaptive sampling algorithm is an experimental capability and not ready for production use at this time.

distribution

• Keywords Area

• method

• adaptive sampling

• distribution

Selection of cumulative or complementary cumulative functions

Specification
Alias: none

Argument(s): none
Default: cumulative (CDF)

1046 CHAPTER 6. KEYWORDS AREA

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 cumulative Computes statistics
according to
cumulative
functions

complementary Computes statistics
according to
complementary
cumulative
functions

Description
The distribution keyword allows the user to select between a cumulative distribution/belief/plausibility
function and a complementary cumulative distribution/belief/plausibility function. This choice affects how prob-
abilities and reliability indices are reported.

Default Behavior
If the distribution keyword is present, it must be accompanied by either cumulative or complementary.

Otherwise, a cumulative distribution will be used by default.
Expected Outputs
Output will be a set of model response-probability pairs determined according to the choice of distribution.

The choice of distribution also defines the sign of the reliability or generalized reliability indices.

Examples
method

sampling
sample_type lhs
samples = 10
distribution cumulative

cumulative

• Keywords Area

• method

• adaptive sampling

• distribution

• cumulative

Computes statistics according to cumulative functions

Specification
Alias: none

Argument(s): none

6.2. METHOD 1047

Description

Statistics on model responses will be computed according to a cumulative distribution/belief/plausibility function.
Default Behavior
By default, a cumulative distribution/belief/plausibility function will be used. To explicitly specify it in the

Dakota input file, however, the cumulative keyword must be appear in conjunction with the distribution
keyword.

Expected Outputs
Output will be a set of model response-probability pairs determined according to a cumulative distribu-

tion/belief/plausibility function. The probabilities reported are the probabilities that the model response falls
below given response threshholds.

Examples
method

sampling
sample_type lhs
samples = 10
distribution cumulative

complementary

• Keywords Area

• method

• adaptive sampling

• distribution

• complementary

Computes statistics according to complementary cumulative functions

Specification

Alias: none
Argument(s): none

Description

Statistics on model responses will be computed according to a complementary cumulative distribution/belief/plausibility
function.

Default Behavior
By default, a complementary cumulative distribution/belief/plausibility function will not be used. To change

that behavior, the complementary keyword must be appear in conjunction with the distribution keyword.
Expected Outputs
Output will be a set of model response-probability pairs determined according to a complementary cumulative

distribution/belief/plausibility function. The probabilities reported are the probabilities that the model response
falls above given response threshholds.

1048 CHAPTER 6. KEYWORDS AREA

Examples
method

sampling
sample_type lhs
samples = 10
distribution complementary

probability levels

• Keywords Area

• method

• adaptive sampling

• probability levels

Specify probability levels at which to estimate the corresponding response value

Specification

Alias: none
Argument(s): REALLIST
Default: No CDF/CCDF response levels to compute

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional num probability -
levels

Specify which
probability -
levels
correspond to
which response

Description

Response levels are calculated for specified CDF/CCDF probabilities by indexing into a sorted samples array (the
response levels computed are not interpolated and will correspond to one of the sampled values).

Theory

Sets of response-probability pairs computed with the forward/inverse mappings define either a cumulative distri-
bution function (CDF) or a complementary cumulative distribution function (CCDF) for each response function.

In the case of evidence-based epistemic methods, this is generalized to define either cumulative belief and
plausibility functions (CBF and CPF) or complementary cumulative belief and plausibility functions (CCBF and
CCPF) for each response function.

An inverse mapping involves computing the belief and plausibility response level for either a specified prob-
ability level or a specified generalized reliability level (two results for each level mapping in the evidence-based
epistemic case, instead of the one result for each level mapping in the aleatory case).

6.2. METHOD 1049

num probability levels

• Keywords Area

• method

• adaptive sampling

• probability levels

• num probability levels

Specify which probability levels correspond to which response

Specification
Alias: none

Argument(s): INTEGERLIST
Default: probability levels evenly distributed among response functions

Description
See parent page

gen reliability levels

• Keywords Area

• method

• adaptive sampling

• gen reliability levels

Specify generalized relability levels at which to estimate the corresponding response value

Specification
Alias: none

Argument(s): REALLIST
Default: No CDF/CCDF response levels to compute

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional num gen -
reliability levels

Specify which
gen -
reliability -
levels
correspond to
which response

Description
Response levels are calculated for specified generalized reliabilities by indexing into a sorted samples array (the
response levels computed are not interpolated and will correspond to one of the sampled values).

1050 CHAPTER 6. KEYWORDS AREA

Theory
Sets of response-probability pairs computed with the forward/inverse mappings define either a cumulative distri-
bution function (CDF) or a complementary cumulative distribution function (CCDF) for each response function.

In the case of evidence-based epistemic methods, this is generalized to define either cumulative belief and
plausibility functions (CBF and CPF) or complementary cumulative belief and plausibility functions (CCBF and
CCPF) for each response function.

An inverse mapping involves computing the belief and plausibility response level for either a specified prob-
ability level or a specified generalized reliability level (two results for each level mapping in the evidence-based
epistemic case, instead of the one result for each level mapping in the aleatory case).

num gen reliability levels

• Keywords Area

• method

• adaptive sampling

• gen reliability levels

• num gen reliability levels

Specify which gen reliability levels correspond to which response

Specification
Alias: none

Argument(s): INTEGERLIST
Default: gen reliability levels evenly distributed among response functions

Description
See parent page

rng

• Keywords Area

• method

• adaptive sampling

• rng

Selection of a random number generator

Specification
Alias: none

Argument(s): none
Default: Mersenne twister (mt19937)

6.2. METHOD 1051

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 mt19937 Generates random
numbers using the
Mersenne twister

rnum2 Generates
pseudo-random
numbers using the
Pecos package

Description

The rng keyword is used to indicate a choice of random number generator.
Default Behavior
If specified, the rng keyword must be accompanied by either rnum2 (pseudo-random numbers) or mt19937

(random numbers generated by the Mersenne twister). Otherwise, mt19937, the Mersenne twister is used by
default.

Usage Tips
The default is recommended, as the Mersenne twister is a higher quality random number generator.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 98765
rng rnum2

mt19937

• Keywords Area

• method

• adaptive sampling

• rng

• mt19937

Generates random numbers using the Mersenne twister

Specification

Alias: none
Argument(s): none

1052 CHAPTER 6. KEYWORDS AREA

Description
The mt19937 keyword directs Dakota to use the Mersenne twister to generate random numbers. Additional
information can be found on wikipedia: http://en.wikipedia.org/wiki/Mersenne twister.

Default Behavior
mt19937 is the default random number generator. To specify it explicitly in the Dakota input file, however,

it must be specified in conjuction with the rng keyword.
Usage Tips
Use of the Mersenne twister random number generator (mt19937) is recommended.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 98765
rng mt19937

rnum2

• Keywords Area

• method

• adaptive sampling

• rng

• rnum2

Generates pseudo-random numbers using the Pecos package

Specification
Alias: none

Argument(s): none

Description
The rnum2 keyword directs Dakota to use pseudo-random numbers generated by the Pecos package.

Default Behavior
rnum2 is not used by default. To change this behavior, it must be specified in conjuction with the rng

keyword.
Usage Tips
Use of the Mersenne twister random number generator (mt19937) is recommended over rnum2.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 98765
rng rnum2

http://en.wikipedia.org/wiki/Mersenne_twister

6.2. METHOD 1053

samples

• Keywords Area

• method

• adaptive sampling

• samples

Number of samples for sampling-based methods

Specification
Alias: none

Argument(s): INTEGER
Default: method-dependent

Description
The samples keyword is used to define the number of samples (i.e., randomly chosen sets of variable values) at
which to execute a model.

Default Behavior
By default, Dakota will use the minimum number of samples required by the chosen method.
Usage Tips
To obtain linear sensitivities or to construct a linear response surface, at least dim+1 samples should be used,

where ”dim” is the number of variables. For sensitivities to quadratic terms or quadratic response surfaces, at least
(dim+1)(dim+2)/2 samples are needed. For uncertainty quantification, we recommend at least 10∗dim samples.
For variance based decomp, we recommend hundreds to thousands of samples. Note that for variance-
based decomp, the number of simulations performed will be N∗(dim+2).

Examples
method

sampling
sample_type lhs
samples = 20

seed

• Keywords Area

• method

• adaptive sampling

• seed

Seed of the random number generator

Specification
Alias: none

Argument(s): INTEGER
Default: system-generated (non-repeatable)

1054 CHAPTER 6. KEYWORDS AREA

Description
The random seed control provides a mechanism for making a stochastic method repeatable. That is, the use of
the same random seed in identical studies will generate identical results.

Default Behavior
If not specified, the seed is randomly generated.
Expected Output
If seed is specified, a stochastic study will generate identical results when repeated using the same seed

value. Otherwise, results are not guaranteed to be the same.
Usage Tips
If a stochastic study was run without seed specified, and the user later wishes to repeat the study using the

same seed, the value of the seed used in the original study can be found in the output Dakota prints to the screen.
That value can then be added to the Dakota input file.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 15347

model pointer

• Keywords Area

• method

• adaptive sampling

• model pointer

Identifier for model block to be used by a method

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

Description
The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.

6.2. METHOD 1055

Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses
response_functions = 3
no_gradients
no_hessians

6.2.57 pof darts

• Keywords Area

1056 CHAPTER 6. KEYWORDS AREA

• method

• pof darts

Probability-of-Failure (POF) darts is a novel method for estimating the probability of failure based on random
sphere-packing.

Topics
This keyword is related to the topics:

• uncertainty quantification

Specification
Alias: nond pof darts

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional lipschitz Select the type of
Lipschitz
estimation (global
or local)

Optional emulator samples Specify the
number of samples
taken on the
emulator to
estimate the
Probability of
Failure in POF
Darts

Optional response levels Values at which to
estimate desired
statistics for each
response

Optional distribution Selection of
cumulative or
complementary
cumulative
functions

6.2. METHOD 1057

Optional probability levels Specify probability
levels at which to
estimate the
corresponding
response value

Optional gen reliability -
levels

Specify
generalized
relability levels at
which to estimate
the corresponding
response value

Optional rng Selection of a
random number
generator

Optional samples Number of
samples for
sampling-based
methods

Optional seed Seed of the random
number generator

Optional model pointer Identifier for
model block to be
used by a method

Description

pof darts is a novel method for estimating the probability of failure based on random sphere-packing. Random
spheres are sampled from the domain with the constraint that each new sphere center has to be outside prior disks.
The radius of each sphere is chosen such that the entire sphere lie either in the failure or the non-failure region.
This radius depends of the function evaluation at the disk center, the failure threshold and an estimate of the
function gradient at the disk center.

We utilize a global surrogate for evaluating the gradient and hence only one function evaluation is required
for each sphere.

After exhausting the sampling budget specified by samples, which is the number of spheres per failure
threshold, the domain is decomposed into two regions. These regions correspond to failure and non-failure, each
represented by the union of the spheres of each type. The volume of the union of failure spheres gives a lower
bound on the required estimate of the probability of failure, while the volume of the union of the non-failure
spheres subtracted from the volume of the domain gives an upper estimate. We currently report the average of
both estimates.

pof darts handles multiple response functions and allows each to have multiple failure thresholds. For each
failure threshold, pof darts will insert a number of spheres specified by the user-input parameter samples.

However, estimating the probability of failure for each failure threshold would utilize the total number of disks
sampled for all failure thresholds. For each failure threshold, the sphere radii changes to generate the right spatial
decomposition.

1058 CHAPTER 6. KEYWORDS AREA

lipschitz

• Keywords Area

• method

• pof darts

• lipschitz

Select the type of Lipschitz estimation (global or local)

Specification

Alias: none
Argument(s): none

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 local Specify local
estimation of the
Lipschitz constant

global Specify global
estimation of the
Lipschitz estimate

Description

There are two types of Lipschitz estimation used in sizing the disks used in POF Darts: global and local. The
global approach uses one Lipschitz estimate for the entire domain. The local approach calculates the Lipschitz
estimate separately for each Voronoi region based on nearby points. The local method is more expensive but more
accurate.

local

• Keywords Area

• method

• pof darts

• lipschitz

• local

Specify local estimation of the Lipschitz constant

Specification

Alias: none
Argument(s): none

6.2. METHOD 1059

Description
The local approach to estimating the Lipschitz constant calculates the Lipschitz estimate separately for each
Voronoi region based on nearby points. The local method is more expensive but more accurate than the global
method.

global

• Keywords Area

• method

• pof darts

• lipschitz

• global

Specify global estimation of the Lipschitz estimate

Specification
Alias: none

Argument(s): none

Description
The global approach uses one Lipschitz estimate for the entire domain.

emulator samples

• Keywords Area

• method

• pof darts

• emulator samples

Specify the number of samples taken on the emulator to estimate the Probability of Failure in POF Darts

Specification
Alias: none

Argument(s): INTEGER

Description
The last step of the POF Darts method involves constructing an emulator over the points identified thus far, and
sampling that emulator extensively to estimate the probability of failure. emulator samples allows one to
specify the number of samples taken on the emulator. The default is 1E+6. If the probability of failure estimate is
zero, the user may want to increase the number of emulator samples.

1060 CHAPTER 6. KEYWORDS AREA

response levels

• Keywords Area

• method

• pof darts

• response levels

Values at which to estimate desired statistics for each response

Specification

Alias: none
Argument(s): REALLIST
Default: No CDF/CCDF probabilities/reliabilities to compute

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional num response -
levels

Number of values
at which to
estimate desired
statistics for each
response

Optional compute Selection of
statistics to
compute at each
response level

Description

The response levels specification provides the target response values for which to compute probabilities,
reliabilities, or generalized reliabilities (forward mapping).

Default Behavior
If response levels are not specified, no statistics will be computed. If they are, probabilities will be

computed by default.
Expected Outputs
The particular statistics reported for each response level depend on the method, and they include:

1. Reliabilities

2. CDF probabilities

3. CCDF probabilities

Usage Tips
The num response levels is used to specify which arguments of the response level correspond to

which response.

6.2. METHOD 1061

Examples
For example, specifying a response level of 52.3 followed with compute probabilities will result
in the calculation of the probability that the response value is less than or equal to 52.3, given the uncertain
distributions on the inputs.

For an example with multiple responses, the following specification

response_levels = 1. 2. .1 .2 .3 .4 10. 20. 30.
num_response_levels = 2 4 3

would assign the first two response levels (1., 2.) to response function 1, the next four response levels (.1, .2, .3,
.4) to response function 2, and the final three response levels (10., 20., 30.) to response function 3. If the num -
response levels key were omitted from this example, then the response levels would be evenly distributed
among the response functions (three levels each in this case).

Theory
Sets of response-probability pairs computed with the forward/inverse mappings define either a cumulative distri-
bution function (CDF) or a complementary cumulative distribution function (CCDF) for each response function.

In the case of evidence-based epistemic methods, this is generalized to define either cumulative belief and
plausibility functions (CBF and CPF) or complementary cumulative belief and plausibility functions (CCBF and
CCPF) for each response function.

A forward mapping involves computing the belief and plausibility probability level for a specified response
level.

num response levels

• Keywords Area

• method

• pof darts

• response levels

• num response levels

Number of values at which to estimate desired statistics for each response

Specification
Alias: none

Argument(s): INTEGERLIST
Default: response levels evenly distributed among response functions

Description
The num response levels keyword allows the user to specify the number of response values, for each re-
sponse, at which estimated statistics are of interest. Statistics that can be computed are probabilities and relia-
bilities, both according to either a cumulative distribution function or a complementary cumulative distribution
function.

Default Behavior
If num response levels is not specified, the response levels will be evenly distributed among the re-

sponses.

1062 CHAPTER 6. KEYWORDS AREA

Expected Outputs
The specific output will be determined by the type of statistics that are specified. In a general sense, the output

will be a list of response level-statistic pairs that show the estimated value of the desired statistic for each response
level specified.

Examples
method

sampling
samples = 100
seed = 34785
num_response_levels = 1 1 1
response_levels = 0.5 0.5 0.5

compute

• Keywords Area

• method

• pof darts

• response levels

• compute

Selection of statistics to compute at each response level

Specification
Alias: none

Argument(s): none
Default: probabilities

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 probabilities Computes
probabilities
associated with
response levels

gen reliabilities Computes
generalized
reliabilities
associated with
response levels

6.2. METHOD 1063

Optional system Compute system
reliability (series
or parallel)

Description

The compute keyword is used to select which forward stastical mapping is calculated at each response level.
Default Behavior
If response levels is not specified, no statistics are computed. If response levels is specified

but compute is not, probabilities will be computed by default. If both response levels and compute
are specified, then on of the following must be specified: probabilities, reliabilities, or gen -
reliabilities.

Expected Output
The type of statistics specified by compute will be reported for each response level.
Usage Tips
CDF/CCDF probabilities are calculated for specified response levels using a simple binning approach.
CDF/CCDF reliabilities are calculated for specified response levels by computing the number of sample stan-

dard deviations separating the sample mean from the response level.

Examples
method

sampling
sample_type random
samples = 100 seed = 1
complementary distribution
response_levels = 3.6e+11 4.0e+11 4.4e+11

6.0e+04 6.5e+04 7.0e+04
3.5e+05 4.0e+05 4.5e+05

compute reliabilities

probabilities

• Keywords Area

• method

• pof darts

• response levels

• compute

• probabilities

Computes probabilities associated with response levels

Specification

Alias: none
Argument(s): none

1064 CHAPTER 6. KEYWORDS AREA

Description
The probabilities keyword directs Dakota to compute the probability that the model response will be below
(cumulative) or above (complementary cumulative) a specified response value. This is done for every response
level designated for each response.

Default Behavior
If response levels is specified, the probabilities are computed by default. To explicitly specify it in the

Dakota input file, though, the probabilities keyword should be specified in conjunction with the compute
keyword.

Expected Outputs
The Dakota output is a set of response level-probability pairs that give the probability that the model response

will be below or above the corresponding response level, depending on the distribution defined.

Examples
method

sampling
sample_type random
samples = 100 seed = 1
complementary distribution
response_levels = 3.6e+11 4.0e+11 4.4e+11

6.0e+04 6.5e+04 7.0e+04
3.5e+05 4.0e+05 4.5e+05

compute probabilities

gen reliabilities

• Keywords Area

• method

• pof darts

• response levels

• compute

• gen reliabilities

Computes generalized reliabilities associated with response levels

Specification
Alias: none

Argument(s): none

Description
The gen reliabilities keyword directs Dakota to compute generalized reliabilities according to the speci-
fied distribution for a specified response value. This is done for every response level designated for each response.

Default Behavior
If response levels is specified, the generalized reliabilities are not computed by default. To change this

behavior, the gen reliabilities keyword should be specified in conjunction with the compute keyword.
Expected Outputs
The Dakota output is a set of response level-generalized reliability pairs according to the distribution defined.

6.2. METHOD 1065

Examples
method

sampling
sample_type random
samples = 100 seed = 1
complementary distribution
response_levels = 3.6e+11 4.0e+11 4.4e+11

6.0e+04 6.5e+04 7.0e+04
3.5e+05 4.0e+05 4.5e+05

compute gen_reliabilities

system

• Keywords Area

• method

• pof darts

• response levels

• compute

• system

Compute system reliability (series or parallel)

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 series Aggregate
response statistics
assuming a series
system

parallel Aggregate
response statistics
assuming a parallel
system

Description
With the system probability/reliability option, statistics for specified response levels are calculated and
reported assuming the response functions combine either in series or parallel to produce a total system response.

For a series system, the system fails when any one component (response) fails. The probability of failure is
the complement of the product of the individual response success probabilities.

For a parallel system, the system fails only when all components (responses) fail. The probability of failure is
the product of the individual response failure probabilities.

1066 CHAPTER 6. KEYWORDS AREA

series

• Keywords Area

• method

• pof darts

• response levels

• compute

• system

• series

Aggregate response statistics assuming a series system

Specification
Alias: none

Argument(s): none

Description
See parent keyword system for description.

parallel

• Keywords Area

• method

• pof darts

• response levels

• compute

• system

• parallel

Aggregate response statistics assuming a parallel system

Specification
Alias: none

Argument(s): none

Description
See parent keyword system for description.

6.2. METHOD 1067

distribution

• Keywords Area

• method

• pof darts

• distribution

Selection of cumulative or complementary cumulative functions

Specification

Alias: none
Argument(s): none
Default: cumulative (CDF)

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 cumulative Computes statistics
according to
cumulative
functions

complementary Computes statistics
according to
complementary
cumulative
functions

Description

The distribution keyword allows the user to select between a cumulative distribution/belief/plausibility
function and a complementary cumulative distribution/belief/plausibility function. This choice affects how prob-
abilities and reliability indices are reported.

Default Behavior
If the distribution keyword is present, it must be accompanied by either cumulative or complementary.

Otherwise, a cumulative distribution will be used by default.
Expected Outputs
Output will be a set of model response-probability pairs determined according to the choice of distribution.

The choice of distribution also defines the sign of the reliability or generalized reliability indices.

Examples
method

sampling
sample_type lhs
samples = 10
distribution cumulative

1068 CHAPTER 6. KEYWORDS AREA

cumulative

• Keywords Area

• method

• pof darts

• distribution

• cumulative

Computes statistics according to cumulative functions

Specification

Alias: none
Argument(s): none

Description

Statistics on model responses will be computed according to a cumulative distribution/belief/plausibility function.
Default Behavior
By default, a cumulative distribution/belief/plausibility function will be used. To explicitly specify it in the

Dakota input file, however, the cumulative keyword must be appear in conjunction with the distribution
keyword.

Expected Outputs
Output will be a set of model response-probability pairs determined according to a cumulative distribu-

tion/belief/plausibility function. The probabilities reported are the probabilities that the model response falls
below given response threshholds.

Examples
method

sampling
sample_type lhs
samples = 10
distribution cumulative

complementary

• Keywords Area

• method

• pof darts

• distribution

• complementary

Computes statistics according to complementary cumulative functions

6.2. METHOD 1069

Specification
Alias: none

Argument(s): none

Description
Statistics on model responses will be computed according to a complementary cumulative distribution/belief/plausibility
function.

Default Behavior
By default, a complementary cumulative distribution/belief/plausibility function will not be used. To change

that behavior, the complementary keyword must be appear in conjunction with the distribution keyword.
Expected Outputs
Output will be a set of model response-probability pairs determined according to a complementary cumulative

distribution/belief/plausibility function. The probabilities reported are the probabilities that the model response
falls above given response threshholds.

Examples
method

sampling
sample_type lhs
samples = 10
distribution complementary

probability levels

• Keywords Area

• method

• pof darts

• probability levels

Specify probability levels at which to estimate the corresponding response value

Specification
Alias: none

Argument(s): REALLIST
Default: No CDF/CCDF response levels to compute

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional num probability -
levels

Specify which
probability -
levels
correspond to
which response

Description
Response levels are calculated for specified CDF/CCDF probabilities by indexing into a sorted samples array (the
response levels computed are not interpolated and will correspond to one of the sampled values).

1070 CHAPTER 6. KEYWORDS AREA

Theory
Sets of response-probability pairs computed with the forward/inverse mappings define either a cumulative distri-
bution function (CDF) or a complementary cumulative distribution function (CCDF) for each response function.

In the case of evidence-based epistemic methods, this is generalized to define either cumulative belief and
plausibility functions (CBF and CPF) or complementary cumulative belief and plausibility functions (CCBF and
CCPF) for each response function.

An inverse mapping involves computing the belief and plausibility response level for either a specified prob-
ability level or a specified generalized reliability level (two results for each level mapping in the evidence-based
epistemic case, instead of the one result for each level mapping in the aleatory case).

num probability levels

• Keywords Area

• method

• pof darts

• probability levels

• num probability levels

Specify which probability levels correspond to which response

Specification
Alias: none

Argument(s): INTEGERLIST
Default: probability levels evenly distributed among response functions

Description
See parent page

gen reliability levels

• Keywords Area

• method

• pof darts

• gen reliability levels

Specify generalized relability levels at which to estimate the corresponding response value

Specification
Alias: none

Argument(s): REALLIST
Default: No CDF/CCDF response levels to compute

6.2. METHOD 1071

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional num gen -
reliability levels

Specify which
gen -
reliability -
levels
correspond to
which response

Description

Response levels are calculated for specified generalized reliabilities by indexing into a sorted samples array (the
response levels computed are not interpolated and will correspond to one of the sampled values).

Theory

Sets of response-probability pairs computed with the forward/inverse mappings define either a cumulative distri-
bution function (CDF) or a complementary cumulative distribution function (CCDF) for each response function.

In the case of evidence-based epistemic methods, this is generalized to define either cumulative belief and
plausibility functions (CBF and CPF) or complementary cumulative belief and plausibility functions (CCBF and
CCPF) for each response function.

An inverse mapping involves computing the belief and plausibility response level for either a specified prob-
ability level or a specified generalized reliability level (two results for each level mapping in the evidence-based
epistemic case, instead of the one result for each level mapping in the aleatory case).

num gen reliability levels

• Keywords Area

• method

• pof darts

• gen reliability levels

• num gen reliability levels

Specify which gen reliability levels correspond to which response

Specification

Alias: none
Argument(s): INTEGERLIST
Default: gen reliability levels evenly distributed among response functions

Description

See parent page

1072 CHAPTER 6. KEYWORDS AREA

rng

• Keywords Area

• method

• pof darts

• rng

Selection of a random number generator

Specification
Alias: none

Argument(s): none
Default: Mersenne twister (mt19937)

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 mt19937 Generates random
numbers using the
Mersenne twister

rnum2 Generates
pseudo-random
numbers using the
Pecos package

Description
The rng keyword is used to indicate a choice of random number generator.

Default Behavior
If specified, the rng keyword must be accompanied by either rnum2 (pseudo-random numbers) or mt19937

(random numbers generated by the Mersenne twister). Otherwise, mt19937, the Mersenne twister is used by
default.

Usage Tips
The default is recommended, as the Mersenne twister is a higher quality random number generator.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 98765
rng rnum2

mt19937

• Keywords Area

• method

6.2. METHOD 1073

• pof darts

• rng

• mt19937

Generates random numbers using the Mersenne twister

Specification

Alias: none
Argument(s): none

Description

The mt19937 keyword directs Dakota to use the Mersenne twister to generate random numbers. Additional
information can be found on wikipedia: http://en.wikipedia.org/wiki/Mersenne twister.

Default Behavior
mt19937 is the default random number generator. To specify it explicitly in the Dakota input file, however,

it must be specified in conjuction with the rng keyword.
Usage Tips
Use of the Mersenne twister random number generator (mt19937) is recommended.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 98765
rng mt19937

rnum2

• Keywords Area

• method

• pof darts

• rng

• rnum2

Generates pseudo-random numbers using the Pecos package

Specification

Alias: none
Argument(s): none

http://en.wikipedia.org/wiki/Mersenne_twister

1074 CHAPTER 6. KEYWORDS AREA

Description
The rnum2 keyword directs Dakota to use pseudo-random numbers generated by the Pecos package.

Default Behavior
rnum2 is not used by default. To change this behavior, it must be specified in conjuction with the rng

keyword.
Usage Tips
Use of the Mersenne twister random number generator (mt19937) is recommended over rnum2.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 98765
rng rnum2

samples

• Keywords Area

• method

• pof darts

• samples

Number of samples for sampling-based methods

Specification
Alias: none

Argument(s): INTEGER
Default: method-dependent

Description
The samples keyword is used to define the number of samples (i.e., randomly chosen sets of variable values) at
which to execute a model.

Default Behavior
By default, Dakota will use the minimum number of samples required by the chosen method.
Usage Tips
To obtain linear sensitivities or to construct a linear response surface, at least dim+1 samples should be used,

where ”dim” is the number of variables. For sensitivities to quadratic terms or quadratic response surfaces, at least
(dim+1)(dim+2)/2 samples are needed. For uncertainty quantification, we recommend at least 10∗dim samples.
For variance based decomp, we recommend hundreds to thousands of samples. Note that for variance-
based decomp, the number of simulations performed will be N∗(dim+2).

Examples
method

sampling
sample_type lhs
samples = 20

6.2. METHOD 1075

seed

• Keywords Area

• method

• pof darts

• seed

Seed of the random number generator

Specification

Alias: none
Argument(s): INTEGER
Default: system-generated (non-repeatable)

Description

The random seed control provides a mechanism for making a stochastic method repeatable. That is, the use of
the same random seed in identical studies will generate identical results.

Default Behavior
If not specified, the seed is randomly generated.
Expected Output
If seed is specified, a stochastic study will generate identical results when repeated using the same seed

value. Otherwise, results are not guaranteed to be the same.
Usage Tips
If a stochastic study was run without seed specified, and the user later wishes to repeat the study using the

same seed, the value of the seed used in the original study can be found in the output Dakota prints to the screen.
That value can then be added to the Dakota input file.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 15347

model pointer

• Keywords Area

• method

• pof darts

• model pointer

Identifier for model block to be used by a method

1076 CHAPTER 6. KEYWORDS AREA

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

Description
The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single

6.2. METHOD 1077

interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses
response_functions = 3
no_gradients
no_hessians

6.2.58 efficient subspace

• Keywords Area

• method

• efficient subspace

(Experimental) efficient subspace method (ESM)

Topics

This keyword is related to the topics:

• uncertainty quantification

Specification

Alias: nond efficient subspace

Argument(s): none

1078 CHAPTER 6. KEYWORDS AREA

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional emulator samples Number of data
points used to train
the surrogate
model or emulator

Optional batch size The number of
points to add in
each batch.

Optional distribution Selection of
cumulative or
complementary
cumulative
functions

Optional probability levels Specify probability
levels at which to
estimate the
corresponding
response value

Optional gen reliability -
levels

Specify
generalized
relability levels at
which to estimate
the corresponding
response value

Optional rng Selection of a
random number
generator

Optional samples Number of
samples for
sampling-based
methods

Optional seed Seed of the random
number generator

Optional model pointer Identifier for
model block to be
used by a method

Description
ESM is experimental and its implementation is incomplete. It is an active subspace method, intended for use with
models with high dimensional input parameter spaces and analytic gradients. The method works by evaluating
the response gradient at a number of points in the input parameter space and using a singular value decomposition
to identify key linear combinations of input directions along which the response varies. Then UQ is performed in
the reduced input parameter space.

6.2. METHOD 1079

emulator samples

• Keywords Area

• method

• efficient subspace

• emulator samples

Number of data points used to train the surrogate model or emulator

Specification
Alias: none

Argument(s): INTEGER

Description
This keyword refers to the number of build points or training points used to construct a Gaussian process emulator.
If the user specifies a number of emulator samples that is less than the minimum number of points required
to build the GP surrogate, Dakota will augment the samples to obtain the minimum required.

batch size

• Keywords Area

• method

• efficient subspace

• batch size

The number of points to add in each batch.

Specification
Alias: none

Argument(s): INTEGER
Default: 1

Description
The number of points to add in each batch.

distribution

• Keywords Area

• method

• efficient subspace

• distribution

Selection of cumulative or complementary cumulative functions

1080 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): none
Default: cumulative (CDF)

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 cumulative Computes statistics
according to
cumulative
functions

complementary Computes statistics
according to
complementary
cumulative
functions

Description
The distribution keyword allows the user to select between a cumulative distribution/belief/plausibility
function and a complementary cumulative distribution/belief/plausibility function. This choice affects how prob-
abilities and reliability indices are reported.

Default Behavior
If the distribution keyword is present, it must be accompanied by either cumulative or complementary.

Otherwise, a cumulative distribution will be used by default.
Expected Outputs
Output will be a set of model response-probability pairs determined according to the choice of distribution.

The choice of distribution also defines the sign of the reliability or generalized reliability indices.

Examples
method

sampling
sample_type lhs
samples = 10
distribution cumulative

cumulative

• Keywords Area

• method

• efficient subspace

• distribution

• cumulative

Computes statistics according to cumulative functions

6.2. METHOD 1081

Specification
Alias: none

Argument(s): none

Description
Statistics on model responses will be computed according to a cumulative distribution/belief/plausibility function.

Default Behavior
By default, a cumulative distribution/belief/plausibility function will be used. To explicitly specify it in the

Dakota input file, however, the cumulative keyword must be appear in conjunction with the distribution
keyword.

Expected Outputs
Output will be a set of model response-probability pairs determined according to a cumulative distribu-

tion/belief/plausibility function. The probabilities reported are the probabilities that the model response falls
below given response threshholds.

Examples
method

sampling
sample_type lhs
samples = 10
distribution cumulative

complementary
• Keywords Area

• method

• efficient subspace

• distribution

• complementary

Computes statistics according to complementary cumulative functions

Specification
Alias: none

Argument(s): none

Description
Statistics on model responses will be computed according to a complementary cumulative distribution/belief/plausibility
function.

Default Behavior
By default, a complementary cumulative distribution/belief/plausibility function will not be used. To change

that behavior, the complementary keyword must be appear in conjunction with the distribution keyword.
Expected Outputs
Output will be a set of model response-probability pairs determined according to a complementary cumulative

distribution/belief/plausibility function. The probabilities reported are the probabilities that the model response
falls above given response threshholds.

1082 CHAPTER 6. KEYWORDS AREA

Examples
method

sampling
sample_type lhs
samples = 10
distribution complementary

probability levels

• Keywords Area

• method

• efficient subspace

• probability levels

Specify probability levels at which to estimate the corresponding response value

Specification

Alias: none
Argument(s): REALLIST
Default: No CDF/CCDF response levels to compute

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional num probability -
levels

Specify which
probability -
levels
correspond to
which response

Description

Response levels are calculated for specified CDF/CCDF probabilities by indexing into a sorted samples array (the
response levels computed are not interpolated and will correspond to one of the sampled values).

Theory

Sets of response-probability pairs computed with the forward/inverse mappings define either a cumulative distri-
bution function (CDF) or a complementary cumulative distribution function (CCDF) for each response function.

In the case of evidence-based epistemic methods, this is generalized to define either cumulative belief and
plausibility functions (CBF and CPF) or complementary cumulative belief and plausibility functions (CCBF and
CCPF) for each response function.

An inverse mapping involves computing the belief and plausibility response level for either a specified prob-
ability level or a specified generalized reliability level (two results for each level mapping in the evidence-based
epistemic case, instead of the one result for each level mapping in the aleatory case).

6.2. METHOD 1083

num probability levels

• Keywords Area

• method

• efficient subspace

• probability levels

• num probability levels

Specify which probability levels correspond to which response

Specification
Alias: none

Argument(s): INTEGERLIST
Default: probability levels evenly distributed among response functions

Description
See parent page

gen reliability levels

• Keywords Area

• method

• efficient subspace

• gen reliability levels

Specify generalized relability levels at which to estimate the corresponding response value

Specification
Alias: none

Argument(s): REALLIST
Default: No CDF/CCDF response levels to compute

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional num gen -
reliability levels

Specify which
gen -
reliability -
levels
correspond to
which response

Description
Response levels are calculated for specified generalized reliabilities by indexing into a sorted samples array (the
response levels computed are not interpolated and will correspond to one of the sampled values).

1084 CHAPTER 6. KEYWORDS AREA

Theory
Sets of response-probability pairs computed with the forward/inverse mappings define either a cumulative distri-
bution function (CDF) or a complementary cumulative distribution function (CCDF) for each response function.

In the case of evidence-based epistemic methods, this is generalized to define either cumulative belief and
plausibility functions (CBF and CPF) or complementary cumulative belief and plausibility functions (CCBF and
CCPF) for each response function.

An inverse mapping involves computing the belief and plausibility response level for either a specified prob-
ability level or a specified generalized reliability level (two results for each level mapping in the evidence-based
epistemic case, instead of the one result for each level mapping in the aleatory case).

num gen reliability levels

• Keywords Area

• method

• efficient subspace

• gen reliability levels

• num gen reliability levels

Specify which gen reliability levels correspond to which response

Specification
Alias: none

Argument(s): INTEGERLIST
Default: gen reliability levels evenly distributed among response functions

Description
See parent page

rng

• Keywords Area

• method

• efficient subspace

• rng

Selection of a random number generator

Specification
Alias: none

Argument(s): none
Default: Mersenne twister (mt19937)

6.2. METHOD 1085

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 mt19937 Generates random
numbers using the
Mersenne twister

rnum2 Generates
pseudo-random
numbers using the
Pecos package

Description

The rng keyword is used to indicate a choice of random number generator.
Default Behavior
If specified, the rng keyword must be accompanied by either rnum2 (pseudo-random numbers) or mt19937

(random numbers generated by the Mersenne twister). Otherwise, mt19937, the Mersenne twister is used by
default.

Usage Tips
The default is recommended, as the Mersenne twister is a higher quality random number generator.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 98765
rng rnum2

mt19937

• Keywords Area

• method

• efficient subspace

• rng

• mt19937

Generates random numbers using the Mersenne twister

Specification

Alias: none
Argument(s): none

1086 CHAPTER 6. KEYWORDS AREA

Description
The mt19937 keyword directs Dakota to use the Mersenne twister to generate random numbers. Additional
information can be found on wikipedia: http://en.wikipedia.org/wiki/Mersenne twister.

Default Behavior
mt19937 is the default random number generator. To specify it explicitly in the Dakota input file, however,

it must be specified in conjuction with the rng keyword.
Usage Tips
Use of the Mersenne twister random number generator (mt19937) is recommended.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 98765
rng mt19937

rnum2

• Keywords Area

• method

• efficient subspace

• rng

• rnum2

Generates pseudo-random numbers using the Pecos package

Specification
Alias: none

Argument(s): none

Description
The rnum2 keyword directs Dakota to use pseudo-random numbers generated by the Pecos package.

Default Behavior
rnum2 is not used by default. To change this behavior, it must be specified in conjuction with the rng

keyword.
Usage Tips
Use of the Mersenne twister random number generator (mt19937) is recommended over rnum2.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 98765
rng rnum2

http://en.wikipedia.org/wiki/Mersenne_twister

6.2. METHOD 1087

samples

• Keywords Area

• method

• efficient subspace

• samples

Number of samples for sampling-based methods

Specification
Alias: none

Argument(s): INTEGER
Default: method-dependent

Description
The samples keyword is used to define the number of samples (i.e., randomly chosen sets of variable values) at
which to execute a model.

Default Behavior
By default, Dakota will use the minimum number of samples required by the chosen method.
Usage Tips
To obtain linear sensitivities or to construct a linear response surface, at least dim+1 samples should be used,

where ”dim” is the number of variables. For sensitivities to quadratic terms or quadratic response surfaces, at least
(dim+1)(dim+2)/2 samples are needed. For uncertainty quantification, we recommend at least 10∗dim samples.
For variance based decomp, we recommend hundreds to thousands of samples. Note that for variance-
based decomp, the number of simulations performed will be N∗(dim+2).

Examples
method

sampling
sample_type lhs
samples = 20

seed

• Keywords Area

• method

• efficient subspace

• seed

Seed of the random number generator

Specification
Alias: none

Argument(s): INTEGER
Default: system-generated (non-repeatable)

1088 CHAPTER 6. KEYWORDS AREA

Description
The random seed control provides a mechanism for making a stochastic method repeatable. That is, the use of
the same random seed in identical studies will generate identical results.

Default Behavior
If not specified, the seed is randomly generated.
Expected Output
If seed is specified, a stochastic study will generate identical results when repeated using the same seed

value. Otherwise, results are not guaranteed to be the same.
Usage Tips
If a stochastic study was run without seed specified, and the user later wishes to repeat the study using the

same seed, the value of the seed used in the original study can be found in the output Dakota prints to the screen.
That value can then be added to the Dakota input file.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 15347

model pointer

• Keywords Area

• method

• efficient subspace

• model pointer

Identifier for model block to be used by a method

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

Description
The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.

6.2. METHOD 1089

Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses
response_functions = 3
no_gradients
no_hessians

6.2.59 global evidence

• Keywords Area

1090 CHAPTER 6. KEYWORDS AREA

• method

• global evidence

Evidence theory with evidence measures computed with global optimization methods

Topics
This keyword is related to the topics:

• epistemic uncertainty quantification methods

• evidence theory

Specification
Alias: nond global evidence

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional(Choose
One)

Group 1

sbo Use the surrogate
based optimization
method

ego Use the Efficient
Global
Optimization
method

ea Use an
evolutionary
algorithm

lhs Uses Latin
Hypercube
Sampling (LHS) to
sample variables

Optional response levels Values at which to
estimate desired
statistics for each
response

Optional distribution Selection of
cumulative or
complementary
cumulative
functions

6.2. METHOD 1091

Optional probability levels Specify probability
levels at which to
estimate the
corresponding
response value

Optional gen reliability -
levels

Specify
generalized
relability levels at
which to estimate
the corresponding
response value

Optional rng Selection of a
random number
generator

Optional samples Number of
samples for
sampling-based
methods

Optional seed Seed of the random
number generator

Optional model pointer Identifier for
model block to be
used by a method

Description
global evidence allows the user to specify several global approaches for calculating the belief and plausibil-
ity functions:

• lhs - note: this takes the minimum and maximum of the samples as the bounds per ”interval cell combi-
nation.”

• ego - uses Efficient Global Optimization which is based on an adaptive Gaussian process surrogate.

• sbo - uses a Gaussian process surrogate (non-adaptive) within an optimization process.

• ea - uses an evolutionary algorithm. This can be expensive as the ea will be run for each interval cell
combination.

Note that to calculate the plausibility and belief cumulative distribution functions, one has to look at all com-
binations of intervals for the uncertain variables. In terms of implementation, if one is using LHS sampling as
outlined above, this method creates a large sample over the response surface, then examines each cell to determine
the minimum and maximum sample values within each cell. To do this, one needs to set the number of samples
relatively high: the default is 10,000 and we recommend at least that number. If the model you are running is a
simulation that is computationally quite expensive, we recommend that you set up a surrogate model within the
Dakota input file so that global evidence performs its sampling and calculations on the surrogate and not on
the original model. If one uses optimization methods instead to find the minimum and maximum sample values
within each cell, this can also be computationally expensive.

1092 CHAPTER 6. KEYWORDS AREA

Additional Resources
See the topic page evidence theory for important background information and usage notes.
Refer to variable support for information on supported variable types.

Theory

The basic idea is that one specifies an ”evidence structure” on uncertain inputs and propagates that to obtain
belief and plausibility functions on the response functions. The inputs are defined by sets of intervals and Basic
Probability Assignments (BPAs). Evidence propagation is computationally expensive, since the minimum and
maximum function value must be calculated for each ”interval cell combination.” These bounds are aggregated
into belief and plausibility.

See Also

These keywords may also be of interest:

• global interval est

• local evidence

• local interval est

sbo

• Keywords Area

• method

• global evidence

• sbo

Use the surrogate based optimization method

Specification

Alias: none
Argument(s): none

6.2. METHOD 1093

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional gaussian process Gaussian Process
surrogate model

Optional use derivatives Use derivative data
to construct
surrogate models

Optional import points file File containing
variable values and
corresponding
responses

Optional export points file Output file for
evaluations of a
surrogate model

Description
A surrogate-based optimization method will be used. The surrogate employed in sbo is a Gaussian process
surrogate.

The main difference between ego and the sbo approach is the objective function being optimized. ego relies
on an expected improvement function, while in sbo, the optimization proceeds using an evolutionary algorithm
(coliny ea) on the Gaussian process surrogate: it is a standard surrogate-based optimization. Also note that the
sbo option can support optimization over discrete variables (the discrete variables are relaxed) while ego cannot.

This is not the same as surrogate based global.

gaussian process

• Keywords Area

• method

• global evidence

• sbo

• gaussian process

Gaussian Process surrogate model

Specification
Alias: kriging

Argument(s): none
Default: Surfpack Gaussian process

1094 CHAPTER 6. KEYWORDS AREA

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 surfpack Use the Surfpack
version of
Gaussian Process
surrogates

dakota Select the built in
Gaussian Process
surrogate

Description
Use the Gaussian process (GP) surrogate from Surfpack, which is specified using the surfpack keyword.

An alternate version of GP surrogates was available in prior versions of Dakota. For now, both versions are
supported but the dakota version is deprecated and intended to be removed in a future release.

surfpack

• Keywords Area

• method

• global evidence

• sbo

• gaussian process

• surfpack

Use the Surfpack version of Gaussian Process surrogates

Specification
Alias: none

Argument(s): none

Description
This keyword specifies the use of the Gaussian process that is incorporated in our surface fitting library called
Surfpack.

Several user options are available:

1. Optimization methods:

Maximum Likelihood Estimation (MLE) is used to find the optimal values of the hyper-parameters gov-
erning the trend and correlation functions. By default the global optimization method DIRECT is used for
MLE, but other options for the optimization method are available. See optimization method.

The total number of evaluations of the likelihood function can be controlled using the max trials key-
word followed by a positive integer. Note that the likelihood function does not require running the ”truth”
model, and is relatively inexpensive to compute.

6.2. METHOD 1095

2. Trend Function:

The GP models incorporate a parametric trend function whose purpose is to capture large-scale variations.
See trend.

3. Correlation Lengths:

Correlation lengths are usually optimized by Surfpack, however, the user can specify the lengths manually.
See correlation lengths.

4. Ill-conditioning

One of the major problems in determining the governing values for a Gaussian process or Kriging model is
the fact that the correlation matrix can easily become ill-conditioned when there are too many input points
close together. Since the predictions from the Gaussian process model involve inverting the correlation
matrix, ill-conditioning can lead to poor predictive capability and should be avoided.

Note that a sufficiently bad sample design could require correlation lengths to be so short that any interpo-
latory GP model would become inept at extrapolation and interpolation.

The surfpack model handles ill-conditioning internally by default, but behavior can be modified using

5. Gradient Enhanced Kriging (GEK).

The use derivatives keyword will cause the Surfpack GP to be constructed from a combination of
function value and gradient information (if available).

See notes in the Theory section.

Theory
Gradient Enhanced Kriging

Incorporating gradient information will only be beneficial if accurate and inexpensive derivative information
is available, and the derivatives are not infinite or nearly so. Here ”inexpensive” means that the cost of evaluating a
function value plus gradient is comparable to the cost of evaluating only the function value, for example gradients
computed by analytical, automatic differentiation, or continuous adjoint techniques. It is not cost effective to use
derivatives computed by finite differences. In tests, GEK models built from finite difference derivatives were also
significantly less accurate than those built from analytical derivatives. Note that GEK’s correlation matrix tends
to have a significantly worse condition number than Kriging for the same sample design.

This issue was addressed by using a pivoted Cholesky factorization of Kriging’s correlation matrix (which is a
small sub-matrix within GEK’s correlation matrix) to rank points by how much unique information they contain.
This reordering is then applied to whole points (the function value at a point immediately followed by gradient
information at the same point) in GEK’s correlation matrix. A standard non-pivoted Cholesky is then applied to the
reordered GEK correlation matrix and a bisection search is used to find the last equation that meets the constraint
on the (estimate of) condition number. The cost of performing pivoted Cholesky on Kriging’s correlation matrix
is usually negligible compared to the cost of the non-pivoted Cholesky factorization of GEK’s correlation matrix.
In tests, it also resulted in more accurate GEK models than when pivoted Cholesky or whole-point-block pivoted
Cholesky was performed on GEK’s correlation matrix.

dakota

• Keywords Area

• method

• global evidence

1096 CHAPTER 6. KEYWORDS AREA

• sbo

• gaussian process

• dakota

Select the built in Gaussian Process surrogate

Specification
Alias: none

Argument(s): none

Description
A second version of GP surrogates was available in prior versions of Dakota. For now, both versions are
supported but the dakota version is deprecated and intended to be removed in a future release.

Historically these models were drastically different, but in Dakota 5.1, they became quite similar. They now
differ in that the Surfpack GP has a richer set of features/options and tends to be more accurate than the Dakota
version. Due to how the Surfpack GP handles ill-conditioned correlation matrices (which significantly contributes
to its greater accuracy), the Surfpack GP can be a factor of two or three slower than Dakota’s. As of Dakota
5.2, the Surfpack implementation is the default in all contexts except Bayesian calibration.

More details on the gaussian process dakota model can be found in[58].
Dakota’s GP deals with ill-conditioning in two ways. First, when it encounters a non-invertible correlation

matrix it iteratively increases the size of a ”nugget,” but in such cases the resulting approximation smooths rather
than interpolates the data. Second, it has a point selection option (default off) that uses a greedy algorithm
to select a well-spaced subset of points prior to the construction of the GP. In this case, the GP will only interpo-
late the selected subset. Typically, one should not need point selection in trust-region methods because a small
number of points are used to develop a surrogate within each trust region. Point selection is most beneficial when
constructing with a large number of points, typically more than order one hundred, though this depends on the
number of variables and spacing of the sample points.

This differs from the point selection option of the Dakota GP which initially chooses a well-spaced
subset of points and finds the correlation parameters that are most likely for that one subset.

use derivatives

• Keywords Area

• method

• global evidence

• sbo

• use derivatives

Use derivative data to construct surrogate models

Specification
Alias: none

Argument(s): none
Default: use function values only

6.2. METHOD 1097

Description
The use derivatives flag specifies that any available derivative information should be used in global approx-
imation builds, for those global surrogate types that support it (currently, polynomial regression and the Surfpack
Gaussian process).

However, it’s use with Surfpack Gaussian process is not recommended.

import points file

• Keywords Area

• method

• global evidence

• sbo

• import points file

File containing variable values and corresponding responses

Specification
Alias: none

Argument(s): STRING
Default: no point import from a file

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional(Choose
One)

tabular format
(Group 1)

annotated Selects annotated
tabular file format

custom annotated Selects
custom-annotated
tabular file format

freeform Selects freeform
file format

Optional active only Import only active
variables from
tabular data file

Description
The import points file allows the user to specify a file that contains a list of variable values and the model
responses computed at those values. These can be used by a number of methods in place of model evaluations.
When used to construct surrogate models or emulators these are often called build points or training data.

Default Behavior
Be default, methods do not import points from a file.
Usage Tips
Dakota parses input files without regard to whitespace, but the import points file must be in one of three

formats:

1098 CHAPTER 6. KEYWORDS AREA

• annotated (default)

• custom annotated

• freeform

Examples
method

list_parameter_study
import_points_file = ’dakota_pstudy.3.dat’

annotated

• Keywords Area

• method

• global evidence

• sbo

• import points file

• annotated

Selects annotated tabular file format

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Default: annotated format

Description
An annotated tabular file is a whitespace-separated text file with one leading header row of comments/column la-
bels. Each subsequent row contains an evaluation ID and interface ID, followed by data for variables, or variables
followed by responses, depending on context.

Default Behavior
By default, Dakota imports and exports tabular files in annotated format. The annotated keyword can be

used to explicitly specify this.
Usage Tips

• To specify pre-Dakota 6.1 tabular format, which did not include interface id, specify custom annotated
header eval id

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

6.2. METHOD 1099

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export an annotated top-level tabular data file containing a header row, leading eval id and interface id columns,
and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
annotated

Resulting tabular file:

%eval_id interface x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 NO_ID 0.9 1.1 0.0002 0.26 0.76
2 NO_ID 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 NO_ID 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

custom annotated

• Keywords Area

• method

• global evidence

• sbo

• import points file

• custom annotated

Selects custom-annotated tabular file format

Topics

This keyword is related to the topics:

• file formats

Specification

Alias: none
Argument(s): none
Default: annotated format

1100 CHAPTER 6. KEYWORDS AREA

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional header Enable header row
in
custom-annotated
tabular file

Optional eval id Enable evaluation
ID column in
custom-annotated
tabular file

Optional interface id Enable interface
ID column in
custom-annotated
tabular file

Description
A custom-annotated tabular file is a whitespace-separated text file typically containing row data for variables, or
variables followed by responses, though the format is used for other tabular exports/imports as well. Custom-
annotated allows user options for whether header row, eval id column, and interface id column appear
in the tabular file, thus bridging freeform and (fully) annotated.

Default Behavior
The annotated format is the default for tabular export/import. To control which header row and columns

are in the input/output, specify custom annotated, followed by options, in the relevant export/import context.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export a custom-annotated tabular file in Dakota 6.0 format, which contained only header and eval id (no interface-
id), and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
custom_annotated header eval_id

Resulting tabular file:

%eval_id x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 0.9 1.1 0.0002 0.26 0.76
2 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

6.2. METHOD 1101

header

• Keywords Area

• method

• global evidence

• sbo

• import points file

• custom annotated

• header

Enable header row in custom-annotated tabular file

Specification
Alias: none

Argument(s): none
Default: no header

Description
See description of parent custom annotated

eval id

• Keywords Area

• method

• global evidence

• sbo

• import points file

• custom annotated

• eval id

Enable evaluation ID column in custom-annotated tabular file

Specification
Alias: none

Argument(s): none
Default: no eval id column

Description
See description of parent custom annotated

1102 CHAPTER 6. KEYWORDS AREA

interface id

• Keywords Area

• method

• global evidence

• sbo

• import points file

• custom annotated

• interface id

Enable interface ID column in custom-annotated tabular file

Specification
Alias: none

Argument(s): none
Default: no interface id column

Description
See description of parent custom annotated

freeform

• Keywords Area

• method

• global evidence

• sbo

• import points file

• freeform

Selects freeform file format

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Default: annotated format

6.2. METHOD 1103

Description
A freeform tabular file is whitespace-separated text file with no leading header row and no leading columns. Most
commonly, each row contains data for variables, or variables followed by responses, though the format is used for
other tabular exports/imports as well.

Default Behavior
The annotated format is the default for tabular export/import. To change this behavior, specify freeform

in the relevant export/import context.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• In freeform, the num rows x num cols total data entries may be separated with any whitespace including
spaces, tabs, and newlines. In this format, vectors may therefore appear as a single row or single column
(or mixture; entries will populate the vector in order).

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export a freeform tabular file containing only data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
freeform

Resulting tabular file:

0.9 1.1 0.0002 0.26 0.76
0.90009 1.1 0.0001996404857 0.2601620081 0.759955
0.89991 1.1 0.0002003604863 0.2598380081 0.760045

...

active only

• Keywords Area

• method

• global evidence

• sbo

• import points file

• active only

Import only active variables from tabular data file

Topics
This keyword is related to the topics:

• file formats

1104 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): none

Description
By default, files for tabular data imports are expected to contain columns for all variables, active and inactive. The
keyword active only indicates that the file to import contains only the active variables.

This option should only be used in contexts where the inactive variables have no influence, for example,
building a surrogate over active variables, with the state variables held at nominal. It should not be used in more
complex nested contexts, where the values of inactive variables are relevant to the function evaluations used to
build the surrogate.

export points file

• Keywords Area

• method

• global evidence

• sbo

• export points file

Output file for evaluations of a surrogate model

Specification
Alias: none

Argument(s): STRING
Default: no point export to a file

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional(Choose
One)

tabular format
(Group 1)

annotated Selects annotated
tabular file format

custom annotated Selects
custom-annotated
tabular file format

freeform Selects freeform
file format

Description
File of points (input variable values and predicted approximate outputs from the surrogate) evaluated on the
surrogate model. The export points contain test point values and the emulator predictions at these points.

Usage Tips
Dakota exports tabular data in one of three formats:

6.2. METHOD 1105

• annotated (default)

• custom annotated

• freeform

annotated

• Keywords Area

• method

• global evidence

• sbo

• export points file

• annotated

Selects annotated tabular file format

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Default: annotated format

Description
An annotated tabular file is a whitespace-separated text file with one leading header row of comments/column la-
bels. Each subsequent row contains an evaluation ID and interface ID, followed by data for variables, or variables
followed by responses, depending on context.

Default Behavior
By default, Dakota imports and exports tabular files in annotated format. The annotated keyword can be

used to explicitly specify this.
Usage Tips

• To specify pre-Dakota 6.1 tabular format, which did not include interface id, specify custom annotated
header eval id

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

1106 CHAPTER 6. KEYWORDS AREA

Examples

Export an annotated top-level tabular data file containing a header row, leading eval id and interface id columns,
and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
annotated

Resulting tabular file:

%eval_id interface x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 NO_ID 0.9 1.1 0.0002 0.26 0.76
2 NO_ID 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 NO_ID 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

custom annotated

• Keywords Area

• method

• global evidence

• sbo

• export points file

• custom annotated

Selects custom-annotated tabular file format

Topics

This keyword is related to the topics:

• file formats

Specification

Alias: none
Argument(s): none
Default: annotated format

6.2. METHOD 1107

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional header Enable header row
in
custom-annotated
tabular file

Optional eval id Enable evaluation
ID column in
custom-annotated
tabular file

Optional interface id Enable interface
ID column in
custom-annotated
tabular file

Description
A custom-annotated tabular file is a whitespace-separated text file typically containing row data for variables, or
variables followed by responses, though the format is used for other tabular exports/imports as well. Custom-
annotated allows user options for whether header row, eval id column, and interface id column appear
in the tabular file, thus bridging freeform and (fully) annotated.

Default Behavior
The annotated format is the default for tabular export/import. To control which header row and columns

are in the input/output, specify custom annotated, followed by options, in the relevant export/import context.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export a custom-annotated tabular file in Dakota 6.0 format, which contained only header and eval id (no interface-
id), and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
custom_annotated header eval_id

Resulting tabular file:

%eval_id x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 0.9 1.1 0.0002 0.26 0.76
2 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

1108 CHAPTER 6. KEYWORDS AREA

header

• Keywords Area

• method

• global evidence

• sbo

• export points file

• custom annotated

• header

Enable header row in custom-annotated tabular file

Specification
Alias: none

Argument(s): none
Default: no header

Description
See description of parent custom annotated

eval id

• Keywords Area

• method

• global evidence

• sbo

• export points file

• custom annotated

• eval id

Enable evaluation ID column in custom-annotated tabular file

Specification
Alias: none

Argument(s): none
Default: no eval id column

Description
See description of parent custom annotated

6.2. METHOD 1109

interface id

• Keywords Area

• method

• global evidence

• sbo

• export points file

• custom annotated

• interface id

Enable interface ID column in custom-annotated tabular file

Specification
Alias: none

Argument(s): none
Default: no interface id column

Description
See description of parent custom annotated

freeform

• Keywords Area

• method

• global evidence

• sbo

• export points file

• freeform

Selects freeform file format

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Default: annotated format

1110 CHAPTER 6. KEYWORDS AREA

Description
A freeform tabular file is whitespace-separated text file with no leading header row and no leading columns. Most
commonly, each row contains data for variables, or variables followed by responses, though the format is used for
other tabular exports/imports as well.

Default Behavior
The annotated format is the default for tabular export/import. To change this behavior, specify freeform

in the relevant export/import context.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• In freeform, the num rows x num cols total data entries may be separated with any whitespace including
spaces, tabs, and newlines. In this format, vectors may therefore appear as a single row or single column
(or mixture; entries will populate the vector in order).

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export a freeform tabular file containing only data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
freeform

Resulting tabular file:

0.9 1.1 0.0002 0.26 0.76
0.90009 1.1 0.0001996404857 0.2601620081 0.759955
0.89991 1.1 0.0002003604863 0.2598380081 0.760045

...

ego

• Keywords Area

• method

• global evidence

• ego

Use the Efficient Global Optimization method

Specification
Alias: none

Argument(s): none

6.2. METHOD 1111

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional gaussian process Gaussian Process
surrogate model

Optional use derivatives Use derivative data
to construct
surrogate models

Optional import points file File containing
variable values and
corresponding
responses

Optional export points file Output file for
evaluations of a
surrogate model

Description

In the case of ego, the efficient global optimization (EGO) method is used to calculate bounds. By default,
the Surfpack GP (Kriging) model is used, but the Dakota implementation may be selected instead. If use -
derivatives is specified the GP model will be built using available derivative data (Surfpack GP only).

See efficient global for more information.

gaussian process

• Keywords Area

• method

• global evidence

• ego

• gaussian process

Gaussian Process surrogate model

Specification

Alias: kriging
Argument(s): none
Default: Surfpack Gaussian process

1112 CHAPTER 6. KEYWORDS AREA

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 surfpack Use the Surfpack
version of
Gaussian Process
surrogates

dakota Select the built in
Gaussian Process
surrogate

Description
Use the Gaussian process (GP) surrogate from Surfpack, which is specified using the surfpack keyword.

An alternate version of GP surrogates was available in prior versions of Dakota. For now, both versions are
supported but the dakota version is deprecated and intended to be removed in a future release.

surfpack

• Keywords Area

• method

• global evidence

• ego

• gaussian process

• surfpack

Use the Surfpack version of Gaussian Process surrogates

Specification
Alias: none

Argument(s): none

Description
This keyword specifies the use of the Gaussian process that is incorporated in our surface fitting library called
Surfpack.

Several user options are available:

1. Optimization methods:

Maximum Likelihood Estimation (MLE) is used to find the optimal values of the hyper-parameters gov-
erning the trend and correlation functions. By default the global optimization method DIRECT is used for
MLE, but other options for the optimization method are available. See optimization method.

The total number of evaluations of the likelihood function can be controlled using the max trials key-
word followed by a positive integer. Note that the likelihood function does not require running the ”truth”
model, and is relatively inexpensive to compute.

6.2. METHOD 1113

2. Trend Function:

The GP models incorporate a parametric trend function whose purpose is to capture large-scale variations.
See trend.

3. Correlation Lengths:

Correlation lengths are usually optimized by Surfpack, however, the user can specify the lengths manually.
See correlation lengths.

4. Ill-conditioning

One of the major problems in determining the governing values for a Gaussian process or Kriging model is
the fact that the correlation matrix can easily become ill-conditioned when there are too many input points
close together. Since the predictions from the Gaussian process model involve inverting the correlation
matrix, ill-conditioning can lead to poor predictive capability and should be avoided.

Note that a sufficiently bad sample design could require correlation lengths to be so short that any interpo-
latory GP model would become inept at extrapolation and interpolation.

The surfpack model handles ill-conditioning internally by default, but behavior can be modified using

5. Gradient Enhanced Kriging (GEK).

The use derivatives keyword will cause the Surfpack GP to be constructed from a combination of
function value and gradient information (if available).

See notes in the Theory section.

Theory
Gradient Enhanced Kriging

Incorporating gradient information will only be beneficial if accurate and inexpensive derivative information
is available, and the derivatives are not infinite or nearly so. Here ”inexpensive” means that the cost of evaluating a
function value plus gradient is comparable to the cost of evaluating only the function value, for example gradients
computed by analytical, automatic differentiation, or continuous adjoint techniques. It is not cost effective to use
derivatives computed by finite differences. In tests, GEK models built from finite difference derivatives were also
significantly less accurate than those built from analytical derivatives. Note that GEK’s correlation matrix tends
to have a significantly worse condition number than Kriging for the same sample design.

This issue was addressed by using a pivoted Cholesky factorization of Kriging’s correlation matrix (which is a
small sub-matrix within GEK’s correlation matrix) to rank points by how much unique information they contain.
This reordering is then applied to whole points (the function value at a point immediately followed by gradient
information at the same point) in GEK’s correlation matrix. A standard non-pivoted Cholesky is then applied to the
reordered GEK correlation matrix and a bisection search is used to find the last equation that meets the constraint
on the (estimate of) condition number. The cost of performing pivoted Cholesky on Kriging’s correlation matrix
is usually negligible compared to the cost of the non-pivoted Cholesky factorization of GEK’s correlation matrix.
In tests, it also resulted in more accurate GEK models than when pivoted Cholesky or whole-point-block pivoted
Cholesky was performed on GEK’s correlation matrix.

dakota

• Keywords Area

• method

• global evidence

1114 CHAPTER 6. KEYWORDS AREA

• ego

• gaussian process

• dakota

Select the built in Gaussian Process surrogate

Specification
Alias: none

Argument(s): none

Description
A second version of GP surrogates was available in prior versions of Dakota. For now, both versions are
supported but the dakota version is deprecated and intended to be removed in a future release.

Historically these models were drastically different, but in Dakota 5.1, they became quite similar. They now
differ in that the Surfpack GP has a richer set of features/options and tends to be more accurate than the Dakota
version. Due to how the Surfpack GP handles ill-conditioned correlation matrices (which significantly contributes
to its greater accuracy), the Surfpack GP can be a factor of two or three slower than Dakota’s. As of Dakota
5.2, the Surfpack implementation is the default in all contexts except Bayesian calibration.

More details on the gaussian process dakota model can be found in[58].
Dakota’s GP deals with ill-conditioning in two ways. First, when it encounters a non-invertible correlation

matrix it iteratively increases the size of a ”nugget,” but in such cases the resulting approximation smooths rather
than interpolates the data. Second, it has a point selection option (default off) that uses a greedy algorithm
to select a well-spaced subset of points prior to the construction of the GP. In this case, the GP will only interpo-
late the selected subset. Typically, one should not need point selection in trust-region methods because a small
number of points are used to develop a surrogate within each trust region. Point selection is most beneficial when
constructing with a large number of points, typically more than order one hundred, though this depends on the
number of variables and spacing of the sample points.

This differs from the point selection option of the Dakota GP which initially chooses a well-spaced
subset of points and finds the correlation parameters that are most likely for that one subset.

use derivatives

• Keywords Area

• method

• global evidence

• ego

• use derivatives

Use derivative data to construct surrogate models

Specification
Alias: none

Argument(s): none
Default: use function values only

6.2. METHOD 1115

Description
The use derivatives flag specifies that any available derivative information should be used in global approx-
imation builds, for those global surrogate types that support it (currently, polynomial regression and the Surfpack
Gaussian process).

However, it’s use with Surfpack Gaussian process is not recommended.

import points file

• Keywords Area

• method

• global evidence

• ego

• import points file

File containing variable values and corresponding responses

Specification
Alias: none

Argument(s): STRING
Default: no point import from a file

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional(Choose
One)

tabular format
(Group 1)

annotated Selects annotated
tabular file format

custom annotated Selects
custom-annotated
tabular file format

freeform Selects freeform
file format

Optional active only Import only active
variables from
tabular data file

Description
The import points file allows the user to specify a file that contains a list of variable values and the model
responses computed at those values. These can be used by a number of methods in place of model evaluations.
When used to construct surrogate models or emulators these are often called build points or training data.

Default Behavior
Be default, methods do not import points from a file.
Usage Tips
Dakota parses input files without regard to whitespace, but the import points file must be in one of three

formats:

1116 CHAPTER 6. KEYWORDS AREA

• annotated (default)

• custom annotated

• freeform

Examples
method

list_parameter_study
import_points_file = ’dakota_pstudy.3.dat’

annotated

• Keywords Area

• method

• global evidence

• ego

• import points file

• annotated

Selects annotated tabular file format

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Default: annotated format

Description
An annotated tabular file is a whitespace-separated text file with one leading header row of comments/column la-
bels. Each subsequent row contains an evaluation ID and interface ID, followed by data for variables, or variables
followed by responses, depending on context.

Default Behavior
By default, Dakota imports and exports tabular files in annotated format. The annotated keyword can be

used to explicitly specify this.
Usage Tips

• To specify pre-Dakota 6.1 tabular format, which did not include interface id, specify custom annotated
header eval id

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

6.2. METHOD 1117

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export an annotated top-level tabular data file containing a header row, leading eval id and interface id columns,
and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
annotated

Resulting tabular file:

%eval_id interface x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 NO_ID 0.9 1.1 0.0002 0.26 0.76
2 NO_ID 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 NO_ID 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

custom annotated

• Keywords Area

• method

• global evidence

• ego

• import points file

• custom annotated

Selects custom-annotated tabular file format

Topics

This keyword is related to the topics:

• file formats

Specification

Alias: none
Argument(s): none
Default: annotated format

1118 CHAPTER 6. KEYWORDS AREA

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional header Enable header row
in
custom-annotated
tabular file

Optional eval id Enable evaluation
ID column in
custom-annotated
tabular file

Optional interface id Enable interface
ID column in
custom-annotated
tabular file

Description
A custom-annotated tabular file is a whitespace-separated text file typically containing row data for variables, or
variables followed by responses, though the format is used for other tabular exports/imports as well. Custom-
annotated allows user options for whether header row, eval id column, and interface id column appear
in the tabular file, thus bridging freeform and (fully) annotated.

Default Behavior
The annotated format is the default for tabular export/import. To control which header row and columns

are in the input/output, specify custom annotated, followed by options, in the relevant export/import context.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export a custom-annotated tabular file in Dakota 6.0 format, which contained only header and eval id (no interface-
id), and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
custom_annotated header eval_id

Resulting tabular file:

%eval_id x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 0.9 1.1 0.0002 0.26 0.76
2 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

6.2. METHOD 1119

header

• Keywords Area

• method

• global evidence

• ego

• import points file

• custom annotated

• header

Enable header row in custom-annotated tabular file

Specification
Alias: none

Argument(s): none
Default: no header

Description
See description of parent custom annotated

eval id

• Keywords Area

• method

• global evidence

• ego

• import points file

• custom annotated

• eval id

Enable evaluation ID column in custom-annotated tabular file

Specification
Alias: none

Argument(s): none
Default: no eval id column

Description
See description of parent custom annotated

1120 CHAPTER 6. KEYWORDS AREA

interface id

• Keywords Area

• method

• global evidence

• ego

• import points file

• custom annotated

• interface id

Enable interface ID column in custom-annotated tabular file

Specification
Alias: none

Argument(s): none
Default: no interface id column

Description
See description of parent custom annotated

freeform

• Keywords Area

• method

• global evidence

• ego

• import points file

• freeform

Selects freeform file format

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Default: annotated format

6.2. METHOD 1121

Description
A freeform tabular file is whitespace-separated text file with no leading header row and no leading columns. Most
commonly, each row contains data for variables, or variables followed by responses, though the format is used for
other tabular exports/imports as well.

Default Behavior
The annotated format is the default for tabular export/import. To change this behavior, specify freeform

in the relevant export/import context.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• In freeform, the num rows x num cols total data entries may be separated with any whitespace including
spaces, tabs, and newlines. In this format, vectors may therefore appear as a single row or single column
(or mixture; entries will populate the vector in order).

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export a freeform tabular file containing only data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
freeform

Resulting tabular file:

0.9 1.1 0.0002 0.26 0.76
0.90009 1.1 0.0001996404857 0.2601620081 0.759955
0.89991 1.1 0.0002003604863 0.2598380081 0.760045

...

active only

• Keywords Area

• method

• global evidence

• ego

• import points file

• active only

Import only active variables from tabular data file

Topics
This keyword is related to the topics:

• file formats

1122 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): none

Description
By default, files for tabular data imports are expected to contain columns for all variables, active and inactive. The
keyword active only indicates that the file to import contains only the active variables.

This option should only be used in contexts where the inactive variables have no influence, for example,
building a surrogate over active variables, with the state variables held at nominal. It should not be used in more
complex nested contexts, where the values of inactive variables are relevant to the function evaluations used to
build the surrogate.

export points file

• Keywords Area

• method

• global evidence

• ego

• export points file

Output file for evaluations of a surrogate model

Specification
Alias: none

Argument(s): STRING
Default: no point export to a file

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional(Choose
One)

tabular format
(Group 1)

annotated Selects annotated
tabular file format

custom annotated Selects
custom-annotated
tabular file format

freeform Selects freeform
file format

Description
File of points (input variable values and predicted approximate outputs from the surrogate) evaluated on the
surrogate model. The export points contain test point values and the emulator predictions at these points.

Usage Tips
Dakota exports tabular data in one of three formats:

6.2. METHOD 1123

• annotated (default)

• custom annotated

• freeform

annotated

• Keywords Area

• method

• global evidence

• ego

• export points file

• annotated

Selects annotated tabular file format

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Default: annotated format

Description
An annotated tabular file is a whitespace-separated text file with one leading header row of comments/column la-
bels. Each subsequent row contains an evaluation ID and interface ID, followed by data for variables, or variables
followed by responses, depending on context.

Default Behavior
By default, Dakota imports and exports tabular files in annotated format. The annotated keyword can be

used to explicitly specify this.
Usage Tips

• To specify pre-Dakota 6.1 tabular format, which did not include interface id, specify custom annotated
header eval id

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

1124 CHAPTER 6. KEYWORDS AREA

Examples

Export an annotated top-level tabular data file containing a header row, leading eval id and interface id columns,
and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
annotated

Resulting tabular file:

%eval_id interface x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 NO_ID 0.9 1.1 0.0002 0.26 0.76
2 NO_ID 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 NO_ID 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

custom annotated

• Keywords Area

• method

• global evidence

• ego

• export points file

• custom annotated

Selects custom-annotated tabular file format

Topics

This keyword is related to the topics:

• file formats

Specification

Alias: none
Argument(s): none
Default: annotated format

6.2. METHOD 1125

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional header Enable header row
in
custom-annotated
tabular file

Optional eval id Enable evaluation
ID column in
custom-annotated
tabular file

Optional interface id Enable interface
ID column in
custom-annotated
tabular file

Description
A custom-annotated tabular file is a whitespace-separated text file typically containing row data for variables, or
variables followed by responses, though the format is used for other tabular exports/imports as well. Custom-
annotated allows user options for whether header row, eval id column, and interface id column appear
in the tabular file, thus bridging freeform and (fully) annotated.

Default Behavior
The annotated format is the default for tabular export/import. To control which header row and columns

are in the input/output, specify custom annotated, followed by options, in the relevant export/import context.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export a custom-annotated tabular file in Dakota 6.0 format, which contained only header and eval id (no interface-
id), and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
custom_annotated header eval_id

Resulting tabular file:

%eval_id x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 0.9 1.1 0.0002 0.26 0.76
2 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

1126 CHAPTER 6. KEYWORDS AREA

header

• Keywords Area

• method

• global evidence

• ego

• export points file

• custom annotated

• header

Enable header row in custom-annotated tabular file

Specification
Alias: none

Argument(s): none
Default: no header

Description
See description of parent custom annotated

eval id

• Keywords Area

• method

• global evidence

• ego

• export points file

• custom annotated

• eval id

Enable evaluation ID column in custom-annotated tabular file

Specification
Alias: none

Argument(s): none
Default: no eval id column

Description
See description of parent custom annotated

6.2. METHOD 1127

interface id

• Keywords Area

• method

• global evidence

• ego

• export points file

• custom annotated

• interface id

Enable interface ID column in custom-annotated tabular file

Specification
Alias: none

Argument(s): none
Default: no interface id column

Description
See description of parent custom annotated

freeform

• Keywords Area

• method

• global evidence

• ego

• export points file

• freeform

Selects freeform file format

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Default: annotated format

1128 CHAPTER 6. KEYWORDS AREA

Description
A freeform tabular file is whitespace-separated text file with no leading header row and no leading columns. Most
commonly, each row contains data for variables, or variables followed by responses, though the format is used for
other tabular exports/imports as well.

Default Behavior
The annotated format is the default for tabular export/import. To change this behavior, specify freeform

in the relevant export/import context.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• In freeform, the num rows x num cols total data entries may be separated with any whitespace including
spaces, tabs, and newlines. In this format, vectors may therefore appear as a single row or single column
(or mixture; entries will populate the vector in order).

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export a freeform tabular file containing only data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
freeform

Resulting tabular file:

0.9 1.1 0.0002 0.26 0.76
0.90009 1.1 0.0001996404857 0.2601620081 0.759955
0.89991 1.1 0.0002003604863 0.2598380081 0.760045

...

ea

• Keywords Area

• method

• global evidence

• ea

Use an evolutionary algorithm

Specification
Alias: none

Argument(s): none

6.2. METHOD 1129

Description
In this approach, the evolutionary algorithm from Coliny, coliny ea, is used to perform the interval optimiza-
tion with no surrogate model involved. Again, this option of ea can support interval optimization over discrete
variables.

lhs

• Keywords Area

• method

• global evidence

• lhs

Uses Latin Hypercube Sampling (LHS) to sample variables

Specification
Alias: none

Argument(s): none

Description
The lhs keyword invokes Latin Hypercube Sampling as the means of drawing samples of uncertain variables
according to their probability distributions. This is a stratified, space-filling approach that selects variable values
from a set of equi-probable bins.

Default Behavior
By default, Latin Hypercube Sampling is used. To explicitly specify this in the Dakota input file, however, the

lhs keyword must appear in conjunction with the sample type keyword.
Usage Tips
Latin Hypercube Sampling is very robust and can be applied to any problem. It is fairly effective at estimating

the mean of model responses and linear correlations with a reasonably small number of samples relative to the
number of variables.

Examples
method

sampling
sample_type lhs
samples = 20

response levels

• Keywords Area

• method

• global evidence

• response levels

Values at which to estimate desired statistics for each response

1130 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): REALLIST
Default: No CDF/CCDF probabilities/reliabilities to compute

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional num response -
levels

Number of values
at which to
estimate desired
statistics for each
response

Optional compute Selection of
statistics to
compute at each
response level

Description
The response levels specification provides the target response values for which to compute probabilities,
reliabilities, or generalized reliabilities (forward mapping).

Default Behavior
If response levels are not specified, no statistics will be computed. If they are, probabilities will be

computed by default.
Expected Outputs
The particular statistics reported for each response level depend on the method, and they include:

1. Reliabilities

2. CDF probabilities

3. CCDF probabilities

Usage Tips
The num response levels is used to specify which arguments of the response level correspond to

which response.

Examples
For example, specifying a response level of 52.3 followed with compute probabilities will result
in the calculation of the probability that the response value is less than or equal to 52.3, given the uncertain
distributions on the inputs.

For an example with multiple responses, the following specification

response_levels = 1. 2. .1 .2 .3 .4 10. 20. 30.
num_response_levels = 2 4 3

would assign the first two response levels (1., 2.) to response function 1, the next four response levels (.1, .2, .3,
.4) to response function 2, and the final three response levels (10., 20., 30.) to response function 3. If the num -
response levels key were omitted from this example, then the response levels would be evenly distributed
among the response functions (three levels each in this case).

6.2. METHOD 1131

Theory
Sets of response-probability pairs computed with the forward/inverse mappings define either a cumulative distri-
bution function (CDF) or a complementary cumulative distribution function (CCDF) for each response function.

In the case of evidence-based epistemic methods, this is generalized to define either cumulative belief and
plausibility functions (CBF and CPF) or complementary cumulative belief and plausibility functions (CCBF and
CCPF) for each response function.

A forward mapping involves computing the belief and plausibility probability level for a specified response
level.

num response levels

• Keywords Area

• method

• global evidence

• response levels

• num response levels

Number of values at which to estimate desired statistics for each response

Specification
Alias: none

Argument(s): INTEGERLIST
Default: response levels evenly distributed among response functions

Description
The num response levels keyword allows the user to specify the number of response values, for each re-
sponse, at which estimated statistics are of interest. Statistics that can be computed are probabilities and relia-
bilities, both according to either a cumulative distribution function or a complementary cumulative distribution
function.

Default Behavior
If num response levels is not specified, the response levels will be evenly distributed among the re-

sponses.
Expected Outputs
The specific output will be determined by the type of statistics that are specified. In a general sense, the output

will be a list of response level-statistic pairs that show the estimated value of the desired statistic for each response
level specified.

Examples
method

sampling
samples = 100
seed = 34785
num_response_levels = 1 1 1
response_levels = 0.5 0.5 0.5

1132 CHAPTER 6. KEYWORDS AREA

compute

• Keywords Area

• method

• global evidence

• response levels

• compute

Selection of statistics to compute at each response level

Specification
Alias: none

Argument(s): none
Default: probabilities

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 probabilities Computes
probabilities
associated with
response levels

gen reliabilities Computes
generalized
reliabilities
associated with
response levels

Optional system Compute system
reliability (series
or parallel)

Description
The compute keyword is used to select which forward stastical mapping is calculated at each response level.

Default Behavior
If response levels is not specified, no statistics are computed. If response levels is specified

but compute is not, probabilities will be computed by default. If both response levels and compute
are specified, then on of the following must be specified: probabilities, reliabilities, or gen -
reliabilities.

Expected Output
The type of statistics specified by compute will be reported for each response level.
Usage Tips
CDF/CCDF probabilities are calculated for specified response levels using a simple binning approach.
CDF/CCDF reliabilities are calculated for specified response levels by computing the number of sample stan-

dard deviations separating the sample mean from the response level.

6.2. METHOD 1133

Examples
method

sampling
sample_type random
samples = 100 seed = 1
complementary distribution
response_levels = 3.6e+11 4.0e+11 4.4e+11

6.0e+04 6.5e+04 7.0e+04
3.5e+05 4.0e+05 4.5e+05

compute reliabilities

probabilities

• Keywords Area

• method

• global evidence

• response levels

• compute

• probabilities

Computes probabilities associated with response levels

Specification
Alias: none

Argument(s): none

Description
The probabilities keyword directs Dakota to compute the probability that the model response will be below
(cumulative) or above (complementary cumulative) a specified response value. This is done for every response
level designated for each response.

Default Behavior
If response levels is specified, the probabilities are computed by default. To explicitly specify it in the

Dakota input file, though, the probabilities keyword should be specified in conjunction with the compute
keyword.

Expected Outputs
The Dakota output is a set of response level-probability pairs that give the probability that the model response

will be below or above the corresponding response level, depending on the distribution defined.

Examples
method

sampling
sample_type random
samples = 100 seed = 1
complementary distribution
response_levels = 3.6e+11 4.0e+11 4.4e+11

6.0e+04 6.5e+04 7.0e+04
3.5e+05 4.0e+05 4.5e+05

compute probabilities

1134 CHAPTER 6. KEYWORDS AREA

gen reliabilities

• Keywords Area

• method

• global evidence

• response levels

• compute

• gen reliabilities

Computes generalized reliabilities associated with response levels

Specification
Alias: none

Argument(s): none

Description
The gen reliabilities keyword directs Dakota to compute generalized reliabilities according to the speci-
fied distribution for a specified response value. This is done for every response level designated for each response.

Default Behavior
If response levels is specified, the generalized reliabilities are not computed by default. To change this

behavior, the gen reliabilities keyword should be specified in conjunction with the compute keyword.
Expected Outputs
The Dakota output is a set of response level-generalized reliability pairs according to the distribution defined.

Examples
method

sampling
sample_type random
samples = 100 seed = 1
complementary distribution
response_levels = 3.6e+11 4.0e+11 4.4e+11

6.0e+04 6.5e+04 7.0e+04
3.5e+05 4.0e+05 4.5e+05

compute gen_reliabilities

system

• Keywords Area

• method

• global evidence

• response levels

• compute

• system

Compute system reliability (series or parallel)

6.2. METHOD 1135

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 series Aggregate
response statistics
assuming a series
system

parallel Aggregate
response statistics
assuming a parallel
system

Description
With the system probability/reliability option, statistics for specified response levels are calculated and
reported assuming the response functions combine either in series or parallel to produce a total system response.

For a series system, the system fails when any one component (response) fails. The probability of failure is
the complement of the product of the individual response success probabilities.

For a parallel system, the system fails only when all components (responses) fail. The probability of failure is
the product of the individual response failure probabilities.

series

• Keywords Area

• method

• global evidence

• response levels

• compute

• system

• series

Aggregate response statistics assuming a series system

Specification
Alias: none

Argument(s): none

Description
See parent keyword system for description.

1136 CHAPTER 6. KEYWORDS AREA

parallel
• Keywords Area

• method

• global evidence

• response levels

• compute

• system

• parallel

Aggregate response statistics assuming a parallel system

Specification
Alias: none

Argument(s): none

Description
See parent keyword system for description.

distribution

• Keywords Area

• method

• global evidence

• distribution

Selection of cumulative or complementary cumulative functions

Specification
Alias: none

Argument(s): none
Default: cumulative (CDF)

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 cumulative Computes statistics
according to
cumulative
functions

complementary Computes statistics
according to
complementary
cumulative
functions

6.2. METHOD 1137

Description

The distribution keyword allows the user to select between a cumulative distribution/belief/plausibility
function and a complementary cumulative distribution/belief/plausibility function. This choice affects how prob-
abilities and reliability indices are reported.

Default Behavior
If the distribution keyword is present, it must be accompanied by either cumulative or complementary.

Otherwise, a cumulative distribution will be used by default.
Expected Outputs
Output will be a set of model response-probability pairs determined according to the choice of distribution.

The choice of distribution also defines the sign of the reliability or generalized reliability indices.

Examples
method

sampling
sample_type lhs
samples = 10
distribution cumulative

cumulative

• Keywords Area

• method

• global evidence

• distribution

• cumulative

Computes statistics according to cumulative functions

Specification

Alias: none
Argument(s): none

Description

Statistics on model responses will be computed according to a cumulative distribution/belief/plausibility function.
Default Behavior
By default, a cumulative distribution/belief/plausibility function will be used. To explicitly specify it in the

Dakota input file, however, the cumulative keyword must be appear in conjunction with the distribution
keyword.

Expected Outputs
Output will be a set of model response-probability pairs determined according to a cumulative distribu-

tion/belief/plausibility function. The probabilities reported are the probabilities that the model response falls
below given response threshholds.

1138 CHAPTER 6. KEYWORDS AREA

Examples
method

sampling
sample_type lhs
samples = 10
distribution cumulative

complementary

• Keywords Area

• method

• global evidence

• distribution

• complementary

Computes statistics according to complementary cumulative functions

Specification
Alias: none

Argument(s): none

Description
Statistics on model responses will be computed according to a complementary cumulative distribution/belief/plausibility
function.

Default Behavior
By default, a complementary cumulative distribution/belief/plausibility function will not be used. To change

that behavior, the complementary keyword must be appear in conjunction with the distribution keyword.
Expected Outputs
Output will be a set of model response-probability pairs determined according to a complementary cumulative

distribution/belief/plausibility function. The probabilities reported are the probabilities that the model response
falls above given response threshholds.

Examples
method

sampling
sample_type lhs
samples = 10
distribution complementary

probability levels

• Keywords Area

• method

• global evidence

• probability levels

Specify probability levels at which to estimate the corresponding response value

6.2. METHOD 1139

Specification
Alias: none

Argument(s): REALLIST
Default: No CDF/CCDF response levels to compute

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional num probability -
levels

Specify which
probability -
levels
correspond to
which response

Description
Response levels are calculated for specified CDF/CCDF probabilities by indexing into a sorted samples array (the
response levels computed are not interpolated and will correspond to one of the sampled values).

Theory
Sets of response-probability pairs computed with the forward/inverse mappings define either a cumulative distri-
bution function (CDF) or a complementary cumulative distribution function (CCDF) for each response function.

In the case of evidence-based epistemic methods, this is generalized to define either cumulative belief and
plausibility functions (CBF and CPF) or complementary cumulative belief and plausibility functions (CCBF and
CCPF) for each response function.

An inverse mapping involves computing the belief and plausibility response level for either a specified prob-
ability level or a specified generalized reliability level (two results for each level mapping in the evidence-based
epistemic case, instead of the one result for each level mapping in the aleatory case).

num probability levels

• Keywords Area

• method

• global evidence

• probability levels

• num probability levels

Specify which probability levels correspond to which response

Specification
Alias: none

Argument(s): INTEGERLIST
Default: probability levels evenly distributed among response functions

Description
See parent page

1140 CHAPTER 6. KEYWORDS AREA

gen reliability levels

• Keywords Area

• method

• global evidence

• gen reliability levels

Specify generalized relability levels at which to estimate the corresponding response value

Specification
Alias: none

Argument(s): REALLIST
Default: No CDF/CCDF response levels to compute

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional num gen -
reliability levels

Specify which
gen -
reliability -
levels
correspond to
which response

Description
Response levels are calculated for specified generalized reliabilities by indexing into a sorted samples array (the
response levels computed are not interpolated and will correspond to one of the sampled values).

Theory
Sets of response-probability pairs computed with the forward/inverse mappings define either a cumulative distri-
bution function (CDF) or a complementary cumulative distribution function (CCDF) for each response function.

In the case of evidence-based epistemic methods, this is generalized to define either cumulative belief and
plausibility functions (CBF and CPF) or complementary cumulative belief and plausibility functions (CCBF and
CCPF) for each response function.

An inverse mapping involves computing the belief and plausibility response level for either a specified prob-
ability level or a specified generalized reliability level (two results for each level mapping in the evidence-based
epistemic case, instead of the one result for each level mapping in the aleatory case).

num gen reliability levels

• Keywords Area

• method

• global evidence

• gen reliability levels

• num gen reliability levels

Specify which gen reliability levels correspond to which response

6.2. METHOD 1141

Specification

Alias: none
Argument(s): INTEGERLIST
Default: gen reliability levels evenly distributed among response functions

Description

See parent page

rng

• Keywords Area

• method

• global evidence

• rng

Selection of a random number generator

Specification

Alias: none
Argument(s): none
Default: Mersenne twister (mt19937)

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 mt19937 Generates random
numbers using the
Mersenne twister

rnum2 Generates
pseudo-random
numbers using the
Pecos package

Description

The rng keyword is used to indicate a choice of random number generator.
Default Behavior
If specified, the rng keyword must be accompanied by either rnum2 (pseudo-random numbers) or mt19937

(random numbers generated by the Mersenne twister). Otherwise, mt19937, the Mersenne twister is used by
default.

Usage Tips
The default is recommended, as the Mersenne twister is a higher quality random number generator.

1142 CHAPTER 6. KEYWORDS AREA

Examples
method

sampling
sample_type lhs
samples = 10
seed = 98765
rng rnum2

mt19937

• Keywords Area

• method

• global evidence

• rng

• mt19937

Generates random numbers using the Mersenne twister

Specification
Alias: none

Argument(s): none

Description
The mt19937 keyword directs Dakota to use the Mersenne twister to generate random numbers. Additional
information can be found on wikipedia: http://en.wikipedia.org/wiki/Mersenne twister.

Default Behavior
mt19937 is the default random number generator. To specify it explicitly in the Dakota input file, however,

it must be specified in conjuction with the rng keyword.
Usage Tips
Use of the Mersenne twister random number generator (mt19937) is recommended.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 98765
rng mt19937

rnum2

• Keywords Area

• method

• global evidence

• rng

http://en.wikipedia.org/wiki/Mersenne_twister

6.2. METHOD 1143

• rnum2

Generates pseudo-random numbers using the Pecos package

Specification
Alias: none

Argument(s): none

Description
The rnum2 keyword directs Dakota to use pseudo-random numbers generated by the Pecos package.

Default Behavior
rnum2 is not used by default. To change this behavior, it must be specified in conjuction with the rng

keyword.
Usage Tips
Use of the Mersenne twister random number generator (mt19937) is recommended over rnum2.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 98765
rng rnum2

samples

• Keywords Area

• method

• global evidence

• samples

Number of samples for sampling-based methods

Specification
Alias: none

Argument(s): INTEGER
Default: method-dependent

Description
The samples keyword is used to define the number of samples (i.e., randomly chosen sets of variable values) at
which to execute a model.

Default Behavior
By default, Dakota will use the minimum number of samples required by the chosen method.
Usage Tips

1144 CHAPTER 6. KEYWORDS AREA

To obtain linear sensitivities or to construct a linear response surface, at least dim+1 samples should be used,
where ”dim” is the number of variables. For sensitivities to quadratic terms or quadratic response surfaces, at least
(dim+1)(dim+2)/2 samples are needed. For uncertainty quantification, we recommend at least 10∗dim samples.
For variance based decomp, we recommend hundreds to thousands of samples. Note that for variance-
based decomp, the number of simulations performed will be N∗(dim+2).

Examples
method

sampling
sample_type lhs
samples = 20

seed

• Keywords Area

• method

• global evidence

• seed

Seed of the random number generator

Specification
Alias: none

Argument(s): INTEGER
Default: system-generated (non-repeatable)

Description
The random seed control provides a mechanism for making a stochastic method repeatable. That is, the use of
the same random seed in identical studies will generate identical results.

Default Behavior
If not specified, the seed is randomly generated.
Expected Output
If seed is specified, a stochastic study will generate identical results when repeated using the same seed

value. Otherwise, results are not guaranteed to be the same.
Usage Tips
If a stochastic study was run without seed specified, and the user later wishes to repeat the study using the

same seed, the value of the seed used in the original study can be found in the output Dakota prints to the screen.
That value can then be added to the Dakota input file.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 15347

6.2. METHOD 1145

model pointer

• Keywords Area

• method

• global evidence

• model pointer

Identifier for model block to be used by a method

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

Description
The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

1146 CHAPTER 6. KEYWORDS AREA

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses
response_functions = 3
no_gradients
no_hessians

6.2.60 global interval est
• Keywords Area

• method

• global interval est

Interval analysis using global optimization methods

Topics
This keyword is related to the topics:

• uncertainty quantification

• epistemic uncertainty quantification methods

• interval estimation

Specification
Alias: nond global interval est

Argument(s): none

6.2. METHOD 1147

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional(Choose
One)

Group 1

sbo Use the surrogate
based optimization
method

ego Use the Efficient
Global
Optimization
method

ea Use an
evolutionary
algorithm

lhs Uses Latin
Hypercube
Sampling (LHS) to
sample variables

Optional rng Selection of a
random number
generator

Optional samples Number of
samples for
sampling-based
methods

Optional seed Seed of the random
number generator

Optional model pointer Identifier for
model block to be
used by a method

Description
In the global approach to interval estimation, one uses either a global optimization method or a sampling method
to assess the bounds of the responses.

global interval est allows the user to specify several approaches to calculate interval bounds on the
output responses.

• lhs - note: this takes the minimum and maximum of the samples as the bounds

• ego

• sbo

• ea

Additional Resources
Refer to variable support for information on supported variable types.

1148 CHAPTER 6. KEYWORDS AREA

See Also
These keywords may also be of interest:

• global evidence

• local evidence

• local interval est

sbo

• Keywords Area

• method

• global interval est

• sbo

Use the surrogate based optimization method

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional gaussian process Gaussian Process
surrogate model

Optional use derivatives Use derivative data
to construct
surrogate models

Optional import points file File containing
variable values and
corresponding
responses

Optional export points file Output file for
evaluations of a
surrogate model

Description
A surrogate-based optimization method will be used. The surrogate employed in sbo is a Gaussian process
surrogate.

The main difference between ego and the sbo approach is the objective function being optimized. ego relies
on an expected improvement function, while in sbo, the optimization proceeds using an evolutionary algorithm
(coliny ea) on the Gaussian process surrogate: it is a standard surrogate-based optimization. Also note that the
sbo option can support optimization over discrete variables (the discrete variables are relaxed) while ego cannot.

This is not the same as surrogate based global.

6.2. METHOD 1149

gaussian process

• Keywords Area

• method

• global interval est

• sbo

• gaussian process

Gaussian Process surrogate model

Specification
Alias: kriging

Argument(s): none
Default: Surfpack Gaussian process

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 surfpack Use the Surfpack
version of
Gaussian Process
surrogates

dakota Select the built in
Gaussian Process
surrogate

Description
Use the Gaussian process (GP) surrogate from Surfpack, which is specified using the surfpack keyword.

An alternate version of GP surrogates was available in prior versions of Dakota. For now, both versions are
supported but the dakota version is deprecated and intended to be removed in a future release.

surfpack

• Keywords Area

• method

• global interval est

• sbo

• gaussian process

• surfpack

Use the Surfpack version of Gaussian Process surrogates

Specification
Alias: none

Argument(s): none

1150 CHAPTER 6. KEYWORDS AREA

Description
This keyword specifies the use of the Gaussian process that is incorporated in our surface fitting library called
Surfpack.

Several user options are available:

1. Optimization methods:

Maximum Likelihood Estimation (MLE) is used to find the optimal values of the hyper-parameters gov-
erning the trend and correlation functions. By default the global optimization method DIRECT is used for
MLE, but other options for the optimization method are available. See optimization method.

The total number of evaluations of the likelihood function can be controlled using the max trials key-
word followed by a positive integer. Note that the likelihood function does not require running the ”truth”
model, and is relatively inexpensive to compute.

2. Trend Function:

The GP models incorporate a parametric trend function whose purpose is to capture large-scale variations.
See trend.

3. Correlation Lengths:

Correlation lengths are usually optimized by Surfpack, however, the user can specify the lengths manually.
See correlation lengths.

4. Ill-conditioning

One of the major problems in determining the governing values for a Gaussian process or Kriging model is
the fact that the correlation matrix can easily become ill-conditioned when there are too many input points
close together. Since the predictions from the Gaussian process model involve inverting the correlation
matrix, ill-conditioning can lead to poor predictive capability and should be avoided.

Note that a sufficiently bad sample design could require correlation lengths to be so short that any interpo-
latory GP model would become inept at extrapolation and interpolation.

The surfpack model handles ill-conditioning internally by default, but behavior can be modified using

5. Gradient Enhanced Kriging (GEK).

The use derivatives keyword will cause the Surfpack GP to be constructed from a combination of
function value and gradient information (if available).

See notes in the Theory section.

Theory
Gradient Enhanced Kriging

Incorporating gradient information will only be beneficial if accurate and inexpensive derivative information
is available, and the derivatives are not infinite or nearly so. Here ”inexpensive” means that the cost of evaluating a
function value plus gradient is comparable to the cost of evaluating only the function value, for example gradients
computed by analytical, automatic differentiation, or continuous adjoint techniques. It is not cost effective to use
derivatives computed by finite differences. In tests, GEK models built from finite difference derivatives were also
significantly less accurate than those built from analytical derivatives. Note that GEK’s correlation matrix tends
to have a significantly worse condition number than Kriging for the same sample design.

This issue was addressed by using a pivoted Cholesky factorization of Kriging’s correlation matrix (which is a
small sub-matrix within GEK’s correlation matrix) to rank points by how much unique information they contain.
This reordering is then applied to whole points (the function value at a point immediately followed by gradient

6.2. METHOD 1151

information at the same point) in GEK’s correlation matrix. A standard non-pivoted Cholesky is then applied to the
reordered GEK correlation matrix and a bisection search is used to find the last equation that meets the constraint
on the (estimate of) condition number. The cost of performing pivoted Cholesky on Kriging’s correlation matrix
is usually negligible compared to the cost of the non-pivoted Cholesky factorization of GEK’s correlation matrix.
In tests, it also resulted in more accurate GEK models than when pivoted Cholesky or whole-point-block pivoted
Cholesky was performed on GEK’s correlation matrix.

dakota

• Keywords Area

• method

• global interval est

• sbo

• gaussian process

• dakota

Select the built in Gaussian Process surrogate

Specification

Alias: none
Argument(s): none

Description

A second version of GP surrogates was available in prior versions of Dakota. For now, both versions are
supported but the dakota version is deprecated and intended to be removed in a future release.

Historically these models were drastically different, but in Dakota 5.1, they became quite similar. They now
differ in that the Surfpack GP has a richer set of features/options and tends to be more accurate than the Dakota
version. Due to how the Surfpack GP handles ill-conditioned correlation matrices (which significantly contributes
to its greater accuracy), the Surfpack GP can be a factor of two or three slower than Dakota’s. As of Dakota
5.2, the Surfpack implementation is the default in all contexts except Bayesian calibration.

More details on the gaussian process dakota model can be found in[58].
Dakota’s GP deals with ill-conditioning in two ways. First, when it encounters a non-invertible correlation

matrix it iteratively increases the size of a ”nugget,” but in such cases the resulting approximation smooths rather
than interpolates the data. Second, it has a point selection option (default off) that uses a greedy algorithm
to select a well-spaced subset of points prior to the construction of the GP. In this case, the GP will only interpo-
late the selected subset. Typically, one should not need point selection in trust-region methods because a small
number of points are used to develop a surrogate within each trust region. Point selection is most beneficial when
constructing with a large number of points, typically more than order one hundred, though this depends on the
number of variables and spacing of the sample points.

This differs from the point selection option of the Dakota GP which initially chooses a well-spaced
subset of points and finds the correlation parameters that are most likely for that one subset.

1152 CHAPTER 6. KEYWORDS AREA

use derivatives

• Keywords Area

• method

• global interval est

• sbo

• use derivatives

Use derivative data to construct surrogate models

Specification
Alias: none

Argument(s): none
Default: use function values only

Description
The use derivatives flag specifies that any available derivative information should be used in global approx-
imation builds, for those global surrogate types that support it (currently, polynomial regression and the Surfpack
Gaussian process).

However, it’s use with Surfpack Gaussian process is not recommended.

import points file

• Keywords Area

• method

• global interval est

• sbo

• import points file

File containing variable values and corresponding responses

Specification
Alias: none

Argument(s): STRING
Default: no point import from a file

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional(Choose
One)

tabular format
(Group 1)

annotated Selects annotated
tabular file format

6.2. METHOD 1153

custom annotated Selects
custom-annotated
tabular file format

freeform Selects freeform
file format

Optional active only Import only active
variables from
tabular data file

Description
The import points file allows the user to specify a file that contains a list of variable values and the model
responses computed at those values. These can be used by a number of methods in place of model evaluations.
When used to construct surrogate models or emulators these are often called build points or training data.

Default Behavior
Be default, methods do not import points from a file.
Usage Tips
Dakota parses input files without regard to whitespace, but the import points file must be in one of three

formats:

• annotated (default)

• custom annotated

• freeform

Examples
method

list_parameter_study
import_points_file = ’dakota_pstudy.3.dat’

annotated

• Keywords Area

• method

• global interval est

• sbo

• import points file

• annotated

Selects annotated tabular file format

Topics
This keyword is related to the topics:

• file formats

1154 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): none
Default: annotated format

Description
An annotated tabular file is a whitespace-separated text file with one leading header row of comments/column la-
bels. Each subsequent row contains an evaluation ID and interface ID, followed by data for variables, or variables
followed by responses, depending on context.

Default Behavior
By default, Dakota imports and exports tabular files in annotated format. The annotated keyword can be

used to explicitly specify this.
Usage Tips

• To specify pre-Dakota 6.1 tabular format, which did not include interface id, specify custom annotated
header eval id

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export an annotated top-level tabular data file containing a header row, leading eval id and interface id columns,
and data for variables and responses. Input file fragment:
environment

tabular_data
tabular_data_file = ’dakota_summary.dat’
annotated

Resulting tabular file:
%eval_id interface x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 NO_ID 0.9 1.1 0.0002 0.26 0.76
2 NO_ID 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 NO_ID 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

custom annotated

• Keywords Area

• method

• global interval est

• sbo

• import points file

• custom annotated

Selects custom-annotated tabular file format

6.2. METHOD 1155

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Default: annotated format

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional header Enable header row
in
custom-annotated
tabular file

Optional eval id Enable evaluation
ID column in
custom-annotated
tabular file

Optional interface id Enable interface
ID column in
custom-annotated
tabular file

Description
A custom-annotated tabular file is a whitespace-separated text file typically containing row data for variables, or
variables followed by responses, though the format is used for other tabular exports/imports as well. Custom-
annotated allows user options for whether header row, eval id column, and interface id column appear
in the tabular file, thus bridging freeform and (fully) annotated.

Default Behavior
The annotated format is the default for tabular export/import. To control which header row and columns

are in the input/output, specify custom annotated, followed by options, in the relevant export/import context.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export a custom-annotated tabular file in Dakota 6.0 format, which contained only header and eval id (no interface-
id), and data for variables and responses. Input file fragment:

1156 CHAPTER 6. KEYWORDS AREA

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
custom_annotated header eval_id

Resulting tabular file:

%eval_id x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 0.9 1.1 0.0002 0.26 0.76
2 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

header

• Keywords Area

• method

• global interval est

• sbo

• import points file

• custom annotated

• header

Enable header row in custom-annotated tabular file

Specification
Alias: none

Argument(s): none
Default: no header

Description
See description of parent custom annotated

eval id

• Keywords Area

• method

• global interval est

• sbo

• import points file

• custom annotated

• eval id

Enable evaluation ID column in custom-annotated tabular file

6.2. METHOD 1157

Specification
Alias: none

Argument(s): none
Default: no eval id column

Description
See description of parent custom annotated

interface id

• Keywords Area

• method

• global interval est

• sbo

• import points file

• custom annotated

• interface id

Enable interface ID column in custom-annotated tabular file

Specification
Alias: none

Argument(s): none
Default: no interface id column

Description
See description of parent custom annotated

freeform

• Keywords Area

• method

• global interval est

• sbo

• import points file

• freeform

Selects freeform file format

1158 CHAPTER 6. KEYWORDS AREA

Topics

This keyword is related to the topics:

• file formats

Specification

Alias: none
Argument(s): none
Default: annotated format

Description

A freeform tabular file is whitespace-separated text file with no leading header row and no leading columns. Most
commonly, each row contains data for variables, or variables followed by responses, though the format is used for
other tabular exports/imports as well.

Default Behavior
The annotated format is the default for tabular export/import. To change this behavior, specify freeform

in the relevant export/import context.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• In freeform, the num rows x num cols total data entries may be separated with any whitespace including
spaces, tabs, and newlines. In this format, vectors may therefore appear as a single row or single column
(or mixture; entries will populate the vector in order).

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export a freeform tabular file containing only data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
freeform

Resulting tabular file:

0.9 1.1 0.0002 0.26 0.76
0.90009 1.1 0.0001996404857 0.2601620081 0.759955
0.89991 1.1 0.0002003604863 0.2598380081 0.760045

...

6.2. METHOD 1159

active only

• Keywords Area

• method

• global interval est

• sbo

• import points file

• active only

Import only active variables from tabular data file

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none

Description
By default, files for tabular data imports are expected to contain columns for all variables, active and inactive. The
keyword active only indicates that the file to import contains only the active variables.

This option should only be used in contexts where the inactive variables have no influence, for example,
building a surrogate over active variables, with the state variables held at nominal. It should not be used in more
complex nested contexts, where the values of inactive variables are relevant to the function evaluations used to
build the surrogate.

export points file

• Keywords Area

• method

• global interval est

• sbo

• export points file

Output file for evaluations of a surrogate model

Specification
Alias: none

Argument(s): STRING
Default: no point export to a file

1160 CHAPTER 6. KEYWORDS AREA

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional(Choose
One)

tabular format
(Group 1)

annotated Selects annotated
tabular file format

custom annotated Selects
custom-annotated
tabular file format

freeform Selects freeform
file format

Description
File of points (input variable values and predicted approximate outputs from the surrogate) evaluated on the
surrogate model. The export points contain test point values and the emulator predictions at these points.

Usage Tips
Dakota exports tabular data in one of three formats:

• annotated (default)

• custom annotated

• freeform

annotated

• Keywords Area

• method

• global interval est

• sbo

• export points file

• annotated

Selects annotated tabular file format

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Default: annotated format

6.2. METHOD 1161

Description

An annotated tabular file is a whitespace-separated text file with one leading header row of comments/column la-
bels. Each subsequent row contains an evaluation ID and interface ID, followed by data for variables, or variables
followed by responses, depending on context.

Default Behavior
By default, Dakota imports and exports tabular files in annotated format. The annotated keyword can be

used to explicitly specify this.
Usage Tips

• To specify pre-Dakota 6.1 tabular format, which did not include interface id, specify custom annotated
header eval id

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export an annotated top-level tabular data file containing a header row, leading eval id and interface id columns,
and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
annotated

Resulting tabular file:

%eval_id interface x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 NO_ID 0.9 1.1 0.0002 0.26 0.76
2 NO_ID 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 NO_ID 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

custom annotated

• Keywords Area

• method

• global interval est

• sbo

• export points file

• custom annotated

Selects custom-annotated tabular file format

1162 CHAPTER 6. KEYWORDS AREA

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Default: annotated format

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional header Enable header row
in
custom-annotated
tabular file

Optional eval id Enable evaluation
ID column in
custom-annotated
tabular file

Optional interface id Enable interface
ID column in
custom-annotated
tabular file

Description
A custom-annotated tabular file is a whitespace-separated text file typically containing row data for variables, or
variables followed by responses, though the format is used for other tabular exports/imports as well. Custom-
annotated allows user options for whether header row, eval id column, and interface id column appear
in the tabular file, thus bridging freeform and (fully) annotated.

Default Behavior
The annotated format is the default for tabular export/import. To control which header row and columns

are in the input/output, specify custom annotated, followed by options, in the relevant export/import context.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export a custom-annotated tabular file in Dakota 6.0 format, which contained only header and eval id (no interface-
id), and data for variables and responses. Input file fragment:

6.2. METHOD 1163

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
custom_annotated header eval_id

Resulting tabular file:

%eval_id x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 0.9 1.1 0.0002 0.26 0.76
2 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

header

• Keywords Area

• method

• global interval est

• sbo

• export points file

• custom annotated

• header

Enable header row in custom-annotated tabular file

Specification
Alias: none

Argument(s): none
Default: no header

Description
See description of parent custom annotated

eval id

• Keywords Area

• method

• global interval est

• sbo

• export points file

• custom annotated

• eval id

Enable evaluation ID column in custom-annotated tabular file

1164 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): none
Default: no eval id column

Description
See description of parent custom annotated

interface id

• Keywords Area

• method

• global interval est

• sbo

• export points file

• custom annotated

• interface id

Enable interface ID column in custom-annotated tabular file

Specification
Alias: none

Argument(s): none
Default: no interface id column

Description
See description of parent custom annotated

freeform

• Keywords Area

• method

• global interval est

• sbo

• export points file

• freeform

Selects freeform file format

6.2. METHOD 1165

Topics

This keyword is related to the topics:

• file formats

Specification

Alias: none
Argument(s): none
Default: annotated format

Description

A freeform tabular file is whitespace-separated text file with no leading header row and no leading columns. Most
commonly, each row contains data for variables, or variables followed by responses, though the format is used for
other tabular exports/imports as well.

Default Behavior
The annotated format is the default for tabular export/import. To change this behavior, specify freeform

in the relevant export/import context.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• In freeform, the num rows x num cols total data entries may be separated with any whitespace including
spaces, tabs, and newlines. In this format, vectors may therefore appear as a single row or single column
(or mixture; entries will populate the vector in order).

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export a freeform tabular file containing only data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
freeform

Resulting tabular file:

0.9 1.1 0.0002 0.26 0.76
0.90009 1.1 0.0001996404857 0.2601620081 0.759955
0.89991 1.1 0.0002003604863 0.2598380081 0.760045

...

1166 CHAPTER 6. KEYWORDS AREA

ego

• Keywords Area

• method

• global interval est

• ego

Use the Efficient Global Optimization method

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional gaussian process Gaussian Process
surrogate model

Optional use derivatives Use derivative data
to construct
surrogate models

Optional import points file File containing
variable values and
corresponding
responses

Optional export points file Output file for
evaluations of a
surrogate model

Description
In the case of ego, the efficient global optimization (EGO) method is used to calculate bounds. By default,
the Surfpack GP (Kriging) model is used, but the Dakota implementation may be selected instead. If use -
derivatives is specified the GP model will be built using available derivative data (Surfpack GP only).

See efficient global for more information.

gaussian process

• Keywords Area

• method

• global interval est

• ego

• gaussian process

Gaussian Process surrogate model

6.2. METHOD 1167

Specification
Alias: kriging

Argument(s): none
Default: Surfpack Gaussian process

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 surfpack Use the Surfpack
version of
Gaussian Process
surrogates

dakota Select the built in
Gaussian Process
surrogate

Description
Use the Gaussian process (GP) surrogate from Surfpack, which is specified using the surfpack keyword.

An alternate version of GP surrogates was available in prior versions of Dakota. For now, both versions are
supported but the dakota version is deprecated and intended to be removed in a future release.

surfpack

• Keywords Area

• method

• global interval est

• ego

• gaussian process

• surfpack

Use the Surfpack version of Gaussian Process surrogates

Specification
Alias: none

Argument(s): none

Description
This keyword specifies the use of the Gaussian process that is incorporated in our surface fitting library called
Surfpack.

Several user options are available:

1. Optimization methods:

Maximum Likelihood Estimation (MLE) is used to find the optimal values of the hyper-parameters gov-
erning the trend and correlation functions. By default the global optimization method DIRECT is used for
MLE, but other options for the optimization method are available. See optimization method.

1168 CHAPTER 6. KEYWORDS AREA

The total number of evaluations of the likelihood function can be controlled using the max trials key-
word followed by a positive integer. Note that the likelihood function does not require running the ”truth”
model, and is relatively inexpensive to compute.

2. Trend Function:

The GP models incorporate a parametric trend function whose purpose is to capture large-scale variations.
See trend.

3. Correlation Lengths:

Correlation lengths are usually optimized by Surfpack, however, the user can specify the lengths manually.
See correlation lengths.

4. Ill-conditioning

One of the major problems in determining the governing values for a Gaussian process or Kriging model is
the fact that the correlation matrix can easily become ill-conditioned when there are too many input points
close together. Since the predictions from the Gaussian process model involve inverting the correlation
matrix, ill-conditioning can lead to poor predictive capability and should be avoided.

Note that a sufficiently bad sample design could require correlation lengths to be so short that any interpo-
latory GP model would become inept at extrapolation and interpolation.

The surfpack model handles ill-conditioning internally by default, but behavior can be modified using

5. Gradient Enhanced Kriging (GEK).

The use derivatives keyword will cause the Surfpack GP to be constructed from a combination of
function value and gradient information (if available).

See notes in the Theory section.

Theory

Gradient Enhanced Kriging
Incorporating gradient information will only be beneficial if accurate and inexpensive derivative information

is available, and the derivatives are not infinite or nearly so. Here ”inexpensive” means that the cost of evaluating a
function value plus gradient is comparable to the cost of evaluating only the function value, for example gradients
computed by analytical, automatic differentiation, or continuous adjoint techniques. It is not cost effective to use
derivatives computed by finite differences. In tests, GEK models built from finite difference derivatives were also
significantly less accurate than those built from analytical derivatives. Note that GEK’s correlation matrix tends
to have a significantly worse condition number than Kriging for the same sample design.

This issue was addressed by using a pivoted Cholesky factorization of Kriging’s correlation matrix (which is a
small sub-matrix within GEK’s correlation matrix) to rank points by how much unique information they contain.
This reordering is then applied to whole points (the function value at a point immediately followed by gradient
information at the same point) in GEK’s correlation matrix. A standard non-pivoted Cholesky is then applied to the
reordered GEK correlation matrix and a bisection search is used to find the last equation that meets the constraint
on the (estimate of) condition number. The cost of performing pivoted Cholesky on Kriging’s correlation matrix
is usually negligible compared to the cost of the non-pivoted Cholesky factorization of GEK’s correlation matrix.
In tests, it also resulted in more accurate GEK models than when pivoted Cholesky or whole-point-block pivoted
Cholesky was performed on GEK’s correlation matrix.

6.2. METHOD 1169

dakota

• Keywords Area

• method

• global interval est

• ego

• gaussian process

• dakota

Select the built in Gaussian Process surrogate

Specification
Alias: none

Argument(s): none

Description
A second version of GP surrogates was available in prior versions of Dakota. For now, both versions are
supported but the dakota version is deprecated and intended to be removed in a future release.

Historically these models were drastically different, but in Dakota 5.1, they became quite similar. They now
differ in that the Surfpack GP has a richer set of features/options and tends to be more accurate than the Dakota
version. Due to how the Surfpack GP handles ill-conditioned correlation matrices (which significantly contributes
to its greater accuracy), the Surfpack GP can be a factor of two or three slower than Dakota’s. As of Dakota
5.2, the Surfpack implementation is the default in all contexts except Bayesian calibration.

More details on the gaussian process dakota model can be found in[58].
Dakota’s GP deals with ill-conditioning in two ways. First, when it encounters a non-invertible correlation

matrix it iteratively increases the size of a ”nugget,” but in such cases the resulting approximation smooths rather
than interpolates the data. Second, it has a point selection option (default off) that uses a greedy algorithm
to select a well-spaced subset of points prior to the construction of the GP. In this case, the GP will only interpo-
late the selected subset. Typically, one should not need point selection in trust-region methods because a small
number of points are used to develop a surrogate within each trust region. Point selection is most beneficial when
constructing with a large number of points, typically more than order one hundred, though this depends on the
number of variables and spacing of the sample points.

This differs from the point selection option of the Dakota GP which initially chooses a well-spaced
subset of points and finds the correlation parameters that are most likely for that one subset.

use derivatives

• Keywords Area

• method

• global interval est

• ego

• use derivatives

Use derivative data to construct surrogate models

1170 CHAPTER 6. KEYWORDS AREA

Specification

Alias: none
Argument(s): none
Default: use function values only

Description

The use derivatives flag specifies that any available derivative information should be used in global approx-
imation builds, for those global surrogate types that support it (currently, polynomial regression and the Surfpack
Gaussian process).

However, it’s use with Surfpack Gaussian process is not recommended.

import points file

• Keywords Area

• method

• global interval est

• ego

• import points file

File containing variable values and corresponding responses

Specification

Alias: none
Argument(s): STRING
Default: no point import from a file

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional(Choose
One)

tabular format
(Group 1)

annotated Selects annotated
tabular file format

custom annotated Selects
custom-annotated
tabular file format

freeform Selects freeform
file format

Optional active only Import only active
variables from
tabular data file

6.2. METHOD 1171

Description

The import points file allows the user to specify a file that contains a list of variable values and the model
responses computed at those values. These can be used by a number of methods in place of model evaluations.
When used to construct surrogate models or emulators these are often called build points or training data.

Default Behavior
Be default, methods do not import points from a file.
Usage Tips
Dakota parses input files without regard to whitespace, but the import points file must be in one of three

formats:

• annotated (default)

• custom annotated

• freeform

Examples
method

list_parameter_study
import_points_file = ’dakota_pstudy.3.dat’

annotated

• Keywords Area

• method

• global interval est

• ego

• import points file

• annotated

Selects annotated tabular file format

Topics

This keyword is related to the topics:

• file formats

Specification

Alias: none
Argument(s): none
Default: annotated format

1172 CHAPTER 6. KEYWORDS AREA

Description

An annotated tabular file is a whitespace-separated text file with one leading header row of comments/column la-
bels. Each subsequent row contains an evaluation ID and interface ID, followed by data for variables, or variables
followed by responses, depending on context.

Default Behavior
By default, Dakota imports and exports tabular files in annotated format. The annotated keyword can be

used to explicitly specify this.
Usage Tips

• To specify pre-Dakota 6.1 tabular format, which did not include interface id, specify custom annotated
header eval id

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export an annotated top-level tabular data file containing a header row, leading eval id and interface id columns,
and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
annotated

Resulting tabular file:

%eval_id interface x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 NO_ID 0.9 1.1 0.0002 0.26 0.76
2 NO_ID 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 NO_ID 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

custom annotated

• Keywords Area

• method

• global interval est

• ego

• import points file

• custom annotated

Selects custom-annotated tabular file format

6.2. METHOD 1173

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Default: annotated format

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional header Enable header row
in
custom-annotated
tabular file

Optional eval id Enable evaluation
ID column in
custom-annotated
tabular file

Optional interface id Enable interface
ID column in
custom-annotated
tabular file

Description
A custom-annotated tabular file is a whitespace-separated text file typically containing row data for variables, or
variables followed by responses, though the format is used for other tabular exports/imports as well. Custom-
annotated allows user options for whether header row, eval id column, and interface id column appear
in the tabular file, thus bridging freeform and (fully) annotated.

Default Behavior
The annotated format is the default for tabular export/import. To control which header row and columns

are in the input/output, specify custom annotated, followed by options, in the relevant export/import context.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export a custom-annotated tabular file in Dakota 6.0 format, which contained only header and eval id (no interface-
id), and data for variables and responses. Input file fragment:

1174 CHAPTER 6. KEYWORDS AREA

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
custom_annotated header eval_id

Resulting tabular file:

%eval_id x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 0.9 1.1 0.0002 0.26 0.76
2 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

header

• Keywords Area

• method

• global interval est

• ego

• import points file

• custom annotated

• header

Enable header row in custom-annotated tabular file

Specification
Alias: none

Argument(s): none
Default: no header

Description
See description of parent custom annotated

eval id

• Keywords Area

• method

• global interval est

• ego

• import points file

• custom annotated

• eval id

Enable evaluation ID column in custom-annotated tabular file

6.2. METHOD 1175

Specification
Alias: none

Argument(s): none
Default: no eval id column

Description
See description of parent custom annotated

interface id

• Keywords Area

• method

• global interval est

• ego

• import points file

• custom annotated

• interface id

Enable interface ID column in custom-annotated tabular file

Specification
Alias: none

Argument(s): none
Default: no interface id column

Description
See description of parent custom annotated

freeform

• Keywords Area

• method

• global interval est

• ego

• import points file

• freeform

Selects freeform file format

1176 CHAPTER 6. KEYWORDS AREA

Topics

This keyword is related to the topics:

• file formats

Specification

Alias: none
Argument(s): none
Default: annotated format

Description

A freeform tabular file is whitespace-separated text file with no leading header row and no leading columns. Most
commonly, each row contains data for variables, or variables followed by responses, though the format is used for
other tabular exports/imports as well.

Default Behavior
The annotated format is the default for tabular export/import. To change this behavior, specify freeform

in the relevant export/import context.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• In freeform, the num rows x num cols total data entries may be separated with any whitespace including
spaces, tabs, and newlines. In this format, vectors may therefore appear as a single row or single column
(or mixture; entries will populate the vector in order).

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export a freeform tabular file containing only data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
freeform

Resulting tabular file:

0.9 1.1 0.0002 0.26 0.76
0.90009 1.1 0.0001996404857 0.2601620081 0.759955
0.89991 1.1 0.0002003604863 0.2598380081 0.760045

...

6.2. METHOD 1177

active only

• Keywords Area

• method

• global interval est

• ego

• import points file

• active only

Import only active variables from tabular data file

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none

Description
By default, files for tabular data imports are expected to contain columns for all variables, active and inactive. The
keyword active only indicates that the file to import contains only the active variables.

This option should only be used in contexts where the inactive variables have no influence, for example,
building a surrogate over active variables, with the state variables held at nominal. It should not be used in more
complex nested contexts, where the values of inactive variables are relevant to the function evaluations used to
build the surrogate.

export points file

• Keywords Area

• method

• global interval est

• ego

• export points file

Output file for evaluations of a surrogate model

Specification
Alias: none

Argument(s): STRING
Default: no point export to a file

1178 CHAPTER 6. KEYWORDS AREA

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional(Choose
One)

tabular format
(Group 1)

annotated Selects annotated
tabular file format

custom annotated Selects
custom-annotated
tabular file format

freeform Selects freeform
file format

Description
File of points (input variable values and predicted approximate outputs from the surrogate) evaluated on the
surrogate model. The export points contain test point values and the emulator predictions at these points.

Usage Tips
Dakota exports tabular data in one of three formats:

• annotated (default)

• custom annotated

• freeform

annotated

• Keywords Area

• method

• global interval est

• ego

• export points file

• annotated

Selects annotated tabular file format

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Default: annotated format

6.2. METHOD 1179

Description

An annotated tabular file is a whitespace-separated text file with one leading header row of comments/column la-
bels. Each subsequent row contains an evaluation ID and interface ID, followed by data for variables, or variables
followed by responses, depending on context.

Default Behavior
By default, Dakota imports and exports tabular files in annotated format. The annotated keyword can be

used to explicitly specify this.
Usage Tips

• To specify pre-Dakota 6.1 tabular format, which did not include interface id, specify custom annotated
header eval id

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export an annotated top-level tabular data file containing a header row, leading eval id and interface id columns,
and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
annotated

Resulting tabular file:

%eval_id interface x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 NO_ID 0.9 1.1 0.0002 0.26 0.76
2 NO_ID 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 NO_ID 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

custom annotated

• Keywords Area

• method

• global interval est

• ego

• export points file

• custom annotated

Selects custom-annotated tabular file format

1180 CHAPTER 6. KEYWORDS AREA

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Default: annotated format

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional header Enable header row
in
custom-annotated
tabular file

Optional eval id Enable evaluation
ID column in
custom-annotated
tabular file

Optional interface id Enable interface
ID column in
custom-annotated
tabular file

Description
A custom-annotated tabular file is a whitespace-separated text file typically containing row data for variables, or
variables followed by responses, though the format is used for other tabular exports/imports as well. Custom-
annotated allows user options for whether header row, eval id column, and interface id column appear
in the tabular file, thus bridging freeform and (fully) annotated.

Default Behavior
The annotated format is the default for tabular export/import. To control which header row and columns

are in the input/output, specify custom annotated, followed by options, in the relevant export/import context.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export a custom-annotated tabular file in Dakota 6.0 format, which contained only header and eval id (no interface-
id), and data for variables and responses. Input file fragment:

6.2. METHOD 1181

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
custom_annotated header eval_id

Resulting tabular file:

%eval_id x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 0.9 1.1 0.0002 0.26 0.76
2 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

header

• Keywords Area

• method

• global interval est

• ego

• export points file

• custom annotated

• header

Enable header row in custom-annotated tabular file

Specification
Alias: none

Argument(s): none
Default: no header

Description
See description of parent custom annotated

eval id

• Keywords Area

• method

• global interval est

• ego

• export points file

• custom annotated

• eval id

Enable evaluation ID column in custom-annotated tabular file

1182 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): none
Default: no eval id column

Description
See description of parent custom annotated

interface id

• Keywords Area

• method

• global interval est

• ego

• export points file

• custom annotated

• interface id

Enable interface ID column in custom-annotated tabular file

Specification
Alias: none

Argument(s): none
Default: no interface id column

Description
See description of parent custom annotated

freeform

• Keywords Area

• method

• global interval est

• ego

• export points file

• freeform

Selects freeform file format

6.2. METHOD 1183

Topics

This keyword is related to the topics:

• file formats

Specification

Alias: none
Argument(s): none
Default: annotated format

Description

A freeform tabular file is whitespace-separated text file with no leading header row and no leading columns. Most
commonly, each row contains data for variables, or variables followed by responses, though the format is used for
other tabular exports/imports as well.

Default Behavior
The annotated format is the default for tabular export/import. To change this behavior, specify freeform

in the relevant export/import context.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• In freeform, the num rows x num cols total data entries may be separated with any whitespace including
spaces, tabs, and newlines. In this format, vectors may therefore appear as a single row or single column
(or mixture; entries will populate the vector in order).

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export a freeform tabular file containing only data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
freeform

Resulting tabular file:

0.9 1.1 0.0002 0.26 0.76
0.90009 1.1 0.0001996404857 0.2601620081 0.759955
0.89991 1.1 0.0002003604863 0.2598380081 0.760045

...

1184 CHAPTER 6. KEYWORDS AREA

ea

• Keywords Area

• method

• global interval est

• ea

Use an evolutionary algorithm

Specification
Alias: none

Argument(s): none

Description
In this approach, the evolutionary algorithm from Coliny, coliny ea, is used to perform the interval optimiza-
tion with no surrogate model involved. Again, this option of ea can support interval optimization over discrete
variables.

lhs

• Keywords Area

• method

• global interval est

• lhs

Uses Latin Hypercube Sampling (LHS) to sample variables

Specification
Alias: none

Argument(s): none

Description
The lhs keyword invokes Latin Hypercube Sampling as the means of drawing samples of uncertain variables
according to their probability distributions. This is a stratified, space-filling approach that selects variable values
from a set of equi-probable bins.

Default Behavior
By default, Latin Hypercube Sampling is used. To explicitly specify this in the Dakota input file, however, the

lhs keyword must appear in conjunction with the sample type keyword.
Usage Tips
Latin Hypercube Sampling is very robust and can be applied to any problem. It is fairly effective at estimating

the mean of model responses and linear correlations with a reasonably small number of samples relative to the
number of variables.

6.2. METHOD 1185

Examples
method

sampling
sample_type lhs
samples = 20

rng

• Keywords Area

• method

• global interval est

• rng

Selection of a random number generator

Specification
Alias: none

Argument(s): none
Default: Mersenne twister (mt19937)

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 mt19937 Generates random
numbers using the
Mersenne twister

rnum2 Generates
pseudo-random
numbers using the
Pecos package

Description
The rng keyword is used to indicate a choice of random number generator.

Default Behavior
If specified, the rng keyword must be accompanied by either rnum2 (pseudo-random numbers) or mt19937

(random numbers generated by the Mersenne twister). Otherwise, mt19937, the Mersenne twister is used by
default.

Usage Tips
The default is recommended, as the Mersenne twister is a higher quality random number generator.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 98765
rng rnum2

1186 CHAPTER 6. KEYWORDS AREA

mt19937

• Keywords Area

• method

• global interval est

• rng

• mt19937

Generates random numbers using the Mersenne twister

Specification
Alias: none

Argument(s): none

Description
The mt19937 keyword directs Dakota to use the Mersenne twister to generate random numbers. Additional
information can be found on wikipedia: http://en.wikipedia.org/wiki/Mersenne twister.

Default Behavior
mt19937 is the default random number generator. To specify it explicitly in the Dakota input file, however,

it must be specified in conjuction with the rng keyword.
Usage Tips
Use of the Mersenne twister random number generator (mt19937) is recommended.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 98765
rng mt19937

rnum2

• Keywords Area

• method

• global interval est

• rng

• rnum2

Generates pseudo-random numbers using the Pecos package

Specification
Alias: none

Argument(s): none

http://en.wikipedia.org/wiki/Mersenne_twister

6.2. METHOD 1187

Description
The rnum2 keyword directs Dakota to use pseudo-random numbers generated by the Pecos package.

Default Behavior
rnum2 is not used by default. To change this behavior, it must be specified in conjuction with the rng

keyword.
Usage Tips
Use of the Mersenne twister random number generator (mt19937) is recommended over rnum2.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 98765
rng rnum2

samples

• Keywords Area

• method

• global interval est

• samples

Number of samples for sampling-based methods

Specification
Alias: none

Argument(s): INTEGER
Default: method-dependent

Description
The samples keyword is used to define the number of samples (i.e., randomly chosen sets of variable values) at
which to execute a model.

Default Behavior
By default, Dakota will use the minimum number of samples required by the chosen method.
Usage Tips
To obtain linear sensitivities or to construct a linear response surface, at least dim+1 samples should be used,

where ”dim” is the number of variables. For sensitivities to quadratic terms or quadratic response surfaces, at least
(dim+1)(dim+2)/2 samples are needed. For uncertainty quantification, we recommend at least 10∗dim samples.
For variance based decomp, we recommend hundreds to thousands of samples. Note that for variance-
based decomp, the number of simulations performed will be N∗(dim+2).

Examples
method

sampling
sample_type lhs
samples = 20

1188 CHAPTER 6. KEYWORDS AREA

seed

• Keywords Area

• method

• global interval est

• seed

Seed of the random number generator

Specification

Alias: none
Argument(s): INTEGER
Default: system-generated (non-repeatable)

Description

The random seed control provides a mechanism for making a stochastic method repeatable. That is, the use of
the same random seed in identical studies will generate identical results.

Default Behavior
If not specified, the seed is randomly generated.
Expected Output
If seed is specified, a stochastic study will generate identical results when repeated using the same seed

value. Otherwise, results are not guaranteed to be the same.
Usage Tips
If a stochastic study was run without seed specified, and the user later wishes to repeat the study using the

same seed, the value of the seed used in the original study can be found in the output Dakota prints to the screen.
That value can then be added to the Dakota input file.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 15347

model pointer

• Keywords Area

• method

• global interval est

• model pointer

Identifier for model block to be used by a method

6.2. METHOD 1189

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

Description
The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single

1190 CHAPTER 6. KEYWORDS AREA

interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses
response_functions = 3
no_gradients
no_hessians

6.2.61 bayes calibration
• Keywords Area

• method

• bayes calibration

Bayesian calibration

Topics
This keyword is related to the topics:

• bayesian calibration

• package queso

Specification
Alias: nond bayes calibration

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1
queso Markov Chain

Monte Carlo
algorithms from
the QUESO
package

6.2. METHOD 1191

gpmsa (Experimental)
Gaussian Process
Models for
Simulation
Analysis
(GPMSA) Markov
Chain Monte Carlo
algorithm with
Gaussian Process
Surrogate

dream DREAM
(DiffeRential
Evolution Adaptive
Metropolis)

Optional standardized space Perform the
MCMC process in
a standardized
probability space.

Optional likelihood scale Scale the
log-likelihood
function

Optional calibrate sigma Calibrate the
experimental error
term(s) in the
likelihood function

Optional samples Number of
samples for
sampling-based
methods

Optional seed Seed of the random
number generator

Optional model pointer Identifier for
model block to be
used by a method

Description
Bayesian calibration methods take prior information on parameter values (in the form of prior distributions) and
observational data (e.g. from experiments) and produce posterior distributions on the parameter values. When
the computational simulation is then executed with samples from the posterior parameter distributions, the results
that are produced are consistent with (”agree with”) the experimental data. Calibrating parameters from a com-
putational simulation model requires a ”likelihood function” that specifies the likelihood of observing a particular
observation given the model and its associated parameterization; Dakota assumes a Gaussian likelihood function
currently. The algorithms that produce the posterior distributions on model parameters are Monte Carlo Markov

1192 CHAPTER 6. KEYWORDS AREA

Chain (MCMC) sampling algorithms. MCMC methods require many samples, often tens of thousands, so in the
case of model calibration, often emulators of the computational simulation are used. For more details on the
algorithms underlying the methods, see the Dakota User’s manual.

Dakota has three Bayesian calibration methods: QUESO, DREAM, and GPMSA, specified with bayes-
calibration queso, bayes calibration dream, or bayes calibration gpmsa, respectively.

The QUESO method uses components from the QUESO library (Quantification of Uncertainty for Estimation,
Simulation, and Optimization) developed at The University of Texas at Austin. Dakota uses its DRAM (De-
layed Rejected Adaptive Metropolis) algorithm, and variants, for the MCMC sampling. DREAM (DiffeRential
Evolution Adaptive Metropolis) is a method that runs multiple different chains simultaneously for global explo-
ration, and automatically tunes the proposal covariance during the process by a self-adaptive randomized subspace
sampling.[86]. GPMSA (Gaussian Process Models for Simulation Analysis) is an approach developed at Los
Alamos National Laboratory. It constructs Gaussian process models to emulate the expensive computational sim-
ulation as well as model discrepancy. GPMSA also has extensive features for calibration, such as the capability
to include a ”model discrepancy” term and the capability to model functional data such as time series data.

The Bayesian capabilities are under active development. At this stage, the QUESO methods in Dakota are
the most advanced and robust, followed by DREAM, followed by GPMSA, which is in prototype form at this
time. Note that as of Dakota 6.2, the field responses and associated field data may be used with QUESO and
DREAM. That is, the user can specify field simulation data and field experiment data, and Dakota will interpolate
and provide the proper residuals to the Bayesian calibration.

queso

• Keywords Area

• method

• bayes calibration

• queso

Markov Chain Monte Carlo algorithms from the QUESO package

Topics

This keyword is related to the topics:

• bayesian calibration

• package queso

Specification

Alias: none
Argument(s): none

6.2. METHOD 1193

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional emulator Use an emulator or
surrogate model to
evaluate the
likelihood function

Optional logit transform Utilize the logit
transformation to
reduce sample
rejection for
bounded domains

Optional(Choose
One)

MCMC algorithm
type (Group 1)

dram Use the DRAM
MCMC algorithm

delayed rejection Use the Delayed
Rejection MCMC
algorithm

adaptive -
metropolis

Use the Adaptive
Metropolis MCMC
algorithm

metropolis -
hastings

Use the
Metropolis--
Hastings MCMC
algorithm

multilevel Use the multilevel
MCMC algorithm.

Optional rng Selection of a
random number
generator

Optional proposal -
covariance

Defines the
technique used to
generate the
MCMC proposal
covariance.

Description
For the QUESO method, one can use an emulator in the MCMC sampling. This will greatly improve the speed,
since the Monte Carlo Markov Chain will generate thousands of samples on the emulator instead of the real
simulation code. However, in the case of fast running evaluations, we recommend the use of no emulator. An
emulator may be specified with the keyword emulator, followed by a gaussian process emulator, a pce
emulator (polynomial chaos expansion), or a sc emulator (stochastic collocation). For the gaussian process

1194 CHAPTER 6. KEYWORDS AREA

emulator, the user must specify whether to use the surfpack or dakota version of the Gaussian process. The
user can define the number of samples emulator samples from which the emulator should be built. It is
also possible to build the Gaussian process from points read in from the import points file and to export
approximation-based sample evaluations using export points file. For pce or sc, the user can define a
sparse grid level.

In terms of the MCMC sampling, one can specify one of the following MCMC algorithms to use: dram for D-
RAM (Delayed Rejection Adaptive Metropolis), delayed rejection for delayed rejection only, adaptive-
metropolis for adaptive metropolis only, metropolis hastings for Metropolis Hastings, and multilevel

for the multilevel MCMC algorithm.
There are a variety of ways the user can specify the proposal covariance matrix which is very important in

governing the samples generated in the chain. The proposal covariance specifies the covariance structure of a
multivariate normal distribution. The user can specify proposal covariance, followed by derivatives,
prior, values, or filename. The derivative specification involves forming the Hessian of the misfit function
(the negative log likelihood). When derivative information is available inexpensively (e.g. from an emulator), the
derived-based proposal covariance forms a more accurate proposal distribution, resulting in lower rejection rates
and faster chain mixing. The prior setting involves constructing the proposal from the variance of the prior
distributions of the parameters being calibrated. When specifying the proposal covariance with values or from a
file, the user can choose to specify only the diagonals of the covariance matrix with diagonal or to specify the
full covariance matrix with matrix.

There are two other controls for QUESO. The likelihood scale is a number which scales the likelihood
by dividing the log of the likelihood (e.g. dividing the sum of squared differences between the experimental
data and simulation data or SSE). This is useful for situations with very small likelihoods (e.g. the model is
either very far away from the data or there is a lot of data so the likelihood function involves multiplying many
likelihoods together, where the SSE term is large and the likelihood becomes very small). In some respects, the
likelihood scale can be seen as a normalizing factor for the SSE. If the SSE is large, the likelihood-
scale should be large. The second factor is a logit transform, which performs an internal variable

transformation from bounded domains to unbounded domains in order to reduce sample rejection due to an out-
of-bounds condition.

Finally, we offer the option to calibrate the sigma terms with the calibrate sigma flag. The sigma terms
refer to the variance/covariance of the measurement error. If experimental measurement error is available to
inform sigma, that is very useful, but often measurement uncertainty is not available. Note that if calibrate-
sigma is specified, a separate sigma term will be calibrated for each calibration term. Thus, if there are 50

calibration terms (e.g. experimental points against which we are trying to match the model), 50 sigma values
will be added to the calibration process. Calibration of the sigma values is turned off by default: only the design
parameters are calibrated in default mode. Currently, calibrate sigma is only applicable to scalar responses.

Note that as of Dakota 6.2, the field data capability may be used with QUESO. That is, the user can specify
field simulation data and field experiment data, and Dakota will interpolate and provide the proper residuals to the
Bayesian calibration.

emulator

• Keywords Area

• method

• bayes calibration

• queso

• emulator

Use an emulator or surrogate model to evaluate the likelihood function

6.2. METHOD 1195

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

emulator type
(Group 1)

gaussian process Gaussian Process
surrogate model

pce Polynomial Chaos
Expansion
surrogate model

sc Stochastic
Collocation
polynomial
surrogate model

Optional use derivatives Use derivative data
to construct
surrogate models

Description
This keyword describes the type of emulator used when calculating the likelihood function for the Bayesian
calibration. The emulator can be a Gaussian process, polynomial chaos expansion, or stochastic collocation.

gaussian process

• Keywords Area

• method

• bayes calibration

• queso

• emulator

• gaussian process

Gaussian Process surrogate model

Specification
Alias: kriging

Argument(s): none
Default: Surfpack Gaussian process

1196 CHAPTER 6. KEYWORDS AREA

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 surfpack Use the Surfpack
version of
Gaussian Process
surrogates

dakota Select the built in
Gaussian Process
surrogate

Optional emulator samples Number of data
points used to train
the surrogate
model or emulator

Optional posterior adaptive Adapt the emulator
model to achieve
greater accuracy in
regions of high
posterior
probability.

Optional import points file File containing
variable values and
corresponding
responses

Optional export points file Output file for
evaluations of a
surrogate model

Description
Use the Gaussian process (GP) surrogate from Surfpack, which is specified using the surfpack keyword.

An alternate version of GP surrogates was available in prior versions of Dakota. For now, both versions are
supported but the dakota version is deprecated and intended to be removed in a future release.

surfpack

• Keywords Area

• method

• bayes calibration

• queso

• emulator

• gaussian process

• surfpack

Use the Surfpack version of Gaussian Process surrogates

6.2. METHOD 1197

Specification
Alias: none

Argument(s): none

Description
This keyword specifies the use of the Gaussian process that is incorporated in our surface fitting library called
Surfpack.

Several user options are available:

1. Optimization methods:

Maximum Likelihood Estimation (MLE) is used to find the optimal values of the hyper-parameters gov-
erning the trend and correlation functions. By default the global optimization method DIRECT is used for
MLE, but other options for the optimization method are available. See optimization method.

The total number of evaluations of the likelihood function can be controlled using the max trials key-
word followed by a positive integer. Note that the likelihood function does not require running the ”truth”
model, and is relatively inexpensive to compute.

2. Trend Function:

The GP models incorporate a parametric trend function whose purpose is to capture large-scale variations.
See trend.

3. Correlation Lengths:

Correlation lengths are usually optimized by Surfpack, however, the user can specify the lengths manually.
See correlation lengths.

4. Ill-conditioning

One of the major problems in determining the governing values for a Gaussian process or Kriging model is
the fact that the correlation matrix can easily become ill-conditioned when there are too many input points
close together. Since the predictions from the Gaussian process model involve inverting the correlation
matrix, ill-conditioning can lead to poor predictive capability and should be avoided.

Note that a sufficiently bad sample design could require correlation lengths to be so short that any interpo-
latory GP model would become inept at extrapolation and interpolation.

The surfpack model handles ill-conditioning internally by default, but behavior can be modified using

5. Gradient Enhanced Kriging (GEK).

The use derivatives keyword will cause the Surfpack GP to be constructed from a combination of
function value and gradient information (if available).

See notes in the Theory section.

Theory
Gradient Enhanced Kriging

Incorporating gradient information will only be beneficial if accurate and inexpensive derivative information
is available, and the derivatives are not infinite or nearly so. Here ”inexpensive” means that the cost of evaluating a
function value plus gradient is comparable to the cost of evaluating only the function value, for example gradients
computed by analytical, automatic differentiation, or continuous adjoint techniques. It is not cost effective to use
derivatives computed by finite differences. In tests, GEK models built from finite difference derivatives were also

1198 CHAPTER 6. KEYWORDS AREA

significantly less accurate than those built from analytical derivatives. Note that GEK’s correlation matrix tends
to have a significantly worse condition number than Kriging for the same sample design.

This issue was addressed by using a pivoted Cholesky factorization of Kriging’s correlation matrix (which is a
small sub-matrix within GEK’s correlation matrix) to rank points by how much unique information they contain.
This reordering is then applied to whole points (the function value at a point immediately followed by gradient
information at the same point) in GEK’s correlation matrix. A standard non-pivoted Cholesky is then applied to the
reordered GEK correlation matrix and a bisection search is used to find the last equation that meets the constraint
on the (estimate of) condition number. The cost of performing pivoted Cholesky on Kriging’s correlation matrix
is usually negligible compared to the cost of the non-pivoted Cholesky factorization of GEK’s correlation matrix.
In tests, it also resulted in more accurate GEK models than when pivoted Cholesky or whole-point-block pivoted
Cholesky was performed on GEK’s correlation matrix.

dakota

• Keywords Area

• method

• bayes calibration

• queso

• emulator

• gaussian process

• dakota

Select the built in Gaussian Process surrogate

Specification
Alias: none

Argument(s): none

Description
A second version of GP surrogates was available in prior versions of Dakota. For now, both versions are
supported but the dakota version is deprecated and intended to be removed in a future release.

Historically these models were drastically different, but in Dakota 5.1, they became quite similar. They now
differ in that the Surfpack GP has a richer set of features/options and tends to be more accurate than the Dakota
version. Due to how the Surfpack GP handles ill-conditioned correlation matrices (which significantly contributes
to its greater accuracy), the Surfpack GP can be a factor of two or three slower than Dakota’s. As of Dakota
5.2, the Surfpack implementation is the default in all contexts except Bayesian calibration.

More details on the gaussian process dakota model can be found in[58].
Dakota’s GP deals with ill-conditioning in two ways. First, when it encounters a non-invertible correlation

matrix it iteratively increases the size of a ”nugget,” but in such cases the resulting approximation smooths rather
than interpolates the data. Second, it has a point selection option (default off) that uses a greedy algorithm
to select a well-spaced subset of points prior to the construction of the GP. In this case, the GP will only interpo-
late the selected subset. Typically, one should not need point selection in trust-region methods because a small
number of points are used to develop a surrogate within each trust region. Point selection is most beneficial when
constructing with a large number of points, typically more than order one hundred, though this depends on the
number of variables and spacing of the sample points.

6.2. METHOD 1199

This differs from the point selection option of the Dakota GP which initially chooses a well-spaced
subset of points and finds the correlation parameters that are most likely for that one subset.

emulator samples

• Keywords Area

• method

• bayes calibration

• queso

• emulator

• gaussian process

• emulator samples

Number of data points used to train the surrogate model or emulator

Specification
Alias: none

Argument(s): INTEGER

Description
This keyword refers to the number of build points or training points used to construct a Gaussian process emulator.
If the user specifies a number of emulator samples that is less than the minimum number of points required
to build the GP surrogate, Dakota will augment the samples to obtain the minimum required.

posterior adaptive

• Keywords Area

• method

• bayes calibration

• queso

• emulator

• gaussian process

• posterior adaptive

Adapt the emulator model to achieve greater accuracy in regions of high posterior probability.

Specification
Alias: none

Argument(s): none

1200 CHAPTER 6. KEYWORDS AREA

Description
Following an emulator-based MCMC process, this option refines the emulator by selecting points in regions of
high posterior probability, performing truth evaluations at these points, updating the emulator, and reperforming
the MCMC process. The adaptation is continued until the maximum number of iterations is exceeded or the
convergence tolerance is met.

Examples
bayes_calibration queso

samples = 2000 seed = 348
delayed_rejection
emulator

gaussian_process surfpack emulator_samples = 30
posterior_adaptive max_iterations = 10
proposal_covariance derivatives

import points file

• Keywords Area

• method

• bayes calibration

• queso

• emulator

• gaussian process

• import points file

File containing variable values and corresponding responses

Specification
Alias: none

Argument(s): STRING
Default: no point import from a file

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional(Choose
One)

tabular format
(Group 1)

annotated Selects annotated
tabular file format

custom annotated Selects
custom-annotated
tabular file format

6.2. METHOD 1201

freeform Selects freeform
file format

Optional active only Import only active
variables from
tabular data file

Description
The import points file allows the user to specify a file that contains a list of variable values and the model
responses computed at those values. These can be used by a number of methods in place of model evaluations.
When used to construct surrogate models or emulators these are often called build points or training data.

Default Behavior
Be default, methods do not import points from a file.
Usage Tips
Dakota parses input files without regard to whitespace, but the import points file must be in one of three

formats:

• annotated (default)

• custom annotated

• freeform

Examples
method

list_parameter_study
import_points_file = ’dakota_pstudy.3.dat’

annotated

• Keywords Area

• method

• bayes calibration

• queso

• emulator

• gaussian process

• import points file

• annotated

Selects annotated tabular file format

Topics
This keyword is related to the topics:

• file formats

1202 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): none
Default: annotated format

Description
An annotated tabular file is a whitespace-separated text file with one leading header row of comments/column la-
bels. Each subsequent row contains an evaluation ID and interface ID, followed by data for variables, or variables
followed by responses, depending on context.

Default Behavior
By default, Dakota imports and exports tabular files in annotated format. The annotated keyword can be

used to explicitly specify this.
Usage Tips

• To specify pre-Dakota 6.1 tabular format, which did not include interface id, specify custom annotated
header eval id

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export an annotated top-level tabular data file containing a header row, leading eval id and interface id columns,
and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
annotated

Resulting tabular file:

%eval_id interface x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 NO_ID 0.9 1.1 0.0002 0.26 0.76
2 NO_ID 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 NO_ID 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

custom annotated

• Keywords Area

• method

• bayes calibration

• queso

• emulator

6.2. METHOD 1203

• gaussian process

• import points file

• custom annotated

Selects custom-annotated tabular file format

Topics

This keyword is related to the topics:

• file formats

Specification

Alias: none
Argument(s): none
Default: annotated format

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional header Enable header row
in
custom-annotated
tabular file

Optional eval id Enable evaluation
ID column in
custom-annotated
tabular file

Optional interface id Enable interface
ID column in
custom-annotated
tabular file

Description

A custom-annotated tabular file is a whitespace-separated text file typically containing row data for variables, or
variables followed by responses, though the format is used for other tabular exports/imports as well. Custom-
annotated allows user options for whether header row, eval id column, and interface id column appear
in the tabular file, thus bridging freeform and (fully) annotated.

Default Behavior
The annotated format is the default for tabular export/import. To control which header row and columns

are in the input/output, specify custom annotated, followed by options, in the relevant export/import context.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

1204 CHAPTER 6. KEYWORDS AREA

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export a custom-annotated tabular file in Dakota 6.0 format, which contained only header and eval id (no interface-
id), and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
custom_annotated header eval_id

Resulting tabular file:

%eval_id x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 0.9 1.1 0.0002 0.26 0.76
2 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

header

• Keywords Area

• method

• bayes calibration

• queso

• emulator

• gaussian process

• import points file

• custom annotated

• header

Enable header row in custom-annotated tabular file

Specification

Alias: none
Argument(s): none
Default: no header

Description

See description of parent custom annotated

6.2. METHOD 1205

eval id

• Keywords Area

• method

• bayes calibration

• queso

• emulator

• gaussian process

• import points file

• custom annotated

• eval id

Enable evaluation ID column in custom-annotated tabular file

Specification

Alias: none
Argument(s): none
Default: no eval id column

Description

See description of parent custom annotated

interface id

• Keywords Area

• method

• bayes calibration

• queso

• emulator

• gaussian process

• import points file

• custom annotated

• interface id

Enable interface ID column in custom-annotated tabular file

1206 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): none
Default: no interface id column

Description
See description of parent custom annotated

freeform

• Keywords Area

• method

• bayes calibration

• queso

• emulator

• gaussian process

• import points file

• freeform

Selects freeform file format

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Default: annotated format

Description
A freeform tabular file is whitespace-separated text file with no leading header row and no leading columns. Most
commonly, each row contains data for variables, or variables followed by responses, though the format is used for
other tabular exports/imports as well.

Default Behavior
The annotated format is the default for tabular export/import. To change this behavior, specify freeform

in the relevant export/import context.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were free-form format. They now default to
annotated format, though freeform remains an option.

6.2. METHOD 1207

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• In freeform, the num rows x num cols total data entries may be separated with any whitespace including
spaces, tabs, and newlines. In this format, vectors may therefore appear as a single row or single column
(or mixture; entries will populate the vector in order).

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export a freeform tabular file containing only data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
freeform

Resulting tabular file:

0.9 1.1 0.0002 0.26 0.76
0.90009 1.1 0.0001996404857 0.2601620081 0.759955
0.89991 1.1 0.0002003604863 0.2598380081 0.760045

...

active only

• Keywords Area

• method

• bayes calibration

• queso

• emulator

• gaussian process

• import points file

• active only

Import only active variables from tabular data file

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none

1208 CHAPTER 6. KEYWORDS AREA

Description
By default, files for tabular data imports are expected to contain columns for all variables, active and inactive. The
keyword active only indicates that the file to import contains only the active variables.

This option should only be used in contexts where the inactive variables have no influence, for example,
building a surrogate over active variables, with the state variables held at nominal. It should not be used in more
complex nested contexts, where the values of inactive variables are relevant to the function evaluations used to
build the surrogate.

export points file

• Keywords Area

• method

• bayes calibration

• queso

• emulator

• gaussian process

• export points file

Output file for evaluations of a surrogate model

Specification
Alias: none

Argument(s): STRING
Default: no point export to a file

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional(Choose
One)

tabular format
(Group 1)

annotated Selects annotated
tabular file format

custom annotated Selects
custom-annotated
tabular file format

freeform Selects freeform
file format

Description
File of points (input variable values and predicted approximate outputs from the surrogate) evaluated on the
surrogate model. The export points contain test point values and the emulator predictions at these points.

Usage Tips
Dakota exports tabular data in one of three formats:

• annotated (default)

6.2. METHOD 1209

• custom annotated

• freeform

annotated

• Keywords Area

• method

• bayes calibration

• queso

• emulator

• gaussian process

• export points file

• annotated

Selects annotated tabular file format

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Default: annotated format

Description
An annotated tabular file is a whitespace-separated text file with one leading header row of comments/column la-
bels. Each subsequent row contains an evaluation ID and interface ID, followed by data for variables, or variables
followed by responses, depending on context.

Default Behavior
By default, Dakota imports and exports tabular files in annotated format. The annotated keyword can be

used to explicitly specify this.
Usage Tips

• To specify pre-Dakota 6.1 tabular format, which did not include interface id, specify custom annotated
header eval id

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

1210 CHAPTER 6. KEYWORDS AREA

Examples
Export an annotated top-level tabular data file containing a header row, leading eval id and interface id columns,
and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
annotated

Resulting tabular file:

%eval_id interface x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 NO_ID 0.9 1.1 0.0002 0.26 0.76
2 NO_ID 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 NO_ID 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

custom annotated

• Keywords Area

• method

• bayes calibration

• queso

• emulator

• gaussian process

• export points file

• custom annotated

Selects custom-annotated tabular file format

Topics

This keyword is related to the topics:

• file formats

Specification

Alias: none
Argument(s): none
Default: annotated format

6.2. METHOD 1211

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional header Enable header row
in
custom-annotated
tabular file

Optional eval id Enable evaluation
ID column in
custom-annotated
tabular file

Optional interface id Enable interface
ID column in
custom-annotated
tabular file

Description
A custom-annotated tabular file is a whitespace-separated text file typically containing row data for variables, or
variables followed by responses, though the format is used for other tabular exports/imports as well. Custom-
annotated allows user options for whether header row, eval id column, and interface id column appear
in the tabular file, thus bridging freeform and (fully) annotated.

Default Behavior
The annotated format is the default for tabular export/import. To control which header row and columns

are in the input/output, specify custom annotated, followed by options, in the relevant export/import context.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export a custom-annotated tabular file in Dakota 6.0 format, which contained only header and eval id (no interface-
id), and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
custom_annotated header eval_id

Resulting tabular file:

%eval_id x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 0.9 1.1 0.0002 0.26 0.76
2 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

1212 CHAPTER 6. KEYWORDS AREA

header

• Keywords Area

• method

• bayes calibration

• queso

• emulator

• gaussian process

• export points file

• custom annotated

• header

Enable header row in custom-annotated tabular file

Specification

Alias: none
Argument(s): none
Default: no header

Description

See description of parent custom annotated

eval id

• Keywords Area

• method

• bayes calibration

• queso

• emulator

• gaussian process

• export points file

• custom annotated

• eval id

Enable evaluation ID column in custom-annotated tabular file

6.2. METHOD 1213

Specification
Alias: none

Argument(s): none
Default: no eval id column

Description
See description of parent custom annotated

interface id

• Keywords Area

• method

• bayes calibration

• queso

• emulator

• gaussian process

• export points file

• custom annotated

• interface id

Enable interface ID column in custom-annotated tabular file

Specification
Alias: none

Argument(s): none
Default: no interface id column

Description
See description of parent custom annotated

freeform

• Keywords Area

• method

• bayes calibration

• queso

• emulator

• gaussian process

1214 CHAPTER 6. KEYWORDS AREA

• export points file

• freeform

Selects freeform file format

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Default: annotated format

Description
A freeform tabular file is whitespace-separated text file with no leading header row and no leading columns. Most
commonly, each row contains data for variables, or variables followed by responses, though the format is used for
other tabular exports/imports as well.

Default Behavior
The annotated format is the default for tabular export/import. To change this behavior, specify freeform

in the relevant export/import context.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• In freeform, the num rows x num cols total data entries may be separated with any whitespace including
spaces, tabs, and newlines. In this format, vectors may therefore appear as a single row or single column
(or mixture; entries will populate the vector in order).

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export a freeform tabular file containing only data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
freeform

Resulting tabular file:

0.9 1.1 0.0002 0.26 0.76
0.90009 1.1 0.0001996404857 0.2601620081 0.759955
0.89991 1.1 0.0002003604863 0.2598380081 0.760045

...

6.2. METHOD 1215

pce

• Keywords Area

• method

• bayes calibration

• queso

• emulator

• pce

Polynomial Chaos Expansion surrogate model

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 sparse grid level Set the sparse grid
level to be used
when peforming
sparse grid
integration or
sparse grid
interpolation

expansion order The (initial) order
of a polynomial
expansion

Description
Selects a polynomial chaos expansion (PCE) surrogate model to use in the Bayesian likelihood calculations.
When using PCE as a surrogate within the Bayesian framework, the PCE coefficients can be computed either
from integration using a sparse grid or from regression using a random/unstructured data set.

See Also
These keywords may also be of interest:

• polynomial chaos

sparse grid level

• Keywords Area

• method

• bayes calibration

1216 CHAPTER 6. KEYWORDS AREA

• queso

• emulator

• pce

• sparse grid level

Set the sparse grid level to be used when peforming sparse grid integration or sparse grid interpolation

Specification
Alias: none

Argument(s): INTEGERLIST

Description
Multi-dimensional integration by the Smolyak sparse grid method (specified with sparse grid level and, option-
ally, dimension preference). The underlying one-dimensional integration rules are the same as for the tensor-
product quadrature case; however, the default rule selection is nested for sparse grids (Genz-Keister for nor-
mals/transformed normals and Gauss-Patterson for uniforms/transformed uniforms). This default can be over-
ridden with an explicit non nested specification (resulting in Gauss-Hermite for normals/transformed normals
and Gauss-Legendre for uniforms/transformed uniforms). As for tensor quadrature, the dimension preference
specification enables the use of anisotropic sparse grids (refer to the PCE description in the User’s Manual for
the anisotropic index set constraint definition). Similar to anisotropic tensor grids, the dimension with greatest
preference will have resolution at the full sparse grid level and all other dimension resolutions will be reduced in
proportion to their reduced preference. For PCE with either isotropic or anisotropic sparse grids, a summation of
tensor-product expansions is used, where each anisotropic tensor-product quadrature rule underlying the sparse
grid construction results in its own anisotropic tensor-product expansion as described in case 1. These anisotropic
tensor-product expansions are summed into a sparse PCE using the standard Smolyak summation (again, refer to
the User’s Manual for additional details). As for quadrature order, the sparse grid level specification admits an
array input for enabling specification of multiple grid resolutions used by certain advanced solution methodolo-
gies.

This keyword can be used when using sparse grid integration to calculate PCE coefficients or when generating
samples for sparse grid collocation.

expansion order

• Keywords Area

• method

• bayes calibration

• queso

• emulator

• pce

• expansion order

The (initial) order of a polynomial expansion

6.2. METHOD 1217

Specification
Alias: none

Argument(s): INTEGERLIST
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required collocation ratio Set the number of
points used to
build a PCE via
regression to be
proportional to the
number of terms in
the expansion.

Optional posterior adaptive Adapt the emulator
model to achieve
greater accuracy in
regions of high
posterior
probability.

Description
When the expansion order for a a polynomial chaos expansion is specified, the coefficients may be computed
by integration based on random samples or by regression using either random or sub-sampled tensor product
quadrature points.

Multidimensional integration by Latin hypercube sampling (specified with expansion samples). In this
case, the expansion order p cannot be inferred from the numerical integration specification and it is necessary to
provide an expansion order to specify p for a total-order expansion.

Linear regression (specified with either collocation points or collocation ratio). A total-order
expansion is used and must be specified using expansion order as described in the previous option. To
avoid requiring the user to calculate N from n and p), the collocation ratio allows for specification of a
constant factor applied to N (e.g., collocation ratio = 2. produces samples = 2N). In addition, the default
linear relationship with N can be overridden using a real-valued exponent specified using ratio order. In this
case, the number of samples becomes cNo where c is the collocation ratio and o is the ratio order.
The use derivatives flag informs the regression approach to include derivative matching equations (limited
to gradients at present) in the least squares solutions, enabling the use of fewer collocation points for a given
expansion order and dimension (number of points required becomes cNo

n+1). When admissible, a constrained least
squares approach is employed in which response values are first reproduced exactly and error in reproducing
response derivatives is minimized. Two collocation grid options are supported: the default is Latin hypercube
sampling (”point collocation”), and an alternate approach of ”probabilistic collocation” is also available through
inclusion of the tensor grid keyword. In this alternate case, the collocation grid is defined using a subset of
tensor-product quadrature points: the order of the tensor-product grid is selected as one more than the expansion
order in each dimension (to avoid sampling at roots of the basis polynomials) and then the tensor multi-index is
uniformly sampled to generate a non-repeated subset of tensor quadrature points.

If collocation points or collocation ratio is specified, the PCE coefficients will be determined
by regression. If no regression specification is provided, appropriate defaults are defined. Specifically SVD-based
least-squares will be used for solving over-determined systems and under-determined systems will be solved
using LASSO. For the situation when the number of function values is smaller than the number of terms in a

1218 CHAPTER 6. KEYWORDS AREA

PCE, but the total number of samples including gradient values is greater than the number of terms, the resulting
over-determined system will be solved using equality constrained least squares. Technical information on the
various methods listed below can be found in the Linear regression section of the Theory Manual. Some of the
regression methods (OMP, LASSO, and LARS) are able to produce a set of possible PCE coefficient vectors
(see the Linear regression section in the Theory Manual). If cross validation is inactive, then only one solution,
consistent with the noise tolerance, will be returned. If cross validation is active, Dakota will choose
between possible coefficient vectors found internally by the regression method across the set of expansion orders
(1,...,expansion order) and the set of specified noise tolerances and return the one with the lowest cross
validation error indicator.

collocation ratio

• Keywords Area

• method

• bayes calibration

• queso

• emulator

• pce

• expansion order

• collocation ratio

Set the number of points used to build a PCE via regression to be proportional to the number of terms in the
expansion.

Specification
Alias: none

Argument(s): REAL

Description
Set the number of points used to build a PCE via regression to be proportional to the number of terms in the
expansion. To avoid requiring the user to calculate N from n and p, the collocation ratio allows for specification
of a constant factor applied to N (e.g., collocation ratio = 2. produces samples = 2N). In addition, the default
linear relationship with N can be overridden using a real-valued exponent specified using ratio order. In this case,
the number of samples becomes cNo where c is the collocation ratio and o is the ratio order. The use derivatives
flag informs the regression approach to include derivative matching equations (limited to gradients at present) in
the least squares solutions, enabling the use of fewer collocation points for a given expansion order and dimension
(number of points required becomes cNo

n+1).

posterior adaptive

• Keywords Area

• method

• bayes calibration

6.2. METHOD 1219

• queso

• emulator

• pce

• expansion order

• posterior adaptive

Adapt the emulator model to achieve greater accuracy in regions of high posterior probability.

Specification
Alias: none

Argument(s): none

Description
Following an emulator-based MCMC process, this option refines the emulator by selecting points in regions of
high posterior probability, performing truth evaluations at these points, updating the emulator, and reperforming
the MCMC process. The adaptation is continued until the maximum number of iterations is exceeded or the
convergence tolerance is met.

Examples
bayes_calibration queso

samples = 2000 seed = 348
delayed_rejection
emulator

gaussian_process surfpack emulator_samples = 30
posterior_adaptive max_iterations = 10
proposal_covariance derivatives

sc

• Keywords Area

• method

• bayes calibration

• queso

• emulator

• sc

Stochastic Collocation polynomial surrogate model

Specification
Alias: none

Argument(s): none

1220 CHAPTER 6. KEYWORDS AREA

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required sparse grid level Set the sparse grid
level to be used
when peforming
sparse grid
integration or
sparse grid
interpolation

Description
Selects stochastic collocation (SC) model to use in the Bayesian likelihood calculations. When using SC as
a surrogate within the Bayesian framework, the build points (training points) for the stochastic collocation are
constructed from a sparse grid.

See Also
These keywords may also be of interest:

• stoch collocation

sparse grid level

• Keywords Area

• method

• bayes calibration

• queso

• emulator

• sc

• sparse grid level

Set the sparse grid level to be used when peforming sparse grid integration or sparse grid interpolation

Specification
Alias: none

Argument(s): INTEGERLIST

Description
Multi-dimensional integration by the Smolyak sparse grid method (specified with sparse grid level and, option-
ally, dimension preference). The underlying one-dimensional integration rules are the same as for the tensor-
product quadrature case; however, the default rule selection is nested for sparse grids (Genz-Keister for nor-
mals/transformed normals and Gauss-Patterson for uniforms/transformed uniforms). This default can be over-
ridden with an explicit non nested specification (resulting in Gauss-Hermite for normals/transformed normals

6.2. METHOD 1221

and Gauss-Legendre for uniforms/transformed uniforms). As for tensor quadrature, the dimension preference
specification enables the use of anisotropic sparse grids (refer to the PCE description in the User’s Manual for
the anisotropic index set constraint definition). Similar to anisotropic tensor grids, the dimension with greatest
preference will have resolution at the full sparse grid level and all other dimension resolutions will be reduced in
proportion to their reduced preference. For PCE with either isotropic or anisotropic sparse grids, a summation of
tensor-product expansions is used, where each anisotropic tensor-product quadrature rule underlying the sparse
grid construction results in its own anisotropic tensor-product expansion as described in case 1. These anisotropic
tensor-product expansions are summed into a sparse PCE using the standard Smolyak summation (again, refer to
the User’s Manual for additional details). As for quadrature order, the sparse grid level specification admits an
array input for enabling specification of multiple grid resolutions used by certain advanced solution methodolo-
gies.

This keyword can be used when using sparse grid integration to calculate PCE coefficients or when generating
samples for sparse grid collocation.

use derivatives

• Keywords Area

• method

• bayes calibration

• queso

• emulator

• use derivatives

Use derivative data to construct surrogate models

Specification
Alias: none

Argument(s): none
Default: use function values only

Description
The use derivatives flag specifies that any available derivative information should be used in global approx-
imation builds, for those global surrogate types that support it (currently, polynomial regression and the Surfpack
Gaussian process).

However, it’s use with Surfpack Gaussian process is not recommended.

logit transform

• Keywords Area

• method

• bayes calibration

• queso

• logit transform

Utilize the logit transformation to reduce sample rejection for bounded domains

1222 CHAPTER 6. KEYWORDS AREA

Specification

Alias: none
Argument(s): none

Description

The logit transformation performs an internal variable transformation from bounded domains to unbounded do-
mains in order to reduce sample rejection due to an out-of-bounds condition.

Default Behavior
This option is experimental at present, and is therefore defaulted off.
Usage Tips
This option can be helpful when regions of high posterior density exist in the corners of a multi-dimensional

bounded domain. In these cases, it may be difficult to generate feasible samples from the proposal density, such
that transformation to unbounded domains may greatly reduce sample rejection rates.

Examples
method,

bayes_calibration queso
samples = 2000 seed = 348
dram
logit_transform

dram

• Keywords Area

• method

• bayes calibration

• queso

• dram

Use the DRAM MCMC algorithm

Topics

This keyword is related to the topics:

• bayesian calibration

Specification

Alias: none
Argument(s): none
Default: dram

6.2. METHOD 1223

Description
The type of Markov Chain Monte Carlo used. This keyword specifies the use of DRAM, (Delayed Rejection
Adaptive Metropolis)[39].

Default Behavior
Five MCMC algorithm variants are supported: dram, delayed rejection, adaptive metropolis,

metropolis hastings, and multilevel. The default is dram.
Usage Tips
If the user knows very little about the proposal covariance, using dram is a recommended strategy. The

proposal covariance is adaptively updated, and the delayed rejection may help improve low acceptance rates.

Examples
method,

bayes_calibration queso
dram
samples = 10000 seed = 348

delayed rejection

• Keywords Area

• method

• bayes calibration

• queso

• delayed rejection

Use the Delayed Rejection MCMC algorithm

Topics
This keyword is related to the topics:

• bayesian calibration

Specification
Alias: none

Argument(s): none
Default: dram

Description
This keyword specifies the use of the Delayed Rejection algorithm in which there can be a delay in rejecting
samples from the chain. That is, the ”DR” part of DRAM is used but the ”AM” part is not, rather a regular
Metropolis-Hastings algorithm is used.

Default Behavior
Five MCMC algorithm variants are supported: dram, delayed rejection, adaptive metropolis,

metropolis hastings, and multilevel. The default is dram.
Usage Tips

1224 CHAPTER 6. KEYWORDS AREA

If the user knows something about the proposal covariance or the proposal covariance is informed through
derivative information, using delayed rejection is preferred over dram: the proposal covariance is already
being informed by derivative information and the adaptive metropolis is not necessary.

Examples
method,

bayes_calibration queso
delayed_rejection
samples = 10000 seed = 348

See Also
These keywords may also be of interest:

• proposal covariance

adaptive metropolis

• Keywords Area

• method

• bayes calibration

• queso

• adaptive metropolis

Use the Adaptive Metropolis MCMC algorithm

Topics
This keyword is related to the topics:

• bayesian calibration

Specification
Alias: none

Argument(s): none
Default: dram

Description
This keyword specifies the use of the Adaptive Metropolis algorithm. That is, the ”AM” part of DRAM is used
but the ”DR” part is not: specifying this keyword activates only the Adaptive Metropolis part of the MCMC
algorithm, in which the covariance of the proposal density is updated adaptively.

Default Behavior
Five MCMC algorithm variants are supported: dram, delayed rejection, adaptive metropolis,

metropolis hastings, and multilevel. The default is dram.
Usage Tips
If the user knows very little about the proposal covariance, but doesn’t want to incur the cost of using full

dram with both delayed rejection and adaptive metropolis, specifying only adaptive metropolis offers a
good strategy.

6.2. METHOD 1225

Examples
method,

bayes_calibration queso
adaptive_metropolis
samples = 10000 seed = 348

metropolis hastings

• Keywords Area

• method

• bayes calibration

• queso

• metropolis hastings

Use the Metropolis-Hastings MCMC algorithm

Topics

This keyword is related to the topics:

• bayesian calibration

Specification

Alias: none
Argument(s): none
Default: dram

Description

This keyword specifies the use of a Metropolis-Hastings algorithm for the MCMC chain generation. This means
there is no delayed rejection and no adaptive proposal covariance updating as in DRAM.

Default Behavior
Five MCMC algorithm variants are supported: dram, delayed rejection, adaptive metropolis,

metropolis hastings, and multilevel. The default is dram.
Usage Tips
If the user wants to use Metropolis-Hastings, possibly as a comparison to the other methods which involve

more chain adaptation, this is the MCMC type to use.

Examples
method,

bayes_calibration queso
metropolis_hastings
samples = 10000 seed = 348

1226 CHAPTER 6. KEYWORDS AREA

multilevel

• Keywords Area

• method

• bayes calibration

• queso

• multilevel

Use the multilevel MCMC algorithm.

Topics
This keyword is related to the topics:

• bayesian calibration

Specification
Alias: none

Argument(s): none
Default: dram

Description
Selects the multilevel algorithm described in[70].

Default Behavior
Five MCMC algorithm variants are supported: dram, delayed rejection, adaptive metropolis,

metropolis hastings, and multilevel. The default is dram.
Usage Tips
The multilevel algorithm is a more experimental algorithm than the other MCMC approaches mentioned

above. It works well in cases where the prior can be ”evolved” to a posterior in a structured way.

Examples
method,

bayes_calibration queso
multilevel
samples = 10000 seed = 348

rng

• Keywords Area

• method

• bayes calibration

• queso

• rng

Selection of a random number generator

6.2. METHOD 1227

Specification

Alias: none
Argument(s): none
Default: Mersenne twister (mt19937)

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 mt19937 Generates random
numbers using the
Mersenne twister

rnum2 Generates
pseudo-random
numbers using the
Pecos package

Description

The rng keyword is used to indicate a choice of random number generator.
Default Behavior
If specified, the rng keyword must be accompanied by either rnum2 (pseudo-random numbers) or mt19937

(random numbers generated by the Mersenne twister). Otherwise, mt19937, the Mersenne twister is used by
default.

Usage Tips
The default is recommended, as the Mersenne twister is a higher quality random number generator.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 98765
rng rnum2

mt19937

• Keywords Area

• method

• bayes calibration

• queso

• rng

• mt19937

Generates random numbers using the Mersenne twister

1228 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): none

Description
The mt19937 keyword directs Dakota to use the Mersenne twister to generate random numbers. Additional
information can be found on wikipedia: http://en.wikipedia.org/wiki/Mersenne twister.

Default Behavior
mt19937 is the default random number generator. To specify it explicitly in the Dakota input file, however,

it must be specified in conjuction with the rng keyword.
Usage Tips
Use of the Mersenne twister random number generator (mt19937) is recommended.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 98765
rng mt19937

rnum2

• Keywords Area

• method

• bayes calibration

• queso

• rng

• rnum2

Generates pseudo-random numbers using the Pecos package

Specification
Alias: none

Argument(s): none

Description
The rnum2 keyword directs Dakota to use pseudo-random numbers generated by the Pecos package.

Default Behavior
rnum2 is not used by default. To change this behavior, it must be specified in conjuction with the rng

keyword.
Usage Tips
Use of the Mersenne twister random number generator (mt19937) is recommended over rnum2.

http://en.wikipedia.org/wiki/Mersenne_twister

6.2. METHOD 1229

Examples
method

sampling
sample_type lhs
samples = 10
seed = 98765
rng rnum2

proposal covariance

• Keywords Area

• method

• bayes calibration

• queso

• proposal covariance

Defines the technique used to generate the MCMC proposal covariance.

Topics
This keyword is related to the topics:

• bayesian calibration

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1

derivatives Uses derivatives to
inform the MCMC
proposal
covariance.

prior Uses the
covariance of the
prior distributions
to define the
MCMC proposal
covariance.

1230 CHAPTER 6. KEYWORDS AREA

values Specifies matrix
values to use as the
MCMC proposal
covariance.

filename Uses a file to
import a
user-specified
MCMC proposal
covariance.

Description

The proposal covariance is used to define a multivariate normal (MVN) jumping distribution used to create new
points within a Markov chain. That is, a new point in the chain is determined by sampling within a MVN
probability density with prescribed covariance that is centered at the current chain point. The accuracy of the
proposal covariance has a significant effect on rejection rates and the efficiency of chain mixing.

Default Behavior
If the proposal covariance keyword is specified by the user, then one of the four options must be specified. If

the proposal covariance block is omitted, then the prior covariance option is used as the default.
Expected Output
The effect of the proposal covariance is reflected in the MCMC chain values and the rejection rates, which can

be seen in the diagnostic outputs from the QUESO solver within the outputData directory.
Usage Tips
When derivative information is available inexpensively (e.g., from an emulator model), the derived-based

proposal covariance forms a more accurate proposal distribution, resulting in lower rejection rates and faster
chain mixing.

derivatives

• Keywords Area

• method

• bayes calibration

• queso

• proposal covariance

• derivatives

Uses derivatives to inform the MCMC proposal covariance.

Topics

This keyword is related to the topics:

• bayesian calibration

6.2. METHOD 1231

Specification
Alias: none

Argument(s): none

1232 CHAPTER 6. KEYWORDS AREA

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional proposal updates Restarts the
MCMC chain with
updated
derivative-based
proposal
covariance.

Description
This keyword selection results in definition of the MCMC proposal covariance from the Hessian of the misfit
function (negative log likelihood), where this Hessian is defined from either a Gauss-Newton approximation
(using only first derivatives of the calibration terms) or a full Hessian (using values, first derivatives, and second
derivatives of the calibration terms).

Default Behavior
This is not the default, but rather a more advanced option that exploits structure in the form of the likelihood.
Expected Output
When derivatives are specified for defining the proposal covariance, the misfit Hessian and its inverse (the

MVN proposal covariance) will be output to the standard output stream.
Usage Tips
The full Hessian of the misfit is used when either supported by the emulator in use (for PCE and surfpack GP,

but not SC or dakota GP) or by the user’s response specification (Hessian type is not ”no hessians”), in the case of
no emulator. When this full Hessian is indefinite and cannot be inverted to form the proposal covariance, fallback
to the positive semi-definite Gauss-Newton Hessian is employed.

Since this proposal covariance is locally accurate, it should be updated periodically using the proposal updates
option. While the adaptive metropolis option can be used in combination with derivative-based preconditioning,
it is generally preferable to instead increase the proposal update frequency due to the improved local accuracy of
this approach.

Examples
method,

bayes_calibration queso
samples = 2000 seed = 348
delayed_rejection
emulator pce sparse_grid_level = 2
proposal_covariance derivatives # default proposal_updates

proposal updates

• Keywords Area

• method

• bayes calibration

• queso

• proposal covariance

• derivatives

6.2. METHOD 1233

• proposal updates

Restarts the MCMC chain with updated derivative-based proposal covariance.

Specification
Alias: none

Argument(s): INTEGER

Description
When employing derivative-based proposal covariance, this specification defines the number of restarts that are
performed during the course of the total sample size of the MCMC chain. For each restart, a new chain is initiated
from the final point in the previous acceptance chain using updated proposal covariance corresponding to the
derivatives values at the new starting point.

Default Behavior
If proposal updates is not specified, then the default frequency for restarting the chain with updated proposal

covariance is every 100 samples.
Expected Output
Each restarted chain will generate a new QUESO header and sampling summary, and the chain diagnostics

will be appended within the outputData directory.
Usage Tips
proposal updates should be tailored to the size of the total chain, accounting for the relative expense of

derivative-based proposal updates.

Examples
method,

bayes_calibration queso
samples = 2000 seed = 348
delayed_rejection
emulator pce sparse_grid_level = 2
proposal_covariance derivatives
proposal_updates = 50 # restarted chains, each with 40 new points

prior

• Keywords Area

• method

• bayes calibration

• queso

• proposal covariance

• prior

Uses the covariance of the prior distributions to define the MCMC proposal covariance.

Topics
This keyword is related to the topics:

• bayesian calibration

1234 CHAPTER 6. KEYWORDS AREA

Specification

Alias: none
Argument(s): none

Description

This keyword selection results in definition of the MCMC proposal covariance from the covariance of the prior
distributions. This covariance is currently assumed to be diagonal without correlation.

Default Behavior
This is the default proposal covariance option.
Usage Tips
Since this proposal covariance is defined globally, the chain does not need to be periodically restarted using

local updates to this proposal. However, it is usually effective to adapt the proposal using one of the adaptive
metropolis MCMC options.

Examples

method,
bayes_calibration queso

samples = 2000 seed = 348
dram
proposal_covariance prior

values

• Keywords Area

• method

• bayes calibration

• queso

• proposal covariance

• values

Specifies matrix values to use as the MCMC proposal covariance.

Specification

Alias: none
Argument(s): REALLIST

6.2. METHOD 1235

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 diagonal Specifies the
diagonal matrix
format when
specifying a
user-specified
proposal
covariance.

matrix Specifies the full
matrix format
when specifying a
user-specified
proposal
covariance.

Description
This keyword selection results in definition of the MCMC proposal covariance from user-specified matrix values.
The matrix input format must be declared as either a full matrix or a matrix diagonal.

Default Behavior
This option is not the default, and generally implies special a priori knowledge from the user.
Usage Tips
This option is not supported for the case of transformations to standardized probability space.

Examples
method,

bayes_calibration queso
samples = 1000 seed = 348
dram
proposal_covariance
values ... # See leaf nodes for required format option

diagonal

• Keywords Area

• method

• bayes calibration

• queso

• proposal covariance

• values

• diagonal

Specifies the diagonal matrix format when specifying a user-specified proposal covariance.

1236 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): none

Description
When specifying the MCMC proposal covariance in an input file, this keyword declares the use of a diagonal
matrix format, i.e., the user only provides the values along the diagonal.

Examples
method,

bayes_calibration queso
samples = 1000 seed = 348
dram
proposal_covariance
diagonal values 1.0e6 1.0e-1

matrix

• Keywords Area

• method

• bayes calibration

• queso

• proposal covariance

• values

• matrix

Specifies the full matrix format when specifying a user-specified proposal covariance.

Specification
Alias: none

Argument(s): none

Description
When specifying the MCMC proposal covariance in an input file, this keyword declares the use of a full matrix
format, i.e., the user provides all values of the matrix, not just the diagonal.

Examples
method,

bayes_calibration queso
samples = 1000 seed = 348
dram
proposal_covariance
matrix values 1.0 0.1

0.1 2.0

6.2. METHOD 1237

filename

• Keywords Area

• method

• bayes calibration

• queso

• proposal covariance

• filename

Uses a file to import a user-specified MCMC proposal covariance.

Specification
Alias: none

Argument(s): STRING
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 diagonal Specifies the
diagonal matrix
format when
importing a
user-specified
proposal
covariance.

matrix Specifies the full
matrix format
when importing a
user-specified
proposal
covariance.

Description
This keyword selection results in definition of the MCMC proposal covariance from importing data a user-
specified filename. This import must be declared as either a full matrix or a matrix diagonal.

Default Behavior
This option is not the default, and generally implies special a priori knowledge from the user.
Usage Tips
This option is not supported for the case of transformations to standardized probability space.

Examples
method,

bayes_calibration queso
samples = 1000 seed = 348
dram
proposal_covariance
filename ... # See leaf nodes for required format option

1238 CHAPTER 6. KEYWORDS AREA

diagonal

• Keywords Area

• method

• bayes calibration

• queso

• proposal covariance

• filename

• diagonal

Specifies the diagonal matrix format when importing a user-specified proposal covariance.

Specification
Alias: none

Argument(s): none

Description
When importing the MCMC proposal covariance from a user-specified filename, this keyword declares the use of
a diagonal matrix format, i.e., the user only provides the values along the diagonal.

Examples
method,

bayes_calibration queso
samples = 1000 seed = 348
dram
proposal_covariance
diagonal filename ’dakota_cantilever_queso.diag.dat’

matrix

• Keywords Area

• method

• bayes calibration

• queso

• proposal covariance

• filename

• matrix

Specifies the full matrix format when importing a user-specified proposal covariance.

6.2. METHOD 1239

Specification
Alias: none

Argument(s): none

Description
When importing the MCMC proposal covariance from a user-specified filename, this keyword declares the use of
a full matrix format, i.e., the user provides all values of the matrix, not just the diagonal.

Examples
method,

bayes_calibration queso
samples = 1000 seed = 348
dram
proposal_covariance
matrix filename ’dakota_cantilever_queso.matrix.dat’

gpmsa

• Keywords Area

• method

• bayes calibration

• gpmsa

(Experimental) Gaussian Process Models for Simulation Analysis (GPMSA) Markov Chain Monte Carlo
algorithm with Gaussian Process Surrogate

Topics
This keyword is related to the topics:

• package queso

• bayesian calibration

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required emulator samples Number of data
points used to train
the surrogate
model or emulator

1240 CHAPTER 6. KEYWORDS AREA

Optional import points file File containing
variable values and
corresponding
responses

Optional export points file Output file for
evaluations of a
surrogate model

Optional(Choose
One)

MCMC algorithm
type (Group 1)

dram Use the DRAM
MCMC algorithm

delayed rejection Use the Delayed
Rejection MCMC
algorithm

adaptive -
metropolis

Use the Adaptive
Metropolis MCMC
algorithm

metropolis -
hastings

Use the
Metropolis--
Hastings MCMC
algorithm

multilevel Use the multilevel
MCMC algorithm.

Optional rng Selection of a
random number
generator

Optional proposal -
covariance

Defines the
technique used to
generate the
MCMC proposal
covariance.

Description
GPMSA (Gaussian Process Models for Simulation Analysis) is another approach that provides the capability
for Bayesian calibration. The GPMSA implementation currently is an experimental capability and not ready
for production use at this time. A key part of GPMSA is the construction of an emulator from simulation runs
collected at various settings of input parameters. The emulator is a statistical model of the system response, and it
is used to incorporate the observational data to improve system predictions and constrain or calibrate the unknown
parameters. The GPMSA code draws heavily on the theory developed in the seminal Bayesian calibration paper
by Kennedy and O’Hagan[55]. The particular approach in GPMSA has been developed by the Los Alamos group
and document in[48]. GPMSA uses Gaussian process models in the emulation, but the emulator is actually a set
of basis functions (e.g. from a singular value decomposition) which have GPs as the coefficients.

6.2. METHOD 1241

For the GPMSA method, one can define the number of samples which will be used in construction of the
emulator, emulator samples. The emulator involves Gaussian processes in GPMSA, so the user does not
specify anything about emulator type. At this point, the only controls active for GPMSA are emulator -
samples, seed and rng, and samples (the number of MCMC samples) and the type of MCMC algorithm (e.-
g. dram, delayed rejection, adaptive metropolis, metropolis hastings, or multilevel).
NOTE: the GPMSA method is in a very preliminary, prototype state at this time. The user will need to modify
certain data structures in the code for their particular application and recompile to run with GPMSA.

emulator samples

• Keywords Area

• method

• bayes calibration

• gpmsa

• emulator samples

Number of data points used to train the surrogate model or emulator

Specification
Alias: none

Argument(s): INTEGER

Description
This keyword refers to the number of build points or training points used to construct a Gaussian process emulator.
If the user specifies a number of emulator samples that is less than the minimum number of points required
to build the GP surrogate, Dakota will augment the samples to obtain the minimum required.

import points file

• Keywords Area

• method

• bayes calibration

• gpmsa

• import points file

File containing variable values and corresponding responses

Specification
Alias: none

Argument(s): STRING
Default: no point import from a file

1242 CHAPTER 6. KEYWORDS AREA

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional(Choose
One)

tabular format
(Group 1)

annotated Selects annotated
tabular file format

custom annotated Selects
custom-annotated
tabular file format

freeform Selects freeform
file format

Optional active only Import only active
variables from
tabular data file

Description
The import points file allows the user to specify a file that contains a list of variable values and the model
responses computed at those values. These can be used by a number of methods in place of model evaluations.
When used to construct surrogate models or emulators these are often called build points or training data.

Default Behavior
Be default, methods do not import points from a file.
Usage Tips
Dakota parses input files without regard to whitespace, but the import points file must be in one of three

formats:

• annotated (default)

• custom annotated

• freeform

Examples
method

list_parameter_study
import_points_file = ’dakota_pstudy.3.dat’

annotated

• Keywords Area

• method

• bayes calibration

• gpmsa

• import points file

• annotated

Selects annotated tabular file format

6.2. METHOD 1243

Topics

This keyword is related to the topics:

• file formats

Specification

Alias: none
Argument(s): none
Default: annotated format

Description

An annotated tabular file is a whitespace-separated text file with one leading header row of comments/column la-
bels. Each subsequent row contains an evaluation ID and interface ID, followed by data for variables, or variables
followed by responses, depending on context.

Default Behavior
By default, Dakota imports and exports tabular files in annotated format. The annotated keyword can be

used to explicitly specify this.
Usage Tips

• To specify pre-Dakota 6.1 tabular format, which did not include interface id, specify custom annotated
header eval id

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export an annotated top-level tabular data file containing a header row, leading eval id and interface id columns,
and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
annotated

Resulting tabular file:

%eval_id interface x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 NO_ID 0.9 1.1 0.0002 0.26 0.76
2 NO_ID 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 NO_ID 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

1244 CHAPTER 6. KEYWORDS AREA

custom annotated

• Keywords Area

• method

• bayes calibration

• gpmsa

• import points file

• custom annotated

Selects custom-annotated tabular file format

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Default: annotated format

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional header Enable header row
in
custom-annotated
tabular file

Optional eval id Enable evaluation
ID column in
custom-annotated
tabular file

Optional interface id Enable interface
ID column in
custom-annotated
tabular file

Description
A custom-annotated tabular file is a whitespace-separated text file typically containing row data for variables, or
variables followed by responses, though the format is used for other tabular exports/imports as well. Custom-
annotated allows user options for whether header row, eval id column, and interface id column appear
in the tabular file, thus bridging freeform and (fully) annotated.

Default Behavior

6.2. METHOD 1245

The annotated format is the default for tabular export/import. To control which header row and columns
are in the input/output, specify custom annotated, followed by options, in the relevant export/import context.

Usage Tips

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export a custom-annotated tabular file in Dakota 6.0 format, which contained only header and eval id (no interface-
id), and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
custom_annotated header eval_id

Resulting tabular file:

%eval_id x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 0.9 1.1 0.0002 0.26 0.76
2 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

header

• Keywords Area

• method

• bayes calibration

• gpmsa

• import points file

• custom annotated

• header

Enable header row in custom-annotated tabular file

Specification
Alias: none

Argument(s): none
Default: no header

Description
See description of parent custom annotated

1246 CHAPTER 6. KEYWORDS AREA

eval id

• Keywords Area

• method

• bayes calibration

• gpmsa

• import points file

• custom annotated

• eval id

Enable evaluation ID column in custom-annotated tabular file

Specification
Alias: none

Argument(s): none
Default: no eval id column

Description
See description of parent custom annotated

interface id

• Keywords Area

• method

• bayes calibration

• gpmsa

• import points file

• custom annotated

• interface id

Enable interface ID column in custom-annotated tabular file

Specification
Alias: none

Argument(s): none
Default: no interface id column

Description
See description of parent custom annotated

6.2. METHOD 1247

freeform

• Keywords Area

• method

• bayes calibration

• gpmsa

• import points file

• freeform

Selects freeform file format

Topics

This keyword is related to the topics:

• file formats

Specification

Alias: none
Argument(s): none
Default: annotated format

Description

A freeform tabular file is whitespace-separated text file with no leading header row and no leading columns. Most
commonly, each row contains data for variables, or variables followed by responses, though the format is used for
other tabular exports/imports as well.

Default Behavior
The annotated format is the default for tabular export/import. To change this behavior, specify freeform

in the relevant export/import context.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• In freeform, the num rows x num cols total data entries may be separated with any whitespace including
spaces, tabs, and newlines. In this format, vectors may therefore appear as a single row or single column
(or mixture; entries will populate the vector in order).

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

1248 CHAPTER 6. KEYWORDS AREA

Examples
Export a freeform tabular file containing only data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
freeform

Resulting tabular file:

0.9 1.1 0.0002 0.26 0.76
0.90009 1.1 0.0001996404857 0.2601620081 0.759955
0.89991 1.1 0.0002003604863 0.2598380081 0.760045

...

active only

• Keywords Area

• method

• bayes calibration

• gpmsa

• import points file

• active only

Import only active variables from tabular data file

Topics

This keyword is related to the topics:

• file formats

Specification

Alias: none
Argument(s): none

Description

By default, files for tabular data imports are expected to contain columns for all variables, active and inactive. The
keyword active only indicates that the file to import contains only the active variables.

This option should only be used in contexts where the inactive variables have no influence, for example,
building a surrogate over active variables, with the state variables held at nominal. It should not be used in more
complex nested contexts, where the values of inactive variables are relevant to the function evaluations used to
build the surrogate.

6.2. METHOD 1249

export points file

• Keywords Area

• method

• bayes calibration

• gpmsa

• export points file

Output file for evaluations of a surrogate model

Specification
Alias: none

Argument(s): STRING
Default: no point export to a file

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional(Choose
One)

tabular format
(Group 1)

annotated Selects annotated
tabular file format

custom annotated Selects
custom-annotated
tabular file format

freeform Selects freeform
file format

Description
File of points (input variable values and predicted approximate outputs from the surrogate) evaluated on the
surrogate model. The export points contain test point values and the emulator predictions at these points.

Usage Tips
Dakota exports tabular data in one of three formats:

• annotated (default)

• custom annotated

• freeform

annotated

• Keywords Area

• method

• bayes calibration

• gpmsa

1250 CHAPTER 6. KEYWORDS AREA

• export points file

• annotated

Selects annotated tabular file format

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Default: annotated format

Description
An annotated tabular file is a whitespace-separated text file with one leading header row of comments/column la-
bels. Each subsequent row contains an evaluation ID and interface ID, followed by data for variables, or variables
followed by responses, depending on context.

Default Behavior
By default, Dakota imports and exports tabular files in annotated format. The annotated keyword can be

used to explicitly specify this.
Usage Tips

• To specify pre-Dakota 6.1 tabular format, which did not include interface id, specify custom annotated
header eval id

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export an annotated top-level tabular data file containing a header row, leading eval id and interface id columns,
and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
annotated

Resulting tabular file:

%eval_id interface x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 NO_ID 0.9 1.1 0.0002 0.26 0.76
2 NO_ID 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 NO_ID 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

6.2. METHOD 1251

custom annotated

• Keywords Area

• method

• bayes calibration

• gpmsa

• export points file

• custom annotated

Selects custom-annotated tabular file format

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Default: annotated format

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional header Enable header row
in
custom-annotated
tabular file

Optional eval id Enable evaluation
ID column in
custom-annotated
tabular file

Optional interface id Enable interface
ID column in
custom-annotated
tabular file

Description
A custom-annotated tabular file is a whitespace-separated text file typically containing row data for variables, or
variables followed by responses, though the format is used for other tabular exports/imports as well. Custom-
annotated allows user options for whether header row, eval id column, and interface id column appear
in the tabular file, thus bridging freeform and (fully) annotated.

Default Behavior

1252 CHAPTER 6. KEYWORDS AREA

The annotated format is the default for tabular export/import. To control which header row and columns
are in the input/output, specify custom annotated, followed by options, in the relevant export/import context.

Usage Tips

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export a custom-annotated tabular file in Dakota 6.0 format, which contained only header and eval id (no interface-
id), and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
custom_annotated header eval_id

Resulting tabular file:

%eval_id x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 0.9 1.1 0.0002 0.26 0.76
2 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

header

• Keywords Area

• method

• bayes calibration

• gpmsa

• export points file

• custom annotated

• header

Enable header row in custom-annotated tabular file

Specification
Alias: none

Argument(s): none
Default: no header

Description
See description of parent custom annotated

6.2. METHOD 1253

eval id

• Keywords Area

• method

• bayes calibration

• gpmsa

• export points file

• custom annotated

• eval id

Enable evaluation ID column in custom-annotated tabular file

Specification
Alias: none

Argument(s): none
Default: no eval id column

Description
See description of parent custom annotated

interface id

• Keywords Area

• method

• bayes calibration

• gpmsa

• export points file

• custom annotated

• interface id

Enable interface ID column in custom-annotated tabular file

Specification
Alias: none

Argument(s): none
Default: no interface id column

Description
See description of parent custom annotated

1254 CHAPTER 6. KEYWORDS AREA

freeform

• Keywords Area

• method

• bayes calibration

• gpmsa

• export points file

• freeform

Selects freeform file format

Topics

This keyword is related to the topics:

• file formats

Specification

Alias: none
Argument(s): none
Default: annotated format

Description

A freeform tabular file is whitespace-separated text file with no leading header row and no leading columns. Most
commonly, each row contains data for variables, or variables followed by responses, though the format is used for
other tabular exports/imports as well.

Default Behavior
The annotated format is the default for tabular export/import. To change this behavior, specify freeform

in the relevant export/import context.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• In freeform, the num rows x num cols total data entries may be separated with any whitespace including
spaces, tabs, and newlines. In this format, vectors may therefore appear as a single row or single column
(or mixture; entries will populate the vector in order).

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

6.2. METHOD 1255

Examples
Export a freeform tabular file containing only data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
freeform

Resulting tabular file:

0.9 1.1 0.0002 0.26 0.76
0.90009 1.1 0.0001996404857 0.2601620081 0.759955
0.89991 1.1 0.0002003604863 0.2598380081 0.760045

...

dram

• Keywords Area

• method

• bayes calibration

• gpmsa

• dram

Use the DRAM MCMC algorithm

Topics

This keyword is related to the topics:

• bayesian calibration

Specification

Alias: none
Argument(s): none
Default: dram

Description

The type of Markov Chain Monte Carlo used. This keyword specifies the use of DRAM, (Delayed Rejection
Adaptive Metropolis)[39].

Default Behavior
Five MCMC algorithm variants are supported: dram, delayed rejection, adaptive metropolis,

metropolis hastings, and multilevel. The default is dram.
Usage Tips
If the user knows very little about the proposal covariance, using dram is a recommended strategy. The

proposal covariance is adaptively updated, and the delayed rejection may help improve low acceptance rates.

1256 CHAPTER 6. KEYWORDS AREA

Examples
method,

bayes_calibration queso
dram
samples = 10000 seed = 348

delayed rejection

• Keywords Area

• method

• bayes calibration

• gpmsa

• delayed rejection

Use the Delayed Rejection MCMC algorithm

Topics
This keyword is related to the topics:

• bayesian calibration

Specification
Alias: none

Argument(s): none
Default: dram

Description
This keyword specifies the use of the Delayed Rejection algorithm in which there can be a delay in rejecting
samples from the chain. That is, the ”DR” part of DRAM is used but the ”AM” part is not, rather a regular
Metropolis-Hastings algorithm is used.

Default Behavior
Five MCMC algorithm variants are supported: dram, delayed rejection, adaptive metropolis,

metropolis hastings, and multilevel. The default is dram.
Usage Tips
If the user knows something about the proposal covariance or the proposal covariance is informed through

derivative information, using delayed rejection is preferred over dram: the proposal covariance is already
being informed by derivative information and the adaptive metropolis is not necessary.

Examples
method,

bayes_calibration queso
delayed_rejection
samples = 10000 seed = 348

6.2. METHOD 1257

See Also

These keywords may also be of interest:

• proposal covariance

adaptive metropolis

• Keywords Area

• method

• bayes calibration

• gpmsa

• adaptive metropolis

Use the Adaptive Metropolis MCMC algorithm

Topics

This keyword is related to the topics:

• bayesian calibration

Specification

Alias: none
Argument(s): none
Default: dram

Description

This keyword specifies the use of the Adaptive Metropolis algorithm. That is, the ”AM” part of DRAM is used
but the ”DR” part is not: specifying this keyword activates only the Adaptive Metropolis part of the MCMC
algorithm, in which the covariance of the proposal density is updated adaptively.

Default Behavior
Five MCMC algorithm variants are supported: dram, delayed rejection, adaptive metropolis,

metropolis hastings, and multilevel. The default is dram.
Usage Tips
If the user knows very little about the proposal covariance, but doesn’t want to incur the cost of using full

dram with both delayed rejection and adaptive metropolis, specifying only adaptive metropolis offers a
good strategy.

Examples
method,

bayes_calibration queso
adaptive_metropolis
samples = 10000 seed = 348

1258 CHAPTER 6. KEYWORDS AREA

metropolis hastings

• Keywords Area

• method

• bayes calibration

• gpmsa

• metropolis hastings

Use the Metropolis-Hastings MCMC algorithm

Topics
This keyword is related to the topics:

• bayesian calibration

Specification
Alias: none

Argument(s): none
Default: dram

Description
This keyword specifies the use of a Metropolis-Hastings algorithm for the MCMC chain generation. This means
there is no delayed rejection and no adaptive proposal covariance updating as in DRAM.

Default Behavior
Five MCMC algorithm variants are supported: dram, delayed rejection, adaptive metropolis,

metropolis hastings, and multilevel. The default is dram.
Usage Tips
If the user wants to use Metropolis-Hastings, possibly as a comparison to the other methods which involve

more chain adaptation, this is the MCMC type to use.

Examples
method,

bayes_calibration queso
metropolis_hastings
samples = 10000 seed = 348

multilevel

• Keywords Area

• method

• bayes calibration

• gpmsa

• multilevel

Use the multilevel MCMC algorithm.

6.2. METHOD 1259

Topics
This keyword is related to the topics:

• bayesian calibration

Specification
Alias: none

Argument(s): none
Default: dram

Description
Selects the multilevel algorithm described in[70].

Default Behavior
Five MCMC algorithm variants are supported: dram, delayed rejection, adaptive metropolis,

metropolis hastings, and multilevel. The default is dram.
Usage Tips
The multilevel algorithm is a more experimental algorithm than the other MCMC approaches mentioned

above. It works well in cases where the prior can be ”evolved” to a posterior in a structured way.

Examples
method,

bayes_calibration queso
multilevel
samples = 10000 seed = 348

rng

• Keywords Area

• method

• bayes calibration

• gpmsa

• rng

Selection of a random number generator

Specification
Alias: none

Argument(s): none
Default: Mersenne twister (mt19937)

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

1260 CHAPTER 6. KEYWORDS AREA

Required(Choose
One)

Group 1 mt19937 Generates random
numbers using the
Mersenne twister

rnum2 Generates
pseudo-random
numbers using the
Pecos package

Description

The rng keyword is used to indicate a choice of random number generator.
Default Behavior
If specified, the rng keyword must be accompanied by either rnum2 (pseudo-random numbers) or mt19937

(random numbers generated by the Mersenne twister). Otherwise, mt19937, the Mersenne twister is used by
default.

Usage Tips
The default is recommended, as the Mersenne twister is a higher quality random number generator.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 98765
rng rnum2

mt19937

• Keywords Area

• method

• bayes calibration

• gpmsa

• rng

• mt19937

Generates random numbers using the Mersenne twister

Specification

Alias: none
Argument(s): none

6.2. METHOD 1261

Description

The mt19937 keyword directs Dakota to use the Mersenne twister to generate random numbers. Additional
information can be found on wikipedia: http://en.wikipedia.org/wiki/Mersenne twister.

Default Behavior
mt19937 is the default random number generator. To specify it explicitly in the Dakota input file, however,

it must be specified in conjuction with the rng keyword.
Usage Tips
Use of the Mersenne twister random number generator (mt19937) is recommended.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 98765
rng mt19937

rnum2

• Keywords Area

• method

• bayes calibration

• gpmsa

• rng

• rnum2

Generates pseudo-random numbers using the Pecos package

Specification

Alias: none
Argument(s): none

Description

The rnum2 keyword directs Dakota to use pseudo-random numbers generated by the Pecos package.
Default Behavior
rnum2 is not used by default. To change this behavior, it must be specified in conjuction with the rng

keyword.
Usage Tips
Use of the Mersenne twister random number generator (mt19937) is recommended over rnum2.

http://en.wikipedia.org/wiki/Mersenne_twister

1262 CHAPTER 6. KEYWORDS AREA

Examples
method

sampling
sample_type lhs
samples = 10
seed = 98765
rng rnum2

proposal covariance

• Keywords Area

• method

• bayes calibration

• gpmsa

• proposal covariance

Defines the technique used to generate the MCMC proposal covariance.

Topics
This keyword is related to the topics:

• bayesian calibration

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1

derivatives Uses derivatives to
inform the MCMC
proposal
covariance.

prior Uses the
covariance of the
prior distributions
to define the
MCMC proposal
covariance.

6.2. METHOD 1263

values Specifies matrix
values to use as the
MCMC proposal
covariance.

filename Uses a file to
import a
user-specified
MCMC proposal
covariance.

Description

The proposal covariance is used to define a multivariate normal (MVN) jumping distribution used to create new
points within a Markov chain. That is, a new point in the chain is determined by sampling within a MVN
probability density with prescribed covariance that is centered at the current chain point. The accuracy of the
proposal covariance has a significant effect on rejection rates and the efficiency of chain mixing.

Default Behavior
If the proposal covariance keyword is specified by the user, then one of the four options must be specified. If

the proposal covariance block is omitted, then the prior covariance option is used as the default.
Expected Output
The effect of the proposal covariance is reflected in the MCMC chain values and the rejection rates, which can

be seen in the diagnostic outputs from the QUESO solver within the outputData directory.
Usage Tips
When derivative information is available inexpensively (e.g., from an emulator model), the derived-based

proposal covariance forms a more accurate proposal distribution, resulting in lower rejection rates and faster
chain mixing.

derivatives

• Keywords Area

• method

• bayes calibration

• gpmsa

• proposal covariance

• derivatives

Uses derivatives to inform the MCMC proposal covariance.

Topics

This keyword is related to the topics:

• bayesian calibration

1264 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): none

6.2. METHOD 1265

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional proposal updates Restarts the
MCMC chain with
updated
derivative-based
proposal
covariance.

Description
This keyword selection results in definition of the MCMC proposal covariance from the Hessian of the misfit
function (negative log likelihood), where this Hessian is defined from either a Gauss-Newton approximation
(using only first derivatives of the calibration terms) or a full Hessian (using values, first derivatives, and second
derivatives of the calibration terms).

Default Behavior
This is not the default, but rather a more advanced option that exploits structure in the form of the likelihood.
Expected Output
When derivatives are specified for defining the proposal covariance, the misfit Hessian and its inverse (the

MVN proposal covariance) will be output to the standard output stream.
Usage Tips
The full Hessian of the misfit is used when either supported by the emulator in use (for PCE and surfpack GP,

but not SC or dakota GP) or by the user’s response specification (Hessian type is not ”no hessians”), in the case of
no emulator. When this full Hessian is indefinite and cannot be inverted to form the proposal covariance, fallback
to the positive semi-definite Gauss-Newton Hessian is employed.

Since this proposal covariance is locally accurate, it should be updated periodically using the proposal updates
option. While the adaptive metropolis option can be used in combination with derivative-based preconditioning,
it is generally preferable to instead increase the proposal update frequency due to the improved local accuracy of
this approach.

Examples
method,

bayes_calibration queso
samples = 2000 seed = 348
delayed_rejection
emulator pce sparse_grid_level = 2
proposal_covariance derivatives # default proposal_updates

proposal updates

• Keywords Area

• method

• bayes calibration

• gpmsa

• proposal covariance

• derivatives

1266 CHAPTER 6. KEYWORDS AREA

• proposal updates

Restarts the MCMC chain with updated derivative-based proposal covariance.

Specification
Alias: none

Argument(s): INTEGER

Description
When employing derivative-based proposal covariance, this specification defines the number of restarts that are
performed during the course of the total sample size of the MCMC chain. For each restart, a new chain is initiated
from the final point in the previous acceptance chain using updated proposal covariance corresponding to the
derivatives values at the new starting point.

Default Behavior
If proposal updates is not specified, then the default frequency for restarting the chain with updated proposal

covariance is every 100 samples.
Expected Output
Each restarted chain will generate a new QUESO header and sampling summary, and the chain diagnostics

will be appended within the outputData directory.
Usage Tips
proposal updates should be tailored to the size of the total chain, accounting for the relative expense of

derivative-based proposal updates.

Examples
method,

bayes_calibration queso
samples = 2000 seed = 348
delayed_rejection
emulator pce sparse_grid_level = 2
proposal_covariance derivatives

proposal_updates = 50 # restarted chains, each with 40 new points

prior

• Keywords Area

• method

• bayes calibration

• gpmsa

• proposal covariance

• prior

Uses the covariance of the prior distributions to define the MCMC proposal covariance.

Topics
This keyword is related to the topics:

• bayesian calibration

6.2. METHOD 1267

Specification

Alias: none
Argument(s): none

Description

This keyword selection results in definition of the MCMC proposal covariance from the covariance of the prior
distributions. This covariance is currently assumed to be diagonal without correlation.

Default Behavior
This is the default proposal covariance option.
Usage Tips
Since this proposal covariance is defined globally, the chain does not need to be periodically restarted using

local updates to this proposal. However, it is usually effective to adapt the proposal using one of the adaptive
metropolis MCMC options.

Examples

method,
bayes_calibration queso
samples = 2000 seed = 348
dram
proposal_covariance prior

values

• Keywords Area

• method

• bayes calibration

• gpmsa

• proposal covariance

• values

Specifies matrix values to use as the MCMC proposal covariance.

Specification

Alias: none
Argument(s): REALLIST

1268 CHAPTER 6. KEYWORDS AREA

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 diagonal Specifies the
diagonal matrix
format when
specifying a
user-specified
proposal
covariance.

matrix Specifies the full
matrix format
when specifying a
user-specified
proposal
covariance.

Description
This keyword selection results in definition of the MCMC proposal covariance from user-specified matrix values.
The matrix input format must be declared as either a full matrix or a matrix diagonal.

Default Behavior
This option is not the default, and generally implies special a priori knowledge from the user.
Usage Tips
This option is not supported for the case of transformations to standardized probability space.

Examples
method,

bayes_calibration queso
samples = 1000 seed = 348
dram
proposal_covariance
values ... # See leaf nodes for required format option

diagonal

• Keywords Area

• method

• bayes calibration

• gpmsa

• proposal covariance

• values

• diagonal

Specifies the diagonal matrix format when specifying a user-specified proposal covariance.

6.2. METHOD 1269

Specification
Alias: none

Argument(s): none

Description
When specifying the MCMC proposal covariance in an input file, this keyword declares the use of a diagonal
matrix format, i.e., the user only provides the values along the diagonal.

Examples
method,

bayes_calibration queso
samples = 1000 seed = 348
dram
proposal_covariance
diagonal values 1.0e6 1.0e-1

matrix

• Keywords Area

• method

• bayes calibration

• gpmsa

• proposal covariance

• values

• matrix

Specifies the full matrix format when specifying a user-specified proposal covariance.

Specification
Alias: none

Argument(s): none

Description
When specifying the MCMC proposal covariance in an input file, this keyword declares the use of a full matrix
format, i.e., the user provides all values of the matrix, not just the diagonal.

Examples
method,

bayes_calibration queso
samples = 1000 seed = 348
dram
proposal_covariance
matrix values 1.0 0.1

0.1 2.0

1270 CHAPTER 6. KEYWORDS AREA

filename

• Keywords Area

• method

• bayes calibration

• gpmsa

• proposal covariance

• filename

Uses a file to import a user-specified MCMC proposal covariance.

Specification
Alias: none

Argument(s): STRING
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 diagonal Specifies the
diagonal matrix
format when
importing a
user-specified
proposal
covariance.

matrix Specifies the full
matrix format
when importing a
user-specified
proposal
covariance.

Description
This keyword selection results in definition of the MCMC proposal covariance from importing data a user-
specified filename. This import must be declared as either a full matrix or a matrix diagonal.

Default Behavior
This option is not the default, and generally implies special a priori knowledge from the user.
Usage Tips
This option is not supported for the case of transformations to standardized probability space.

Examples
method,

bayes_calibration queso
samples = 1000 seed = 348
dram
proposal_covariance
filename ... # See leaf nodes for required format option

6.2. METHOD 1271

diagonal

• Keywords Area

• method

• bayes calibration

• gpmsa

• proposal covariance

• filename

• diagonal

Specifies the diagonal matrix format when importing a user-specified proposal covariance.

Specification
Alias: none

Argument(s): none

Description
When importing the MCMC proposal covariance from a user-specified filename, this keyword declares the use of
a diagonal matrix format, i.e., the user only provides the values along the diagonal.

Examples
method,

bayes_calibration queso
samples = 1000 seed = 348
dram
proposal_covariance
diagonal filename ’dakota_cantilever_queso.diag.dat’

matrix

• Keywords Area

• method

• bayes calibration

• gpmsa

• proposal covariance

• filename

• matrix

Specifies the full matrix format when importing a user-specified proposal covariance.

1272 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): none

Description
When importing the MCMC proposal covariance from a user-specified filename, this keyword declares the use of
a full matrix format, i.e., the user provides all values of the matrix, not just the diagonal.

Examples
method,

bayes_calibration queso
samples = 1000 seed = 348
dram
proposal_covariance
matrix filename ’dakota_cantilever_queso.matrix.dat’

dream

• Keywords Area

• method

• bayes calibration

• dream

DREAM (DiffeRential Evolution Adaptive Metropolis)

Topics
This keyword is related to the topics:

• bayesian calibration

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional chains Number of chains
in DREAM

Optional num cr Number of
candidate points
for each crossover.

6.2. METHOD 1273

Optional crossover chain -
pairs

Number of chains
used in crossover.

Optional gr threshold Convergence
tolerance for the
Gelman-Rubin
statistic

Optional jump step Number of
generations a long
jump step is taken

Optional emulator Use an emulator or
surrogate model to
evaluate the
likelihood function

Description
The DiffeRential Evolution Adaptive Metropolis algorithm is described in[86]. For the DREAM method, one can
define the number of chains used with chains (minimum 3). The total number of generations per chain in DR-
EAM is the number of samples (samples) divided by the number of chains (chains). The number of chains
randomly selected to be used in the crossover each time a crossover occurs is crossover chain pairs.
There is an extra adaptation during burn-in, in which DREAM estimates a distribution of crossover probabilities
that favors large jumps over smaller ones in each of the chains. Normalization is required to ensure that all of
the input dimensions contribute equally. In this process, a discrete number of candidate points for each crossover
value is generated. This parameter is num cr. The gr threshold is the convergence tolerance for the Gelman-
Rubin statistic which will govern the convergence of the multiple chain process. The integer jump step forces
a long jump every jump step generations. For more details about these parameters, see[86].

chains

• Keywords Area

• method

• bayes calibration

• dream

• chains

Number of chains in DREAM

Topics
This keyword is related to the topics:

• bayesian calibration

Specification
Alias: none

Argument(s): INTEGER
Default: 3

1274 CHAPTER 6. KEYWORDS AREA

Description
Number of chains in DREAM

num cr

• Keywords Area

• method

• bayes calibration

• dream

• num cr

Number of candidate points for each crossover.

Topics
This keyword is related to the topics:

• bayesian calibration

Specification
Alias: none

Argument(s): INTEGER
Default: 1

Description
In DREAM, there is an extra adaptation during burn-in, in which DREAM estimates a distribution of crossover
probabilities that favors large jumps over smaller ones in each of the chains. Normalization is required to ensure
that all of the input dimensions contribute equally. In this process, a discrete number of candidate points for each
crossover value is generated. This parameter is num cr.

crossover chain pairs

• Keywords Area

• method

• bayes calibration

• dream

• crossover chain pairs

Number of chains used in crossover.

Topics
This keyword is related to the topics:

• bayesian calibration

6.2. METHOD 1275

Specification
Alias: none

Argument(s): INTEGER
Default: 3

Description
The number of chains randomly selected to be used in the crossover each time a crossover occurs.

gr threshold

• Keywords Area

• method

• bayes calibration

• dream

• gr threshold

Convergence tolerance for the Gelman-Rubin statistic

Topics
This keyword is related to the topics:

• bayesian calibration

Specification
Alias: none

Argument(s): REAL
Default: 1.2

Description
The gr threshold is the convergence tolerance for the Gelman-Rubin statistic which will govern the convergence
of the multiple chain process.

jump step

• Keywords Area

• method

• bayes calibration

• dream

• jump step

Number of generations a long jump step is taken

1276 CHAPTER 6. KEYWORDS AREA

Topics
This keyword is related to the topics:

• bayesian calibration

Specification
Alias: none

Argument(s): INTEGER
Default: 5

Description
The integer jump step forces a long jump every jump step generations in DREAM.

emulator

• Keywords Area

• method

• bayes calibration

• dream

• emulator

Use an emulator or surrogate model to evaluate the likelihood function

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

emulator type
(Group 1)

gaussian process Gaussian Process
surrogate model

pce Polynomial Chaos
Expansion
surrogate model

sc Stochastic
Collocation
polynomial
surrogate model

Optional use derivatives Use derivative data
to construct
surrogate models

6.2. METHOD 1277

Description
This keyword describes the type of emulator used when calculating the likelihood function for the Bayesian
calibration. The emulator can be a Gaussian process, polynomial chaos expansion, or stochastic collocation.

gaussian process

• Keywords Area

• method

• bayes calibration

• dream

• emulator

• gaussian process

Gaussian Process surrogate model

Specification
Alias: kriging

Argument(s): none
Default: Surfpack Gaussian process

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 surfpack Use the Surfpack
version of
Gaussian Process
surrogates

dakota Select the built in
Gaussian Process
surrogate

Optional emulator samples Number of data
points used to train
the surrogate
model or emulator

Optional posterior adaptive Adapt the emulator
model to achieve
greater accuracy in
regions of high
posterior
probability.

1278 CHAPTER 6. KEYWORDS AREA

Optional import points file File containing
variable values and
corresponding
responses

Optional export points file Output file for
evaluations of a
surrogate model

Description
Use the Gaussian process (GP) surrogate from Surfpack, which is specified using the surfpack keyword.

An alternate version of GP surrogates was available in prior versions of Dakota. For now, both versions are
supported but the dakota version is deprecated and intended to be removed in a future release.

surfpack

• Keywords Area

• method

• bayes calibration

• dream

• emulator

• gaussian process

• surfpack

Use the Surfpack version of Gaussian Process surrogates

Specification
Alias: none

Argument(s): none

Description
This keyword specifies the use of the Gaussian process that is incorporated in our surface fitting library called
Surfpack.

Several user options are available:

1. Optimization methods:

Maximum Likelihood Estimation (MLE) is used to find the optimal values of the hyper-parameters gov-
erning the trend and correlation functions. By default the global optimization method DIRECT is used for
MLE, but other options for the optimization method are available. See optimization method.

The total number of evaluations of the likelihood function can be controlled using the max trials key-
word followed by a positive integer. Note that the likelihood function does not require running the ”truth”
model, and is relatively inexpensive to compute.

6.2. METHOD 1279

2. Trend Function:

The GP models incorporate a parametric trend function whose purpose is to capture large-scale variations.
See trend.

3. Correlation Lengths:

Correlation lengths are usually optimized by Surfpack, however, the user can specify the lengths manually.
See correlation lengths.

4. Ill-conditioning

One of the major problems in determining the governing values for a Gaussian process or Kriging model is
the fact that the correlation matrix can easily become ill-conditioned when there are too many input points
close together. Since the predictions from the Gaussian process model involve inverting the correlation
matrix, ill-conditioning can lead to poor predictive capability and should be avoided.

Note that a sufficiently bad sample design could require correlation lengths to be so short that any interpo-
latory GP model would become inept at extrapolation and interpolation.

The surfpack model handles ill-conditioning internally by default, but behavior can be modified using

5. Gradient Enhanced Kriging (GEK).

The use derivatives keyword will cause the Surfpack GP to be constructed from a combination of
function value and gradient information (if available).

See notes in the Theory section.

Theory
Gradient Enhanced Kriging

Incorporating gradient information will only be beneficial if accurate and inexpensive derivative information
is available, and the derivatives are not infinite or nearly so. Here ”inexpensive” means that the cost of evaluating a
function value plus gradient is comparable to the cost of evaluating only the function value, for example gradients
computed by analytical, automatic differentiation, or continuous adjoint techniques. It is not cost effective to use
derivatives computed by finite differences. In tests, GEK models built from finite difference derivatives were also
significantly less accurate than those built from analytical derivatives. Note that GEK’s correlation matrix tends
to have a significantly worse condition number than Kriging for the same sample design.

This issue was addressed by using a pivoted Cholesky factorization of Kriging’s correlation matrix (which is a
small sub-matrix within GEK’s correlation matrix) to rank points by how much unique information they contain.
This reordering is then applied to whole points (the function value at a point immediately followed by gradient
information at the same point) in GEK’s correlation matrix. A standard non-pivoted Cholesky is then applied to the
reordered GEK correlation matrix and a bisection search is used to find the last equation that meets the constraint
on the (estimate of) condition number. The cost of performing pivoted Cholesky on Kriging’s correlation matrix
is usually negligible compared to the cost of the non-pivoted Cholesky factorization of GEK’s correlation matrix.
In tests, it also resulted in more accurate GEK models than when pivoted Cholesky or whole-point-block pivoted
Cholesky was performed on GEK’s correlation matrix.

dakota

• Keywords Area

• method

• bayes calibration

1280 CHAPTER 6. KEYWORDS AREA

• dream

• emulator

• gaussian process

• dakota

Select the built in Gaussian Process surrogate

Specification
Alias: none

Argument(s): none

Description
A second version of GP surrogates was available in prior versions of Dakota. For now, both versions are
supported but the dakota version is deprecated and intended to be removed in a future release.

Historically these models were drastically different, but in Dakota 5.1, they became quite similar. They now
differ in that the Surfpack GP has a richer set of features/options and tends to be more accurate than the Dakota
version. Due to how the Surfpack GP handles ill-conditioned correlation matrices (which significantly contributes
to its greater accuracy), the Surfpack GP can be a factor of two or three slower than Dakota’s. As of Dakota
5.2, the Surfpack implementation is the default in all contexts except Bayesian calibration.

More details on the gaussian process dakota model can be found in[58].
Dakota’s GP deals with ill-conditioning in two ways. First, when it encounters a non-invertible correlation

matrix it iteratively increases the size of a ”nugget,” but in such cases the resulting approximation smooths rather
than interpolates the data. Second, it has a point selection option (default off) that uses a greedy algorithm
to select a well-spaced subset of points prior to the construction of the GP. In this case, the GP will only interpo-
late the selected subset. Typically, one should not need point selection in trust-region methods because a small
number of points are used to develop a surrogate within each trust region. Point selection is most beneficial when
constructing with a large number of points, typically more than order one hundred, though this depends on the
number of variables and spacing of the sample points.

This differs from the point selection option of the Dakota GP which initially chooses a well-spaced
subset of points and finds the correlation parameters that are most likely for that one subset.

emulator samples

• Keywords Area

• method

• bayes calibration

• dream

• emulator

• gaussian process

• emulator samples

Number of data points used to train the surrogate model or emulator

6.2. METHOD 1281

Specification

Alias: none
Argument(s): INTEGER

Description

This keyword refers to the number of build points or training points used to construct a Gaussian process emulator.
If the user specifies a number of emulator samples that is less than the minimum number of points required
to build the GP surrogate, Dakota will augment the samples to obtain the minimum required.

posterior adaptive

• Keywords Area

• method

• bayes calibration

• dream

• emulator

• gaussian process

• posterior adaptive

Adapt the emulator model to achieve greater accuracy in regions of high posterior probability.

Specification

Alias: none
Argument(s): none

Description

Following an emulator-based MCMC process, this option refines the emulator by selecting points in regions of
high posterior probability, performing truth evaluations at these points, updating the emulator, and reperforming
the MCMC process. The adaptation is continued until the maximum number of iterations is exceeded or the
convergence tolerance is met.

Examples
bayes_calibration queso

samples = 2000 seed = 348
delayed_rejection
emulator

gaussian_process surfpack emulator_samples = 30
posterior_adaptive max_iterations = 10
proposal_covariance derivatives

1282 CHAPTER 6. KEYWORDS AREA

import points file

• Keywords Area

• method

• bayes calibration

• dream

• emulator

• gaussian process

• import points file

File containing variable values and corresponding responses

Specification
Alias: none

Argument(s): STRING
Default: no point import from a file

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional(Choose
One)

tabular format
(Group 1)

annotated Selects annotated
tabular file format

custom annotated Selects
custom-annotated
tabular file format

freeform Selects freeform
file format

Optional active only Import only active
variables from
tabular data file

Description
The import points file allows the user to specify a file that contains a list of variable values and the model
responses computed at those values. These can be used by a number of methods in place of model evaluations.
When used to construct surrogate models or emulators these are often called build points or training data.

Default Behavior
Be default, methods do not import points from a file.
Usage Tips
Dakota parses input files without regard to whitespace, but the import points file must be in one of three

formats:

• annotated (default)

• custom annotated

• freeform

6.2. METHOD 1283

Examples
method

list_parameter_study
import_points_file = ’dakota_pstudy.3.dat’

annotated

• Keywords Area

• method

• bayes calibration

• dream

• emulator

• gaussian process

• import points file

• annotated

Selects annotated tabular file format

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Default: annotated format

Description
An annotated tabular file is a whitespace-separated text file with one leading header row of comments/column la-
bels. Each subsequent row contains an evaluation ID and interface ID, followed by data for variables, or variables
followed by responses, depending on context.

Default Behavior
By default, Dakota imports and exports tabular files in annotated format. The annotated keyword can be

used to explicitly specify this.
Usage Tips

• To specify pre-Dakota 6.1 tabular format, which did not include interface id, specify custom annotated
header eval id

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

1284 CHAPTER 6. KEYWORDS AREA

Examples
Export an annotated top-level tabular data file containing a header row, leading eval id and interface id columns,
and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
annotated

Resulting tabular file:

%eval_id interface x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 NO_ID 0.9 1.1 0.0002 0.26 0.76
2 NO_ID 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 NO_ID 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

custom annotated

• Keywords Area

• method

• bayes calibration

• dream

• emulator

• gaussian process

• import points file

• custom annotated

Selects custom-annotated tabular file format

Topics

This keyword is related to the topics:

• file formats

Specification

Alias: none
Argument(s): none
Default: annotated format

6.2. METHOD 1285

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional header Enable header row
in
custom-annotated
tabular file

Optional eval id Enable evaluation
ID column in
custom-annotated
tabular file

Optional interface id Enable interface
ID column in
custom-annotated
tabular file

Description
A custom-annotated tabular file is a whitespace-separated text file typically containing row data for variables, or
variables followed by responses, though the format is used for other tabular exports/imports as well. Custom-
annotated allows user options for whether header row, eval id column, and interface id column appear
in the tabular file, thus bridging freeform and (fully) annotated.

Default Behavior
The annotated format is the default for tabular export/import. To control which header row and columns

are in the input/output, specify custom annotated, followed by options, in the relevant export/import context.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export a custom-annotated tabular file in Dakota 6.0 format, which contained only header and eval id (no interface-
id), and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
custom_annotated header eval_id

Resulting tabular file:

%eval_id x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 0.9 1.1 0.0002 0.26 0.76
2 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

1286 CHAPTER 6. KEYWORDS AREA

header

• Keywords Area

• method

• bayes calibration

• dream

• emulator

• gaussian process

• import points file

• custom annotated

• header

Enable header row in custom-annotated tabular file

Specification

Alias: none
Argument(s): none
Default: no header

Description

See description of parent custom annotated

eval id

• Keywords Area

• method

• bayes calibration

• dream

• emulator

• gaussian process

• import points file

• custom annotated

• eval id

Enable evaluation ID column in custom-annotated tabular file

6.2. METHOD 1287

Specification
Alias: none

Argument(s): none
Default: no eval id column

Description
See description of parent custom annotated

interface id

• Keywords Area

• method

• bayes calibration

• dream

• emulator

• gaussian process

• import points file

• custom annotated

• interface id

Enable interface ID column in custom-annotated tabular file

Specification
Alias: none

Argument(s): none
Default: no interface id column

Description
See description of parent custom annotated

freeform

• Keywords Area

• method

• bayes calibration

• dream

• emulator

• gaussian process

1288 CHAPTER 6. KEYWORDS AREA

• import points file

• freeform

Selects freeform file format

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Default: annotated format

Description
A freeform tabular file is whitespace-separated text file with no leading header row and no leading columns. Most
commonly, each row contains data for variables, or variables followed by responses, though the format is used for
other tabular exports/imports as well.

Default Behavior
The annotated format is the default for tabular export/import. To change this behavior, specify freeform

in the relevant export/import context.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• In freeform, the num rows x num cols total data entries may be separated with any whitespace including
spaces, tabs, and newlines. In this format, vectors may therefore appear as a single row or single column
(or mixture; entries will populate the vector in order).

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export a freeform tabular file containing only data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
freeform

Resulting tabular file:

0.9 1.1 0.0002 0.26 0.76
0.90009 1.1 0.0001996404857 0.2601620081 0.759955
0.89991 1.1 0.0002003604863 0.2598380081 0.760045

...

6.2. METHOD 1289

active only

• Keywords Area

• method

• bayes calibration

• dream

• emulator

• gaussian process

• import points file

• active only

Import only active variables from tabular data file

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none

Description
By default, files for tabular data imports are expected to contain columns for all variables, active and inactive. The
keyword active only indicates that the file to import contains only the active variables.

This option should only be used in contexts where the inactive variables have no influence, for example,
building a surrogate over active variables, with the state variables held at nominal. It should not be used in more
complex nested contexts, where the values of inactive variables are relevant to the function evaluations used to
build the surrogate.

export points file

• Keywords Area

• method

• bayes calibration

• dream

• emulator

• gaussian process

• export points file

Output file for evaluations of a surrogate model

1290 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): STRING
Default: no point export to a file

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional(Choose
One)

tabular format
(Group 1)

annotated Selects annotated
tabular file format

custom annotated Selects
custom-annotated
tabular file format

freeform Selects freeform
file format

Description
File of points (input variable values and predicted approximate outputs from the surrogate) evaluated on the
surrogate model. The export points contain test point values and the emulator predictions at these points.

Usage Tips
Dakota exports tabular data in one of three formats:

• annotated (default)

• custom annotated

• freeform

annotated

• Keywords Area

• method

• bayes calibration

• dream

• emulator

• gaussian process

• export points file

• annotated

Selects annotated tabular file format

Topics
This keyword is related to the topics:

• file formats

6.2. METHOD 1291

Specification
Alias: none

Argument(s): none
Default: annotated format

Description
An annotated tabular file is a whitespace-separated text file with one leading header row of comments/column la-
bels. Each subsequent row contains an evaluation ID and interface ID, followed by data for variables, or variables
followed by responses, depending on context.

Default Behavior
By default, Dakota imports and exports tabular files in annotated format. The annotated keyword can be

used to explicitly specify this.
Usage Tips

• To specify pre-Dakota 6.1 tabular format, which did not include interface id, specify custom annotated
header eval id

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export an annotated top-level tabular data file containing a header row, leading eval id and interface id columns,
and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
annotated

Resulting tabular file:

%eval_id interface x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 NO_ID 0.9 1.1 0.0002 0.26 0.76
2 NO_ID 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 NO_ID 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

custom annotated

• Keywords Area

• method

• bayes calibration

• dream

• emulator

1292 CHAPTER 6. KEYWORDS AREA

• gaussian process

• export points file

• custom annotated

Selects custom-annotated tabular file format

Topics

This keyword is related to the topics:

• file formats

Specification

Alias: none
Argument(s): none
Default: annotated format

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional header Enable header row
in
custom-annotated
tabular file

Optional eval id Enable evaluation
ID column in
custom-annotated
tabular file

Optional interface id Enable interface
ID column in
custom-annotated
tabular file

Description

A custom-annotated tabular file is a whitespace-separated text file typically containing row data for variables, or
variables followed by responses, though the format is used for other tabular exports/imports as well. Custom-
annotated allows user options for whether header row, eval id column, and interface id column appear
in the tabular file, thus bridging freeform and (fully) annotated.

Default Behavior
The annotated format is the default for tabular export/import. To control which header row and columns

are in the input/output, specify custom annotated, followed by options, in the relevant export/import context.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

6.2. METHOD 1293

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export a custom-annotated tabular file in Dakota 6.0 format, which contained only header and eval id (no interface-
id), and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
custom_annotated header eval_id

Resulting tabular file:

%eval_id x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 0.9 1.1 0.0002 0.26 0.76
2 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

header

• Keywords Area

• method

• bayes calibration

• dream

• emulator

• gaussian process

• export points file

• custom annotated

• header

Enable header row in custom-annotated tabular file

Specification

Alias: none
Argument(s): none
Default: no header

Description

See description of parent custom annotated

1294 CHAPTER 6. KEYWORDS AREA

eval id

• Keywords Area

• method

• bayes calibration

• dream

• emulator

• gaussian process

• export points file

• custom annotated

• eval id

Enable evaluation ID column in custom-annotated tabular file

Specification

Alias: none
Argument(s): none
Default: no eval id column

Description

See description of parent custom annotated

interface id

• Keywords Area

• method

• bayes calibration

• dream

• emulator

• gaussian process

• export points file

• custom annotated

• interface id

Enable interface ID column in custom-annotated tabular file

6.2. METHOD 1295

Specification
Alias: none

Argument(s): none
Default: no interface id column

Description
See description of parent custom annotated

freeform

• Keywords Area

• method

• bayes calibration

• dream

• emulator

• gaussian process

• export points file

• freeform

Selects freeform file format

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Default: annotated format

Description
A freeform tabular file is whitespace-separated text file with no leading header row and no leading columns. Most
commonly, each row contains data for variables, or variables followed by responses, though the format is used for
other tabular exports/imports as well.

Default Behavior
The annotated format is the default for tabular export/import. To change this behavior, specify freeform

in the relevant export/import context.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were free-form format. They now default to
annotated format, though freeform remains an option.

1296 CHAPTER 6. KEYWORDS AREA

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• In freeform, the num rows x num cols total data entries may be separated with any whitespace including
spaces, tabs, and newlines. In this format, vectors may therefore appear as a single row or single column
(or mixture; entries will populate the vector in order).

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export a freeform tabular file containing only data for variables and responses. Input file fragment:
environment

tabular_data
tabular_data_file = ’dakota_summary.dat’
freeform

Resulting tabular file:
0.9 1.1 0.0002 0.26 0.76

0.90009 1.1 0.0001996404857 0.2601620081 0.759955
0.89991 1.1 0.0002003604863 0.2598380081 0.760045

...

pce
• Keywords Area

• method

• bayes calibration

• dream

• emulator

• pce

Polynomial Chaos Expansion surrogate model

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 sparse grid level Set the sparse grid
level to be used
when peforming
sparse grid
integration or
sparse grid
interpolation

expansion order The (initial) order
of a polynomial
expansion

6.2. METHOD 1297

Description
Selects a polynomial chaos expansion (PCE) surrogate model to use in the Bayesian likelihood calculations.
When using PCE as a surrogate within the Bayesian framework, the PCE coefficients can be computed either
from integration using a sparse grid or from regression using a random/unstructured data set.

See Also
These keywords may also be of interest:

• polynomial chaos

sparse grid level

• Keywords Area

• method

• bayes calibration

• dream

• emulator

• pce

• sparse grid level

Set the sparse grid level to be used when peforming sparse grid integration or sparse grid interpolation

Specification
Alias: none

Argument(s): INTEGERLIST

Description
Multi-dimensional integration by the Smolyak sparse grid method (specified with sparse grid level and, option-
ally, dimension preference). The underlying one-dimensional integration rules are the same as for the tensor-
product quadrature case; however, the default rule selection is nested for sparse grids (Genz-Keister for nor-
mals/transformed normals and Gauss-Patterson for uniforms/transformed uniforms). This default can be over-
ridden with an explicit non nested specification (resulting in Gauss-Hermite for normals/transformed normals
and Gauss-Legendre for uniforms/transformed uniforms). As for tensor quadrature, the dimension preference
specification enables the use of anisotropic sparse grids (refer to the PCE description in the User’s Manual for
the anisotropic index set constraint definition). Similar to anisotropic tensor grids, the dimension with greatest
preference will have resolution at the full sparse grid level and all other dimension resolutions will be reduced in
proportion to their reduced preference. For PCE with either isotropic or anisotropic sparse grids, a summation of
tensor-product expansions is used, where each anisotropic tensor-product quadrature rule underlying the sparse
grid construction results in its own anisotropic tensor-product expansion as described in case 1. These anisotropic
tensor-product expansions are summed into a sparse PCE using the standard Smolyak summation (again, refer to
the User’s Manual for additional details). As for quadrature order, the sparse grid level specification admits an
array input for enabling specification of multiple grid resolutions used by certain advanced solution methodolo-
gies.

This keyword can be used when using sparse grid integration to calculate PCE coefficients or when generating
samples for sparse grid collocation.

1298 CHAPTER 6. KEYWORDS AREA

expansion order

• Keywords Area

• method

• bayes calibration

• dream

• emulator

• pce

• expansion order

The (initial) order of a polynomial expansion

Specification
Alias: none

Argument(s): INTEGERLIST
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required collocation ratio Set the number of
points used to
build a PCE via
regression to be
proportional to the
number of terms in
the expansion.

Optional posterior adaptive Adapt the emulator
model to achieve
greater accuracy in
regions of high
posterior
probability.

Description
When the expansion order for a a polynomial chaos expansion is specified, the coefficients may be computed
by integration based on random samples or by regression using either random or sub-sampled tensor product
quadrature points.

Multidimensional integration by Latin hypercube sampling (specified with expansion samples). In this
case, the expansion order p cannot be inferred from the numerical integration specification and it is necessary to
provide an expansion order to specify p for a total-order expansion.

Linear regression (specified with either collocation points or collocation ratio). A total-order
expansion is used and must be specified using expansion order as described in the previous option. To
avoid requiring the user to calculate N from n and p), the collocation ratio allows for specification of a
constant factor applied to N (e.g., collocation ratio = 2. produces samples = 2N). In addition, the default
linear relationship with N can be overridden using a real-valued exponent specified using ratio order. In this

6.2. METHOD 1299

case, the number of samples becomes cNo where c is the collocation ratio and o is the ratio order.
The use derivatives flag informs the regression approach to include derivative matching equations (limited
to gradients at present) in the least squares solutions, enabling the use of fewer collocation points for a given
expansion order and dimension (number of points required becomes cNo

n+1). When admissible, a constrained least
squares approach is employed in which response values are first reproduced exactly and error in reproducing
response derivatives is minimized. Two collocation grid options are supported: the default is Latin hypercube
sampling (”point collocation”), and an alternate approach of ”probabilistic collocation” is also available through
inclusion of the tensor grid keyword. In this alternate case, the collocation grid is defined using a subset of
tensor-product quadrature points: the order of the tensor-product grid is selected as one more than the expansion
order in each dimension (to avoid sampling at roots of the basis polynomials) and then the tensor multi-index is
uniformly sampled to generate a non-repeated subset of tensor quadrature points.

If collocation points or collocation ratio is specified, the PCE coefficients will be determined
by regression. If no regression specification is provided, appropriate defaults are defined. Specifically SVD-based
least-squares will be used for solving over-determined systems and under-determined systems will be solved
using LASSO. For the situation when the number of function values is smaller than the number of terms in a
PCE, but the total number of samples including gradient values is greater than the number of terms, the resulting
over-determined system will be solved using equality constrained least squares. Technical information on the
various methods listed below can be found in the Linear regression section of the Theory Manual. Some of the
regression methods (OMP, LASSO, and LARS) are able to produce a set of possible PCE coefficient vectors
(see the Linear regression section in the Theory Manual). If cross validation is inactive, then only one solution,
consistent with the noise tolerance, will be returned. If cross validation is active, Dakota will choose
between possible coefficient vectors found internally by the regression method across the set of expansion orders
(1,...,expansion order) and the set of specified noise tolerances and return the one with the lowest cross
validation error indicator.

collocation ratio

• Keywords Area

• method

• bayes calibration

• dream

• emulator

• pce

• expansion order

• collocation ratio

Set the number of points used to build a PCE via regression to be proportional to the number of terms in the
expansion.

Specification

Alias: none
Argument(s): REAL

1300 CHAPTER 6. KEYWORDS AREA

Description

Set the number of points used to build a PCE via regression to be proportional to the number of terms in the
expansion. To avoid requiring the user to calculate N from n and p, the collocation ratio allows for specification
of a constant factor applied to N (e.g., collocation ratio = 2. produces samples = 2N). In addition, the default
linear relationship with N can be overridden using a real-valued exponent specified using ratio order. In this case,
the number of samples becomes cNo where c is the collocation ratio and o is the ratio order. The use derivatives
flag informs the regression approach to include derivative matching equations (limited to gradients at present) in
the least squares solutions, enabling the use of fewer collocation points for a given expansion order and dimension
(number of points required becomes cNo

n+1).

posterior adaptive

• Keywords Area

• method

• bayes calibration

• dream

• emulator

• pce

• expansion order

• posterior adaptive

Adapt the emulator model to achieve greater accuracy in regions of high posterior probability.

Specification

Alias: none
Argument(s): none

Description

Following an emulator-based MCMC process, this option refines the emulator by selecting points in regions of
high posterior probability, performing truth evaluations at these points, updating the emulator, and reperforming
the MCMC process. The adaptation is continued until the maximum number of iterations is exceeded or the
convergence tolerance is met.

Examples
bayes_calibration queso

samples = 2000 seed = 348
delayed_rejection
emulator

gaussian_process surfpack emulator_samples = 30
posterior_adaptive max_iterations = 10
proposal_covariance derivatives

6.2. METHOD 1301

sc

• Keywords Area

• method

• bayes calibration

• dream

• emulator

• sc

Stochastic Collocation polynomial surrogate model

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required sparse grid level Set the sparse grid
level to be used
when peforming
sparse grid
integration or
sparse grid
interpolation

Description
Selects stochastic collocation (SC) model to use in the Bayesian likelihood calculations. When using SC as
a surrogate within the Bayesian framework, the build points (training points) for the stochastic collocation are
constructed from a sparse grid.

See Also
These keywords may also be of interest:

• stoch collocation

sparse grid level

• Keywords Area

• method

• bayes calibration

• dream

• emulator

1302 CHAPTER 6. KEYWORDS AREA

• sc

• sparse grid level

Set the sparse grid level to be used when peforming sparse grid integration or sparse grid interpolation

Specification
Alias: none

Argument(s): INTEGERLIST

Description
Multi-dimensional integration by the Smolyak sparse grid method (specified with sparse grid level and, option-
ally, dimension preference). The underlying one-dimensional integration rules are the same as for the tensor-
product quadrature case; however, the default rule selection is nested for sparse grids (Genz-Keister for nor-
mals/transformed normals and Gauss-Patterson for uniforms/transformed uniforms). This default can be over-
ridden with an explicit non nested specification (resulting in Gauss-Hermite for normals/transformed normals
and Gauss-Legendre for uniforms/transformed uniforms). As for tensor quadrature, the dimension preference
specification enables the use of anisotropic sparse grids (refer to the PCE description in the User’s Manual for
the anisotropic index set constraint definition). Similar to anisotropic tensor grids, the dimension with greatest
preference will have resolution at the full sparse grid level and all other dimension resolutions will be reduced in
proportion to their reduced preference. For PCE with either isotropic or anisotropic sparse grids, a summation of
tensor-product expansions is used, where each anisotropic tensor-product quadrature rule underlying the sparse
grid construction results in its own anisotropic tensor-product expansion as described in case 1. These anisotropic
tensor-product expansions are summed into a sparse PCE using the standard Smolyak summation (again, refer to
the User’s Manual for additional details). As for quadrature order, the sparse grid level specification admits an
array input for enabling specification of multiple grid resolutions used by certain advanced solution methodolo-
gies.

This keyword can be used when using sparse grid integration to calculate PCE coefficients or when generating
samples for sparse grid collocation.

use derivatives

• Keywords Area

• method

• bayes calibration

• dream

• emulator

• use derivatives

Use derivative data to construct surrogate models

Specification
Alias: none

Argument(s): none
Default: use function values only

6.2. METHOD 1303

Description

The use derivatives flag specifies that any available derivative information should be used in global approx-
imation builds, for those global surrogate types that support it (currently, polynomial regression and the Surfpack
Gaussian process).

However, it’s use with Surfpack Gaussian process is not recommended.

standardized space

• Keywords Area

• method

• bayes calibration

• standardized space

Perform the MCMC process in a standardized probability space.

Specification

Alias: none
Argument(s): none

Description

This option transforms the inference process (the MCMC sampling and any emulator model management) into a
standardized probability space.

The variable transformations performed are as described in askey.
Default Behavior
The default for the Gaussian process and no emulator options is to perform the MCMC process in the original

probability space (no transformation). Polynomial chaos and stochastic collocation emulators, on the other hand,
are always formed in standardized probability space, such that the MCMC process is also performed in this
standardized space.

Expected Output
The user will see the truth model evaluations performed in the original space, whereas any diagnostics re-

lating to the MCMC samples (e.g., QUESO data in the outputData directory) will report points and response
data (response gradients and Hessians, if present, will differ but response values will not) that correspond to the
transformed space.

Usage Tips
Selecting standardized space generally has the effect of scaling the random variables to be of equal magnitude,

which can improve the efficiency of the MCMC process.

Examples
method,

bayes_calibration queso
samples = 2000 seed = 348
dram
standardized_space

1304 CHAPTER 6. KEYWORDS AREA

likelihood scale

• Keywords Area

• method

• bayes calibration

• likelihood scale

Scale the log-likelihood function

Specification

Alias: none
Argument(s): REAL
Default: none

Description

The likelihood scale is applied to the weighted sum-squared error term of the log-likelihood function. The
log-likelihood is -0.5∗(weighted sum-squared errors)/(likelihood scale). Thus, if the sum-squared errors is on
the order of 1E+12, you will want to make the likelihood scale on the order of 1E+12 or 1E+11. Similarly, if
the weighted sum-squared errors is very small, the likelihood scale should be very small. Note that applying a
likelihood scale changes the formulation of the calibration problem; we only recommend using it for poorly
conditioned problems where the MCMC is not working without applying scaling.

calibrate sigma

• Keywords Area

• method

• bayes calibration

• calibrate sigma

Calibrate the experimental error term(s) in the likelihood function

Specification

Alias: none
Argument(s): none
Default: The sigma terms are not calibrated

Description

When enabled, the observational error (sigma) terms will be calibrated in addition to the model parameters.

6.2. METHOD 1305

samples

• Keywords Area

• method

• bayes calibration

• samples

Number of samples for sampling-based methods

Specification
Alias: none

Argument(s): INTEGER
Default: method-dependent

Description
The samples keyword is used to define the number of samples (i.e., randomly chosen sets of variable values) at
which to execute a model.

Default Behavior
By default, Dakota will use the minimum number of samples required by the chosen method.
Usage Tips
To obtain linear sensitivities or to construct a linear response surface, at least dim+1 samples should be used,

where ”dim” is the number of variables. For sensitivities to quadratic terms or quadratic response surfaces, at least
(dim+1)(dim+2)/2 samples are needed. For uncertainty quantification, we recommend at least 10∗dim samples.
For variance based decomp, we recommend hundreds to thousands of samples. Note that for variance-
based decomp, the number of simulations performed will be N∗(dim+2).

Examples
method

sampling
sample_type lhs
samples = 20

seed

• Keywords Area

• method

• bayes calibration

• seed

Seed of the random number generator

Specification
Alias: none

Argument(s): INTEGER
Default: system-generated (non-repeatable)

1306 CHAPTER 6. KEYWORDS AREA

Description
The random seed control provides a mechanism for making a stochastic method repeatable. That is, the use of
the same random seed in identical studies will generate identical results.

Default Behavior
If not specified, the seed is randomly generated.
Expected Output
If seed is specified, a stochastic study will generate identical results when repeated using the same seed

value. Otherwise, results are not guaranteed to be the same.
Usage Tips
If a stochastic study was run without seed specified, and the user later wishes to repeat the study using the

same seed, the value of the seed used in the original study can be found in the output Dakota prints to the screen.
That value can then be added to the Dakota input file.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 15347

model pointer

• Keywords Area

• method

• bayes calibration

• model pointer

Identifier for model block to be used by a method

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

Description
The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.

6.2. METHOD 1307

Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses
response_functions = 3
no_gradients
no_hessians

6.2.62 dace

• Keywords Area

1308 CHAPTER 6. KEYWORDS AREA

• method

• dace

Design and Analysis of Computer Experiments

Topics
This keyword is related to the topics:

• package ddace

• design and analysis of computer experiments

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

DACE type
(Group 1)

grid Grid Sampling
random Uses purely

random Monte
Carlo sampling to
sample variables

oas Orthogonal Array
Sampling

lhs Uses Latin
Hypercube
Sampling (LHS) to
sample variables

oa lhs Orthogonal Array
Latin Hypercube
Sampling

box behnken Box-Behnken
Design

central composite Central Composite
Design

Optional main effects ANOVA
Optional quality metrics Calculate metrics

to assess the
quality of
quasi-Monte Carlo
samples

6.2. METHOD 1309

Optional variance based -
decomp

Activates global
sensitivity analysis
based on
decomposition of
response variance
into contributions
from variables

Optional fixed seed Reuses the same
seed value for
multiple random
sampling sets

Optional symbols Number of
replications in the
sample set

Optional samples Number of
samples for
sampling-based
methods

Optional seed Seed of the random
number generator

Optional model pointer Identifier for
model block to be
used by a method

Description
The Distributed Design and Analysis of Computer Experiments (DDACE) library provides the following DACE
techniques:

1. grid sampling (grid)

2. pure random sampling (random)

3. orthogonal array sampling (oas)

4. latin hypercube sampling (lhs)

5. orthogonal array latin hypercube sampling (oa lhs)

6. Box-Behnken (box behnken)

7. central composite design (central composite)

These methods all generate point sets that may be used to drive a set of computer experiments. Note that all
of the DACE methods generated randomized designs, except for Box-Behnken and Central composite which are
classical designs. That is, the grid sampling will generate a randomized grid, not what one typically thinks of as a
grid of uniformly spaced points over a rectangular grid. Similar, the orthogonal array is a randomized version of
an orthogonal array: it does not generate discrete, fixed levels.

In addition to the selection of the method, there are keywords that affect the method outputs:

1310 CHAPTER 6. KEYWORDS AREA

1. main effects

2. quality metrics

3. variance based decomp

And keywords that affect the sampling:

1. fixed seed

2. symbols

3. samples

4. seed

See Also
These keywords may also be of interest:

• fsu cvt

• fsu quasi mc

• psuade moat

grid

• Keywords Area

• method

• dace

• grid

Grid Sampling

Specification
Alias: none

Argument(s): none

Description
The grid option in DACE will produce a randomized grid of points. If you are interested in a regular grid of
points, use the multidimensional parameter study (under Parameter Studies) instead. Grid Sampling

random

• Keywords Area

• method

• dace

• random

Uses purely random Monte Carlo sampling to sample variables

6.2. METHOD 1311

Specification
Alias: none

Argument(s): none

Description
The random keyword invokes Monte Carlo sampling as the means of drawing samples of uncertain variables
according to their probability distributions.

Default Behavior
Monte Carlo sampling is not used by default. To change this behavior, the random keyword must be specified

in conjuction with the sample type keyword.
Usage Tips
Monte Carlo sampling is more computationally expensive than Latin Hypercube Sampling as it requires a

larger number of samples to accurately estimate statistics.

Examples
method

sampling
sample_type random
samples = 200

oas

• Keywords Area

• method

• dace

• oas

Orthogonal Array Sampling

Specification
Alias: none

Argument(s): none

Description
Orthogonal array sampling (OAS) is a widely used technique for running experiments and systematically testing
factor effects. An orthogonal array sample can be described as a 4-tuple (m;n; s; r), where m is the number
of sample points, n is the number of input variables, s is the number of symbols, and r is the strength of the
orthogonal array. The number of sample points, m, must be a multiple of the number of symbols, s. The number
of symbols refers to the number of levels per input variable. The strength refers to the number of columns where
we are guaranteed to see all the possibilities an equal number of times. Note that the DACE OAS capability
produces a randomized orthogonal array: the samples for a particular level are randomized within that level.

If one examines the sample sets in an orthogonal array by looking at the rows as individual samples and
columns as the variables sampled, one sees that the columns are orthogonal to each other in an orthogonal array.
This feature is important in main effects analysis, which is a sensitivity analysis technique that identifies which
variables have the most influence on the output.

1312 CHAPTER 6. KEYWORDS AREA

lhs

• Keywords Area

• method

• dace

• lhs

Uses Latin Hypercube Sampling (LHS) to sample variables

Specification
Alias: none

Argument(s): none

Description
The lhs keyword invokes Latin Hypercube Sampling as the means of drawing samples of uncertain variables
according to their probability distributions. This is a stratified, space-filling approach that selects variable values
from a set of equi-probable bins.

Default Behavior
By default, Latin Hypercube Sampling is used. To explicitly specify this in the Dakota input file, however, the

lhs keyword must appear in conjunction with the sample type keyword.
Usage Tips
Latin Hypercube Sampling is very robust and can be applied to any problem. It is fairly effective at estimating

the mean of model responses and linear correlations with a reasonably small number of samples relative to the
number of variables.

Examples
method

sampling
sample_type lhs
samples = 20

oa lhs

• Keywords Area

• method

• dace

• oa lhs

Orthogonal Array Latin Hypercube Sampling

Specification
Alias: none

Argument(s): none

6.2. METHOD 1313

Description
The Orthogonal Array Latin Hypercube Sampling option in DACE produces a ”latinized” version of an orthogonal
array. That is, after the orthgonal array is generated, the samples go through a stratification process to produce
samples that have been both orthogonalized and stratified.

See Also
These keywords may also be of interest:

• oas

box behnken

• Keywords Area

• method

• dace

• box behnken

Box-Behnken Design

Specification
Alias: none

Argument(s): none

Description
The Box-Behnken design is similar to a Central Composite design, with some differences. The Box-Behnken
design is a quadratic design in that it does not contain an embedded factorial or fractional factorial design. In
this design the treatment combinations are at the midpoints of edges of the process space and at the center, as
compared with CCD designs where the extra points are placed at star points on a circle outside of the process
space. Box- Behken designs are rotatable (or near rotatable) and require 3 levels of each factor.

central composite

• Keywords Area

• method

• dace

• central composite

Central Composite Design

Specification
Alias: none

Argument(s): none

1314 CHAPTER 6. KEYWORDS AREA

Description
A central composite design (CCD), contains an embedded factorial or fractional factorial design with a center
points that is augmented with a group of ”star points” that allow estimation of curvature.

Examples
See the User’s Manual for an example.

main effects

• Keywords Area

• method

• dace

• main effects

ANOVA

Specification
Alias: none

Argument(s): none
Default: No main effects

Description
The main effects control prints Analysis-of-Variance main effects results (e.g. ANOVA tables with p-values
per variable). The main effects control is only operational with the orthogonal arrays or Latin Hypercube
designs, not for Box Behnken or Central Composite designs.

Main effects is a sensitivity analysis method which identifies the input variables that have the most influence on
the output. In main effects, the idea is to look at the mean of the response function when variable A (for example)
is at level 1 vs. when variable A is at level 2 or level 3. If these mean responses of the output are statistically
significantly different at different levels of variable A, this is an indication that variable A has a significant effect
on the response. The orthogonality of the columns is critical in performing main effects analysis, since the column
orthogonality means that the effects of the other variables ”cancel out” when looking at the overall effect from
one variable at its different levels.

quality metrics

• Keywords Area

• method

• dace

• quality metrics

Calculate metrics to assess the quality of quasi-Monte Carlo samples

6.2. METHOD 1315

Topics
This keyword is related to the topics:

• package fsudace

Specification
Alias: none

Argument(s): none
Default: No quality metrics

Description
quality metrics calculates four quality metrics relating to the volumetric spacing of the samples. The four
quality metrics measure different aspects relating to the uniformity of point samples in hypercubes. Desirable
properties of such point samples are:

• are the points equally spaced

• do the points cover the region

• and are they isotropically distributed

• with no directional bias in the spacing

The four quality metrics we report are:

• h: the point distribution norm, which is a measure of uniformity of the point distribution

• chi: a regularity measure, and provides a measure of local uniformity of a set of points

• tau: the second moment trace measure

• d: the second moment determinant measure

All of these values are scaled so that smaller is better (the smaller the metric, the better the uniformity of the point
distribution).

Examples
Complete explanation of these measures can be found in [38].

variance based decomp

• Keywords Area

• method

• dace

• variance based decomp

Activates global sensitivity analysis based on decomposition of response variance into contributions from
variables

1316 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): none
Default: no variance-based decomposition

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional drop tolerance Suppresses output
of sensitivity
indices with values
lower than this
tolerance

Description
Dakota can calculate sensitivity indices through variance based decomposition using the keyword variance-
based decomp. These indicate how important the uncertainty in each input variable is in contributing to the

output variance.
Default Behavior
Because of the computational cost, variance based decomp is turned off as a default.
If the user specified a number of samples, N, and a number of nondeterministic variables, M, variance-based

decomposition requires the evaluation of N∗(M+2) samples. Note that specifying this keyword will increase the
number of function evaluations above the number requested with the samples keyword since replicated
sets of sample values are evaluated.

Expected Outputs
When variance based decomp is specified, sensitivity indices for main effects and total effects will be

reported. Main effects (roughly) represent the percent contribution of each individual variable to the variance in
the model response. Total effects represent the percent contribution of each individual variable in combination
with all other variables to the variance in the model response

Usage Tips
To obtain sensitivity indices that are reasonably accurate, we recommend that N, the number of samples, be at

least one hundred and preferably several hundred or thousands.

Examples
method,

sampling
sample_type lhs
samples = 100
variance_based_decomp

Theory
In this context, we take sensitivity analysis to be global, not local as when calculating derivatives of output
variables with respect to input variables. Our definition is similar to that of[73] : ”The study of how uncertainty
in the output of a model can be apportioned to different sources of uncertainty in the model input.”

Variance based decomposition is a way of using sets of samples to understand how the variance of the output
behaves, with respect to each input variable. A larger value of the sensitivity index, Si, means that the uncertainty
in the input variable i has a larger effect on the variance of the output. More details on the calculations and
interpretation of the sensitivity indices can be found in[73] and[87].

6.2. METHOD 1317

drop tolerance

• Keywords Area

• method

• dace

• variance based decomp

• drop tolerance

Suppresses output of sensitivity indices with values lower than this tolerance

Specification
Alias: none

Argument(s): REAL
Default: All VBD indices displayed

Description
The drop tolerance keyword allows the user to specify a value below which sensitivity indices generated by
variance based decomp are not displayed.

Default Behavior
By default, all sensitivity indices generated by variance based decomp are displayed.
Usage Tips
For polynomial chaos, which outputs main, interaction, and total effects by default, the univariate-

effects may be a more appropriate option. It allows suppression of the interaction effects since the output
volume of these results can be prohibitive for high dimensional problems. Similar to suppression of these inter-
actions is the covariance control, which can be selected to be diagonal covariance or full covariance, with the
former supporting suppression of the off-diagonal covariance terms (to save compute and memory resources and
reduce output volume).

Examples
method,

sampling
sample_type lhs
samples = 100
variance_based_decomp
drop_tolerance = 0.001

fixed seed

• Keywords Area

• method

• dace

• fixed seed

Reuses the same seed value for multiple random sampling sets

1318 CHAPTER 6. KEYWORDS AREA

Specification

Alias: none
Argument(s): none
Default: not fixed; pattern varies run-to-run

Description

The fixed seed flag is relevant if multiple sampling sets will be generated over the coarse of a Dakota analysis.
This occurs when using advance methods (e.g., surrogate-based optimization, optimization under uncertainty).
The same seed value is reused for each of these multiple sampling sets, which can be important for reducing
variability in the sampling results.

Default Behavior
The default behavior is to not use a fixed seed, as the repetition of the same sampling pattern can result in a

modeling weakness that an optimizer could potentially exploit (resulting in actual reliabilities that are lower than
the estimated reliabilities). For repeatable studies, the seed must also be specified.

Examples
method

sampling
sample_type lhs
samples = 10
fixed_seed

symbols

• Keywords Area

• method

• dace

• symbols

Number of replications in the sample set

Specification

Alias: none
Argument(s): INTEGER
Default: default for sampling algorithm

Description

symbols is related to the number of levels per variable in the sample set (a larger number of symbols equates
to more stratification and fewer replications). For example, if symbols = 7, each variable would be divided into
seven levels.

6.2. METHOD 1319

samples

• Keywords Area

• method

• dace

• samples

Number of samples for sampling-based methods

Specification
Alias: none

Argument(s): INTEGER
Default: method-dependent

Description
The samples keyword is used to define the number of samples (i.e., randomly chosen sets of variable values) at
which to execute a model.

Default Behavior
By default, Dakota will use the minimum number of samples required by the chosen method.
Usage Tips
To obtain linear sensitivities or to construct a linear response surface, at least dim+1 samples should be used,

where ”dim” is the number of variables. For sensitivities to quadratic terms or quadratic response surfaces, at least
(dim+1)(dim+2)/2 samples are needed. For uncertainty quantification, we recommend at least 10∗dim samples.
For variance based decomp, we recommend hundreds to thousands of samples. Note that for variance-
based decomp, the number of simulations performed will be N∗(dim+2).

Examples
method

sampling
sample_type lhs
samples = 20

seed

• Keywords Area

• method

• dace

• seed

Seed of the random number generator

Specification
Alias: none

Argument(s): INTEGER
Default: system-generated (non-repeatable)

1320 CHAPTER 6. KEYWORDS AREA

Description
The random seed control provides a mechanism for making a stochastic method repeatable. That is, the use of
the same random seed in identical studies will generate identical results.

Default Behavior
If not specified, the seed is randomly generated.
Expected Output
If seed is specified, a stochastic study will generate identical results when repeated using the same seed

value. Otherwise, results are not guaranteed to be the same.
Usage Tips
If a stochastic study was run without seed specified, and the user later wishes to repeat the study using the

same seed, the value of the seed used in the original study can be found in the output Dakota prints to the screen.
That value can then be added to the Dakota input file.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 15347

model pointer

• Keywords Area

• method

• dace

• model pointer

Identifier for model block to be used by a method

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

Description
The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.

6.2. METHOD 1321

Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses
response_functions = 3
no_gradients
no_hessians

6.2.63 fsu cvt

• Keywords Area

1322 CHAPTER 6. KEYWORDS AREA

• method

• fsu cvt

Design of Computer Experiments - Centroidal Voronoi Tessellation

Topics
This keyword is related to the topics:

• package fsudace

• design and analysis of computer experiments

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional latinize Adjust samples to
improve the
discrepancy of the
marginal
distributions

Optional quality metrics Calculate metrics
to assess the
quality of
quasi-Monte Carlo
samples

Optional variance based -
decomp

Activates global
sensitivity analysis
based on
decomposition of
response variance
into contributions
from variables

6.2. METHOD 1323

Optional fixed seed Reuses the same
seed value for
multiple random
sampling sets

Optional trial type Specify how the
trial samples are
generated

Optional num trials The number of
secondary sample
points generated to
adjust the location
of the primary
sample points

Optional samples Number of
samples for
sampling-based
methods

Optional seed Seed of the random
number generator

Optional model pointer Identifier for
model block to be
used by a method

Description

The FSU Centroidal Voronoi Tessellation method (fsu cvt) produces a set of sample points that are (approx-
imately) a Centroidal Voronoi Tessellation. The primary feature of such a set of points is that they have good
volumetric spacing; the points tend to arrange themselves in a pattern of cells that are roughly the same shape.

To produce this set of points, an almost arbitrary set of initial points is chosen, and then an internal set of
iterations is carried out. These iterations repeatedly replace the current set of sample points by an estimate of the
centroids of the corresponding Voronoi subregions. [18].

The user may generally ignore the details of this internal iteration. If control is desired, however, there are a
few variables with which the user can influence the iteration. The user may specify:

• max iterations, the number of iterations carried out (this is a method independent control, see max -
iterations

• num trials, the number of secondary sample points generated to adjust the location of the primary
sample points

• trial type, which controls how these secondary sample points are generated

This method generates sets of uniform random variables on the interval [0,1]. If the user specifies lower and upper
bounds for a variable, the [0,1] samples are mapped to the [lower, upper] interval.

1324 CHAPTER 6. KEYWORDS AREA

Theory

This method is designed to generate samples with the goal of low discrepancy. Discrepancy refers to the nonuni-
formity of the sample points within the hypercube.

Discrepancy is defined as the difference between the actual number and the expected number of points one
would expect in a particular set B (such as a hyper-rectangle within the unit hypercube), maximized over all such
sets. Low discrepancy sequences tend to cover the unit hypercube reasonably uniformly.

Centroidal Voronoi Tessellation does very well volumetrically: it spaces the points fairly equally throughout
the space, so that the points cover the region and are isotropically distributed with no directional bias in the
point placement. There are various measures of volumetric uniformity which take into account the distances
between pairs of points, regularity measures, etc. Note that Centroidal Voronoi Tessellation does not produce
low-discrepancy sequences in lower dimensions. The lower-dimension (such as 1-D) projections of Centroidal
Voronoi Tessellation can have high discrepancy.

See Also

These keywords may also be of interest:

• dace

• fsu quasi mc

• psuade moat

latinize

• Keywords Area

• method

• fsu cvt

• latinize

Adjust samples to improve the discrepancy of the marginal distributions

Specification

Alias: none
Argument(s): none
Default: No latinization

Description

The latinize control takes the samples and ”latinizes” them, meaning that each original sample is moved so
that it falls into one strata or bin in each dimension as in Latin Hypercube sampling. The default setting is NOT
to latinize. However, one may be interested in doing this in situations where one wants better discrepancy of the
1-dimensional projections (the marginal distributions).

6.2. METHOD 1325

quality metrics

• Keywords Area

• method

• fsu cvt

• quality metrics

Calculate metrics to assess the quality of quasi-Monte Carlo samples

Topics
This keyword is related to the topics:

• package fsudace

Specification
Alias: none

Argument(s): none
Default: No quality metrics

Description
quality metrics calculates four quality metrics relating to the volumetric spacing of the samples. The four
quality metrics measure different aspects relating to the uniformity of point samples in hypercubes. Desirable
properties of such point samples are:

• are the points equally spaced

• do the points cover the region

• and are they isotropically distributed

• with no directional bias in the spacing

The four quality metrics we report are:

• h: the point distribution norm, which is a measure of uniformity of the point distribution

• chi: a regularity measure, and provides a measure of local uniformity of a set of points

• tau: the second moment trace measure

• d: the second moment determinant measure

All of these values are scaled so that smaller is better (the smaller the metric, the better the uniformity of the point
distribution).

Examples
Complete explanation of these measures can be found in [38].

1326 CHAPTER 6. KEYWORDS AREA

variance based decomp

• Keywords Area

• method

• fsu cvt

• variance based decomp

Activates global sensitivity analysis based on decomposition of response variance into contributions from
variables

Specification
Alias: none

Argument(s): none
Default: no variance-based decomposition

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional drop tolerance Suppresses output
of sensitivity
indices with values
lower than this
tolerance

Description
Dakota can calculate sensitivity indices through variance based decomposition using the keyword variance-
based decomp. These indicate how important the uncertainty in each input variable is in contributing to the

output variance.
Default Behavior
Because of the computational cost, variance based decomp is turned off as a default.
If the user specified a number of samples, N, and a number of nondeterministic variables, M, variance-based

decomposition requires the evaluation of N∗(M+2) samples. Note that specifying this keyword will increase the
number of function evaluations above the number requested with the samples keyword since replicated
sets of sample values are evaluated.

Expected Outputs
When variance based decomp is specified, sensitivity indices for main effects and total effects will be

reported. Main effects (roughly) represent the percent contribution of each individual variable to the variance in
the model response. Total effects represent the percent contribution of each individual variable in combination
with all other variables to the variance in the model response

Usage Tips
To obtain sensitivity indices that are reasonably accurate, we recommend that N, the number of samples, be at

least one hundred and preferably several hundred or thousands.

Examples
method,

sampling
sample_type lhs

6.2. METHOD 1327

samples = 100
variance_based_decomp

Theory

In this context, we take sensitivity analysis to be global, not local as when calculating derivatives of output
variables with respect to input variables. Our definition is similar to that of[73] : ”The study of how uncertainty
in the output of a model can be apportioned to different sources of uncertainty in the model input.”

Variance based decomposition is a way of using sets of samples to understand how the variance of the output
behaves, with respect to each input variable. A larger value of the sensitivity index, Si, means that the uncertainty
in the input variable i has a larger effect on the variance of the output. More details on the calculations and
interpretation of the sensitivity indices can be found in[73] and[87].

drop tolerance

• Keywords Area

• method

• fsu cvt

• variance based decomp

• drop tolerance

Suppresses output of sensitivity indices with values lower than this tolerance

Specification

Alias: none
Argument(s): REAL
Default: All VBD indices displayed

Description

The drop tolerance keyword allows the user to specify a value below which sensitivity indices generated by
variance based decomp are not displayed.

Default Behavior
By default, all sensitivity indices generated by variance based decomp are displayed.
Usage Tips
For polynomial chaos, which outputs main, interaction, and total effects by default, the univariate-

effects may be a more appropriate option. It allows suppression of the interaction effects since the output
volume of these results can be prohibitive for high dimensional problems. Similar to suppression of these inter-
actions is the covariance control, which can be selected to be diagonal covariance or full covariance, with the
former supporting suppression of the off-diagonal covariance terms (to save compute and memory resources and
reduce output volume).

1328 CHAPTER 6. KEYWORDS AREA

Examples
method,

sampling
sample_type lhs
samples = 100
variance_based_decomp
drop_tolerance = 0.001

fixed seed

• Keywords Area

• method

• fsu cvt

• fixed seed

Reuses the same seed value for multiple random sampling sets

Specification
Alias: none

Argument(s): none
Default: not fixed; pattern varies run-to-run

Description
The fixed seed flag is relevant if multiple sampling sets will be generated over the coarse of a Dakota analysis.
This occurs when using advance methods (e.g., surrogate-based optimization, optimization under uncertainty).
The same seed value is reused for each of these multiple sampling sets, which can be important for reducing
variability in the sampling results.

Default Behavior
The default behavior is to not use a fixed seed, as the repetition of the same sampling pattern can result in a

modeling weakness that an optimizer could potentially exploit (resulting in actual reliabilities that are lower than
the estimated reliabilities). For repeatable studies, the seed must also be specified.

Examples
method

sampling
sample_type lhs
samples = 10
fixed_seed

trial type

• Keywords Area

• method

• fsu cvt

• trial type

Specify how the trial samples are generated

6.2. METHOD 1329

Specification

Alias: none
Argument(s): none
Default: random

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

trial type (Group
1)

grid Samples on a
regular grid

halton Generate samples
from a Halton
sequence

random Uses purely
random Monte
Carlo sampling to
sample variables

Description

The user has the option to specify the method by which the trials are created to adjust the centroids. The trial-
type can be one of three types:

• random, where points are generated randomly

• halton, where points are generated according to the Halton sequence

• grid, where points are placed on a regular grid over the hyperspace.

grid

• Keywords Area

• method

• fsu cvt

• trial type

• grid

Samples on a regular grid

Specification

Alias: none
Argument(s): none

Description

Points are placed on a regular grid over the hyperspace.

1330 CHAPTER 6. KEYWORDS AREA

See Also

These keywords may also be of interest:

• trial type

halton

• Keywords Area

• method

• fsu cvt

• trial type

• halton

Generate samples from a Halton sequence

Topics

This keyword is related to the topics:

• package fsudace

Specification

Alias: none
Argument(s): none

Description

The quasi-Monte Carlo sequences of Halton are deterministic sequences determined by a set of prime bases.
These sequences generate random numbers with the goal of filling a unit hypercube uniformly.

Generally, we recommend that the user leave the default setting for the bases, which are the lowest primes.
Thus, if one wants to generate a sample set for 3 random variables, the default bases used are 2, 3, and 5 in the
Halton sequence. To give an example of how these sequences look, the Halton sequence in base 2 starts with
points 0.5, 0.25, 0.75, 0.125, 0.625, etc. The first few points in a Halton base 3 sequence are 0.33333, 0.66667,
0.11111, 0.44444, 0.77777, etc. Notice that the Halton sequence tends to alternate back and forth, generating a
point closer to zero then a point closer to one. An individual sequence is based on a radix inverse function defined
on a prime base. The prime base determines how quickly the [0,1] interval is filled in.

Theory

For more information about these sequences, see[43], [44], and [1].

6.2. METHOD 1331

random

• Keywords Area

• method

• fsu cvt

• trial type

• random

Uses purely random Monte Carlo sampling to sample variables

Specification
Alias: none

Argument(s): none

Description
The random keyword invokes Monte Carlo sampling as the means of drawing samples of uncertain variables
according to their probability distributions.

Default Behavior
Monte Carlo sampling is not used by default. To change this behavior, the random keyword must be specified

in conjuction with the sample type keyword.
Usage Tips
Monte Carlo sampling is more computationally expensive than Latin Hypercube Sampling as it requires a

larger number of samples to accurately estimate statistics.

Examples
method

sampling
sample_type random
samples = 200

num trials

• Keywords Area

• method

• fsu cvt

• num trials

The number of secondary sample points generated to adjust the location of the primary sample points

Specification
Alias: none

Argument(s): INTEGER
Default: 10000

1332 CHAPTER 6. KEYWORDS AREA

Description
In general, the variable with the most influence on the quality of the final sample set is num trials, which
determines how well the Voronoi subregions are sampled.

Generally, num trials should be ”large”, certainly much bigger than the number of sample points being
requested; a reasonable value might be 10,000, but values of 100,000 or 1 million are not unusual.

samples

• Keywords Area

• method

• fsu cvt

• samples

Number of samples for sampling-based methods

Specification
Alias: none

Argument(s): INTEGER
Default: method-dependent

Description
The samples keyword is used to define the number of samples (i.e., randomly chosen sets of variable values) at
which to execute a model.

Default Behavior
By default, Dakota will use the minimum number of samples required by the chosen method.
Usage Tips
To obtain linear sensitivities or to construct a linear response surface, at least dim+1 samples should be used,

where ”dim” is the number of variables. For sensitivities to quadratic terms or quadratic response surfaces, at least
(dim+1)(dim+2)/2 samples are needed. For uncertainty quantification, we recommend at least 10∗dim samples.
For variance based decomp, we recommend hundreds to thousands of samples. Note that for variance-
based decomp, the number of simulations performed will be N∗(dim+2).

Examples
method

sampling
sample_type lhs
samples = 20

seed

• Keywords Area

• method

• fsu cvt

• seed

Seed of the random number generator

6.2. METHOD 1333

Specification
Alias: none

Argument(s): INTEGER
Default: system-generated (non-repeatable)

Description
The random seed control provides a mechanism for making a stochastic method repeatable. That is, the use of
the same random seed in identical studies will generate identical results.

Default Behavior
If not specified, the seed is randomly generated.
Expected Output
If seed is specified, a stochastic study will generate identical results when repeated using the same seed

value. Otherwise, results are not guaranteed to be the same.
Usage Tips
If a stochastic study was run without seed specified, and the user later wishes to repeat the study using the

same seed, the value of the seed used in the original study can be found in the output Dakota prints to the screen.
That value can then be added to the Dakota input file.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 15347

model pointer

• Keywords Area

• method

• fsu cvt

• model pointer

Identifier for model block to be used by a method

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

1334 CHAPTER 6. KEYWORDS AREA

Description

The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses

6.2. METHOD 1335

response_functions = 3
no_gradients
no_hessians

6.2.64 psuade moat
• Keywords Area

• method

• psuade moat

Morris One-at-a-Time

Topics
This keyword is related to the topics:

• package psuade

• design and analysis of computer experiments

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional partitions Number of
partitions of each
variable

Optional samples Number of
samples for
sampling-based
methods

Optional seed Seed of the random
number generator

Optional model pointer Identifier for
model block to be
used by a method

Description
The Morris One-At-A-Time (MOAT) method, originally proposed by Morris [62], is a screening method, de-
signed to explore a computational model to distinguish between input variables that have negligible, linear and
additive, or nonlinear or interaction effects on the output. The computer experiments performed consist of indi-
vidually randomized designs which vary one input factor at a time to create a sample of its elementary effects.

1336 CHAPTER 6. KEYWORDS AREA

The number of samples (samples) must be a positive integer multiple of (number of continuous design
variable + 1) and will be automatically adjusted if misspecified.

The number of partitions (partitions) applies to each variable being studied and must be odd (the number
of MOAT levels per variable is partitions + 1). This will also be adjusted at runtime as necessary.

For information on practical use of this method, see [73].

Theory
With MOAT, each dimension of a k−dimensional input space is uniformly partitioned into p levels, creating
a grid of pk points x ∈ Rk at which evaluations of the model y(x) might take place. An elementary effect
corresponding to input i is computed by a forward difference

di(x) =
y(x + ∆ei)− y(x)

∆
,

where ei is the ith coordinate vector, and the step ∆ is typically taken to be large (this is not intended to be a
local derivative approximation). In the present implementation of MOAT, for an input variable scaled to [0, 1],
∆ = p

2(p−1) , so the step used to find elementary effects is slightly larger than half the input range.
The distribution of elementary effects di over the input space characterizes the effect of input i on the output

of interest. After generating r samples from this distribution, their mean,

µi =
1
r

r∑
j=1

d
(j)
i

modified mean

µ∗i =
1
r

r∑
j=1

|d(j)
i |,

(using absolute value) and standard deviation

σi =

√√√√1
r

r∑
j=1

(
d

(j)
i − µi

)2

are computed for each input i. The mean and modified mean give an indication of the overall effect of an input
on the output. Standard deviation indicates nonlinear effects or interactions, since it is an indicator of elementary
effects varying throughout the input space.

partitions

• Keywords Area

• method

• psuade moat

• partitions

Number of partitions of each variable

Specification
Alias: none

Argument(s): INTEGERLIST
Default: 3

6.2. METHOD 1337

Description
Described on the parent page, psuade moat

samples

• Keywords Area

• method

• psuade moat

• samples

Number of samples for sampling-based methods

Specification
Alias: none

Argument(s): INTEGER
Default: method-dependent

Description
The samples keyword is used to define the number of samples (i.e., randomly chosen sets of variable values) at
which to execute a model.

Default Behavior
By default, Dakota will use the minimum number of samples required by the chosen method.
Usage Tips
To obtain linear sensitivities or to construct a linear response surface, at least dim+1 samples should be used,

where ”dim” is the number of variables. For sensitivities to quadratic terms or quadratic response surfaces, at least
(dim+1)(dim+2)/2 samples are needed. For uncertainty quantification, we recommend at least 10∗dim samples.
For variance based decomp, we recommend hundreds to thousands of samples. Note that for variance-
based decomp, the number of simulations performed will be N∗(dim+2).

Examples
method

sampling
sample_type lhs
samples = 20

seed

• Keywords Area

• method

• psuade moat

• seed

Seed of the random number generator

1338 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): INTEGER
Default: system-generated (non-repeatable)

Description
The random seed control provides a mechanism for making a stochastic method repeatable. That is, the use of
the same random seed in identical studies will generate identical results.

Default Behavior
If not specified, the seed is randomly generated.
Expected Output
If seed is specified, a stochastic study will generate identical results when repeated using the same seed

value. Otherwise, results are not guaranteed to be the same.
Usage Tips
If a stochastic study was run without seed specified, and the user later wishes to repeat the study using the

same seed, the value of the seed used in the original study can be found in the output Dakota prints to the screen.
That value can then be added to the Dakota input file.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 15347

model pointer

• Keywords Area

• method

• psuade moat

• model pointer

Identifier for model block to be used by a method

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

6.2. METHOD 1339

Description

The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses

1340 CHAPTER 6. KEYWORDS AREA

response_functions = 3
no_gradients
no_hessians

6.2.65 local evidence
• Keywords Area

• method

• local evidence

Evidence theory with evidence measures computed with local optimization methods

Topics
This keyword is related to the topics:

• epistemic uncertainty quantification methods

• evidence theory

Specification
Alias: nond local evidence

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional(Choose
One)

Group 1 sqp Uses a sequential
quadratic
programming
method for
underlying
optimization

nip Uses a nonlinear
interior point
method for
underlying
optimization

Optional response levels Values at which to
estimate desired
statistics for each
response

6.2. METHOD 1341

Optional probability levels Specify probability
levels at which to
estimate the
corresponding
response value

Optional gen reliability -
levels

Specify
generalized
relability levels at
which to estimate
the corresponding
response value

Optional distribution Selection of
cumulative or
complementary
cumulative
functions

Optional model pointer Identifier for
model block to be
used by a method

Description
Two local optimization methods are available: sqp (sequential quadratic programming or nip (nonlinear interior
point method).

Additional Resources
See the topic page evidence theory for important background information and usage notes.
Refer to variable support for information on supported variable types.

See Also
These keywords may also be of interest:

• global evidence

• global interval est

• local interval est

sqp

• Keywords Area

• method

• local evidence

• sqp

Uses a sequential quadratic programming method for underlying optimization

1342 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): none

Description
Many uncertainty quantification methods solve a constrained optimization problem under the hood. The sqp
keyword directs Dakota to use a sequential quadratic programming method to solve that problem. A sequential
quadratic programming solves a sequence of linearly constrained quadratic optimization problems to arrive at the
solution to the optimization problem.

nip

• Keywords Area

• method

• local evidence

• nip

Uses a nonlinear interior point method for underlying optimization

Specification
Alias: none

Argument(s): none

Description
Many uncertainty quantification methods solve a constrained optimization problem under the hood. The nip
keyword directs Dakota to use a nonlinear interior point to solve that problem. A nonlinear interior point method
traverses the interior of the feasible region to arrive at the solution to the optimization problem.

response levels

• Keywords Area

• method

• local evidence

• response levels

Values at which to estimate desired statistics for each response

Specification
Alias: none

Argument(s): REALLIST
Default: No CDF/CCDF probabilities/reliabilities to compute

6.2. METHOD 1343

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional num response -
levels

Number of values
at which to
estimate desired
statistics for each
response

Optional compute Selection of
statistics to
compute at each
response level

Description

The response levels specification provides the target response values for which to compute probabilities,
reliabilities, or generalized reliabilities (forward mapping).

Default Behavior
If response levels are not specified, no statistics will be computed. If they are, probabilities will be

computed by default.
Expected Outputs
The particular statistics reported for each response level depend on the method, and they include:

1. Reliabilities

2. CDF probabilities

3. CCDF probabilities

Usage Tips
The num response levels is used to specify which arguments of the response level correspond to

which response.

Examples

For example, specifying a response level of 52.3 followed with compute probabilities will result
in the calculation of the probability that the response value is less than or equal to 52.3, given the uncertain
distributions on the inputs.

For an example with multiple responses, the following specification

response_levels = 1. 2. .1 .2 .3 .4 10. 20. 30.
num_response_levels = 2 4 3

would assign the first two response levels (1., 2.) to response function 1, the next four response levels (.1, .2, .3,
.4) to response function 2, and the final three response levels (10., 20., 30.) to response function 3. If the num -
response levels key were omitted from this example, then the response levels would be evenly distributed
among the response functions (three levels each in this case).

1344 CHAPTER 6. KEYWORDS AREA

Theory
Sets of response-probability pairs computed with the forward/inverse mappings define either a cumulative distri-
bution function (CDF) or a complementary cumulative distribution function (CCDF) for each response function.

In the case of evidence-based epistemic methods, this is generalized to define either cumulative belief and
plausibility functions (CBF and CPF) or complementary cumulative belief and plausibility functions (CCBF and
CCPF) for each response function.

A forward mapping involves computing the belief and plausibility probability level for a specified response
level.

num response levels

• Keywords Area

• method

• local evidence

• response levels

• num response levels

Number of values at which to estimate desired statistics for each response

Specification
Alias: none

Argument(s): INTEGERLIST
Default: response levels evenly distributed among response functions

Description
The num response levels keyword allows the user to specify the number of response values, for each re-
sponse, at which estimated statistics are of interest. Statistics that can be computed are probabilities and relia-
bilities, both according to either a cumulative distribution function or a complementary cumulative distribution
function.

Default Behavior
If num response levels is not specified, the response levels will be evenly distributed among the re-

sponses.
Expected Outputs
The specific output will be determined by the type of statistics that are specified. In a general sense, the output

will be a list of response level-statistic pairs that show the estimated value of the desired statistic for each response
level specified.

Examples
method

sampling
samples = 100
seed = 34785
num_response_levels = 1 1 1
response_levels = 0.5 0.5 0.5

6.2. METHOD 1345

compute

• Keywords Area

• method

• local evidence

• response levels

• compute

Selection of statistics to compute at each response level

Specification
Alias: none

Argument(s): none
Default: probabilities

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 probabilities Computes
probabilities
associated with
response levels

gen reliabilities Computes
generalized
reliabilities
associated with
response levels

Optional system Compute system
reliability (series
or parallel)

Description
The compute keyword is used to select which forward stastical mapping is calculated at each response level.

Default Behavior
If response levels is not specified, no statistics are computed. If response levels is specified

but compute is not, probabilities will be computed by default. If both response levels and compute
are specified, then on of the following must be specified: probabilities, reliabilities, or gen -
reliabilities.

Expected Output
The type of statistics specified by compute will be reported for each response level.
Usage Tips
CDF/CCDF probabilities are calculated for specified response levels using a simple binning approach.
CDF/CCDF reliabilities are calculated for specified response levels by computing the number of sample stan-

dard deviations separating the sample mean from the response level.

1346 CHAPTER 6. KEYWORDS AREA

Examples
method

sampling
sample_type random
samples = 100 seed = 1
complementary distribution
response_levels = 3.6e+11 4.0e+11 4.4e+11

6.0e+04 6.5e+04 7.0e+04
3.5e+05 4.0e+05 4.5e+05

compute reliabilities

probabilities

• Keywords Area

• method

• local evidence

• response levels

• compute

• probabilities

Computes probabilities associated with response levels

Specification
Alias: none

Argument(s): none

Description
The probabilities keyword directs Dakota to compute the probability that the model response will be below
(cumulative) or above (complementary cumulative) a specified response value. This is done for every response
level designated for each response.

Default Behavior
If response levels is specified, the probabilities are computed by default. To explicitly specify it in the

Dakota input file, though, the probabilities keyword should be specified in conjunction with the compute
keyword.

Expected Outputs
The Dakota output is a set of response level-probability pairs that give the probability that the model response

will be below or above the corresponding response level, depending on the distribution defined.

Examples
method

sampling
sample_type random
samples = 100 seed = 1
complementary distribution
response_levels = 3.6e+11 4.0e+11 4.4e+11

6.0e+04 6.5e+04 7.0e+04
3.5e+05 4.0e+05 4.5e+05

compute probabilities

6.2. METHOD 1347

gen reliabilities

• Keywords Area

• method

• local evidence

• response levels

• compute

• gen reliabilities

Computes generalized reliabilities associated with response levels

Specification
Alias: none

Argument(s): none

Description
The gen reliabilities keyword directs Dakota to compute generalized reliabilities according to the speci-
fied distribution for a specified response value. This is done for every response level designated for each response.

Default Behavior
If response levels is specified, the generalized reliabilities are not computed by default. To change this

behavior, the gen reliabilities keyword should be specified in conjunction with the compute keyword.
Expected Outputs
The Dakota output is a set of response level-generalized reliability pairs according to the distribution defined.

Examples
method

sampling
sample_type random
samples = 100 seed = 1
complementary distribution
response_levels = 3.6e+11 4.0e+11 4.4e+11

6.0e+04 6.5e+04 7.0e+04
3.5e+05 4.0e+05 4.5e+05

compute gen_reliabilities

system

• Keywords Area

• method

• local evidence

• response levels

• compute

• system

Compute system reliability (series or parallel)

1348 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 series Aggregate
response statistics
assuming a series
system

parallel Aggregate
response statistics
assuming a parallel
system

Description
With the system probability/reliability option, statistics for specified response levels are calculated and
reported assuming the response functions combine either in series or parallel to produce a total system response.

For a series system, the system fails when any one component (response) fails. The probability of failure is
the complement of the product of the individual response success probabilities.

For a parallel system, the system fails only when all components (responses) fail. The probability of failure is
the product of the individual response failure probabilities.

series

• Keywords Area

• method

• local evidence

• response levels

• compute

• system

• series

Aggregate response statistics assuming a series system

Specification
Alias: none

Argument(s): none

Description
See parent keyword system for description.

6.2. METHOD 1349

parallel

• Keywords Area

• method

• local evidence

• response levels

• compute

• system

• parallel

Aggregate response statistics assuming a parallel system

Specification

Alias: none
Argument(s): none

Description

See parent keyword system for description.

probability levels

• Keywords Area

• method

• local evidence

• probability levels

Specify probability levels at which to estimate the corresponding response value

Specification

Alias: none
Argument(s): REALLIST
Default: No CDF/CCDF response levels to compute

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional num probability -
levels

Specify which
probability -
levels
correspond to
which response

1350 CHAPTER 6. KEYWORDS AREA

Description
Response levels are calculated for specified CDF/CCDF probabilities by indexing into a sorted samples array (the
response levels computed are not interpolated and will correspond to one of the sampled values).

Theory
Sets of response-probability pairs computed with the forward/inverse mappings define either a cumulative distri-
bution function (CDF) or a complementary cumulative distribution function (CCDF) for each response function.

In the case of evidence-based epistemic methods, this is generalized to define either cumulative belief and
plausibility functions (CBF and CPF) or complementary cumulative belief and plausibility functions (CCBF and
CCPF) for each response function.

An inverse mapping involves computing the belief and plausibility response level for either a specified prob-
ability level or a specified generalized reliability level (two results for each level mapping in the evidence-based
epistemic case, instead of the one result for each level mapping in the aleatory case).

num probability levels

• Keywords Area

• method

• local evidence

• probability levels

• num probability levels

Specify which probability levels correspond to which response

Specification
Alias: none

Argument(s): INTEGERLIST
Default: probability levels evenly distributed among response functions

Description
See parent page

gen reliability levels

• Keywords Area

• method

• local evidence

• gen reliability levels

Specify generalized relability levels at which to estimate the corresponding response value

6.2. METHOD 1351

Specification
Alias: none

Argument(s): REALLIST
Default: No CDF/CCDF response levels to compute

1352 CHAPTER 6. KEYWORDS AREA

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional num gen -
reliability levels

Specify which
gen -
reliability -
levels
correspond to
which response

Description

Response levels are calculated for specified generalized reliabilities by indexing into a sorted samples array (the
response levels computed are not interpolated and will correspond to one of the sampled values).

Theory

Sets of response-probability pairs computed with the forward/inverse mappings define either a cumulative distri-
bution function (CDF) or a complementary cumulative distribution function (CCDF) for each response function.

In the case of evidence-based epistemic methods, this is generalized to define either cumulative belief and
plausibility functions (CBF and CPF) or complementary cumulative belief and plausibility functions (CCBF and
CCPF) for each response function.

An inverse mapping involves computing the belief and plausibility response level for either a specified prob-
ability level or a specified generalized reliability level (two results for each level mapping in the evidence-based
epistemic case, instead of the one result for each level mapping in the aleatory case).

num gen reliability levels

• Keywords Area

• method

• local evidence

• gen reliability levels

• num gen reliability levels

Specify which gen reliability levels correspond to which response

Specification

Alias: none
Argument(s): INTEGERLIST
Default: gen reliability levels evenly distributed among response functions

Description

See parent page

6.2. METHOD 1353

distribution

• Keywords Area

• method

• local evidence

• distribution

Selection of cumulative or complementary cumulative functions

Specification

Alias: none
Argument(s): none
Default: cumulative (CDF)

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 cumulative Computes statistics
according to
cumulative
functions

complementary Computes statistics
according to
complementary
cumulative
functions

Description

The distribution keyword allows the user to select between a cumulative distribution/belief/plausibility
function and a complementary cumulative distribution/belief/plausibility function. This choice affects how prob-
abilities and reliability indices are reported.

Default Behavior
If the distribution keyword is present, it must be accompanied by either cumulative or complementary.

Otherwise, a cumulative distribution will be used by default.
Expected Outputs
Output will be a set of model response-probability pairs determined according to the choice of distribution.

The choice of distribution also defines the sign of the reliability or generalized reliability indices.

Examples
method

sampling
sample_type lhs
samples = 10
distribution cumulative

1354 CHAPTER 6. KEYWORDS AREA

cumulative

• Keywords Area

• method

• local evidence

• distribution

• cumulative

Computes statistics according to cumulative functions

Specification

Alias: none
Argument(s): none

Description

Statistics on model responses will be computed according to a cumulative distribution/belief/plausibility function.
Default Behavior
By default, a cumulative distribution/belief/plausibility function will be used. To explicitly specify it in the

Dakota input file, however, the cumulative keyword must be appear in conjunction with the distribution
keyword.

Expected Outputs
Output will be a set of model response-probability pairs determined according to a cumulative distribu-

tion/belief/plausibility function. The probabilities reported are the probabilities that the model response falls
below given response threshholds.

Examples
method

sampling
sample_type lhs
samples = 10
distribution cumulative

complementary

• Keywords Area

• method

• local evidence

• distribution

• complementary

Computes statistics according to complementary cumulative functions

6.2. METHOD 1355

Specification

Alias: none
Argument(s): none

Description

Statistics on model responses will be computed according to a complementary cumulative distribution/belief/plausibility
function.

Default Behavior
By default, a complementary cumulative distribution/belief/plausibility function will not be used. To change

that behavior, the complementary keyword must be appear in conjunction with the distribution keyword.
Expected Outputs
Output will be a set of model response-probability pairs determined according to a complementary cumulative

distribution/belief/plausibility function. The probabilities reported are the probabilities that the model response
falls above given response threshholds.

Examples
method

sampling
sample_type lhs
samples = 10
distribution complementary

model pointer

• Keywords Area

• method

• local evidence

• model pointer

Identifier for model block to be used by a method

Topics

This keyword is related to the topics:

• block pointer

Specification

Alias: none
Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

1356 CHAPTER 6. KEYWORDS AREA

Description

The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses

6.2. METHOD 1357

response_functions = 3
no_gradients
no_hessians

6.2.66 local interval est
• Keywords Area

• method

• local interval est

Interval analysis using local optimization

Topics
This keyword is related to the topics:

• uncertainty quantification

• epistemic uncertainty quantification methods

• interval estimation

Specification
Alias: nond local interval est

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional(Choose
One)

Group 1 sqp Uses a sequential
quadratic
programming
method for
underlying
optimization

nip Uses a nonlinear
interior point
method for
underlying
optimization

1358 CHAPTER 6. KEYWORDS AREA

Optional model pointer Identifier for
model block to be
used by a method

Description
Interval analysis using local methods (local interval est). If the problem is amenable to local optimization
methods (e.g. can provide derivatives or use finite difference method to calculate derivatives), then one can use
one of two local methods to calculate these bounds.

• sqp

• nip

Additional Resources
Refer to variable support for information on supported variable types.

Theory
In interval analysis, one assumes that nothing is known about an epistemic uncertain variable except that its value
lies somewhere within an interval. In this situation, it is NOT assumed that the value has a uniform probability
of occuring within the interval. Instead, the interpretation is that any value within the interval is a possible value
or a potential realization of that variable. In interval analysis, the uncertainty quantification problem is one of
determining the resulting bounds on the output (defining the output interval) given interval bounds on the inputs.
Again, any output response that falls within the output interval is a possible output with no frequency information
assigned to it.

See Also
These keywords may also be of interest:

• global evidence

• global interval est

• local evidence

sqp

• Keywords Area

• method

• local interval est

• sqp

Uses a sequential quadratic programming method for underlying optimization

Specification
Alias: none

Argument(s): none

6.2. METHOD 1359

Description
Many uncertainty quantification methods solve a constrained optimization problem under the hood. The sqp
keyword directs Dakota to use a sequential quadratic programming method to solve that problem. A sequential
quadratic programming solves a sequence of linearly constrained quadratic optimization problems to arrive at the
solution to the optimization problem.

nip

• Keywords Area

• method

• local interval est

• nip

Uses a nonlinear interior point method for underlying optimization

Specification
Alias: none

Argument(s): none

Description
Many uncertainty quantification methods solve a constrained optimization problem under the hood. The nip
keyword directs Dakota to use a nonlinear interior point to solve that problem. A nonlinear interior point method
traverses the interior of the feasible region to arrive at the solution to the optimization problem.

model pointer

• Keywords Area

• method

• local interval est

• model pointer

Identifier for model block to be used by a method

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

1360 CHAPTER 6. KEYWORDS AREA

Description

The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses

6.2. METHOD 1361

response_functions = 3
no_gradients
no_hessians

6.2.67 local reliability
• Keywords Area

• method

• local reliability

Local reliability method

Topics
This keyword is related to the topics:

• uncertainty quantification

• reliability methods

Specification
Alias: nond local reliability

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional mpp search Specify which
MPP search option
to use

Optional response levels Values at which to
estimate desired
statistics for each
response

Optional reliability levels Specify reliability
levels at which the
response values
will be estimated

Optional distribution Selection of
cumulative or
complementary
cumulative
functions

1362 CHAPTER 6. KEYWORDS AREA

Optional probability levels Specify probability
levels at which to
estimate the
corresponding
response value

Optional gen reliability -
levels

Specify
generalized
relability levels at
which to estimate
the corresponding
response value

Optional model pointer Identifier for
model block to be
used by a method

Description
Local reliability methods compute approximate response function distribution statistics based on specified un-
certain variable probability distributions. Each of the local reliability methods can compute forward and inverse
mappings involving response, probability, reliability, and generalized reliability levels.

The forward reliability analysis algorithm of computing reliabilities/probabilities for specified response lev-
els is called the Reliability Index Approach (RIA), and the inverse reliability analysis algorithm of computing
response levels for specified probability levels is called the Performance Measure Approach (PMA).

The different RIA/PMA algorithm options are specified using the mpp search specification which selects
among different limit state approximations that can be used to reduce computational expense during the MPP
searches.

Theory
The Mean Value method (MV, also known as MVFOSM in [42]) is the simplest, least-expensive method in that it
estimates the response means, response standard deviations, and all CDF/CCDF forward/inverse mappings from
a single evaluation of response functions and gradients at the uncertain variable means. This approximation can
have acceptable accuracy when the response functions are nearly linear and their distributions are approximately
Gaussian, but can have poor accuracy in other situations.

All other reliability methods perform an internal nonlinear optimization to compute a most probable point (M-
PP) of failure. A sign convention and the distance of the MPP from the origin in the transformed standard normal
space (”u-space”) define the reliability index, as explained in the section on Reliability Methods in the Uncertainty
Quantification chapter of the Users Manual [4]. Also refer to variable support for additional information on
supported variable types for transformations to standard normal space. The reliability can then be converted to
a probability using either first- or second-order integration, may then be refined using importance sampling, and
finally may be converted to a generalized reliability index.

See Also
These keywords may also be of interest:

• adaptive sampling

• gpais

6.2. METHOD 1363

• global reliability

• sampling

• importance sampling

• polynomial chaos

• stoch collocation

mpp search

• Keywords Area

• method

• local reliability

• mpp search

Specify which MPP search option to use

Topics
This keyword is related to the topics:

• uncertainty quantification

• reliability methods

Specification
Alias: none

Argument(s): none
Default: No MPP search (MV method)

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1

x taylor mean Form Taylor series
approximation in
”x-space” at
variable means

u taylor mean Form Taylor series
approximation in
”u-space” at
variable means

x taylor mpp X-space Taylor
series
approximation
with iterative
updates

1364 CHAPTER 6. KEYWORDS AREA

u taylor mpp U-space Taylor
series
approximation
with iterative
updates

x two point Predict MPP using
Two-point
Adaptive
Nonlinear
Approximation in
”x-space”

u two point Predict MPP using
Two-point
Adaptive
Nonlinear
Approximation in
”u-space”

no approx Perform MPP
search on original
response functions
(use no
approximation)

Optional(Choose
One)

Group 2 sqp Uses a sequential
quadratic
programming
method for
underlying
optimization

nip Uses a nonlinear
interior point
method for
underlying
optimization

Optional integration Integration
approach

Description
The x taylor mean MPP search option performs a single Taylor series approximation in the space of the orig-
inal uncertain variables (”x-space”) centered at the uncertain variable means, searches for the MPP for each re-
sponse/probability level using this approximation, and performs a validation response evaluation at each predicted
MPP. This option is commonly known as the Advanced Mean Value (AMV) method. The u taylor mean op-
tion is identical to the x taylor mean option, except that the approximation is performed in u-space. The
x taylor mpp approach starts with an x-space Taylor series at the uncertain variable means, but iteratively up-
dates the Taylor series approximation at each MPP prediction until the MPP converges. This option is commonly
known as the AMV+ method. The u taylor mpp option is identical to the x taylor mpp option, except
that all approximations are performed in u-space. The order of the Taylor-series approximation is determined by
the corresponding responses specification and may be first or second-order. If second-order (methods named

6.2. METHOD 1365

AMV 2 and AMV 2+ in [22]), the series may employ analytic, finite difference, or quasi Hessians (BFGS or S-
R1). The x two point MPP search option uses an x-space Taylor series approximation at the uncertain variable
means for the initial MPP prediction, then utilizes the Two-point Adaptive Nonlinear Approximation (TANA) out-
lined in[91] for all subsequent MPP predictions. The u two point approach is identical to x two point, but
all the approximations are performed in u-space. The x taylor mpp and u taylor mpp, x two point and
u two point approaches utilize the max iterations and convergence tolerance method indepen-
dent controls to control the convergence of the MPP iterations (the maximum number of MPP iterations per level
is limited by max iterations, and the MPP iterations are considered converged when ‖ u(k+1) − u(k) ‖2 <
convergence tolerance). And, finally, the no approx option performs the MPP search on the original
response functions without the use of any approximations. The optimization algorithm used to perform these
MPP searches can be selected to be either sequential quadratic programming (uses the npsol sqp optimizer) or
nonlinear interior point (uses the optpp q newton optimizer) algorithms using the sqp or nip keywords.

In addition to the MPP search specifications, one may select among different integration approaches for com-
puting probabilities at the MPP by using the integration keyword followed by either first order or
second order. Second-order integration employs the formulation of[50] (the approach of[13] and the correc-
tion of[51] are also implemented, but are not active). Combining the no approx option of the MPP search with
first- and second-order integrations results in the traditional first- and second-order reliability methods (FORM
and SORM). These integration approximations may be subsequently refined using importance sampling. The
refinement specification allows the seletion of basic importance sampling (import), adaptive importance
sampling (adapt import), or multimodal adaptive importance sampling (mm adapt import), along with
the specification of number of samples (samples) and random seed (seed). Additional details on these meth-
ods are available in[24] and[22] and in the Uncertainty Quantification Capabilities chapter of the Users Manual
[4].

x taylor mean

• Keywords Area

• method

• local reliability

• mpp search

• x taylor mean

Form Taylor series approximation in ”x-space” at variable means

Topics

This keyword is related to the topics:

• reliability methods

Specification

Alias: none
Argument(s): none

1366 CHAPTER 6. KEYWORDS AREA

Description

This mpp search option performs a single Taylor series approximation in the space of the original uncertain
variables (”x-space”) centered at the uncertain variable means, searches for the MPP for each response/probability
level using this approximation, and performs a validation response evaluation at each predicted MPP. This option
is commonly known as the Advanced Mean Value (AMV) method.

u taylor mean

• Keywords Area

• method

• local reliability

• mpp search

• u taylor mean

Form Taylor series approximation in ”u-space” at variable means

Topics

This keyword is related to the topics:

• reliability methods

Specification

Alias: none
Argument(s): none

Description

This mpp search option performs a single Taylor series approximation in the transformed space of the uncertain
variables (”u-space”) centered at the uncertain variable means. This option is commonly known as the Advanced
Mean Value (AMV) method, but is performed in u-space instead of x-space.

x taylor mpp

• Keywords Area

• method

• local reliability

• mpp search

• x taylor mpp

X-space Taylor series approximation with iterative updates

6.2. METHOD 1367

Topics

This keyword is related to the topics:

• reliability methods

Specification

Alias: none
Argument(s): none

Description

This mpp search option starts with an x-space Taylor series at the uncertain variable means, but iteratively updates
the Taylor series approximation at each MPP prediction until the MPP converges. This option is commonly known
as the AMV+ method.

u taylor mpp

• Keywords Area

• method

• local reliability

• mpp search

• u taylor mpp

U-space Taylor series approximation with iterative updates

Topics

This keyword is related to the topics:

• reliability methods

Specification

Alias: none
Argument(s): none

Description

This mpp search option starts with a u-space Taylor series at the uncertain variable means, and iteratively updates
the Taylor series approximation at each MPP prediction until the MPP converges. This option is commonly known
as the AMV+ method and is identify to x taylor mpp except that it is performed in u-space.

1368 CHAPTER 6. KEYWORDS AREA

x two point

• Keywords Area

• method

• local reliability

• mpp search

• x two point

Predict MPP using Two-point Adaptive Nonlinear Approximation in ”x-space”

Topics
This keyword is related to the topics:

• reliability methods

Specification
Alias: none

Argument(s): none

Description
This mpp search option uses an x-space Taylor series approximation at the uncertain variable means for the initial
MPP prediction, then utilizes the Two-point Adaptive Nonlinear Approximation (TANA) outlined in [Xu98 ”Xu
and Grandhi, 1998”] for all subsequent MPP predictions.

u two point

• Keywords Area

• method

• local reliability

• mpp search

• u two point

Predict MPP using Two-point Adaptive Nonlinear Approximation in ”u-space”

Topics
This keyword is related to the topics:

• reliability methods

Specification
Alias: none

Argument(s): none

6.2. METHOD 1369

Description
This mpp search option is identical to x two point, but it performs the Two-point Adaptive Nonlinear Approx-
imation (TANA) in u-space instead of x-space.

no approx

• Keywords Area

• method

• local reliability

• mpp search

• no approx

Perform MPP search on original response functions (use no approximation)

Topics
This keyword is related to the topics:

• reliability methods

Specification
Alias: none

Argument(s): none

Description
This mpp search option performs the MPP search on the original response functions without the use of any
approximations. Note that the use of the no approx MPP search with first-order probability integration results in
the traditional reliability method called FORM (First-Order Reliability Method). Similarly, the use of no approx
with second-order probability integration results in SORM (Second-Order Reliability Method).

sqp

• Keywords Area

• method

• local reliability

• mpp search

• sqp

Uses a sequential quadratic programming method for underlying optimization

Specification
Alias: none

Argument(s): none
Default: sqp

1370 CHAPTER 6. KEYWORDS AREA

Description
Many uncertainty quantification methods solve a constrained optimization problem under the hood. The sqp
keyword directs Dakota to use a sequential quadratic programming method to solve that problem. A sequential
quadratic programming solves a sequence of linearly constrained quadratic optimization problems to arrive at the
solution to the optimization problem.

nip

• Keywords Area

• method

• local reliability

• mpp search

• nip

Uses a nonlinear interior point method for underlying optimization

Specification
Alias: none

Argument(s): none
Default: sqp

Description
Many uncertainty quantification methods solve a constrained optimization problem under the hood. The nip
keyword directs Dakota to use a nonlinear interior point to solve that problem. A nonlinear interior point method
traverses the interior of the feasible region to arrive at the solution to the optimization problem.

integration

• Keywords Area

• method

• local reliability

• mpp search

• integration

Integration approach

Topics
This keyword is related to the topics:

• reliability methods

6.2. METHOD 1371

Specification
Alias: none

Argument(s): none
Default: First-order integration

1372 CHAPTER 6. KEYWORDS AREA

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 first order First-order
integration scheme

second order Second-order
integration scheme

Optional probability -
refinement

Allow refinement
of probability and
generalized
reliability results
using importance
sampling

Description
This keyword controls how the probabilities at the MPP are computed: integration is followed by either first order
or second order, indicating the order of the probability integration.

first order

• Keywords Area

• method

• local reliability

• mpp search

• integration

• first order

First-order integration scheme

Topics
This keyword is related to the topics:

• reliability methods

Specification
Alias: none

Argument(s): none

Description
First-order integration in local reliability methods uses the minimum Euclidean distance from the origin to the
most probable point (MPP) in transformed space to compute the probability of failure. This distance, commonly
called the reliability index Beta, is used to calculate the probability of failure by calculating the standard normal
cumulative distribution function at -Beta.

6.2. METHOD 1373

second order
• Keywords Area

• method

• local reliability

• mpp search

• integration

• second order

Second-order integration scheme

Topics
This keyword is related to the topics:

• reliability methods

Specification
Alias: none

Argument(s): none

Description
Second-order integration in local reliability methods modifies the first-order integration approach to apply a cur-
vature correction. This correction is based on the formulation of [Hoh88 ”Hohenbichler and Rackwitz, 1988”].

probability refinement
• Keywords Area

• method

• local reliability

• mpp search

• integration

• probability refinement

Allow refinement of probability and generalized reliability results using importance sampling

Topics
This keyword is related to the topics:

• reliability methods

Specification
Alias: sample refinement

Argument(s): none

1374 CHAPTER 6. KEYWORDS AREA

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1
import Sampling option
adapt import Importance

sampling option
mm adapt import Sampling option

Optional refinement -
samples

Specify the
number of samples
used to improve a
probabilty
estimate.

Optional seed Seed of the random
number generator

Description
The probability refinement allows refinement of probability and generalized reliability results using
importance sampling. If one specifies probability refinement, there are some additional options. One
can specify which type of importance sampling to use (import, adapt import, or mm adapt import).
Additionally, one can specify the number of refinement samples to use with refinement samples and the
seed to use with seed.

The probability refinement density reweighting accounts originally was developed based on Gaus-
sian distributions. It now accounts for additional non-Gaussian cases.

import

• Keywords Area

• method

• local reliability

• mpp search

• integration

• probability refinement

• import

Sampling option

Specification
Alias: none

Argument(s): none

Description
import centers a sampling density at one of the initial LHS samples identified in the failure region. It then
generates the importance samples, weights them by their probability of occurence given the original density, and
calculates the required probability (CDF or CCDF level).

6.2. METHOD 1375

adapt import

• Keywords Area

• method

• local reliability

• mpp search

• integration

• probability refinement

• adapt import

Importance sampling option

Specification

Alias: none
Argument(s): none

Description

adapt import centers a sampling density at one of the initial LHS samples identified in the failure region. It
then generates the importance samples, weights them by their probability of occurence given the original density,
and calculates the required probability (CDF or CCDF level). This continues iteratively until the failure probability
estimate converges.

mm adapt import

• Keywords Area

• method

• local reliability

• mpp search

• integration

• probability refinement

• mm adapt import

Sampling option

Specification

Alias: none
Argument(s): none

1376 CHAPTER 6. KEYWORDS AREA

Description
mm adapt import starts with all of the samples located in the failure region to build a multimodal sampling
density. First, it uses a small number of samples around each of the initial samples in the failure region. Note
that these samples are allocated to the different points based on their relative probabilities of occurrence: more
probable points get more samples. This early part of the approach is done to search for ”representative” points.
Once these are located, the multimodal sampling density is set and then mm adapt import proceeds similarly
to adapt import (sample until convergence).

refinement samples

• Keywords Area

• method

• local reliability

• mpp search

• integration

• probability refinement

• refinement samples

Specify the number of samples used to improve a probabilty estimate.

Specification
Alias: none

Argument(s): INTEGER

Description
Specify the number of samples used to improve a probabilty estimate. If using uni-modal sampling all samples
are assigned to the sampling center. If using multi-modal sampling the samples are split between mutiple samples
according to some internally computed weights.

seed

• Keywords Area

• method

• local reliability

• mpp search

• integration

• probability refinement

• seed

Seed of the random number generator

6.2. METHOD 1377

Specification

Alias: none
Argument(s): INTEGER
Default: system-generated (non-repeatable)

Description

The random seed control provides a mechanism for making a stochastic method repeatable. That is, the use of
the same random seed in identical studies will generate identical results.

Default Behavior
If not specified, the seed is randomly generated.
Expected Output
If seed is specified, a stochastic study will generate identical results when repeated using the same seed

value. Otherwise, results are not guaranteed to be the same.
Usage Tips
If a stochastic study was run without seed specified, and the user later wishes to repeat the study using the

same seed, the value of the seed used in the original study can be found in the output Dakota prints to the screen.
That value can then be added to the Dakota input file.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 15347

response levels

• Keywords Area

• method

• local reliability

• response levels

Values at which to estimate desired statistics for each response

Specification

Alias: none
Argument(s): REALLIST
Default: No CDF/CCDF probabilities/reliabilities to compute

1378 CHAPTER 6. KEYWORDS AREA

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional num response -
levels

Number of values
at which to
estimate desired
statistics for each
response

Optional compute Selection of
statistics to
compute at each
response level

Description

The response levels specification provides the target response values for which to compute probabilities,
reliabilities, or generalized reliabilities (forward mapping).

Default Behavior
If response levels are not specified, no statistics will be computed. If they are, probabilities will be

computed by default.
Expected Outputs
The particular statistics reported for each response level depend on the method, and they include:

1. Reliabilities

2. CDF probabilities

3. CCDF probabilities

Usage Tips
The num response levels is used to specify which arguments of the response level correspond to

which response.

Examples

For example, specifying a response level of 52.3 followed with compute probabilities will result
in the calculation of the probability that the response value is less than or equal to 52.3, given the uncertain
distributions on the inputs.

For an example with multiple responses, the following specification

response_levels = 1. 2. .1 .2 .3 .4 10. 20. 30.
num_response_levels = 2 4 3

would assign the first two response levels (1., 2.) to response function 1, the next four response levels (.1, .2, .3,
.4) to response function 2, and the final three response levels (10., 20., 30.) to response function 3. If the num -
response levels key were omitted from this example, then the response levels would be evenly distributed
among the response functions (three levels each in this case).

6.2. METHOD 1379

Theory
Sets of response-probability pairs computed with the forward/inverse mappings define either a cumulative distri-
bution function (CDF) or a complementary cumulative distribution function (CCDF) for each response function.

In the case of evidence-based epistemic methods, this is generalized to define either cumulative belief and
plausibility functions (CBF and CPF) or complementary cumulative belief and plausibility functions (CCBF and
CCPF) for each response function.

A forward mapping involves computing the belief and plausibility probability level for a specified response
level.

num response levels

• Keywords Area

• method

• local reliability

• response levels

• num response levels

Number of values at which to estimate desired statistics for each response

Specification
Alias: none

Argument(s): INTEGERLIST
Default: response levels evenly distributed among response functions

Description
The num response levels keyword allows the user to specify the number of response values, for each re-
sponse, at which estimated statistics are of interest. Statistics that can be computed are probabilities and relia-
bilities, both according to either a cumulative distribution function or a complementary cumulative distribution
function.

Default Behavior
If num response levels is not specified, the response levels will be evenly distributed among the re-

sponses.
Expected Outputs
The specific output will be determined by the type of statistics that are specified. In a general sense, the output

will be a list of response level-statistic pairs that show the estimated value of the desired statistic for each response
level specified.

Examples
method

sampling
samples = 100
seed = 34785
num_response_levels = 1 1 1
response_levels = 0.5 0.5 0.5

1380 CHAPTER 6. KEYWORDS AREA

compute

• Keywords Area

• method

• local reliability

• response levels

• compute

Selection of statistics to compute at each response level

Specification
Alias: none

Argument(s): none
Default: probabilities

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1
probabilities Computes

probabilities
associated with
response levels

reliabilities Computes
reliabilities
associated with
response levels

gen reliabilities Computes
generalized
reliabilities
associated with
response levels

Optional system Compute system
reliability (series
or parallel)

Description
The compute keyword is used to select which forward stastical mapping is calculated at each response level.

Default Behavior
If response levels is not specified, no statistics are computed. If response levels is specified

but compute is not, probabilities will be computed by default. If both response levels and compute
are specified, then on of the following must be specified: probabilities, reliabilities, or gen -
reliabilities.

Expected Output
The type of statistics specified by compute will be reported for each response level.

6.2. METHOD 1381

Usage Tips
CDF/CCDF probabilities are calculated for specified response levels using a simple binning approach.
CDF/CCDF reliabilities are calculated for specified response levels by computing the number of sample stan-

dard deviations separating the sample mean from the response level.

Examples
method

sampling
sample_type random
samples = 100 seed = 1
complementary distribution
response_levels = 3.6e+11 4.0e+11 4.4e+11

6.0e+04 6.5e+04 7.0e+04
3.5e+05 4.0e+05 4.5e+05

compute reliabilities

probabilities

• Keywords Area

• method

• local reliability

• response levels

• compute

• probabilities

Computes probabilities associated with response levels

Specification

Alias: none
Argument(s): none

Description

The probabilities keyword directs Dakota to compute the probability that the model response will be below
(cumulative) or above (complementary cumulative) a specified response value. This is done for every response
level designated for each response.

Default Behavior
If response levels is specified, the probabilities are computed by default. To explicitly specify it in the

Dakota input file, though, the probabilities keyword should be specified in conjunction with the compute
keyword.

Expected Outputs
The Dakota output is a set of response level-probability pairs that give the probability that the model response

will be below or above the corresponding response level, depending on the distribution defined.

1382 CHAPTER 6. KEYWORDS AREA

Examples
method

sampling
sample_type random
samples = 100 seed = 1
complementary distribution
response_levels = 3.6e+11 4.0e+11 4.4e+11

6.0e+04 6.5e+04 7.0e+04
3.5e+05 4.0e+05 4.5e+05

compute probabilities

reliabilities

• Keywords Area

• method

• local reliability

• response levels

• compute

• reliabilities

Computes reliabilities associated with response levels

Specification

Alias: none
Argument(s): none

Description

The reliabilities keyword directs Dakota to compute reliabilities according to the specified distribution for
a specified response value. This is done for every response level designated for each response.

Default Behavior
If response levels is specified, the reliabilities are not computed by default. To change this behavior,

the reliabilities keyword should be specified in conjunction with the compute keyword.
Expected Outputs
The Dakota output is a set of response level-reliability pairs according to the distribution defined.

Examples
method

sampling
sample_type random
samples = 100 seed = 1
complementary distribution
response_levels = 3.6e+11 4.0e+11 4.4e+11

6.0e+04 6.5e+04 7.0e+04
3.5e+05 4.0e+05 4.5e+05

compute reliabilities

6.2. METHOD 1383

gen reliabilities

• Keywords Area

• method

• local reliability

• response levels

• compute

• gen reliabilities

Computes generalized reliabilities associated with response levels

Specification
Alias: none

Argument(s): none

Description
The gen reliabilities keyword directs Dakota to compute generalized reliabilities according to the speci-
fied distribution for a specified response value. This is done for every response level designated for each response.

Default Behavior
If response levels is specified, the generalized reliabilities are not computed by default. To change this

behavior, the gen reliabilities keyword should be specified in conjunction with the compute keyword.
Expected Outputs
The Dakota output is a set of response level-generalized reliability pairs according to the distribution defined.

Examples
method

sampling
sample_type random
samples = 100 seed = 1
complementary distribution
response_levels = 3.6e+11 4.0e+11 4.4e+11

6.0e+04 6.5e+04 7.0e+04
3.5e+05 4.0e+05 4.5e+05

compute gen_reliabilities

system

• Keywords Area

• method

• local reliability

• response levels

• compute

• system

Compute system reliability (series or parallel)

1384 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 series Aggregate
response statistics
assuming a series
system

parallel Aggregate
response statistics
assuming a parallel
system

Description
With the system probability/reliability option, statistics for specified response levels are calculated and
reported assuming the response functions combine either in series or parallel to produce a total system response.

For a series system, the system fails when any one component (response) fails. The probability of failure is
the complement of the product of the individual response success probabilities.

For a parallel system, the system fails only when all components (responses) fail. The probability of failure is
the product of the individual response failure probabilities.

series

• Keywords Area

• method

• local reliability

• response levels

• compute

• system

• series

Aggregate response statistics assuming a series system

Specification
Alias: none

Argument(s): none

Description
See parent keyword system for description.

6.2. METHOD 1385

parallel

• Keywords Area

• method

• local reliability

• response levels

• compute

• system

• parallel

Aggregate response statistics assuming a parallel system

Specification

Alias: none
Argument(s): none

Description

See parent keyword system for description.

reliability levels

• Keywords Area

• method

• local reliability

• reliability levels

Specify reliability levels at which the response values will be estimated

Specification

Alias: none
Argument(s): REALLIST
Default: No CDF/CCDF response levels to compute

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional num reliability -
levels

Specify which
reliability -
levels
correspond to
which response

1386 CHAPTER 6. KEYWORDS AREA

Description
Response levels are calculated for specified CDF/CCDF reliabilities by projecting out the prescribed number of
sample standard deviations from the sample mean.

Theory
Sets of response-probability pairs computed with the forward/inverse mappings define either a cumulative distri-
bution function (CDF) or a complementary cumulative distribution function (CCDF) for each response function.

In the case of evidence-based epistemic methods, this is generalized to define either cumulative belief and
plausibility functions (CBF and CPF) or complementary cumulative belief and plausibility functions (CCBF and
CCPF) for each response function.

An inverse mapping involves computing the belief and plausibility response level for either a specified prob-
ability level or a specified generalized reliability level (two results for each level mapping in the evidence-based
epistemic case, instead of the one result for each level mapping in the aleatory case).

num reliability levels

• Keywords Area

• method

• local reliability

• reliability levels

• num reliability levels

Specify which reliability levels correspond to which response

Specification
Alias: none

Argument(s): INTEGERLIST
Default: reliability levels evenly distributed among response functions

Description
See parent page

distribution

• Keywords Area

• method

• local reliability

• distribution

Selection of cumulative or complementary cumulative functions

6.2. METHOD 1387

Specification
Alias: none

Argument(s): none
Default: cumulative (CDF)

1388 CHAPTER 6. KEYWORDS AREA

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 cumulative Computes statistics
according to
cumulative
functions

complementary Computes statistics
according to
complementary
cumulative
functions

Description
The distribution keyword allows the user to select between a cumulative distribution/belief/plausibility
function and a complementary cumulative distribution/belief/plausibility function. This choice affects how prob-
abilities and reliability indices are reported.

Default Behavior
If the distribution keyword is present, it must be accompanied by either cumulative or complementary.

Otherwise, a cumulative distribution will be used by default.
Expected Outputs
Output will be a set of model response-probability pairs determined according to the choice of distribution.

The choice of distribution also defines the sign of the reliability or generalized reliability indices.

Examples
method

sampling
sample_type lhs
samples = 10
distribution cumulative

cumulative

• Keywords Area

• method

• local reliability

• distribution

• cumulative

Computes statistics according to cumulative functions

Specification
Alias: none

Argument(s): none

6.2. METHOD 1389

Description

Statistics on model responses will be computed according to a cumulative distribution/belief/plausibility function.
Default Behavior
By default, a cumulative distribution/belief/plausibility function will be used. To explicitly specify it in the

Dakota input file, however, the cumulative keyword must be appear in conjunction with the distribution
keyword.

Expected Outputs
Output will be a set of model response-probability pairs determined according to a cumulative distribu-

tion/belief/plausibility function. The probabilities reported are the probabilities that the model response falls
below given response threshholds.

Examples
method

sampling
sample_type lhs
samples = 10
distribution cumulative

complementary

• Keywords Area

• method

• local reliability

• distribution

• complementary

Computes statistics according to complementary cumulative functions

Specification

Alias: none
Argument(s): none

Description

Statistics on model responses will be computed according to a complementary cumulative distribution/belief/plausibility
function.

Default Behavior
By default, a complementary cumulative distribution/belief/plausibility function will not be used. To change

that behavior, the complementary keyword must be appear in conjunction with the distribution keyword.
Expected Outputs
Output will be a set of model response-probability pairs determined according to a complementary cumulative

distribution/belief/plausibility function. The probabilities reported are the probabilities that the model response
falls above given response threshholds.

1390 CHAPTER 6. KEYWORDS AREA

Examples
method

sampling
sample_type lhs
samples = 10
distribution complementary

probability levels

• Keywords Area

• method

• local reliability

• probability levels

Specify probability levels at which to estimate the corresponding response value

Specification

Alias: none
Argument(s): REALLIST
Default: No CDF/CCDF response levels to compute

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional num probability -
levels

Specify which
probability -
levels
correspond to
which response

Description

Response levels are calculated for specified CDF/CCDF probabilities by indexing into a sorted samples array (the
response levels computed are not interpolated and will correspond to one of the sampled values).

Theory

Sets of response-probability pairs computed with the forward/inverse mappings define either a cumulative distri-
bution function (CDF) or a complementary cumulative distribution function (CCDF) for each response function.

In the case of evidence-based epistemic methods, this is generalized to define either cumulative belief and
plausibility functions (CBF and CPF) or complementary cumulative belief and plausibility functions (CCBF and
CCPF) for each response function.

An inverse mapping involves computing the belief and plausibility response level for either a specified prob-
ability level or a specified generalized reliability level (two results for each level mapping in the evidence-based
epistemic case, instead of the one result for each level mapping in the aleatory case).

6.2. METHOD 1391

num probability levels

• Keywords Area

• method

• local reliability

• probability levels

• num probability levels

Specify which probability levels correspond to which response

Specification
Alias: none

Argument(s): INTEGERLIST
Default: probability levels evenly distributed among response functions

Description
See parent page

gen reliability levels

• Keywords Area

• method

• local reliability

• gen reliability levels

Specify generalized relability levels at which to estimate the corresponding response value

Specification
Alias: none

Argument(s): REALLIST
Default: No CDF/CCDF response levels to compute

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional num gen -
reliability levels

Specify which
gen -
reliability -
levels
correspond to
which response

Description
Response levels are calculated for specified generalized reliabilities by indexing into a sorted samples array (the
response levels computed are not interpolated and will correspond to one of the sampled values).

1392 CHAPTER 6. KEYWORDS AREA

Theory
Sets of response-probability pairs computed with the forward/inverse mappings define either a cumulative distri-
bution function (CDF) or a complementary cumulative distribution function (CCDF) for each response function.

In the case of evidence-based epistemic methods, this is generalized to define either cumulative belief and
plausibility functions (CBF and CPF) or complementary cumulative belief and plausibility functions (CCBF and
CCPF) for each response function.

An inverse mapping involves computing the belief and plausibility response level for either a specified prob-
ability level or a specified generalized reliability level (two results for each level mapping in the evidence-based
epistemic case, instead of the one result for each level mapping in the aleatory case).

num gen reliability levels

• Keywords Area

• method

• local reliability

• gen reliability levels

• num gen reliability levels

Specify which gen reliability levels correspond to which response

Specification
Alias: none

Argument(s): INTEGERLIST
Default: gen reliability levels evenly distributed among response functions

Description
See parent page

model pointer

• Keywords Area

• method

• local reliability

• model pointer

Identifier for model block to be used by a method

Topics
This keyword is related to the topics:

• block pointer

6.2. METHOD 1393

Specification
Alias: none

Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

Description
The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

1394 CHAPTER 6. KEYWORDS AREA

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses
response_functions = 3
no_gradients
no_hessians

6.2.68 global reliability
• Keywords Area

• method

• global reliability

Global reliability methods

Topics
This keyword is related to the topics:

• uncertainty quantification

• reliability methods

Specification
Alias: nond global reliability

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 x gaussian process Create GP
surrogate in
x-space

u gaussian process Create GP
surrogate in
u-space

Optional(Choose
One)

Group 2 surfpack Use the Surfpack
version of
Gaussian Process
surrogates

dakota Select the built in
Gaussian Process
surrogate

6.2. METHOD 1395

Optional import points file File containing
variable values and
corresponding
responses

Optional export points file Output file for
evaluations of a
surrogate model

Optional use derivatives Use derivative data
to construct
surrogate models

Optional seed Seed of the random
number generator

Optional rng Selection of a
random number
generator

Optional response levels Values at which to
estimate desired
statistics for each
response

Optional distribution Selection of
cumulative or
complementary
cumulative
functions

Optional probability levels Specify probability
levels at which to
estimate the
corresponding
response value

Optional gen reliability -
levels

Specify
generalized
relability levels at
which to estimate
the corresponding
response value

1396 CHAPTER 6. KEYWORDS AREA

Optional model pointer Identifier for
model block to be
used by a method

Description
These methods do not support forward/inverse mappings involving reliability levels, since they never
form a reliability index based on distance in u-space. Rather they use a Gaussian process model to form an ap-
proximation to the limit state (based either in x-space via the x gaussian process specification or in u-space
via the u gaussian process specification), followed by probability estimation based on multimodal adaptive
importance sampling (see [11]) and [12]). These probability estimates may then be transformed into generalized
reliability levels if desired. At this time, inverse reliability analysis (mapping probability or generalized reliability
levels into response levels) is not implemented.

The Gaussian process model approximation to the limit state is formed over the aleatory uncertain variables
by default, but may be extended to also capture the effect of design, epistemic uncertain, and state variables. If
this is desired, one must use the appropriate controls to specify the active variables in the variables specification
block. Refer to variable support for additional information on supported variable types.

See Also
These keywords may also be of interest:

• adaptive sampling

• gpais

• local reliability

• sampling

• importance sampling

• polynomial chaos

• stoch collocation

x gaussian process

• Keywords Area

• method

• global reliability

• x gaussian process

Create GP surrogate in x-space

Topics
This keyword is related to the topics:

• reliability methods

6.2. METHOD 1397

Specification

Alias: x kriging
Argument(s): none

u gaussian process

• Keywords Area

• method

• global reliability

• u gaussian process

Create GP surrogate in u-space

Topics

This keyword is related to the topics:

• reliability methods

Specification

Alias: u kriging
Argument(s): none

surfpack

• Keywords Area

• method

• global reliability

• surfpack

Use the Surfpack version of Gaussian Process surrogates

Specification

Alias: none
Argument(s): none

Description

This keyword specifies the use of the Gaussian process that is incorporated in our surface fitting library called
Surfpack.

Several user options are available:

1398 CHAPTER 6. KEYWORDS AREA

1. Optimization methods:

Maximum Likelihood Estimation (MLE) is used to find the optimal values of the hyper-parameters gov-
erning the trend and correlation functions. By default the global optimization method DIRECT is used for
MLE, but other options for the optimization method are available. See optimization method.

The total number of evaluations of the likelihood function can be controlled using the max trials key-
word followed by a positive integer. Note that the likelihood function does not require running the ”truth”
model, and is relatively inexpensive to compute.

2. Trend Function:

The GP models incorporate a parametric trend function whose purpose is to capture large-scale variations.
See trend.

3. Correlation Lengths:

Correlation lengths are usually optimized by Surfpack, however, the user can specify the lengths manually.
See correlation lengths.

4. Ill-conditioning

One of the major problems in determining the governing values for a Gaussian process or Kriging model is
the fact that the correlation matrix can easily become ill-conditioned when there are too many input points
close together. Since the predictions from the Gaussian process model involve inverting the correlation
matrix, ill-conditioning can lead to poor predictive capability and should be avoided.

Note that a sufficiently bad sample design could require correlation lengths to be so short that any interpo-
latory GP model would become inept at extrapolation and interpolation.

The surfpack model handles ill-conditioning internally by default, but behavior can be modified using

5. Gradient Enhanced Kriging (GEK).

The use derivatives keyword will cause the Surfpack GP to be constructed from a combination of
function value and gradient information (if available).

See notes in the Theory section.

Theory
Gradient Enhanced Kriging

Incorporating gradient information will only be beneficial if accurate and inexpensive derivative information
is available, and the derivatives are not infinite or nearly so. Here ”inexpensive” means that the cost of evaluating a
function value plus gradient is comparable to the cost of evaluating only the function value, for example gradients
computed by analytical, automatic differentiation, or continuous adjoint techniques. It is not cost effective to use
derivatives computed by finite differences. In tests, GEK models built from finite difference derivatives were also
significantly less accurate than those built from analytical derivatives. Note that GEK’s correlation matrix tends
to have a significantly worse condition number than Kriging for the same sample design.

This issue was addressed by using a pivoted Cholesky factorization of Kriging’s correlation matrix (which is a
small sub-matrix within GEK’s correlation matrix) to rank points by how much unique information they contain.
This reordering is then applied to whole points (the function value at a point immediately followed by gradient
information at the same point) in GEK’s correlation matrix. A standard non-pivoted Cholesky is then applied to the
reordered GEK correlation matrix and a bisection search is used to find the last equation that meets the constraint
on the (estimate of) condition number. The cost of performing pivoted Cholesky on Kriging’s correlation matrix
is usually negligible compared to the cost of the non-pivoted Cholesky factorization of GEK’s correlation matrix.
In tests, it also resulted in more accurate GEK models than when pivoted Cholesky or whole-point-block pivoted
Cholesky was performed on GEK’s correlation matrix.

6.2. METHOD 1399

dakota

• Keywords Area

• method

• global reliability

• dakota

Select the built in Gaussian Process surrogate

Specification

Alias: none
Argument(s): none

Description

A second version of GP surrogates was available in prior versions of Dakota. For now, both versions are
supported but the dakota version is deprecated and intended to be removed in a future release.

Historically these models were drastically different, but in Dakota 5.1, they became quite similar. They now
differ in that the Surfpack GP has a richer set of features/options and tends to be more accurate than the Dakota
version. Due to how the Surfpack GP handles ill-conditioned correlation matrices (which significantly contributes
to its greater accuracy), the Surfpack GP can be a factor of two or three slower than Dakota’s. As of Dakota
5.2, the Surfpack implementation is the default in all contexts except Bayesian calibration.

More details on the gaussian process dakota model can be found in[58].
Dakota’s GP deals with ill-conditioning in two ways. First, when it encounters a non-invertible correlation

matrix it iteratively increases the size of a ”nugget,” but in such cases the resulting approximation smooths rather
than interpolates the data. Second, it has a point selection option (default off) that uses a greedy algorithm
to select a well-spaced subset of points prior to the construction of the GP. In this case, the GP will only interpo-
late the selected subset. Typically, one should not need point selection in trust-region methods because a small
number of points are used to develop a surrogate within each trust region. Point selection is most beneficial when
constructing with a large number of points, typically more than order one hundred, though this depends on the
number of variables and spacing of the sample points.

This differs from the point selection option of the Dakota GP which initially chooses a well-spaced
subset of points and finds the correlation parameters that are most likely for that one subset.

import points file

• Keywords Area

• method

• global reliability

• import points file

File containing variable values and corresponding responses

1400 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): STRING
Default: no point import from a file

6.2. METHOD 1401

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional(Choose
One)

tabular format
(Group 1)

annotated Selects annotated
tabular file format

custom annotated Selects
custom-annotated
tabular file format

freeform Selects freeform
file format

Optional active only Import only active
variables from
tabular data file

Description
The import points file allows the user to specify a file that contains a list of variable values and the model
responses computed at those values. These can be used by a number of methods in place of model evaluations.
When used to construct surrogate models or emulators these are often called build points or training data.

Default Behavior
Be default, methods do not import points from a file.
Usage Tips
Dakota parses input files without regard to whitespace, but the import points file must be in one of three

formats:

• annotated (default)

• custom annotated

• freeform

Examples
method

list_parameter_study
import_points_file = ’dakota_pstudy.3.dat’

annotated

• Keywords Area

• method

• global reliability

• import points file

• annotated

Selects annotated tabular file format

1402 CHAPTER 6. KEYWORDS AREA

Topics

This keyword is related to the topics:

• file formats

Specification

Alias: none
Argument(s): none
Default: annotated format

Description

An annotated tabular file is a whitespace-separated text file with one leading header row of comments/column la-
bels. Each subsequent row contains an evaluation ID and interface ID, followed by data for variables, or variables
followed by responses, depending on context.

Default Behavior
By default, Dakota imports and exports tabular files in annotated format. The annotated keyword can be

used to explicitly specify this.
Usage Tips

• To specify pre-Dakota 6.1 tabular format, which did not include interface id, specify custom annotated
header eval id

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export an annotated top-level tabular data file containing a header row, leading eval id and interface id columns,
and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
annotated

Resulting tabular file:

%eval_id interface x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 NO_ID 0.9 1.1 0.0002 0.26 0.76
2 NO_ID 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 NO_ID 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

6.2. METHOD 1403

custom annotated

• Keywords Area

• method

• global reliability

• import points file

• custom annotated

Selects custom-annotated tabular file format

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Default: annotated format

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional header Enable header row
in
custom-annotated
tabular file

Optional eval id Enable evaluation
ID column in
custom-annotated
tabular file

Optional interface id Enable interface
ID column in
custom-annotated
tabular file

Description
A custom-annotated tabular file is a whitespace-separated text file typically containing row data for variables, or
variables followed by responses, though the format is used for other tabular exports/imports as well. Custom-
annotated allows user options for whether header row, eval id column, and interface id column appear
in the tabular file, thus bridging freeform and (fully) annotated.

Default Behavior
The annotated format is the default for tabular export/import. To control which header row and columns

are in the input/output, specify custom annotated, followed by options, in the relevant export/import context.
Usage Tips

1404 CHAPTER 6. KEYWORDS AREA

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export a custom-annotated tabular file in Dakota 6.0 format, which contained only header and eval id (no interface-
id), and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
custom_annotated header eval_id

Resulting tabular file:

%eval_id x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 0.9 1.1 0.0002 0.26 0.76
2 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

header

• Keywords Area

• method

• global reliability

• import points file

• custom annotated

• header

Enable header row in custom-annotated tabular file

Specification

Alias: none
Argument(s): none
Default: no header

Description

See description of parent custom annotated

6.2. METHOD 1405

eval id

• Keywords Area

• method

• global reliability

• import points file

• custom annotated

• eval id

Enable evaluation ID column in custom-annotated tabular file

Specification

Alias: none
Argument(s): none
Default: no eval id column

Description

See description of parent custom annotated

interface id

• Keywords Area

• method

• global reliability

• import points file

• custom annotated

• interface id

Enable interface ID column in custom-annotated tabular file

Specification

Alias: none
Argument(s): none
Default: no interface id column

Description

See description of parent custom annotated

1406 CHAPTER 6. KEYWORDS AREA

freeform

• Keywords Area

• method

• global reliability

• import points file

• freeform

Selects freeform file format

Topics

This keyword is related to the topics:

• file formats

Specification

Alias: none
Argument(s): none
Default: annotated format

Description

A freeform tabular file is whitespace-separated text file with no leading header row and no leading columns. Most
commonly, each row contains data for variables, or variables followed by responses, though the format is used for
other tabular exports/imports as well.

Default Behavior
The annotated format is the default for tabular export/import. To change this behavior, specify freeform

in the relevant export/import context.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• In freeform, the num rows x num cols total data entries may be separated with any whitespace including
spaces, tabs, and newlines. In this format, vectors may therefore appear as a single row or single column
(or mixture; entries will populate the vector in order).

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

6.2. METHOD 1407

Examples
Export a freeform tabular file containing only data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
freeform

Resulting tabular file:

0.9 1.1 0.0002 0.26 0.76
0.90009 1.1 0.0001996404857 0.2601620081 0.759955
0.89991 1.1 0.0002003604863 0.2598380081 0.760045

...

active only

• Keywords Area

• method

• global reliability

• import points file

• active only

Import only active variables from tabular data file

Topics

This keyword is related to the topics:

• file formats

Specification

Alias: none
Argument(s): none

Description

By default, files for tabular data imports are expected to contain columns for all variables, active and inactive. The
keyword active only indicates that the file to import contains only the active variables.

This option should only be used in contexts where the inactive variables have no influence, for example,
building a surrogate over active variables, with the state variables held at nominal. It should not be used in more
complex nested contexts, where the values of inactive variables are relevant to the function evaluations used to
build the surrogate.

1408 CHAPTER 6. KEYWORDS AREA

export points file

• Keywords Area

• method

• global reliability

• export points file

Output file for evaluations of a surrogate model

Specification
Alias: none

Argument(s): STRING
Default: no point export to a file

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional(Choose
One)

tabular format
(Group 1)

annotated Selects annotated
tabular file format

custom annotated Selects
custom-annotated
tabular file format

freeform Selects freeform
file format

Description
File of points (input variable values and predicted approximate outputs from the surrogate) evaluated on the
surrogate model. The export points contain test point values and the emulator predictions at these points.

Usage Tips
Dakota exports tabular data in one of three formats:

• annotated (default)

• custom annotated

• freeform

annotated

• Keywords Area

• method

• global reliability

• export points file

• annotated

Selects annotated tabular file format

6.2. METHOD 1409

Topics

This keyword is related to the topics:

• file formats

Specification

Alias: none
Argument(s): none
Default: annotated format

Description

An annotated tabular file is a whitespace-separated text file with one leading header row of comments/column la-
bels. Each subsequent row contains an evaluation ID and interface ID, followed by data for variables, or variables
followed by responses, depending on context.

Default Behavior
By default, Dakota imports and exports tabular files in annotated format. The annotated keyword can be

used to explicitly specify this.
Usage Tips

• To specify pre-Dakota 6.1 tabular format, which did not include interface id, specify custom annotated
header eval id

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export an annotated top-level tabular data file containing a header row, leading eval id and interface id columns,
and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
annotated

Resulting tabular file:

%eval_id interface x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 NO_ID 0.9 1.1 0.0002 0.26 0.76
2 NO_ID 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 NO_ID 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

1410 CHAPTER 6. KEYWORDS AREA

custom annotated

• Keywords Area

• method

• global reliability

• export points file

• custom annotated

Selects custom-annotated tabular file format

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Default: annotated format

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional header Enable header row
in
custom-annotated
tabular file

Optional eval id Enable evaluation
ID column in
custom-annotated
tabular file

Optional interface id Enable interface
ID column in
custom-annotated
tabular file

Description
A custom-annotated tabular file is a whitespace-separated text file typically containing row data for variables, or
variables followed by responses, though the format is used for other tabular exports/imports as well. Custom-
annotated allows user options for whether header row, eval id column, and interface id column appear
in the tabular file, thus bridging freeform and (fully) annotated.

Default Behavior
The annotated format is the default for tabular export/import. To control which header row and columns

are in the input/output, specify custom annotated, followed by options, in the relevant export/import context.
Usage Tips

6.2. METHOD 1411

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export a custom-annotated tabular file in Dakota 6.0 format, which contained only header and eval id (no interface-
id), and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
custom_annotated header eval_id

Resulting tabular file:

%eval_id x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 0.9 1.1 0.0002 0.26 0.76
2 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

header

• Keywords Area

• method

• global reliability

• export points file

• custom annotated

• header

Enable header row in custom-annotated tabular file

Specification

Alias: none
Argument(s): none
Default: no header

Description

See description of parent custom annotated

1412 CHAPTER 6. KEYWORDS AREA

eval id

• Keywords Area

• method

• global reliability

• export points file

• custom annotated

• eval id

Enable evaluation ID column in custom-annotated tabular file

Specification

Alias: none
Argument(s): none
Default: no eval id column

Description

See description of parent custom annotated

interface id

• Keywords Area

• method

• global reliability

• export points file

• custom annotated

• interface id

Enable interface ID column in custom-annotated tabular file

Specification

Alias: none
Argument(s): none
Default: no interface id column

Description

See description of parent custom annotated

6.2. METHOD 1413

freeform

• Keywords Area

• method

• global reliability

• export points file

• freeform

Selects freeform file format

Topics

This keyword is related to the topics:

• file formats

Specification

Alias: none
Argument(s): none
Default: annotated format

Description

A freeform tabular file is whitespace-separated text file with no leading header row and no leading columns. Most
commonly, each row contains data for variables, or variables followed by responses, though the format is used for
other tabular exports/imports as well.

Default Behavior
The annotated format is the default for tabular export/import. To change this behavior, specify freeform

in the relevant export/import context.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• In freeform, the num rows x num cols total data entries may be separated with any whitespace including
spaces, tabs, and newlines. In this format, vectors may therefore appear as a single row or single column
(or mixture; entries will populate the vector in order).

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

1414 CHAPTER 6. KEYWORDS AREA

Examples
Export a freeform tabular file containing only data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
freeform

Resulting tabular file:

0.9 1.1 0.0002 0.26 0.76
0.90009 1.1 0.0001996404857 0.2601620081 0.759955
0.89991 1.1 0.0002003604863 0.2598380081 0.760045

...

use derivatives

• Keywords Area

• method

• global reliability

• use derivatives

Use derivative data to construct surrogate models

Specification
Alias: none

Argument(s): none
Default: use function values only

Description
The use derivatives flag specifies that any available derivative information should be used in global approx-
imation builds, for those global surrogate types that support it (currently, polynomial regression and the Surfpack
Gaussian process).

However, it’s use with Surfpack Gaussian process is not recommended.

seed

• Keywords Area

• method

• global reliability

• seed

Seed of the random number generator

Specification
Alias: none

Argument(s): INTEGER
Default: system-generated (non-repeatable)

6.2. METHOD 1415

Description
The random seed control provides a mechanism for making a stochastic method repeatable. That is, the use of
the same random seed in identical studies will generate identical results.

Default Behavior
If not specified, the seed is randomly generated.
Expected Output
If seed is specified, a stochastic study will generate identical results when repeated using the same seed

value. Otherwise, results are not guaranteed to be the same.
Usage Tips
If a stochastic study was run without seed specified, and the user later wishes to repeat the study using the

same seed, the value of the seed used in the original study can be found in the output Dakota prints to the screen.
That value can then be added to the Dakota input file.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 15347

rng

• Keywords Area

• method

• global reliability

• rng

Selection of a random number generator

Specification
Alias: none

Argument(s): none
Default: Mersenne twister (mt19937)

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 mt19937 Generates random
numbers using the
Mersenne twister

1416 CHAPTER 6. KEYWORDS AREA

rnum2 Generates
pseudo-random
numbers using the
Pecos package

Description
The rng keyword is used to indicate a choice of random number generator.

Default Behavior
If specified, the rng keyword must be accompanied by either rnum2 (pseudo-random numbers) or mt19937

(random numbers generated by the Mersenne twister). Otherwise, mt19937, the Mersenne twister is used by
default.

Usage Tips
The default is recommended, as the Mersenne twister is a higher quality random number generator.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 98765
rng rnum2

mt19937

• Keywords Area

• method

• global reliability

• rng

• mt19937

Generates random numbers using the Mersenne twister

Specification
Alias: none

Argument(s): none

Description
The mt19937 keyword directs Dakota to use the Mersenne twister to generate random numbers. Additional
information can be found on wikipedia: http://en.wikipedia.org/wiki/Mersenne twister.

Default Behavior
mt19937 is the default random number generator. To specify it explicitly in the Dakota input file, however,

it must be specified in conjuction with the rng keyword.
Usage Tips
Use of the Mersenne twister random number generator (mt19937) is recommended.

http://en.wikipedia.org/wiki/Mersenne_twister

6.2. METHOD 1417

Examples
method

sampling
sample_type lhs
samples = 10
seed = 98765
rng mt19937

rnum2

• Keywords Area

• method

• global reliability

• rng

• rnum2

Generates pseudo-random numbers using the Pecos package

Specification
Alias: none

Argument(s): none

Description
The rnum2 keyword directs Dakota to use pseudo-random numbers generated by the Pecos package.

Default Behavior
rnum2 is not used by default. To change this behavior, it must be specified in conjuction with the rng

keyword.
Usage Tips
Use of the Mersenne twister random number generator (mt19937) is recommended over rnum2.

Examples
method

sampling
sample_type lhs
samples = 10
seed = 98765
rng rnum2

response levels

• Keywords Area

• method

• global reliability

• response levels

Values at which to estimate desired statistics for each response

1418 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): REALLIST
Default: No CDF/CCDF probabilities/reliabilities to compute

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional num response -
levels

Number of values
at which to
estimate desired
statistics for each
response

Optional compute Selection of
statistics to
compute at each
response level

Description
The response levels specification provides the target response values for which to compute probabilities,
reliabilities, or generalized reliabilities (forward mapping).

Default Behavior
If response levels are not specified, no statistics will be computed. If they are, probabilities will be

computed by default.
Expected Outputs
The particular statistics reported for each response level depend on the method, and they include:

1. Reliabilities

2. CDF probabilities

3. CCDF probabilities

Usage Tips
The num response levels is used to specify which arguments of the response level correspond to

which response.

Examples
For example, specifying a response level of 52.3 followed with compute probabilities will result
in the calculation of the probability that the response value is less than or equal to 52.3, given the uncertain
distributions on the inputs.

For an example with multiple responses, the following specification

response_levels = 1. 2. .1 .2 .3 .4 10. 20. 30.
num_response_levels = 2 4 3

would assign the first two response levels (1., 2.) to response function 1, the next four response levels (.1, .2, .3,
.4) to response function 2, and the final three response levels (10., 20., 30.) to response function 3. If the num -
response levels key were omitted from this example, then the response levels would be evenly distributed
among the response functions (three levels each in this case).

6.2. METHOD 1419

Theory
Sets of response-probability pairs computed with the forward/inverse mappings define either a cumulative distri-
bution function (CDF) or a complementary cumulative distribution function (CCDF) for each response function.

In the case of evidence-based epistemic methods, this is generalized to define either cumulative belief and
plausibility functions (CBF and CPF) or complementary cumulative belief and plausibility functions (CCBF and
CCPF) for each response function.

A forward mapping involves computing the belief and plausibility probability level for a specified response
level.

num response levels

• Keywords Area

• method

• global reliability

• response levels

• num response levels

Number of values at which to estimate desired statistics for each response

Specification
Alias: none

Argument(s): INTEGERLIST
Default: response levels evenly distributed among response functions

Description
The num response levels keyword allows the user to specify the number of response values, for each re-
sponse, at which estimated statistics are of interest. Statistics that can be computed are probabilities and relia-
bilities, both according to either a cumulative distribution function or a complementary cumulative distribution
function.

Default Behavior
If num response levels is not specified, the response levels will be evenly distributed among the re-

sponses.
Expected Outputs
The specific output will be determined by the type of statistics that are specified. In a general sense, the output

will be a list of response level-statistic pairs that show the estimated value of the desired statistic for each response
level specified.

Examples
method

sampling
samples = 100
seed = 34785
num_response_levels = 1 1 1
response_levels = 0.5 0.5 0.5

1420 CHAPTER 6. KEYWORDS AREA

compute

• Keywords Area

• method

• global reliability

• response levels

• compute

Selection of statistics to compute at each response level

Specification
Alias: none

Argument(s): none
Default: probabilities

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 probabilities Computes
probabilities
associated with
response levels

gen reliabilities Computes
generalized
reliabilities
associated with
response levels

Optional system Compute system
reliability (series
or parallel)

Description
The compute keyword is used to select which forward stastical mapping is calculated at each response level.

Default Behavior
If response levels is not specified, no statistics are computed. If response levels is specified

but compute is not, probabilities will be computed by default. If both response levels and compute
are specified, then on of the following must be specified: probabilities, reliabilities, or gen -
reliabilities.

Expected Output
The type of statistics specified by compute will be reported for each response level.
Usage Tips
CDF/CCDF probabilities are calculated for specified response levels using a simple binning approach.
CDF/CCDF reliabilities are calculated for specified response levels by computing the number of sample stan-

dard deviations separating the sample mean from the response level.

6.2. METHOD 1421

Examples
method

sampling
sample_type random
samples = 100 seed = 1
complementary distribution
response_levels = 3.6e+11 4.0e+11 4.4e+11

6.0e+04 6.5e+04 7.0e+04
3.5e+05 4.0e+05 4.5e+05

compute reliabilities

probabilities

• Keywords Area

• method

• global reliability

• response levels

• compute

• probabilities

Computes probabilities associated with response levels

Specification
Alias: none

Argument(s): none

Description
The probabilities keyword directs Dakota to compute the probability that the model response will be below
(cumulative) or above (complementary cumulative) a specified response value. This is done for every response
level designated for each response.

Default Behavior
If response levels is specified, the probabilities are computed by default. To explicitly specify it in the

Dakota input file, though, the probabilities keyword should be specified in conjunction with the compute
keyword.

Expected Outputs
The Dakota output is a set of response level-probability pairs that give the probability that the model response

will be below or above the corresponding response level, depending on the distribution defined.

Examples
method

sampling
sample_type random
samples = 100 seed = 1
complementary distribution
response_levels = 3.6e+11 4.0e+11 4.4e+11

6.0e+04 6.5e+04 7.0e+04
3.5e+05 4.0e+05 4.5e+05

compute probabilities

1422 CHAPTER 6. KEYWORDS AREA

gen reliabilities

• Keywords Area

• method

• global reliability

• response levels

• compute

• gen reliabilities

Computes generalized reliabilities associated with response levels

Specification
Alias: none

Argument(s): none

Description
The gen reliabilities keyword directs Dakota to compute generalized reliabilities according to the speci-
fied distribution for a specified response value. This is done for every response level designated for each response.

Default Behavior
If response levels is specified, the generalized reliabilities are not computed by default. To change this

behavior, the gen reliabilities keyword should be specified in conjunction with the compute keyword.
Expected Outputs
The Dakota output is a set of response level-generalized reliability pairs according to the distribution defined.

Examples
method

sampling
sample_type random
samples = 100 seed = 1
complementary distribution
response_levels = 3.6e+11 4.0e+11 4.4e+11

6.0e+04 6.5e+04 7.0e+04
3.5e+05 4.0e+05 4.5e+05

compute gen_reliabilities

system

• Keywords Area

• method

• global reliability

• response levels

• compute

• system

Compute system reliability (series or parallel)

6.2. METHOD 1423

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 series Aggregate
response statistics
assuming a series
system

parallel Aggregate
response statistics
assuming a parallel
system

Description
With the system probability/reliability option, statistics for specified response levels are calculated and
reported assuming the response functions combine either in series or parallel to produce a total system response.

For a series system, the system fails when any one component (response) fails. The probability of failure is
the complement of the product of the individual response success probabilities.

For a parallel system, the system fails only when all components (responses) fail. The probability of failure is
the product of the individual response failure probabilities.

series

• Keywords Area

• method

• global reliability

• response levels

• compute

• system

• series

Aggregate response statistics assuming a series system

Specification
Alias: none

Argument(s): none

Description
See parent keyword system for description.

1424 CHAPTER 6. KEYWORDS AREA

parallel

• Keywords Area

• method

• global reliability

• response levels

• compute

• system

• parallel

Aggregate response statistics assuming a parallel system

Specification
Alias: none

Argument(s): none

Description
See parent keyword system for description.

distribution

• Keywords Area

• method

• global reliability

• distribution

Selection of cumulative or complementary cumulative functions

Specification
Alias: none

Argument(s): none
Default: cumulative (CDF)

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 cumulative Computes statistics
according to
cumulative
functions

6.2. METHOD 1425

complementary Computes statistics
according to
complementary
cumulative
functions

Description
The distribution keyword allows the user to select between a cumulative distribution/belief/plausibility
function and a complementary cumulative distribution/belief/plausibility function. This choice affects how prob-
abilities and reliability indices are reported.

Default Behavior
If the distribution keyword is present, it must be accompanied by either cumulative or complementary.

Otherwise, a cumulative distribution will be used by default.
Expected Outputs
Output will be a set of model response-probability pairs determined according to the choice of distribution.

The choice of distribution also defines the sign of the reliability or generalized reliability indices.

Examples
method

sampling
sample_type lhs
samples = 10
distribution cumulative

cumulative

• Keywords Area

• method

• global reliability

• distribution

• cumulative

Computes statistics according to cumulative functions

Specification
Alias: none

Argument(s): none

Description
Statistics on model responses will be computed according to a cumulative distribution/belief/plausibility function.

Default Behavior
By default, a cumulative distribution/belief/plausibility function will be used. To explicitly specify it in the

Dakota input file, however, the cumulative keyword must be appear in conjunction with the distribution
keyword.

1426 CHAPTER 6. KEYWORDS AREA

Expected Outputs
Output will be a set of model response-probability pairs determined according to a cumulative distribu-

tion/belief/plausibility function. The probabilities reported are the probabilities that the model response falls
below given response threshholds.

Examples
method

sampling
sample_type lhs
samples = 10
distribution cumulative

complementary

• Keywords Area

• method

• global reliability

• distribution

• complementary

Computes statistics according to complementary cumulative functions

Specification

Alias: none
Argument(s): none

Description

Statistics on model responses will be computed according to a complementary cumulative distribution/belief/plausibility
function.

Default Behavior
By default, a complementary cumulative distribution/belief/plausibility function will not be used. To change

that behavior, the complementary keyword must be appear in conjunction with the distribution keyword.
Expected Outputs
Output will be a set of model response-probability pairs determined according to a complementary cumulative

distribution/belief/plausibility function. The probabilities reported are the probabilities that the model response
falls above given response threshholds.

Examples
method

sampling
sample_type lhs
samples = 10
distribution complementary

6.2. METHOD 1427

probability levels

• Keywords Area

• method

• global reliability

• probability levels

Specify probability levels at which to estimate the corresponding response value

Specification
Alias: none

Argument(s): REALLIST
Default: No CDF/CCDF response levels to compute

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional num probability -
levels

Specify which
probability -
levels
correspond to
which response

Description
Response levels are calculated for specified CDF/CCDF probabilities by indexing into a sorted samples array (the
response levels computed are not interpolated and will correspond to one of the sampled values).

Theory
Sets of response-probability pairs computed with the forward/inverse mappings define either a cumulative distri-
bution function (CDF) or a complementary cumulative distribution function (CCDF) for each response function.

In the case of evidence-based epistemic methods, this is generalized to define either cumulative belief and
plausibility functions (CBF and CPF) or complementary cumulative belief and plausibility functions (CCBF and
CCPF) for each response function.

An inverse mapping involves computing the belief and plausibility response level for either a specified prob-
ability level or a specified generalized reliability level (two results for each level mapping in the evidence-based
epistemic case, instead of the one result for each level mapping in the aleatory case).

num probability levels

• Keywords Area

• method

• global reliability

• probability levels

• num probability levels

Specify which probability levels correspond to which response

1428 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): INTEGERLIST
Default: probability levels evenly distributed among response functions

Description
See parent page

gen reliability levels

• Keywords Area

• method

• global reliability

• gen reliability levels

Specify generalized relability levels at which to estimate the corresponding response value

Specification
Alias: none

Argument(s): REALLIST
Default: No CDF/CCDF response levels to compute

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional num gen -
reliability levels

Specify which
gen -
reliability -
levels
correspond to
which response

Description
Response levels are calculated for specified generalized reliabilities by indexing into a sorted samples array (the
response levels computed are not interpolated and will correspond to one of the sampled values).

Theory
Sets of response-probability pairs computed with the forward/inverse mappings define either a cumulative distri-
bution function (CDF) or a complementary cumulative distribution function (CCDF) for each response function.

In the case of evidence-based epistemic methods, this is generalized to define either cumulative belief and
plausibility functions (CBF and CPF) or complementary cumulative belief and plausibility functions (CCBF and
CCPF) for each response function.

An inverse mapping involves computing the belief and plausibility response level for either a specified prob-
ability level or a specified generalized reliability level (two results for each level mapping in the evidence-based
epistemic case, instead of the one result for each level mapping in the aleatory case).

6.2. METHOD 1429

num gen reliability levels

• Keywords Area

• method

• global reliability

• gen reliability levels

• num gen reliability levels

Specify which gen reliability levels correspond to which response

Specification

Alias: none
Argument(s): INTEGERLIST
Default: gen reliability levels evenly distributed among response functions

Description

See parent page

model pointer

• Keywords Area

• method

• global reliability

• model pointer

Identifier for model block to be used by a method

Topics

This keyword is related to the topics:

• block pointer

Specification

Alias: none
Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

1430 CHAPTER 6. KEYWORDS AREA

Description

The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses

6.2. METHOD 1431

response_functions = 3
no_gradients
no_hessians

6.2.69 fsu quasi mc
• Keywords Area

• method

• fsu quasi mc

Design of Computer Experiments - Quasi-Monte Carlo sampling

Topics
This keyword is related to the topics:

• package fsudace

• design and analysis of computer experiments

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

sequence type
(Group 1)

halton Generate samples
from a Halton
sequence

hammersley Use Hammersley
sequences

Optional latinize Adjust samples to
improve the
discrepancy of the
marginal
distributions

Optional quality metrics Calculate metrics
to assess the
quality of
quasi-Monte Carlo
samples

1432 CHAPTER 6. KEYWORDS AREA

Optional variance based -
decomp

Activates global
sensitivity analysis
based on
decomposition of
response variance
into contributions
from variables

Optional samples Number of
samples for
sampling-based
methods

Optional fixed sequence Reuse the same
sequence and
samples for
multiple sampling
sets

Optional sequence start Choose where to
start sampling the
sequence

Optional sequence leap Specify how often
the sequence is
sampled

Optional prime base The prime
numbers used to
generate the
sequence

Optional model pointer Identifier for
model block to be
used by a method

Description
Quasi-Monte Carlo methods produce low discrepancy sequences, especially if one is interested in the uniformity
of projections of the point sets onto lower dimensional faces of the hypercube (usually 1-D: how well do the
marginal distributions approximate a uniform?)

This method generates sets of uniform random variables on the interval [0,1]. If the user specifies lower and
upper bounds for a variable, the [0,1] samples are mapped to the [lower, upper] interval.

The user must first choose the sequence type:

• halton or

• hammersley

Then three keywords are used to define the sequence and how it is sampled:

• prime base

• sequence start

6.2. METHOD 1433

• sequence leap

Each of these has defaults, so specification is optional.

Theory
The quasi-Monte Carlo sequences of Halton and Hammersley are deterministic sequences determined by a set of
prime bases. Generally, we recommend that the user leave the default setting for the bases, which are the lowest
primes. Thus, if one wants to generate a sample set for 3 random variables, the default bases used are 2, 3, and 5 in
the Halton sequence. To give an example of how these sequences look, the Halton sequence in base 2 starts with
points 0.5, 0.25, 0.75, 0.125, 0.625, etc. The first few points in a Halton base 3 sequence are 0.33333, 0.66667,
0.11111, 0.44444, 0.77777, etc. Notice that the Halton sequence tends to alternate back and forth, generating a
point closer to zero then a point closer to one. An individual sequence is based on a radix inverse function defined
on a prime base. The prime base determines how quickly the [0,1] interval is filled in. Generally, the lowest
primes are recommended.

The Hammersley sequence is the same as the Halton sequence, except the values for the first random variable
are equal to 1/N, where N is the number of samples. Thus, if one wants to generate a sample set of 100 samples
for 3 random variables, the first random variable has values 1/100, 2/100, 3/100, etc. and the second and third
variables are generated according to a Halton sequence with bases 2 and 3, respectively.

For more information about these sequences, see[43], [44], and [1].

See Also
These keywords may also be of interest:

• dace

• fsu cvt

• psuade moat

halton

• Keywords Area

• method

• fsu quasi mc

• halton

Generate samples from a Halton sequence

Topics
This keyword is related to the topics:

• package fsudace

Specification
Alias: none

Argument(s): none

1434 CHAPTER 6. KEYWORDS AREA

Description
The quasi-Monte Carlo sequences of Halton are deterministic sequences determined by a set of prime bases.
These sequences generate random numbers with the goal of filling a unit hypercube uniformly.

Generally, we recommend that the user leave the default setting for the bases, which are the lowest primes.
Thus, if one wants to generate a sample set for 3 random variables, the default bases used are 2, 3, and 5 in the
Halton sequence. To give an example of how these sequences look, the Halton sequence in base 2 starts with
points 0.5, 0.25, 0.75, 0.125, 0.625, etc. The first few points in a Halton base 3 sequence are 0.33333, 0.66667,
0.11111, 0.44444, 0.77777, etc. Notice that the Halton sequence tends to alternate back and forth, generating a
point closer to zero then a point closer to one. An individual sequence is based on a radix inverse function defined
on a prime base. The prime base determines how quickly the [0,1] interval is filled in.

Theory
For more information about these sequences, see[43], [44], and [1].

hammersley

• Keywords Area

• method

• fsu quasi mc

• hammersley

Use Hammersley sequences

Topics
This keyword is related to the topics:

• package fsudace

• design and analysis of computer experiments

Specification
Alias: none

Argument(s): none

Description
The Hammersley sequence is the same as the Halton sequence, except the values for the first random variable are
equal to 1/N, where N is the number of samples. Thus, if one wants to generate a sample set of 100 samples for 3
random variables, the first random variable has values 1/100, 2/100, 3/100, etc. and the second and third variables
are generated according to a Halton sequence with bases 2 and 3, respectively.

See Also
These keywords may also be of interest:

• fsu quasi mc

6.2. METHOD 1435

latinize

• Keywords Area

• method

• fsu quasi mc

• latinize

Adjust samples to improve the discrepancy of the marginal distributions

Specification

Alias: none
Argument(s): none
Default: No latinization

Description

The latinize control takes the samples and ”latinizes” them, meaning that each original sample is moved so
that it falls into one strata or bin in each dimension as in Latin Hypercube sampling. The default setting is NOT
to latinize. However, one may be interested in doing this in situations where one wants better discrepancy of the
1-dimensional projections (the marginal distributions).

quality metrics

• Keywords Area

• method

• fsu quasi mc

• quality metrics

Calculate metrics to assess the quality of quasi-Monte Carlo samples

Topics

This keyword is related to the topics:

• package fsudace

Specification

Alias: none
Argument(s): none
Default: No quality metrics

1436 CHAPTER 6. KEYWORDS AREA

Description
quality metrics calculates four quality metrics relating to the volumetric spacing of the samples. The four
quality metrics measure different aspects relating to the uniformity of point samples in hypercubes. Desirable
properties of such point samples are:

• are the points equally spaced

• do the points cover the region

• and are they isotropically distributed

• with no directional bias in the spacing

The four quality metrics we report are:

• h: the point distribution norm, which is a measure of uniformity of the point distribution

• chi: a regularity measure, and provides a measure of local uniformity of a set of points

• tau: the second moment trace measure

• d: the second moment determinant measure

All of these values are scaled so that smaller is better (the smaller the metric, the better the uniformity of the point
distribution).

Examples
Complete explanation of these measures can be found in [38].

variance based decomp

• Keywords Area

• method

• fsu quasi mc

• variance based decomp

Activates global sensitivity analysis based on decomposition of response variance into contributions from
variables

Specification
Alias: none

Argument(s): none
Default: no variance-based decomposition

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

6.2. METHOD 1437

Optional drop tolerance Suppresses output
of sensitivity
indices with values
lower than this
tolerance

Description
Dakota can calculate sensitivity indices through variance based decomposition using the keyword variance-
based decomp. These indicate how important the uncertainty in each input variable is in contributing to the

output variance.
Default Behavior
Because of the computational cost, variance based decomp is turned off as a default.
If the user specified a number of samples, N, and a number of nondeterministic variables, M, variance-based

decomposition requires the evaluation of N∗(M+2) samples. Note that specifying this keyword will increase the
number of function evaluations above the number requested with the samples keyword since replicated
sets of sample values are evaluated.

Expected Outputs
When variance based decomp is specified, sensitivity indices for main effects and total effects will be

reported. Main effects (roughly) represent the percent contribution of each individual variable to the variance in
the model response. Total effects represent the percent contribution of each individual variable in combination
with all other variables to the variance in the model response

Usage Tips
To obtain sensitivity indices that are reasonably accurate, we recommend that N, the number of samples, be at

least one hundred and preferably several hundred or thousands.

Examples
method,

sampling
sample_type lhs
samples = 100
variance_based_decomp

Theory
In this context, we take sensitivity analysis to be global, not local as when calculating derivatives of output
variables with respect to input variables. Our definition is similar to that of[73] : ”The study of how uncertainty
in the output of a model can be apportioned to different sources of uncertainty in the model input.”

Variance based decomposition is a way of using sets of samples to understand how the variance of the output
behaves, with respect to each input variable. A larger value of the sensitivity index, Si, means that the uncertainty
in the input variable i has a larger effect on the variance of the output. More details on the calculations and
interpretation of the sensitivity indices can be found in[73] and[87].

drop tolerance

• Keywords Area

• method

• fsu quasi mc

1438 CHAPTER 6. KEYWORDS AREA

• variance based decomp

• drop tolerance

Suppresses output of sensitivity indices with values lower than this tolerance

Specification
Alias: none

Argument(s): REAL
Default: All VBD indices displayed

Description
The drop tolerance keyword allows the user to specify a value below which sensitivity indices generated by
variance based decomp are not displayed.

Default Behavior
By default, all sensitivity indices generated by variance based decomp are displayed.
Usage Tips
For polynomial chaos, which outputs main, interaction, and total effects by default, the univariate-

effects may be a more appropriate option. It allows suppression of the interaction effects since the output
volume of these results can be prohibitive for high dimensional problems. Similar to suppression of these inter-
actions is the covariance control, which can be selected to be diagonal covariance or full covariance, with the
former supporting suppression of the off-diagonal covariance terms (to save compute and memory resources and
reduce output volume).

Examples
method,

sampling
sample_type lhs
samples = 100
variance_based_decomp
drop_tolerance = 0.001

samples

• Keywords Area

• method

• fsu quasi mc

• samples

Number of samples for sampling-based methods

Specification
Alias: none

Argument(s): INTEGER
Default: 0 (or min req for surrogate build)

6.2. METHOD 1439

Description
The samples keyword is used to define the number of samples (i.e., randomly chosen sets of variable values) at
which to execute a model.

Default Behavior
By default, Dakota will use the minimum number of samples required by the chosen method.
Usage Tips
To obtain linear sensitivities or to construct a linear response surface, at least dim+1 samples should be used,

where ”dim” is the number of variables. For sensitivities to quadratic terms or quadratic response surfaces, at least
(dim+1)(dim+2)/2 samples are needed. For uncertainty quantification, we recommend at least 10∗dim samples.
For variance based decomp, we recommend hundreds to thousands of samples. Note that for variance-
based decomp, the number of simulations performed will be N∗(dim+2).

Examples
method

sampling
sample_type lhs
samples = 20

fixed sequence

• Keywords Area

• method

• fsu quasi mc

• fixed sequence

Reuse the same sequence and samples for multiple sampling sets

Specification
Alias: none

Argument(s): none
Default: sequence not fixed: sampling patterns are variable among multiple QMC runs

Description
The fixed sequence control is similar to fixed seed for other sampling methods. If fixed sequence
is specified, the user will get the same sequence (meaning the same set of samples) for subsequent calls of the
QMC sampling method (for example, this might be used in a surrogate based optimization method or a parameter
study where one wants to fix the uncertain variables).

sequence start

• Keywords Area

• method

• fsu quasi mc

• sequence start

Choose where to start sampling the sequence

1440 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): INTEGERLIST
Default: Vector of zeroes

Description
sequence start determines where in the sequence the samples will start.

The default sequence start is a vector with 0 for each variable, specifying that each sequence start with
the first term.

Examples
For example, for the Halton sequence in base 2, if the user specifies sequence start = 2, the sequence would not
include 0.5 and 0.25, but instead would start at 0.75.

sequence leap

• Keywords Area

• method

• fsu quasi mc

• sequence leap

Specify how often the sequence is sampled

Specification
Alias: none

Argument(s): INTEGERLIST
Default: Vector of ones

Description
sequence leap controls the ”leaping” of terms in the sequence. The default is 1 for each variable, meaning
that each term in the sequence be returned.

Examples
If the user specifies a sequence leap of 2 for a variable, the points returned would be every other term from the
QMC sequence.

Theory
The advantage to using a leap value greater than one is mainly for high-dimensional sets of random deviates.
In this case, setting a leap value to the next prime number larger than the largest prime base can help maintain
uniformity when generating sample sets for high dimensions. For more information about the efficacy of leaped
Halton sequences, see[71].

6.2. METHOD 1441

prime base

• Keywords Area

• method

• fsu quasi mc

• prime base

The prime numbers used to generate the sequence

Specification

Alias: none
Argument(s): INTEGERLIST
Default: Vector of the first s primes for s-dimensions in Halton, First (s-1) primes for Hammersley

Description

It is recommended that the user not specify this and use the default values.

• For the Halton sequence, the default bases are primes in increasing order, starting with 2, 3, 5, etc.

• For the Hammersley sequence, the user specifies (s-1) primes if one is generating an s-dimensional set of
random variables.

model pointer

• Keywords Area

• method

• fsu quasi mc

• model pointer

Identifier for model block to be used by a method

Topics

This keyword is related to the topics:

• block pointer

Specification

Alias: none
Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

1442 CHAPTER 6. KEYWORDS AREA

Description

The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses

6.2. METHOD 1443

response_functions = 3
no_gradients
no_hessians

6.2.70 vector parameter study
• Keywords Area

• method

• vector parameter study

Samples variables along a user-defined vector

Topics
This keyword is related to the topics:

• parameter studies

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 final point Final variable
values defining
vector in vector
parameter study

step vector Number of
sampling steps
along the vector in
a vector parameter
study

Required num steps Number of
sampling steps
along the vector in
a vector parameter
study

1444 CHAPTER 6. KEYWORDS AREA

Optional model pointer Identifier for
model block to be
used by a method

Description
Dakota’s vector parameter study computes response data sets at selected intervals along a vector in parameter
space. It is often used for single-coordinate parameter studies (to study the effect of a single variable on a response
set), but it can be used more generally for multiple coordinate vector studies (to investigate the response variations
along some n-dimensional vector such as an optimizer search direction).

Default Behavior
By default, the multidimensional parameter study operates over all types of variables.
Expected Outputs
A multidimensional parameter study produces a set of responses for each parameter set that is generated.
Usage Tips
Group 1 is used to define the vector along which the parameters are varied. Both cases also rely on the

variables specification of an initial value, through:

• the initial point keyword

• the initial state keyword

• relying on the default initial value, based on the rest of the variables specification

From the initial value, the vector can be defined using one of the two keyword choices.
Once the vector is defined, the samples are then fully specifed by num steps.

Examples
The following example is a good comparison to the examples on multidim parameter study and centered parameter-
study.

tested on Dakota 6.0 on 140501
environment

tabular_data
tabular_data_file = ’rosen_vector.dat’

method
vector_parameter_study

num_steps = 10
final_point = 2.0 2.0

model
single

variables
continuous_design = 2

initial_point = -2.0 -2.0
descriptors = ’x1’ "x2"

interface
analysis_driver = ’rosenbrock’

fork

responses
response_functions = 1
no_gradients
no_hessians

6.2. METHOD 1445

See Also
These keywords may also be of interest:

• centered parameter study

• multidim parameter study

• list parameter study

final point

• Keywords Area

• method

• vector parameter study

• final point

Final variable values defining vector in vector parameter study

Specification
Alias: none

Argument(s): REALLIST

Description
The final point keyword is used to define the final values for each variable on the vector to be used in the
vector parameter study. The vector’s direction and magnitude are determined by the initial value from the variables
specification, and the final point.

Default Behavior
The user is required to specify either final point or step vector. There is no default definition for the

vector.
Usage Tips
The actual points are determined based on this vector and the number of points chosen is given in num -

points.

Examples
method

vector_parameter_study
num_steps = 10
final_point = 2.0 2.0

step vector

• Keywords Area

• method

• vector parameter study

• step vector

Number of sampling steps along the vector in a vector parameter study

1446 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): REALLIST

Description
num steps defines the number of steps that are taken in the direction of the vector. The magnitude of each step
is determined in conjuction with the rest of the method specification.

Default Behavior
The user is required to specify num steps for a vector parameter study. There is no default value.
This study performs function evaluations at both ends, making the total number of evaluations equal to num-

steps+1.
Usage Tips
The study has stringent requirements on performing appropriate steps with any discrete range and discrete

set variables. A num steps specification must result in discrete range and set index steps that are integers: no
remainder is currently permitted in the integer step calculation and no rounding to integer steps will occur.

Examples
method

vector_parameter_study
num_steps = 10
final_point = 2.0 2.0

num steps

• Keywords Area

• method

• vector parameter study

• num steps

Number of sampling steps along the vector in a vector parameter study

Specification
Alias: none

Argument(s): INTEGER

Description
num steps defines the number of steps that are taken in the direction of the vector. The magnitude of each step
is determined in conjuction with the rest of the method specification.

Default Behavior
The user is required to specify num steps for a vector parameter study. There is no default value.
This study performs function evaluations at both ends, making the total number of evaluations equal to num-

steps+1.
Usage Tips
The study has stringent requirements on performing appropriate steps with any discrete range and discrete

set variables. A num steps specification must result in discrete range and set index steps that are integers: no
remainder is currently permitted in the integer step calculation and no rounding to integer steps will occur.

6.2. METHOD 1447

Examples
method

vector_parameter_study
num_steps = 10
final_point = 2.0 2.0

model pointer

• Keywords Area

• method

• vector parameter study

• model pointer

Identifier for model block to be used by a method

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

Description
The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2

1448 CHAPTER 6. KEYWORDS AREA

response_levels = 0.1 0.2 0.6
0.1 0.2 0.6

0.1 0.2 0.6
sample_type lhs
distribution cumulative

model
id_model = ’SURR’

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses
response_functions = 3
no_gradients
no_hessians

6.2.71 list parameter study
• Keywords Area

• method

• list parameter study

Samples variables as a specified values

Topics
This keyword is related to the topics:

• parameter studies

Specification
Alias: none

Argument(s): none

6.2. METHOD 1449

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 list of points List of variable
values to evaluate
in a list parameter
study

import points file File containing
variable values and
corresponding
responses

Optional model pointer Identifier for
model block to be
used by a method

Description
Dakota’s list parameter study allows for evaluations at user selected points of interest.

Default Behavior
By default, the list parameter study operates over all types of variables.
The number of real values in the list of points specification or file referenced by import points -

file must be a multiple of the total number of variables (including continuous and discrete types) contained in
the variables specification.

Expected Outputs
A list parameter study produces a set of responses for each parameter set that is specified.
Usage Tips

• This parameter study simply performs simulations for the first parameter set (the first n entries in the list),
followed by the next parameter set (the next n entries), and so on, until the list of points has been exhausted.

• Since the initial values from the variables specification will not be used, they need not be specified.

• For discrete set types, the actual values should be specified, not the set indices, although the values will be
validated for membership within the set value specifications.

Examples
This shows the method and variables block of a Dakota input file that runs a list parameter study.

method
list_parameter_study

list_of_points =
3.1e6 0.0029 0.31
3.2e6 0.0028 0.32
3.3e6 0.0027 0.34
3.3e6 0.0026 0.36

variables
continuous_design = 3

descriptors = ’E’ ’MASS’ ’DENSITY’

Note that because of the way Dakota treats whitespace, the above example is equivalent to:

1450 CHAPTER 6. KEYWORDS AREA

method
list_parameter_study

list_of_points =
3.1e6 0.0029 0.31 3.2e6 0.0028
0.32 3.3e6 0.0027
0.34 3.3e6 0.0026 0.36

variables
continuous_design = 3

descriptors = ’E’ ’MASS’ ’DENSITY’

Although the first example is much more readable.
And here’s a full input file:

tested on Dakota 6.0 on 140501
environment

tabular_data
tabular_data_file ’List_param_study.dat’

method
list_parameter_study

list_of_points = 0.1 0.1
0.2 0.1
0.3 0.0
0.3 1.0

model
single

variables
active design
continuous_design = 2

descriptors ’x1’ ’x2’
continuous_state = 1

descriptors = ’constant1’
initial_state = 100

interface
analysis_drivers ’text_book’

fork
asynchronous

evaluation_concurrency 2

responses
response_functions = 1
no_gradients
no_hessians

This example illustrates the list parameter study.

• The function evaluations are independent, so any level of evaluation concurrency can be used

• Default behavior for parameter studies is to iterate on all variables. However, because active design is
specified, this study will only iterate on the continuous design variables.

See Also
These keywords may also be of interest:

• centered parameter study

6.2. METHOD 1451

• multidim parameter study

• vector parameter study

list of points

• Keywords Area

• method

• list parameter study

• list of points

List of variable values to evaluate in a list parameter study

Specification
Alias: none

Argument(s): REALLIST

Description
The list of points keyword allows the user to specify, in a freeform format, a list of variable values at which
to compute a model response.

Default Behavior
The user is required to provide a list of points for a list parameter study either by specifying it with list -

of points or by providing a file from which such a list can be read via import points file. There is no
default list of points.

Usage Tips
The number of values in the list must be an integer multiple of the number of variables. Dakota will verify

that this condition is met.

Examples
method

list_parameter_study
list_of_points =

3.1e6 0.0029 0.31
3.2e6 0.0028 0.32
3.3e6 0.0027 0.34
3.3e6 0.0026 0.36

import points file

• Keywords Area

• method

• list parameter study

• import points file

File containing variable values and corresponding responses

1452 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): STRING
Default: no point import from a file

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional(Choose
One)

tabular format
(Group 1)

annotated Selects annotated
tabular file format

custom annotated Selects
custom-annotated
tabular file format

freeform Selects freeform
file format

Optional active only Import only active
variables from
tabular data file

Description
The import points file allows the user to specify a file that contains a list of variable values and the model
responses computed at those values. These can be used by a number of methods in place of model evaluations.
When used to construct surrogate models or emulators these are often called build points or training data.

Default Behavior
Be default, methods do not import points from a file.
Usage Tips
Dakota parses input files without regard to whitespace, but the import points file must be in one of three

formats:

• annotated (default)

• custom annotated

• freeform

Examples
method

list_parameter_study
import_points_file = ’dakota_pstudy.3.dat’

annotated

• Keywords Area

• method

• list parameter study

6.2. METHOD 1453

• import points file

• annotated

Selects annotated tabular file format

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Default: annotated

Description
An annotated tabular file is a whitespace-separated text file with one leading header row of comments/column la-
bels. Each subsequent row contains an evaluation ID and interface ID, followed by data for variables, or variables
followed by responses, depending on context.

Default Behavior
By default, Dakota imports and exports tabular files in annotated format. The annotated keyword can be

used to explicitly specify this.
Usage Tips

• To specify pre-Dakota 6.1 tabular format, which did not include interface id, specify custom annotated
header eval id

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export an annotated top-level tabular data file containing a header row, leading eval id and interface id columns,
and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
annotated

Resulting tabular file:

%eval_id interface x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 NO_ID 0.9 1.1 0.0002 0.26 0.76
2 NO_ID 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 NO_ID 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

1454 CHAPTER 6. KEYWORDS AREA

custom annotated

• Keywords Area

• method

• list parameter study

• import points file

• custom annotated

Selects custom-annotated tabular file format

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional header Enable header row
in
custom-annotated
tabular file

Optional eval id Enable evaluation
ID column in
custom-annotated
tabular file

Optional interface id Enable interface
ID column in
custom-annotated
tabular file

Description
A custom-annotated tabular file is a whitespace-separated text file typically containing row data for variables, or
variables followed by responses, though the format is used for other tabular exports/imports as well. Custom-
annotated allows user options for whether header row, eval id column, and interface id column appear
in the tabular file, thus bridging freeform and (fully) annotated.

Default Behavior
The annotated format is the default for tabular export/import. To control which header row and columns

are in the input/output, specify custom annotated, followed by options, in the relevant export/import context.
Usage Tips

6.2. METHOD 1455

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export a custom-annotated tabular file in Dakota 6.0 format, which contained only header and eval id (no interface-
id), and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
custom_annotated header eval_id

Resulting tabular file:

%eval_id x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 0.9 1.1 0.0002 0.26 0.76
2 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

header

• Keywords Area

• method

• list parameter study

• import points file

• custom annotated

• header

Enable header row in custom-annotated tabular file

Specification

Alias: none
Argument(s): none

Description

See description of parent custom annotated

1456 CHAPTER 6. KEYWORDS AREA

eval id

• Keywords Area

• method

• list parameter study

• import points file

• custom annotated

• eval id

Enable evaluation ID column in custom-annotated tabular file

Specification

Alias: none
Argument(s): none

Description

See description of parent custom annotated

interface id

• Keywords Area

• method

• list parameter study

• import points file

• custom annotated

• interface id

Enable interface ID column in custom-annotated tabular file

Specification

Alias: none
Argument(s): none

Description

See description of parent custom annotated

6.2. METHOD 1457

freeform

• Keywords Area

• method

• list parameter study

• import points file

• freeform

Selects freeform file format

Topics

This keyword is related to the topics:

• file formats

Specification

Alias: none
Argument(s): none

Description

A freeform tabular file is whitespace-separated text file with no leading header row and no leading columns. Most
commonly, each row contains data for variables, or variables followed by responses, though the format is used for
other tabular exports/imports as well.

Default Behavior
The annotated format is the default for tabular export/import. To change this behavior, specify freeform

in the relevant export/import context.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• In freeform, the num rows x num cols total data entries may be separated with any whitespace including
spaces, tabs, and newlines. In this format, vectors may therefore appear as a single row or single column
(or mixture; entries will populate the vector in order).

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

1458 CHAPTER 6. KEYWORDS AREA

Examples
Export a freeform tabular file containing only data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
freeform

Resulting tabular file:

0.9 1.1 0.0002 0.26 0.76
0.90009 1.1 0.0001996404857 0.2601620081 0.759955
0.89991 1.1 0.0002003604863 0.2598380081 0.760045

...

active only

• Keywords Area

• method

• list parameter study

• import points file

• active only

Import only active variables from tabular data file

Topics

This keyword is related to the topics:

• file formats

Specification

Alias: none
Argument(s): none

Description

By default, files for tabular data imports are expected to contain columns for all variables, active and inactive. The
keyword active only indicates that the file to import contains only the active variables.

This option should only be used in contexts where the inactive variables have no influence, for example,
building a surrogate over active variables, with the state variables held at nominal. It should not be used in more
complex nested contexts, where the values of inactive variables are relevant to the function evaluations used to
build the surrogate.

6.2. METHOD 1459

model pointer

• Keywords Area

• method

• list parameter study

• model pointer

Identifier for model block to be used by a method

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

Description
The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

1460 CHAPTER 6. KEYWORDS AREA

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses
response_functions = 3
no_gradients
no_hessians

6.2.72 centered parameter study
• Keywords Area

• method

• centered parameter study

Samples variables along points moving out from a center point

Topics
This keyword is related to the topics:

• parameter studies

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

6.2. METHOD 1461

Required step vector Size of steps to be
taken in each
dimension of a
centered parameter
study

Required steps per variable Number of steps to
take in each
dimension of a
centered parameter
study

Optional model pointer Identifier for
model block to be
used by a method

Description
Dakota’s centered parameter study computes response data sets along multiple coordinate-based vectors, one
per parameter, centered about the initial values from the variables specification. This is useful for investigation
of function contours with respect to each parameter individually in the vicinity of a specific point (e.g., post-
optimality analysis for verification of a minimum), thereby avoiding the cost associated with a multidimensional
grid.

Default Behavior
By default, the centered parameter study operates over all types of variables.
The centered parameter study takes steps along each orthogonal dimension. Each dimension is

treated independently. The number of steps are taken in each direction, so that the total number of points in
the parameter study is 1 + 2

∑
n.

Expected Outputs
A centered parameter study produces a set of responses for each parameter set that is generated.

Examples
The following example is a good comparison to the examples on multidim parameter study and vector parameter-
study.

tested on Dakota 6.0 on 140501
environment

tabular_data
tabular_data_file = ’rosen_centered.dat’

method
centered_parameter_study

steps_per_variable = 5 4
step_vector = 0.4 0.5

model
single

variables
continuous_design = 2

initial_point = 0 0
descriptors = ’x1’ "x2"

1462 CHAPTER 6. KEYWORDS AREA

interface
analysis_driver = ’rosenbrock’

fork

responses
response_functions = 1
no_gradients
no_hessians

See Also

These keywords may also be of interest:

• multidim parameter study

• list parameter study

• vector parameter study

step vector

• Keywords Area

• method

• centered parameter study

• step vector

Size of steps to be taken in each dimension of a centered parameter study

Specification

Alias: none
Argument(s): REALLIST

Description

The step vector keyword defines the individual step size in each dimension, treated separately.
Default Behavior
The user is required to define the number of step sizes for a centered parameter study. There are no default

values.
Steps are taken in the plus and minus directions, and are defined in either actual values (continuous and

discrete range) or index offsets (discrete set).

Examples
method

centered_parameter_study
steps_per_variable = 5 4
step_vector = 0.4 0.5

6.2. METHOD 1463

steps per variable

• Keywords Area

• method

• centered parameter study

• steps per variable

Number of steps to take in each dimension of a centered parameter study

Specification

Alias: deltas per variable
Argument(s): INTEGERLIST

Description

The steps per variable keyword allows the user to define the number of steps in each dimesion of a cen-
tered parameter study. Because they are taken independently, the number of steps can be specified for each.

Default Behavior
The user is required to define the number of steps per variable for a centered parameter study. There are no

default values.
Steps are taken in the plus and minus directions, and are defined in either actual values (continuous and

discrete range) or index offsets (discrete set).

Examples
method

centered_parameter_study
steps_per_variable = 5 4
step_vector = 0.4 0.5

model pointer

• Keywords Area

• method

• centered parameter study

• model pointer

Identifier for model block to be used by a method

Topics

This keyword is related to the topics:

• block pointer

1464 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

Description
The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

6.2. METHOD 1465

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses
response_functions = 3
no_gradients
no_hessians

6.2.73 multidim parameter study
• Keywords Area

• method

• multidim parameter study

Samples variables on full factorial grid of study points

Topics
This keyword is related to the topics:

• parameter studies

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required partitions Samples variables
on full factorial
grid of study points

Optional model pointer Identifier for
model block to be
used by a method

Description
Dakota’s multidimensional parameter study computes response data sets for an n-dimensional grid of points. Each
continuous and discrete range variable is partitioned into equally spaced intervals between its upper and lower
bounds, each discrete set variable is partitioned into equally spaced index intervals. The partition boundaries in
n-dimensional space define a grid of points, and every point is evaluated.

Default Behavior
By default, the multidimensional parameter study operates over all types of variables.
Expected Outputs
A multidimensional parameter study produces a set of responses for each parameter set that is generated.
Usage Tips
Since the initial values from the variables specification will not be used, they need not be specified.

1466 CHAPTER 6. KEYWORDS AREA

Examples
This example is taken from the Users Manual and is a good comparison to the examples on centered parameter -
study and vector parameter study.

tested on Dakota 6.0 on 140501
environment

tabular_data
tabular_data_file = ’rosen_multidim.dat’

method
multidim_parameter_study

partitions = 10 8

model
single

variables
continuous_design = 2

lower_bounds -2.0 -2.0
upper_bounds 2.0 2.0
descriptors ’x1’ "x2"

interface
analysis_driver = ’rosenbrock’

fork

responses
response_functions = 1
no_gradients
no_hessians

This example illustrates the full factorial combinations of parameter values created by the multidim parameter-
study. With 10 and 8 partitions, there are actually 11 and 9 values for each variable. This means that 11× 9 = 99

function evaluations will be required.

See Also

These keywords may also be of interest:

• centered parameter study

• list parameter study

• vector parameter study

partitions

• Keywords Area

• method

• multidim parameter study

• partitions

Samples variables on full factorial grid of study points

6.2. METHOD 1467

Topics

This keyword is related to the topics:

• parameter studies

Specification

Alias: none
Argument(s): INTEGERLIST

Description

Dakota’s multidimensional parameter study computes response data sets for an n-dimensional grid of points. Each
continuous and discrete range variable is partitioned into equally spaced intervals between its upper and lower
bounds, each discrete set variable is partitioned into equally spaced index intervals. The partition boundaries in
n-dimensional space define a grid of points, and every point is evaluated.

Default Behavior
By default, the multidimensional parameter study operates over all types of variables.
Expected Outputs
A multidimensional parameter study produces a set of responses for each parameter set that is generated.
Usage Tips
Since the initial values from the variables specification will not be used, they need not be specified.

Examples
This example is taken from the Users Manual and is a good comparison to the examples on centered parameter -
study and vector parameter study.

tested on Dakota 6.0 on 140501
environment

tabular_data
tabular_data_file = ’rosen_multidim.dat’

method
multidim_parameter_study

partitions = 10 8

model
single

variables
continuous_design = 2

lower_bounds -2.0 -2.0
upper_bounds 2.0 2.0
descriptors ’x1’ "x2"

interface
analysis_driver = ’rosenbrock’

fork

responses
response_functions = 1
no_gradients
no_hessians

1468 CHAPTER 6. KEYWORDS AREA

This example illustrates the full factorial combinations of parameter values created by the multidim parameter-
study. With 10 and 8 partitions, there are actually 11 and 9 values for each variable. This means that 11× 9 = 99

function evaluations will be required.

See Also

These keywords may also be of interest:

• centered parameter study

• list parameter study

• vector parameter study

model pointer

• Keywords Area

• method

• multidim parameter study

• model pointer

Identifier for model block to be used by a method

Topics

This keyword is related to the topics:

• block pointer

Specification

Alias: none
Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

Description

The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

6.2. METHOD 1469

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses
response_functions = 3
no_gradients
no_hessians

6.2.74 richardson extrap

• Keywords Area

• method

• richardson extrap

Estimate order of convergence of a response as model fidelity increases

1470 CHAPTER 6. KEYWORDS AREA

Specification

Alias: none
Argument(s): none

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1
estimate order Compute the best

estimate of the
convergence order
from three points

converge order Refine until the
estimated
covergence order
converges

converge qoi Refine until the
response converges

Optional refinement rate Rate at which the
state variables are
refined

Optional model pointer Identifier for
model block to be
used by a method

Description

Solution verification procedures estimate the order of convergence of the simulation response data during the
course of a refinement study. This branch of methods is new and currently only contains one algorithm: Richard-
son extrapolation.

Refinement of the model
The model fidelity must be parameterized by one or more continuous state variable(s).
The refinement path is determined from the initial state of the continuous state variables spec-

ification in combination with the refinement rate, where each of the state variables is treated as an inde-
pendent refinement factor and each of the initial state values is repeatedly divided by the refinement rate value to
define new discretization states.

Results
Three algorithm options are currently provided:

1. estimate order

2. converge order

3. converge qoi

Stopping Criteria
The method employs the max iterations and convergence tolerance method independent con-

trols as stopping criteria.

6.2. METHOD 1471

Theory
In each of these cases, convergence order for a response quantity of interest (QoI) is estimated from

p = ln

(
QoI3 −QoI2
QoI2 −QoI1

)
/ln(r)

where r is the uniform refinement rate specified by refinement rate.

estimate order

• Keywords Area

• method

• richardson extrap

• estimate order

Compute the best estimate of the convergence order from three points

Specification
Alias: none

Argument(s): none

Description
The estimate order option is the simplest option. For each of the refinement factors, it evaluates three points
along the refinement path and uses these results to perform an estimate of the convergence order for each response
function.

converge order

• Keywords Area

• method

• richardson extrap

• converge order

Refine until the estimated covergence order converges

Specification
Alias: none

Argument(s): none

Description
The converge order option is initialized using the estimate order aproach, and additional refinements
are performed along the refinement path until the convergence order estimates converge (two-norm of the change
in response orders is less than the convergence tolerance).

1472 CHAPTER 6. KEYWORDS AREA

converge qoi

• Keywords Area

• method

• richardson extrap

• converge qoi

Refine until the response converges

Specification
Alias: none

Argument(s): none

Description
The converge qoi option is similar to the converge order option, except that the convergence criterion
is that the two-norm of the response discretization errors (computed from extrapolation) must be less than the
convergence tolerance.

refinement rate

• Keywords Area

• method

• richardson extrap

• refinement rate

Rate at which the state variables are refined

Specification
Alias: none

Argument(s): REAL
Default: 2.

Description
Described on parent page

model pointer

• Keywords Area

• method

• richardson extrap

• model pointer

Identifier for model block to be used by a method

6.2. METHOD 1473

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

Description
The model pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior
If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model

block in the Dakota input file that has a corresponding id model with the same name.
Usage Tips
When doing advanced analyses that involve using multiple methods and multiple models, defining a model-

pointer for each method is imperative.
See block pointer for details about pointers.

Examples
environment

tabular_graphics_data
method_pointer = ’UQ’

method
id_method = ’UQ’
model_pointer = ’SURR’
sampling,

samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.2 0.6

0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’DACE’

model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single

1474 CHAPTER 6. KEYWORDS AREA

interface_pointer = ’I1’

variables
uniform_uncertain = 2

lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors = ’x1’ ’x2’

interface
id_interface = ’I1’
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses
response_functions = 3
no_gradients
no_hessians

6.3 model
• Keywords Area

• model

Specifies how variables are mapped into a set of responses

Topics
This keyword is related to the topics:

• block

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional id model Give the model
block an
identifying name,
in case of multiple
model blocks

Optional variables pointer Specify which
variables block
will be included
with this model
block

6.3. MODEL 1475

Optional responses pointer Specify which
reponses block will
be used by this
model block

Optional hierarchical -
tagging

Enables
hierarchical
evaluation tagging

Required(Choose
One)

Group 1
single A model with one

of each block:
variable, interface,
and response

surrogate An empirical
model that is
created from data
or the results of a
submodel

nested A model whose
responses are
computed through
the use of a
sub-iterator

Description
A model is comprised of a mapping from variables, through an interface, to responses.

Model Group 1 The type of model can be:

1. single

2. nested

3. surrogate

The input file must specify one of these types. If the type is not specified, Dakota will assume a single model.
Block Pointers and ID
Each of these model types supports variables pointer and responses pointer strings for identi-

fying the variables and responses specifications used in constructing the model by cross-referencing with id -
variables and id responses strings from particular variables and responses keyword specifications.

These pointers are valid for each model type since each model contains a set of variables that is mapped into
a set of responses – only the specifics of the mapping differ.

Additional pointers are used for each model type for constructing the components of the variable to response
mapping. As an environment specification identifies a top-level method and a method specification identifies a
model, a model specification identifies variables, responses, and (for some types) interface specifications. This
top-down flow specifies all of the object interrelationships.

Examples
The next example displays a surrogate model specification which selects a quadratic polynomial from among the
global approximation methods. It uses a pointer to a design of experiments method for generating the data needed
for building the global approximation, reuses any old data available for the current approximation region, and
employs the first-order multiplicative approach to correcting the approximation each time correction is requested.

1476 CHAPTER 6. KEYWORDS AREA

model,
id_model = ’M1’
variables_pointer = ’V1’
responses_pointer = ’R1’
surrogate

global
polynomial quadratic
dace_method_pointer = ’DACE’
reuse_samples region
correction multiplicative first_order

This example demonstrates the use of identifiers and pointers. It provides the optional model independent spec-
ifications for model identifier, variables pointer, and responses pointer as well as model dependent specifications
for global surrogates (see global).

Finally, an advanced nested model example would be

model
id_model = ’M1’
variables_pointer = ’V1’
responses_pointer = ’R1’
nested
optional_interface_pointer = ’OI1’
optional_interface_responses_pointer = ’OIR1’
sub_method_pointer = ’SM1’
primary_variable_mapping = ’’ ’’ ’X’ ’Y’
secondary_variable_mapping = ’’ ’’ ’mean’ ’mean’
primary_response_mapping = 1. 0. 0. 0. 0. 0. 0. 0. 0.
secondary_response_mapping = 0. 0. 0. 1. 3. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 1. 3. 0.

This example also supplies model independent controls for model identifier, variables pointer, and responses
pointer and supplies model dependent controls for specifying details of the nested mapping.

6.3.1 id model

• Keywords Area

• model

• id model

Give the model block an identifying name, in case of multiple model blocks

Topics

This keyword is related to the topics:

• block identifier

Specification

Alias: none
Argument(s): STRING
Default: method use of last model parsed

6.3. MODEL 1477

Description

The model identifier string is supplied with id model and is used to provide a unique identifier string for use
within method specifications (refer to any of the keywords: model pointer in under one of the methods in the
method block, for example: model pointer)

This is used to determine which model the method will run.

See Also

These keywords may also be of interest:

• model pointer

6.3.2 variables pointer

• Keywords Area

• model

• variables pointer

Specify which variables block will be included with this model block

Topics

This keyword is related to the topics:

• block pointer

Specification

Alias: none
Argument(s): STRING
Default: model use of last variables parsed

Description

The variables pointer is used to specify which variables block will be used by the model, by cross-
referencing with id variables keyword in the variables block.

See block pointer for details about pointers.

6.3.3 responses pointer

• Keywords Area

• model

• responses pointer

Specify which reponses block will be used by this model block

1478 CHAPTER 6. KEYWORDS AREA

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING
Default: model use of last responses parsed

Description
The responses pointer is used to specify which responses block will be used by the model, by cross-
referencing with id responses keyword in the responses block.

See block pointer for details about pointers.

6.3.4 hierarchical tagging
• Keywords Area

• model

• hierarchical tagging

Enables hierarchical evaluation tagging

Specification
Alias: none

Argument(s): none
Default: no hierarchical tagging

Description
The hierarchical tagging option is useful for studies involving multiple models with a nested or hierarchical re-
lationship. For example a nested model has a sub-method, which itself likely operates on a sub-model, or a
hierarchical approximation involves coordination of low and high fidelity models. Specifying hierarchical-
tagging will yield function evaluation identifiers (”tags”) composed of the evaluation IDs of the models in-

volved, e.g., outermodel.innermodel.interfaceid = 4.9.2. This communicates the outer contexts to the analysis
driver when performing a function evaluation.

Examples
test/dakota uq timeseries ivp optinterf.in test/dakota uq timeseries sop optinterf.in

See Also
These keywords may also be of interest:

• file tag model-nested

6.3. MODEL 1479

6.3.5 single

• Keywords Area

• model

• single

A model with one of each block: variable, interface, and response

Specification

Alias: none
Argument(s): none
Default: N/A (single if no model specification)

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional interface pointer Interface block
pointer for the
single model type

Description

The single model is the simplest model type. It uses a single interface instance to map variables into responses.
There is no recursion in this case.

The optional interface pointer specification identifies the interface block by cross-referencing with the id -
interface string input from a particular interface keyword specification. This is only necessary when the input
file has multiple interface blocks, and you wish to explicitly point to the desired block. The same logic follows
for responses and variables blocks and pointers.

Examples
The example shows a minimal specification for a single model, which is the default model when no models are
specified by the user.

model
single

This example does not provide any pointer strings and therefore relies on the default behavior of constructing the
model with the last variables, interface, and responses specifications parsed.

See Also

These keywords may also be of interest:

• surrogate

• nested

1480 CHAPTER 6. KEYWORDS AREA

interface pointer

• Keywords Area

• model

• single

• interface pointer

Interface block pointer for the single model type

Topics

This keyword is related to the topics:

• block pointer

Specification

Alias: none
Argument(s): STRING
Default: model use of last interface parsed

Description

In the singlemodel case, a single interface is used to map the variables into responses. The optional interface-
pointer specification identifies this interface by cross-referencing with the id interface string input from

a particular interface keyword specification.
See block pointer for details about pointers.

6.3.6 surrogate

• Keywords Area

• model

• surrogate

An empirical model that is created from data or the results of a submodel

Specification

Alias: none
Argument(s): none

6.3. MODEL 1481

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional id surrogates Identifies the
subset of the
response functions
by number that are
to be approximated
(the default is all
functions).

Required(Choose
One)

Group 1

global Select a surrogate
model with global
support

multipoint Construct a
surrogate from
multiple existing
training points

local Build a locally
accurate surrogate
from data at a
single point

hierarchical Hierarchical
approximations
use corrected
results from a low
fidelity model as
an approximation
to the results of a
high fidelity
”truth” model.

Description
Surrogate models are inexpensive approximate models that are intended to capture the salient features of an
expensive high-fidelity model. They can be used to explore the variations in response quantities over regions
of the parameter space, or they can serve as inexpensive stand-ins for optimization or uncertainty quantification
studies (see, for example, the surrogate-based optimization methods, surrogate based global and surrogate based-
local).

Surrogate models supported in Dakota are categorized as Data Fitting or Hierarchical, as shown below. Each
of these surrogate types provides an approximate representation of a ”truth” model which is used to perform the
parameter to response mappings. This approximation is built and updated using results from the truth model,
called the ”training data”.

• Data fits:

Data fitting methods involve construction of an approximation or surrogate model using data (response
values, gradients, and Hessians) generated from the original truth model. Data fit methods can be further
categorized as local, multipoint, and global approximation techniques, based on the number of points used
in generating the data fit.

1. Local: built from response data from a single point in parameter space

– Taylor series expansion: taylor series

1482 CHAPTER 6. KEYWORDS AREA

Training data consists of a single point, plus gradient and Hessian information.

2. Multipoint: built from two or more points in parameter space, often involving the current and previous
iterates of a minimization algorithm.

– TANA-3: tana
Training Data comes from a few previously evaluated points

3. Global full space response surface methods:

– Polynomial regression: polynomial
– Gaussian process (Kriging): gaussian process
– Artifical neutral network: neural network
– MARS: mars
– Radial Basis Functions: radial basis
– Orthogonal polynomials (only supported in PCE/SC for now): polynomial chaos and stoch -

collocation

Training data is generated using either a design of experiments method applied to the truth model (
specified by dace method pointer), or from saved data (specified by reuse points) in a restart database,
or an import file.

• Multifidelity/hierarchical:

Multifidelity modeling involves the use of a low-fidelity physics-based model as a surrogate for the orig-
inal high-fidelity model. The low-fidelity model typically involves a coarser mesh, looser convergence
tolerances, reduced element order, or omitted physics.

See hierarchical.

The global and hierarchal surrogates have a correction feature in order to improve the local accuracy of the
surrogate models. The correction factors force the surrogate models to match the true function values and possibly
true function derivatives at the center point of each trust region. Details can be found on global correction or
hierarchical correction.

Theory
Surrogate models are used extensively in the surrogate-based optimization and least squares methods, in which
the goals are to reduce expense by minimizing the number of truth function evaluations and to smooth out noisy
data with a global data fit. However, the use of surrogate models is not restricted to optimization techniques;
uncertainty quantification and optimization under uncertainty methods are other primary users.

Data Fit Surrogate Models
A surrogate of the {data fit} type is a non-physics-based approximation typically involving interpolation or

regression of a set of data generated from the original model. Data fit surrogates can be further characterized by
the number of data points used in the fit, where a local approximation (e.g., first or second-order Taylor series)
uses data from a single point, a multipoint approximation (e.g., two-point exponential approximations (TPEA) or
two-point adaptive nonlinearity approximations (TANA)) uses a small number of data points often drawn from
the previous iterates of a particular algorithm, and a global approximation (e.g., polynomial response surfaces,
kriging/gaussian process, neural networks, radial basis functions, splines) uses a set of data points distributed over
the domain of interest, often generated using a design of computer experiments.

Dakota contains several types of surface fitting methods that can be used with optimization and uncertainty
quantification methods and strategies such as surrogate-based optimization and optimization under uncertainty.
These are: polynomial models (linear, quadratic, and cubic), first-order Taylor series expansion, kriging spatial in-
terpolation, artificial neural networks, multivariate adaptive regression splines, radial basis functions, and moving

6.3. MODEL 1483

least squares. With the exception of Taylor series methods, all of the above methods listed in the previous sen-
tence are accessed in Dakota through the Surfpack library. All of these surface fitting methods can be applied to
problems having an arbitrary number of design parameters. However, surface fitting methods usually are practical
only for problems where there are a small number of parameters (e.g., a maximum of somewhere in the range of
30-50 design parameters). The mathematical models created by surface fitting methods have a variety of names in
the engineering community. These include surrogate models, meta-models, approximation models, and response
surfaces. For this manual, the terms surface fit model and surrogate model are used.

The data fitting methods in Dakota include software developed by Sandia researchers and by various re-
searchers in the academic community.

Multifidelity Surrogate Models
A second type of surrogate is the {model hierarchy} type (also called multifidelity, variable fidelity, variable

complexity, etc.). In this case, a model that is still physics-based but is of lower fidelity (e.g., coarser discretization,
reduced element order, looser convergence tolerances, omitted physics) is used as the surrogate in place of the
high-fidelity model. For example, an inviscid, incompressible Euler CFD model on a coarse discretization could
be used as a low-fidelity surrogate for a high-fidelity Navier-Stokes model on a fine discretization.

Surrogate Model Selection
This section offers some guidance on choosing from among the available surrogate model types.

• For Surrogate Based Local Optimization, using the surrogate based local method with a trust region:

using the keywords:

1. surrogate local taylor series or

2. surrogate multipoint tana

will probably work best.

If for some reason you wish or need to use a global surrogate (not recommended) then the best of these
options is likely to be either:

1. surrogate global gaussian process surfpack or

2. surrogate global moving least squares.

• For Efficient Global Optimization (EGO), the efficient global method:

the default surrogate is: gaussian process surfpack which is likely to find a more optimal value and/or
require fewer true function evaluations than the alternative, gaussian process dakota. However, the surf-
pack will likely take more time to build than the dakota version. Note that currently the use derivatives
keyword is not recommended for use with EGO based methods.

• For EGO based global interval estimation, the global interval est ego method:

the default gaussian process surfpack will likely work better than the alternative gaussian process dakota.

• For Efficient Global Reliability Analysis (EGRA), the global reliability method:

the surfpack and dakota versions of the gaussian process tend to give similar answers with the dakota
version tending to use fewer true function evaluations. Since this is based on EGO, it is likely that the
default surfpack is more accurate, although this has not been rigorously demonstrated.

• For EGO based Dempster-Shafer Theory of Evidence, i.e. the global evidence ego method, the default
gaussian process surfpack often use significantly fewer true function evaluations than the alternative gaussian-
process dakota.

• When using a global surrogate to extrapolate, any of the surrogates:

1484 CHAPTER 6. KEYWORDS AREA

– gaussian process surfpack

– polynomial quadratic

– polynomial cubic

are recommended.

• When there is over roughly two or three thousand data points and you wish to interpolate (or approxi-
mately interpolate) then a Taylor series, Radial Basis Function Network, or Moving Least Squares fit is
recommended. The only reason that the gaussian process surfpack is not recommended is that it can take
a considerable amount of time to construct when the number of data points is very large. Use of the third
party MARS package included in Dakota is generally discouraged.

• In other situations that call for a global surrogate, the gaussian process surfpack is generally recommended.
The use derivatives keyword will only be useful if accurate and inexpensive derivatives are available.
Finite difference derivatives are disqualified on both counts. However, derivatives generated by analytical,
automatic differentiation, or continuous adjoint techniques can be appropriate. Currently, first order deriva-
tives, i.e. gradients, are the highest order derivatives that can be used to construct the gaussian process
surfpack model; Hessians will not be used even if they are available.

See Also
These keywords may also be of interest:

• single

• nested

id surrogates

• Keywords Area

• model

• surrogate

• id surrogates

Identifies the subset of the response functions by number that are to be approximated (the default is all func-
tions).

Specification
Alias: none

Argument(s): INTEGERLIST
Default: All response functions are approximated

Description
In the surrogate model case, the specification first allows a mixture of surrogate and actual response mappings
through the use of the optional id surrogates specification. This identifies the subset of the response func-
tions by number that are to be approximated (the default is all functions). The valid response function identifiers
range from 1 through the total number of response functions (see response functions).

6.3. MODEL 1485

global

• Keywords Area

• model

• surrogate

• global

Select a surrogate model with global support

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1

gaussian process Gaussian Process
surrogate model

mars Multivariate
Adaptive
Regression Spline
(MARS)

moving least -
squares

Moving Least
Squares surrogate
models

neural network Artificial neural
network model

radial basis Radial basis
function (RBF)
model

polynomial Polynomial
surrogate model

Optional piecewise -
decomposition

Piecewise Domain
Decomposition for
Global Surrogates

1486 CHAPTER 6. KEYWORDS AREA

Optional(Choose
One)

Group 2
total points Specified number

of training points

minimum points Construct
surrogate with
minimum number
of points

recommended -
points

Construct
surrogate with
recommended
number of points

Optional(Choose
One)

Group 3 dace method -
pointer

Specify a method
to gather training
data

actual model -
pointer

A surrogate model
pointer that guides
a method to
whether it should
use a surrogate
model or compute
truth function
evaluations

Optional reuse points Surrogate model
training data reuse
control

Optional import points file File containing
variable values and
corresponding
responses

Optional export points file Output file for
evaluations of a
surrogate model

Optional use derivatives Use derivative data
to construct
surrogate models

6.3. MODEL 1487

Optional correction Correction
approaches for
surrogate models

Optional metrics Compute surrogate
quality metrics

Optional challenge points -
file

Datafile of points
to assess surrogate
quality

Description
The global surrogate model requires specification of one of the following approximation types:

1. Polynomial

2. Gaussian process (Kriging interpolation)

3. Layered perceptron artificial neural network approximation

4. MARS

5. Moving least squares

6. Radial basis function

7. Voronoi Piecewise Surrogate (VPS)

All these approximations are implemented in SurfPack[36], except for VPS. In addition, a second version of
Gaussian process is implemented directly in Dakota.

Training Data
Training data can be taken from prior runs, stored in a datafile, or by running a Design of Experiments method.

The keywords listed below are used to determine how to collect training data:

• dace method pointer

• reuse points

• import points file

• use derivatives The source of training data is determined by the contents of a provided import -
points file, whether reuse points and use derivatives are specified, and the contents of the
method block specified by dace method pointer. use derivatives is a special case, the other
keywords are discussed below.

The number of training data points used in building a global approximation is determined by specifying one of
three point counts:

1. minimum points: minimum required or minimum ”reasonable” amount of training data. Defaults
to d+1 for d input dimensions for most models, e.g., polynomials override to the number of coefficients
required to estimate the requested order.

2. recommended points: recommended number of training data, (this is the default option, if none of
the keywords is specified). Defaults to 5∗d, except for polynomials where it’s equal to the minimum.

1488 CHAPTER 6. KEYWORDS AREA

3. total points: specify the number of training data points. However, if the total points value is
less than the default minimum points value, the minimum points value is used.

The sources of training data depend on the number of training points, Ntp, the number of points in the import
file, Nif , and the value of reuse points.

• If there is no import file, all training data come from the DACE method

• If there is an import file, all Nif points from the file are used, and the remaining Ntp − Nif points come
from the DACE method

• If there is an import file and reuse points is:

– none - all Ntp points from DACE method

– region - only the points within a trust region are taken from the import file, and all remaining points
are from the DACE method.

– all - (Default) all Nif points from the file are used, and the remaining Ntp −Nif points come from
the DACE method

Surrogate Correction
A correction model can be added to the constructed surrogate in order to better match the training data.

The specified correction method will be applied to the surrogate, and then the corrected surrogate model is used
by the method.

Finally, the quality of the surrogate can be tested using the metrics and challenge points file
keywords.

Theory

Global methods, also referred to as response surface methods, involve many points spread over the parameter
ranges of interest. These surface fitting methods work in conjunction with the sampling methods and design of
experiments methods.

Procedures for Surface Fitting
The surface fitting process consists of three steps:

1. selection of a set of design points

2. evaluation of the true response quantities (e.g., from a user-supplied simulation code) at these design points,

3. using the response data to solve for the unknown coefficients (e.g., polynomial coefficients, neural network
weights, kriging correlation factors) in the surface fit model.

In cases where there is more than one response quantity (e.g., an objective function plus one or more constraints),
then a separate surface is built for each response quantity. Currently, the surface fit models are built using only 0
th-order information (function values only), although extensions to using higher-order information (gradients and
Hessians) are possible.

Each surface fitting method employs a different numerical method for computing its internal coefficients.
For example, the polynomial surface uses a least-squares approach that employs a singular value decomposition
to compute the polynomial coefficients, whereas the kriging surface uses Maximum Likelihood Estimation to
compute its correlation coefficients. More information on the numerical methods used in the surface fitting codes
is provided in the Dakota Developers Manual.

6.3. MODEL 1489

See Also
These keywords may also be of interest:

• local

• hierarchical

• multipoint

gaussian process
• Keywords Area

• model

• surrogate

• global

• gaussian process

Gaussian Process surrogate model

Specification
Alias: kriging

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 dakota Select the built in
Gaussian Process
surrogate

surfpack Use the Surfpack
version of
Gaussian Process
surrogates

Description
Use the Gaussian process (GP) surrogate from Surfpack, which is specified using the surfpack keyword.

An alternate version of GP surrogates was available in prior versions of Dakota. For now, both versions are
supported but the dakota version is deprecated and intended to be removed in a future release.

dakota
• Keywords Area

• model

• surrogate

• global

• gaussian process

• dakota

Select the built in Gaussian Process surrogate

1490 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional point selection Enable greedy
selection of
well-spaced build
points

Optional trend Choose a trend
function for a
Gaussian process
surrogate

Description
A second version of GP surrogates was available in prior versions of Dakota. For now, both versions are
supported but the dakota version is deprecated and intended to be removed in a future release.

Historically these models were drastically different, but in Dakota 5.1, they became quite similar. They now
differ in that the Surfpack GP has a richer set of features/options and tends to be more accurate than the Dakota
version. Due to how the Surfpack GP handles ill-conditioned correlation matrices (which significantly contributes
to its greater accuracy), the Surfpack GP can be a factor of two or three slower than Dakota’s. As of Dakota
5.2, the Surfpack implementation is the default in all contexts except Bayesian calibration.

More details on the gaussian process dakota model can be found in[58].
Dakota’s GP deals with ill-conditioning in two ways. First, when it encounters a non-invertible correlation

matrix it iteratively increases the size of a ”nugget,” but in such cases the resulting approximation smooths rather
than interpolates the data. Second, it has a point selection option (default off) that uses a greedy algorithm
to select a well-spaced subset of points prior to the construction of the GP. In this case, the GP will only interpo-
late the selected subset. Typically, one should not need point selection in trust-region methods because a small
number of points are used to develop a surrogate within each trust region. Point selection is most beneficial when
constructing with a large number of points, typically more than order one hundred, though this depends on the
number of variables and spacing of the sample points.

This differs from the point selection option of the Dakota GP which initially chooses a well-spaced
subset of points and finds the correlation parameters that are most likely for that one subset.

point selection

• Keywords Area

• model

• surrogate

• global

• gaussian process

• dakota

• point selection

Enable greedy selection of well-spaced build points

6.3. MODEL 1491

Topics
This keyword is related to the topics:

• surrogate models

Specification
Alias: none

Argument(s): none
Default: no point selection

Description
The Dakota Gaussian Process model has a point selection option (default off) that uses a greedy algorithm
to select a well-spaced subset of points prior to the construction of the GP. In this case, the GP will only interpo-
late the selected subset. Typically, one should not need point selection in trust-region methods because a small
number of points are used to develop a surrogate within each trust region. Point selection is most beneficial when
constructing with a large number of points, typically more than order one hundred, though this depends on the
number of variables and spacing of the sample points.

trend

• Keywords Area

• model

• surrogate

• global

• gaussian process

• dakota

• trend

Choose a trend function for a Gaussian process surrogate

Specification
Alias: none

Argument(s): none
Default: reduced quadratic

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1
constant Constant trend

function

1492 CHAPTER 6. KEYWORDS AREA

linear Use a linear
polynomial or
trend function

reduced quadratic Quadratic
polynomials - main
effects only

Description
The only trend functions that are currently supported are polynomials.

The trend function is selected using the trend keyword, with options constant, linear, or reduced-
quadratic. The reduced quadratic trend function includes the main effects, but not mixed/interaction

terms. The Surfpack GP (See surfpack) has the additional option of (a full) quadratic.

constant

• Keywords Area

• model

• surrogate

• global

• gaussian process

• dakota

• trend

• constant

Constant trend function

Specification
Alias: none

Argument(s): none

Description
See parent page

linear

• Keywords Area

• model

• surrogate

• global

6.3. MODEL 1493

• gaussian process

• dakota

• trend

• linear

Use a linear polynomial or trend function

Specification

Alias: none
Argument(s): none

Description

See parent page

reduced quadratic

• Keywords Area

• model

• surrogate

• global

• gaussian process

• dakota

• trend

• reduced quadratic

Quadratic polynomials - main effects only

Specification

Alias: none
Argument(s): none

Description

In 2 or more dimensions, this polynomial omits the interaction, or mixed, terms.

1494 CHAPTER 6. KEYWORDS AREA

surfpack

• Keywords Area

• model

• surrogate

• global

• gaussian process

• surfpack

Use the Surfpack version of Gaussian Process surrogates

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional trend Choose a trend
function for a
Gaussian process
surrogate

Optional optimization -
method

Change the
optimization
method used to
compute
hyperparameters

Optional max trials Max number of
likelihood function
evaluations

Optional(Choose
One)

Group 1 nugget Specify a nugget to
handle
ill-conditioning

find nugget Have Surfpack
compute a nugget
to handle
ill-conditioning

Optional correlation lengths Specify the
correlation lengths
for the Gaussian
process

6.3. MODEL 1495

Optional export model file Export surrogate to
Surfpack model
file

Description
This keyword specifies the use of the Gaussian process that is incorporated in our surface fitting library called
Surfpack.

Several user options are available:

1. Optimization methods:

Maximum Likelihood Estimation (MLE) is used to find the optimal values of the hyper-parameters gov-
erning the trend and correlation functions. By default the global optimization method DIRECT is used for
MLE, but other options for the optimization method are available. See optimization method.

The total number of evaluations of the likelihood function can be controlled using the max trials key-
word followed by a positive integer. Note that the likelihood function does not require running the ”truth”
model, and is relatively inexpensive to compute.

2. Trend Function:

The GP models incorporate a parametric trend function whose purpose is to capture large-scale variations.
See trend.

3. Correlation Lengths:

Correlation lengths are usually optimized by Surfpack, however, the user can specify the lengths manually.
See correlation lengths.

4. Ill-conditioning

One of the major problems in determining the governing values for a Gaussian process or Kriging model is
the fact that the correlation matrix can easily become ill-conditioned when there are too many input points
close together. Since the predictions from the Gaussian process model involve inverting the correlation
matrix, ill-conditioning can lead to poor predictive capability and should be avoided.

Note that a sufficiently bad sample design could require correlation lengths to be so short that any interpo-
latory GP model would become inept at extrapolation and interpolation.

The surfpack model handles ill-conditioning internally by default, but behavior can be modified using

5. Gradient Enhanced Kriging (GEK).

The use derivatives keyword will cause the Surfpack GP to be constructed from a combination of
function value and gradient information (if available).

See notes in the Theory section.

Theory
Gradient Enhanced Kriging

Incorporating gradient information will only be beneficial if accurate and inexpensive derivative information
is available, and the derivatives are not infinite or nearly so. Here ”inexpensive” means that the cost of evaluating a
function value plus gradient is comparable to the cost of evaluating only the function value, for example gradients
computed by analytical, automatic differentiation, or continuous adjoint techniques. It is not cost effective to use
derivatives computed by finite differences. In tests, GEK models built from finite difference derivatives were also

1496 CHAPTER 6. KEYWORDS AREA

significantly less accurate than those built from analytical derivatives. Note that GEK’s correlation matrix tends
to have a significantly worse condition number than Kriging for the same sample design.

This issue was addressed by using a pivoted Cholesky factorization of Kriging’s correlation matrix (which is a
small sub-matrix within GEK’s correlation matrix) to rank points by how much unique information they contain.
This reordering is then applied to whole points (the function value at a point immediately followed by gradient
information at the same point) in GEK’s correlation matrix. A standard non-pivoted Cholesky is then applied to the
reordered GEK correlation matrix and a bisection search is used to find the last equation that meets the constraint
on the (estimate of) condition number. The cost of performing pivoted Cholesky on Kriging’s correlation matrix
is usually negligible compared to the cost of the non-pivoted Cholesky factorization of GEK’s correlation matrix.
In tests, it also resulted in more accurate GEK models than when pivoted Cholesky or whole-point-block pivoted
Cholesky was performed on GEK’s correlation matrix.

trend

• Keywords Area

• model

• surrogate

• global

• gaussian process

• surfpack

• trend

Choose a trend function for a Gaussian process surrogate

Specification
Alias: none

Argument(s): none
Default: reduced quadratic

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1

constant Constant trend
function

linear Use a linear
polynomial or
trend function

reduced quadratic Quadratic
polynomials - main
effects only

6.3. MODEL 1497

quadratic Use a quadratic
polynomial or
trend function

Description
The only trend functions that are currently supported are polynomials.

The trend function is selected using the trend keyword, with options constant, linear, or reduced-
quadratic. The reduced quadratic trend function includes the main effects, but not mixed/interaction

terms. The Surfpack GP (See surfpack) has the additional option of (a full) quadratic.

constant

• Keywords Area

• model

• surrogate

• global

• gaussian process

• surfpack

• trend

• constant

Constant trend function

Specification
Alias: none

Argument(s): none

Description
See parent page

linear

• Keywords Area

• model

• surrogate

• global

• gaussian process

• surfpack

1498 CHAPTER 6. KEYWORDS AREA

• trend

• linear

Use a linear polynomial or trend function

Specification
Alias: none

Argument(s): none

Description
See parent page

reduced quadratic

• Keywords Area

• model

• surrogate

• global

• gaussian process

• surfpack

• trend

• reduced quadratic

Quadratic polynomials - main effects only

Specification
Alias: none

Argument(s): none

Description
In 2 or more dimensions, this polynomial omits the interaction, or mixed, terms.

quadratic

• Keywords Area

• model

• surrogate

• global

• gaussian process

6.3. MODEL 1499

• surfpack

• trend

• quadratic

Use a quadratic polynomial or trend function

Specification
Alias: none

Argument(s): none

Description
See parent page

optimization method

• Keywords Area

• model

• surrogate

• global

• gaussian process

• surfpack

• optimization method

Change the optimization method used to compute hyperparameters

Specification
Alias: none

Argument(s): STRING
Default: global

Description
Select the optimization method to compute hyperparameters of the Gaussian Process by specifying one of these
arguments:

• global (default) - DIRECT method

• local - CONMIN method

• sampling - generates several random guesses and picks the candidate with greatest likelihood

• none - no optimization, pick the center of the feasible region

The none option, and the starting location of the local optimization, default to the center, in log(correlation
length) scale, of the of feasible region.

Surfpack picks a small feasible region of correlation parameters.
Note that we have found the global optimization method to be the most robust.

1500 CHAPTER 6. KEYWORDS AREA

max trials

• Keywords Area

• model

• surrogate

• global

• gaussian process

• surfpack

• max trials

Max number of likelihood function evaluations

Specification

Alias: none
Argument(s): INTEGER

Description

See parent page

nugget

• Keywords Area

• model

• surrogate

• global

• gaussian process

• surfpack

• nugget

Specify a nugget to handle ill-conditioning

Specification

Alias: none
Argument(s): REAL
Default: None

6.3. MODEL 1501

Description
By default, the Surfpack GP handles ill-conditioning and does not use a nugget. If the user wishes to specify a
nugget, there are two approaches.

• The user can specify the value of a nugget with nugget.

• Have Surfpack find the optimal value of the nugget. This is specified by find nugget. There are two options
for find nugget.

– find nugget = 1: assume that the reciprocal condition number of the correlation matrix R, rcondR,
is zero and calculate the nugget needed to make the worst case of R not ill-conditioned.

– find nugget = 2: calculate rcondR, which requires a Cholesky factorization. If rcondR indicates
that R is not ill-conditioned, then kriging uses the Cholesky factorization. Otherwise, if rcondR says
R is ill conditioned, then kriging will calculate the nugget needed to make the worst case of R not ill
conditioned.

find nugget = 1 and 2 are similar, the second option just takes more computation (the initial Cholesky
factorization) for larger problems.

find nugget

• Keywords Area

• model

• surrogate

• global

• gaussian process

• surfpack

• find nugget

Have Surfpack compute a nugget to handle ill-conditioning

Specification
Alias: none

Argument(s): INTEGER
Default: None

Description
By default, the Surfpack GP handles ill-conditioning and does not use a nugget. If the user wishes to specify a
nugget, there are two approaches.

• The user can specify the value of a nugget with nugget.

• Have Surfpack find the optimal value of the nugget. This is specified by find nugget. There are two options
for find nugget.

1502 CHAPTER 6. KEYWORDS AREA

– find nugget = 1: assume that the reciprocal condition number of the correlation matrix R, rcondR,
is zero and calculate the nugget needed to make the worst case of R not ill-conditioned.

– find nugget = 2: calculate rcondR, which requires a Cholesky factorization. If rcondR indicates
that R is not ill-conditioned, then kriging uses the Cholesky factorization. Otherwise, if rcondR says
R is ill conditioned, then kriging will calculate the nugget needed to make the worst case of R not ill
conditioned.

find nugget = 1 and 2 are similar, the second option just takes more computation (the initial Cholesky
factorization) for larger problems.

correlation lengths

• Keywords Area

• model

• surrogate

• global

• gaussian process

• surfpack

• correlation lengths

Specify the correlation lengths for the Gaussian process

Specification
Alias: none

Argument(s): REALLIST
Default: internally computed correlation lengths

Description
Directly specify correlation lengths as a list of N real numbers where N is the number of input dimen-
sions.

export model file

• Keywords Area

• model

• surrogate

• global

• gaussian process

• surfpack

• export model file

Export surrogate to Surfpack model file

6.3. MODEL 1503

Topics

This keyword is related to the topics:

• surrogate models

Specification

Alias: none
Argument(s): STRING

Description

Serialize the global surrogate model to a text or binary Surfpack model file, for later loading and evaluation
using the Surfpack interpreter or C interface. The filename must have an .sps extension for text output or a .bsps
extension for binary output.

mars

• Keywords Area

• model

• surrogate

• global

• mars

Multivariate Adaptive Regression Spline (MARS)

Specification

Alias: none
Argument(s): none

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional max bases Maximum number
of MARS bases

Optional interpolation MARS model
interpolation type

Optional export model file Export surrogate to
Surfpack model
file

1504 CHAPTER 6. KEYWORDS AREA

Description

This surface fitting method uses multivariate adaptive regression splines from the MARS3.5 package[27] devel-
oped at Stanford University.

The MARS reference material does not indicate the minimum number of data points that are needed to create
a MARS surface model. However, in practice it has been found that at least ncquad , and sometimes as many as 2
to 4 times ncquad , data points are needed to keep the MARS software from terminating. Provided that sufficient
data samples can be obtained, MARS surface models can be useful in SBO and OUU applications, as well as in
the prediction of global trends throughout the parameter space.

Theory

The form of the MARS model is based on the following expression:

f̂(x) =
M∑
m=1

amBm(x)

where the am are the coefficients of the truncated power basis functions Bm, and M is the number of basis
functions. The MARS software partitions the parameter space into subregions, and then applies forward and
backward regression methods to create a local surface model in each subregion. The result is that each subregion
contains its own basis functions and coefficients, and the subregions are joined together to produce a smooth,
C2-continuous surface model.

MARS is a nonparametric surface fitting method and can represent complex multimodal data trends. The re-
gression component of MARS generates a surface model that is not guaranteed to pass through all of the response
data values. Thus, like the quadratic polynomial model, it provides some smoothing of the data.

max bases

• Keywords Area

• model

• surrogate

• global

• mars

• max bases

Maximum number of MARS bases

Specification

Alias: none
Argument(s): INTEGER

Description

The maximum number of basis functions allowed in the MARS approximation model.

6.3. MODEL 1505

interpolation

• Keywords Area

• model

• surrogate

• global

• mars

• interpolation

MARS model interpolation type

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 linear Linear
interpolation

cubic Cubic interpolation

Description
The MARS model interpolation type: linear or cubic.

linear

• Keywords Area

• model

• surrogate

• global

• mars

• interpolation

• linear

Linear interpolation

Specification
Alias: none

Argument(s): none

1506 CHAPTER 6. KEYWORDS AREA

Description
Use linear interpolation in the MARS model.

cubic

• Keywords Area

• model

• surrogate

• global

• mars

• interpolation

• cubic

Cubic interpolation

Specification
Alias: none

Argument(s): none

Description
Use cubic interpolation in the MARS model.

export model file

• Keywords Area

• model

• surrogate

• global

• mars

• export model file

Export surrogate to Surfpack model file

Topics
This keyword is related to the topics:

• surrogate models

6.3. MODEL 1507

Specification

Alias: none
Argument(s): STRING

Description

Serialize the global surrogate model to a text or binary Surfpack model file, for later loading and evaluation
using the Surfpack interpreter or C interface. The filename must have an .sps extension for text output or a .bsps
extension for binary output.

moving least squares

• Keywords Area

• model

• surrogate

• global

• moving least squares

Moving Least Squares surrogate models

Specification

Alias: none
Argument(s): none

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional poly order Polynomial order
for the MLS bases

Optional weight function Selects the weight
function for the
MLS model

Optional export model file Export surrogate to
Surfpack model
file

Description

Moving least squares is a further generalization of weighted least squares where the weighting is ”moved” or
recalculated for every new point where a prediction is desired[64].

The implementation of moving least squares is still under development. It tends to work well in trust
region optimization methods where the surrogate model is constructed in a constrained region over a few points.
The present implementation may not work as well globally.

1508 CHAPTER 6. KEYWORDS AREA

Theory
Moving Least Squares can be considered a more specialized version of linear regression models. In linear re-
gression, one usually attempts to minimize the sum of the squared residuals, where the residual is defined as the
difference between the surrogate model and the true model at a fixed number of points.

In weighted least squares, the residual terms are weighted so the determination of the optimal coefficients
governing the polynomial regression function, denoted by f̂(x), are obtained by minimizing the weighted sum of
squares at N data points:

N∑
n=1

wn(‖ f̂(xn)− f(xn) ‖)

poly order

• Keywords Area

• model

• surrogate

• global

• moving least squares

• poly order

Polynomial order for the MLS bases

Specification
Alias: none

Argument(s): INTEGER

Description
The polynomial order for the moving least squares basis function (default = 2).

weight function

• Keywords Area

• model

• surrogate

• global

• moving least squares

• weight function

Selects the weight function for the MLS model

6.3. MODEL 1509

Specification

Alias: none
Argument(s): INTEGER

Description

The weight function decays as a function of distance from the training data. Specify one of:

• 1 (default): exponential decay in weight function; once differentiable MLS model

• 2: twice differentiable MLS model

• 3: three times differentiable MLS model

export model file

• Keywords Area

• model

• surrogate

• global

• moving least squares

• export model file

Export surrogate to Surfpack model file

Topics

This keyword is related to the topics:

• surrogate models

Specification

Alias: none
Argument(s): STRING

Description

Serialize the global surrogate model to a text or binary Surfpack model file, for later loading and evaluation
using the Surfpack interpreter or C interface. The filename must have an .sps extension for text output or a .bsps
extension for binary output.

1510 CHAPTER 6. KEYWORDS AREA

neural network

• Keywords Area

• model

• surrogate

• global

• neural network

Artificial neural network model

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional max nodes Maximum number
of hidden layer
nodes

Optional range Range for neural
network random
weights

Optional random weight (Inactive) Random
weight control

Optional export model file Export surrogate to
Surfpack model
file

Description
Dakota’s artificial neural network surrogate is a stochastic layered perceptron network, with a single hidden layer.
Weights for the input layer are chosen randomly, while those in the hidden layer are estimated from data using a
variant of the Zimmerman direct training approach[92].

This typically yields lower training cost than traditional neural networks, yet good out-of-sample performance.
This is helpful in surrogate-based optimization and optimization under uncertainty, where multiple surrogates
may be repeatedly constructed during the optimization process, e.g., a surrogate per response function, and a new
surrogate for each optimization iteration.

The neural network is a non parametric surface fitting method. Thus, along with Kriging (Gaussian Process)
and MARS, it can be used to model data trends that have slope discontinuities as well as multiple maxima and
minima. However, unlike Kriging, the neural network surrogate is not guaranteed to interpolate the data from
which it was constructed.

This surrogate can be constructed from fewer than ncquad data points, however, it is a good rule of thumb to
use at least ncquad data points when possible.

6.3. MODEL 1511

Theory

The form of the neural network model is

f̂(x) ≈ tanh
{
A1 tanh

(
AT

0 x + θT0
)

+ θ1

}
where x is the evaluation point in n-dimensional parameter space; the terms A0, θ0 are the random input layer

weight matrix and bias vector, respectively; and A1, θ1 are a weight vector and bias scalar, respectively, estimated
from training data. These coefficients are analogous to the polynomial coefficients obtained from regression to
training data. The neural network uses a cross validation-based orthogonal matching pursuit solver to determine
the optimal number of nodes and to solve for the weights and offsets.

max nodes

• Keywords Area

• model

• surrogate

• global

• neural network

• max nodes

Maximum number of hidden layer nodes

Topics

This keyword is related to the topics:

• surrogate models

Specification

Alias: nodes
Argument(s): INTEGER
Default: numTrainingData - 1

Description

Limits the maximum number of hidden layer nodes in the neural network model. The default is to use one less
node than the number of available training data points yielding a fully-determined linear least squares problem.
However, reducing the number of nodes can help reduce overfitting and more importantly, can drastically reduce
surrogate construction time when building from a large data set. (Historically, Dakota limited the number of nodes
to 100.)

The keyword max nodes provides an upper bound. Dakota’s orthogonal matching pursuit algorithm may
further reduce the effective number of nodes in the final model to achieve better generalization to unseen points.

1512 CHAPTER 6. KEYWORDS AREA

range

• Keywords Area

• model

• surrogate

• global

• neural network

• range

Range for neural network random weights

Topics
This keyword is related to the topics:

• surrogate models

Specification
Alias: none

Argument(s): REAL

Description
Controls the range of the input layer random weights in the neural network model. The default range is 2.0,
resulting in weights in (-1, 1). These weights are applied after the training inputs have been scaled into [-0.8, 0.8].

random weight

• Keywords Area

• model

• surrogate

• global

• neural network

• random weight

(Inactive) Random weight control

Topics
This keyword is related to the topics:

• surrogate models

6.3. MODEL 1513

Specification
Alias: none

Argument(s): INTEGER

Description
This option is not currently in use and is likely to be removed

export model file

• Keywords Area

• model

• surrogate

• global

• neural network

• export model file

Export surrogate to Surfpack model file

Topics
This keyword is related to the topics:

• surrogate models

Specification
Alias: none

Argument(s): STRING

Description
Serialize the global surrogate model to a text or binary Surfpack model file, for later loading and evaluation
using the Surfpack interpreter or C interface. The filename must have an .sps extension for text output or a .bsps
extension for binary output.

radial basis

• Keywords Area

• model

• surrogate

• global

• radial basis

Radial basis function (RBF) model

1514 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional bases Initial number of
radial basis
functions

Optional max pts Maximum number
of RBF CVT
points

Optional min partition (Inactive)
Minimum RBF
partition

Optional max subsets Number of trial
RBF subsets

Optional export model file Export surrogate to
Surfpack model
file

Description
Radial basis functions φ are functions whose value typically depends on the distance from a center point, called
the centroid, c.

The surrogate model approximation comprises a sum of K weighted radial basis functions:

f̂(x) =
K∑
k=1

wkφ(‖ x− ck ‖)

These basis functions take many forms, but Gaussian kernels or splines are most common. The Dakota
implementation uses a Gaussian radial basis function. The weights are determined via a linear least squares
solution approach. See[67] for more details.

bases

• Keywords Area

• model

• surrogate

• global

• radial basis

• bases

Initial number of radial basis functions

6.3. MODEL 1515

Topics

This keyword is related to the topics:

• surrogate models

Specification

Alias: none
Argument(s): INTEGER

Description

Initial number of radial basis functions. The default value is the smaller of the number of training points and 100.

max pts

• Keywords Area

• model

• surrogate

• global

• radial basis

• max pts

Maximum number of RBF CVT points

Topics

This keyword is related to the topics:

• surrogate models

Specification

Alias: none
Argument(s): INTEGER

Description

Maximum number of CVT points to use in generating each RBF center. basis computing centroid of each.
Defaults to 10 ∗ (bases). Reducing this will reduce model build time.

1516 CHAPTER 6. KEYWORDS AREA

min partition

• Keywords Area

• model

• surrogate

• global

• radial basis

• min partition

(Inactive) Minimum RBF partition

Topics
This keyword is related to the topics:

• surrogate models

Specification
Alias: none

Argument(s): INTEGER

Description
This option currently has no effect and will likely be removed.

max subsets

• Keywords Area

• model

• surrogate

• global

• radial basis

• max subsets

Number of trial RBF subsets

Topics
This keyword is related to the topics:

• surrogate models

6.3. MODEL 1517

Specification
Alias: none

Argument(s): INTEGER

Description
Number of passes to take to identify the best subset of basis functions to use. Defaults to the smaller of 3 ∗ (bases)
and 100.

export model file

• Keywords Area

• model

• surrogate

• global

• radial basis

• export model file

Export surrogate to Surfpack model file

Topics
This keyword is related to the topics:

• surrogate models

Specification
Alias: none

Argument(s): STRING

Description
Serialize the global surrogate model to a text or binary Surfpack model file, for later loading and evaluation
using the Surfpack interpreter or C interface. The filename must have an .sps extension for text output or a .bsps
extension for binary output.

polynomial

• Keywords Area

• model

• surrogate

• global

• polynomial

Polynomial surrogate model

1518 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

polynomial order
(Group 1)

linear Use a linear
polynomial or
trend function

quadratic Use a quadratic
polynomial or
trend function

cubic Use a cubic
polynomial

Optional export model file Export surrogate to
Surfpack model
file

Description
Linear, quadratic, and cubic polynomial surrogate models are available in Dakota. The utility of the simple
polynomial models stems from two sources:

• over a small portion of the parameter space, a low-order polynomial model is often an accurate approxima-
tion to the true data trends

• the least-squares procedure provides a surface fit that smooths out noise in the data.

Local surrogate-based optimization methods (surrogate based local) are often successful when using polynomial
models, particularly quadratic models. However, a polynomial surface fit may not be the best choice for modeling
data trends globally over the entire parameter space, unless it is known a priori that the true data trends are close
to linear, quadratic, or cubic. See[63] for more information on polynomial models.

Theory
The form of the linear polynomial model is

f̂(x) ≈ c0 +
n∑
i=1

cixi

the form of the quadratic polynomial model is:

f̂(x) ≈ c0 +
n∑
i=1

cixi +
n∑
i=1

n∑
j≥i

cijxixj

and the form of the cubic polynomial model is:

f̂(x) ≈ c0 +
n∑
i=1

cixi +
n∑
i=1

n∑
j≥i

cijxixj +
n∑
i=1

n∑
j≥i

n∑
k≥j

cijkxixjxk

6.3. MODEL 1519

In all of the polynomial models, f̂(x) is the response of the polynomial model; the xi, xj , xk terms are
the components of the n-dimensional design parameter values; the c0 , ci , cij , cijk terms are the polynomial
coefficients, and n is the number of design parameters. The number of coefficients, nc, depends on the order of
polynomial model and the number of design parameters. For the linear polynomial:

nclinear = n+ 1

for the quadratic polynomial:

ncquad =
(n+ 1)(n+ 2)

2
and for the cubic polynomial:

nccubic =
(n3 + 6n2 + 11n+ 6)

6
There must be at least nc data samples in order to form a fully determined linear system and solve for the

polynomial coefficients. In Dakota, a least-squares approach involving a singular value decomposition numerical
method is applied to solve the linear system.

linear

• Keywords Area

• model

• surrogate

• global

• polynomial

• linear

Use a linear polynomial or trend function

Specification
Alias: none

Argument(s): none

Description
See parent page

quadratic

• Keywords Area

• model

• surrogate

• global

1520 CHAPTER 6. KEYWORDS AREA

• polynomial

• quadratic

Use a quadratic polynomial or trend function

Specification
Alias: none

Argument(s): none

Description
See parent page

cubic

• Keywords Area

• model

• surrogate

• global

• polynomial

• cubic

Use a cubic polynomial

Specification
Alias: none

Argument(s): none

Description
See parent page

export model file

• Keywords Area

• model

• surrogate

• global

• polynomial

• export model file

Export surrogate to Surfpack model file

6.3. MODEL 1521

Topics
This keyword is related to the topics:

• surrogate models

Specification
Alias: none

Argument(s): STRING

Description
Serialize the global surrogate model to a text or binary Surfpack model file, for later loading and evaluation
using the Surfpack interpreter or C interface. The filename must have an .sps extension for text output or a .bsps
extension for binary output.

piecewise decomposition

• Keywords Area

• model

• surrogate

• global

• piecewise decomposition

Piecewise Domain Decomposition for Global Surrogates

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional cell type Type of the
Geometric Cells
Used for the
Piecewise
Decomposition
Option of Global
Surrogates

1522 CHAPTER 6. KEYWORDS AREA

Optional support layers Optional Number
of Support Layers
for the Piecewise
Decomposition
Option of Global
Surrogates

Optional discontinuity -
detection

Optional
Discontinuity
Detection
Capability for the
Piecewise
Decomposition
Option of Global
Surrogates

Description
Most regression techniques use all available sample points to approximate the underlying function anywhere in
the domain. An alternative option is to use piecewise decomposition to locally approximate the function at some
point using a few sample points from its neighborhood.

This option currently supports Polynomial Regression, Gaussian Process (GP) Interpolation, and Radial Basis
Functions (RBF) Regression. It requires a decomposition cell type (currently set to be Voronoi cells), an optional
number of support layers of neighbors, and optional discontinuity detection parameters (jump/gradient).

cell type

• Keywords Area

• model

• surrogate

• global

• piecewise decomposition

• cell type

Type of the Geometric Cells Used for the Piecewise Decomposition Option of Global Surrogates

Specification
Alias: none

Argument(s): STRING

Description
The piecewise decomposition option for global surrogates is used to locally approximate a function at some point
using a few sample points from its neighborhood.

This option requires a decomposition cell type that can vary from structured grid boxes, to geometric Voronoi
cells. Currently, this option only supports Voronoi cells.

6.3. MODEL 1523

support layers

• Keywords Area

• model

• surrogate

• global

• piecewise decomposition

• support layers

Optional Number of Support Layers for the Piecewise Decomposition Option of Global Surrogates

Specification
Alias: none

Argument(s): INTEGER

Description
The piecewise decomposition option for global surrogates is used to locally approximate a function at some point
using a few sample points from its neighborhood.

The neighborhood of a cell is parameterized via a number of support layers. The (default) 0th layer contains
only the direct neighbors of the cell. The 1st layer includes neighbors of the direct neighbors, etc.

discontinuity detection

• Keywords Area

• model

• surrogate

• global

• piecewise decomposition

• discontinuity detection

Optional Discontinuity Detection Capability for the Piecewise Decomposition Option of Global Surrogates

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

1524 CHAPTER 6. KEYWORDS AREA

Required(Choose
One)

Group 1 jump threshold Gradient Threshold
Parameter of the
Optional
Discontinuity
Detection
Capability for the
Piecewise
Decomposition
Option of Global
Surrogates

gradient threshold Gradient Threshold
Parameter of the
Optional
Discontinuity
Detection
Capability for the
Piecewise
Decomposition
Option of Global
Surrogates

Description

The piecewise decomposition option for global surrogates is used to locally approximate a function at some point
using a few sample points from its neighborhood.

The domain decomposition algorithm supports an optional discontinuity detection capability where seeds
across a user-input discontinuity threshold can not be considered neighbors, splitting the domain into patches that
trap discontinuities between their edges. This capability is specified by either a jump threshold value or a gradient
threshold one.

jump threshold

• Keywords Area

• model

• surrogate

• global

• piecewise decomposition

• discontinuity detection

• jump threshold

Gradient Threshold Parameter of the Optional Discontinuity Detection Capability for the Piecewise Decom-
position Option of Global Surrogates

6.3. MODEL 1525

Specification
Alias: none

Argument(s): REAL

Description
The piecewise decomposition option for global surrogates is used to locally approximate a function at some point
using a few sample points from its neighborhood.

The domain decomposition algorithm supports an optional discontinuity detection capability where seeds
across a user-input discontinuity threshold can not be considered neighbors, splitting the domain into patches that
trap discontinuities between their edges. This capability can be specified using a jump threshold value.

gradient threshold
• Keywords Area

• model

• surrogate

• global

• piecewise decomposition

• discontinuity detection

• gradient threshold

Gradient Threshold Parameter of the Optional Discontinuity Detection Capability for the Piecewise Decom-
position Option of Global Surrogates

Specification
Alias: none

Argument(s): REAL

Description
The piecewise decomposition option for global surrogates is used to locally approximate a function at some point
using a few sample points from its neighborhood.

The domain decomposition algorithm supports an optional discontinuity detection capability where seeds
across a user-input discontinuity threshold can not be considered neighbors, splitting the domain into patches that
trap discontinuities between their edges. This capability can be specified using a gradient threshold value.

total points
• Keywords Area

• model

• surrogate

• global

• total points

Specified number of training points

1526 CHAPTER 6. KEYWORDS AREA

Specification

Alias: none
Argument(s): INTEGER
Default: recommended points

Description

See parent page.

minimum points

• Keywords Area

• model

• surrogate

• global

• minimum points

Construct surrogate with minimum number of points

Specification

Alias: none
Argument(s): none

Description

The minimum is d+1, for d input dimensions, except for polynomials. See parent page.

recommended points

• Keywords Area

• model

• surrogate

• global

• recommended points

Construct surrogate with recommended number of points

Specification

Alias: none
Argument(s): none

6.3. MODEL 1527

Description
This is the default option. It requires 5∗d build points for d input dimensions, except for polynomial models. See
parent page.

dace method pointer

• Keywords Area

• model

• surrogate

• global

• dace method pointer

Specify a method to gather training data

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING
Default: no design of experiments data

Description
The number of training points and the sources are specified on global, as well as the number of new training points
required.

New training points are gathered by running the ”truth” model using the method specified by dace method-
pointer. The DACE method will only be invoked if it has new samples to perform, and if new samples are

required and no DACE iterator has been provided, an error will result.
The dace method pointer points to design of experiments method block used to generate truth model

data.
Permissible methods include: Monte Carlo (random) sampling, Latin hypercube sampling, orthogonal array

sampling, central composite design sampling, and Box-Behnken sampling.
Note that the number of samples specified in the method block may be overwritten, if the requested number

of samples is less than minimum points.

actual model pointer

• Keywords Area

• model

• surrogate

• global

1528 CHAPTER 6. KEYWORDS AREA

• actual model pointer

A surrogate model pointer that guides a method to whether it should use a surrogate model or compute truth
function evaluations

Specification
Alias: none

Argument(s): STRING

Description
Dakota methods use global surrogate models to compute surrogate function approximations. They also need to
know the true function evaluations. A global surrogate model now must have an actual model pointer keyword to
decide for the method whether to evaluate the global surrogate model, or compute the true function evaluations if
actual model pointer = TRUTH.

reuse points

• Keywords Area

• model

• surrogate

• global

• reuse points

Surrogate model training data reuse control

Topics
This keyword is related to the topics:

• surrogate models

Specification
Alias: reuse samples

Argument(s): none
Default: all for import; none otherwise

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1
all Option for

reuse points
region Option for

reuse points

6.3. MODEL 1529

none Option for
reuse points

Description
Dakota’s global surrogate methods rely on training data, which can either come from evaluation of a ”truth”
model, which is generated by the method specified with dace method pointer, from a file of existing training data,
identified by import points file, or both.

The reuse points keyword controls the amount of training data used in building a surrogate model, either
initially, or during iterative rebuild, as in surrogate-based optimization. If import points file is specified, reuse-
points controls how the file contents are used. If used during iterative rebuild, it controls what data from

previous surrogate builds is reused in building the current model.

• all (default for file import) - use all points in the file or available from previous builds

• region - use only the points falling in the current trust region (see surrogate based local)

• none (default when no import) - ignore the contents of the file or previous build points, and gather new
training data using the specified DACE method

all

• Keywords Area

• model

• surrogate

• global

• reuse points

• all

Option for reuse points

Specification
Alias: none

Argument(s): none

Description
This is described on the parent page.

region

• Keywords Area

• model

• surrogate

• global

1530 CHAPTER 6. KEYWORDS AREA

• reuse points

• region

Option for reuse points

Specification
Alias: none

Argument(s): none

Description
This is described on the parent page.

none

• Keywords Area

• model

• surrogate

• global

• reuse points

• none

Option for reuse points

Specification
Alias: none

Argument(s): none

Description
This is described on the parent page.

import points file

• Keywords Area

• model

• surrogate

• global

• import points file

File containing variable values and corresponding responses

6.3. MODEL 1531

Specification
Alias: samples file

Argument(s): STRING
Default: no point import from a file

1532 CHAPTER 6. KEYWORDS AREA

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional(Choose
One)

tabular format
(Group 1)

annotated Selects annotated
tabular file format

custom annotated Selects
custom-annotated
tabular file format

freeform Selects freeform
file format

Optional active only Import only active
variables from
tabular data file

Description
The import points file allows the user to specify a file that contains a list of variable values and the model
responses computed at those values. These can be used by a number of methods in place of model evaluations.
When used to construct surrogate models or emulators these are often called build points or training data.

Default Behavior
Be default, methods do not import points from a file.
Usage Tips
Dakota parses input files without regard to whitespace, but the import points file must be in one of three

formats:

• annotated (default)

• custom annotated

• freeform

Examples
method

list_parameter_study
import_points_file = ’dakota_pstudy.3.dat’

annotated

• Keywords Area

• model

• surrogate

• global

• import points file

• annotated

Selects annotated tabular file format

6.3. MODEL 1533

Topics

This keyword is related to the topics:

• file formats

Specification

Alias: none
Argument(s): none
Default: annotated

Description

An annotated tabular file is a whitespace-separated text file with one leading header row of comments/column la-
bels. Each subsequent row contains an evaluation ID and interface ID, followed by data for variables, or variables
followed by responses, depending on context.

Default Behavior
By default, Dakota imports and exports tabular files in annotated format. The annotated keyword can be

used to explicitly specify this.
Usage Tips

• To specify pre-Dakota 6.1 tabular format, which did not include interface id, specify custom annotated
header eval id

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export an annotated top-level tabular data file containing a header row, leading eval id and interface id columns,
and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
annotated

Resulting tabular file:

%eval_id interface x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 NO_ID 0.9 1.1 0.0002 0.26 0.76
2 NO_ID 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 NO_ID 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

1534 CHAPTER 6. KEYWORDS AREA

custom annotated

• Keywords Area

• model

• surrogate

• global

• import points file

• custom annotated

Selects custom-annotated tabular file format

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional header Enable header row
in
custom-annotated
tabular file

Optional eval id Enable evaluation
ID column in
custom-annotated
tabular file

Optional interface id Enable interface
ID column in
custom-annotated
tabular file

Description
A custom-annotated tabular file is a whitespace-separated text file typically containing row data for variables, or
variables followed by responses, though the format is used for other tabular exports/imports as well. Custom-
annotated allows user options for whether header row, eval id column, and interface id column appear
in the tabular file, thus bridging freeform and (fully) annotated.

Default Behavior
The annotated format is the default for tabular export/import. To control which header row and columns

are in the input/output, specify custom annotated, followed by options, in the relevant export/import context.
Usage Tips

6.3. MODEL 1535

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export a custom-annotated tabular file in Dakota 6.0 format, which contained only header and eval id (no interface-
id), and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
custom_annotated header eval_id

Resulting tabular file:

%eval_id x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 0.9 1.1 0.0002 0.26 0.76
2 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

header

• Keywords Area

• model

• surrogate

• global

• import points file

• custom annotated

• header

Enable header row in custom-annotated tabular file

Specification

Alias: none
Argument(s): none

Description

See description of parent custom annotated

1536 CHAPTER 6. KEYWORDS AREA

eval id

• Keywords Area

• model

• surrogate

• global

• import points file

• custom annotated

• eval id

Enable evaluation ID column in custom-annotated tabular file

Specification
Alias: none

Argument(s): none

Description
See description of parent custom annotated

interface id

• Keywords Area

• model

• surrogate

• global

• import points file

• custom annotated

• interface id

Enable interface ID column in custom-annotated tabular file

Specification
Alias: none

Argument(s): none

Description
See description of parent custom annotated

6.3. MODEL 1537

freeform

• Keywords Area

• model

• surrogate

• global

• import points file

• freeform

Selects freeform file format

Topics

This keyword is related to the topics:

• file formats

Specification

Alias: none
Argument(s): none
Default: annotated

Description

A freeform tabular file is whitespace-separated text file with no leading header row and no leading columns. Most
commonly, each row contains data for variables, or variables followed by responses, though the format is used for
other tabular exports/imports as well.

Default Behavior
The annotated format is the default for tabular export/import. To change this behavior, specify freeform

in the relevant export/import context.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• In freeform, the num rows x num cols total data entries may be separated with any whitespace including
spaces, tabs, and newlines. In this format, vectors may therefore appear as a single row or single column
(or mixture; entries will populate the vector in order).

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

1538 CHAPTER 6. KEYWORDS AREA

Examples
Export a freeform tabular file containing only data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
freeform

Resulting tabular file:

0.9 1.1 0.0002 0.26 0.76
0.90009 1.1 0.0001996404857 0.2601620081 0.759955
0.89991 1.1 0.0002003604863 0.2598380081 0.760045

...

active only

• Keywords Area

• model

• surrogate

• global

• import points file

• active only

Import only active variables from tabular data file

Topics

This keyword is related to the topics:

• file formats

Specification

Alias: none
Argument(s): none

Description

By default, files for tabular data imports are expected to contain columns for all variables, active and inactive. The
keyword active only indicates that the file to import contains only the active variables.

This option should only be used in contexts where the inactive variables have no influence, for example,
building a surrogate over active variables, with the state variables held at nominal. It should not be used in more
complex nested contexts, where the values of inactive variables are relevant to the function evaluations used to
build the surrogate.

6.3. MODEL 1539

export points file

• Keywords Area

• model

• surrogate

• global

• export points file

Output file for evaluations of a surrogate model

Specification
Alias: none

Argument(s): STRING
Default: no point export to a file

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional(Choose
One)

tabular format
(Group 1)

annotated Selects annotated
tabular file format

custom annotated Selects
custom-annotated
tabular file format

freeform Selects freeform
file format

Description
File of points (input variable values and predicted approximate outputs from the surrogate) evaluated on the
surrogate model. The export points contain test point values and the emulator predictions at these points.

Usage Tips
Dakota exports tabular data in one of three formats:

• annotated (default)

• custom annotated

• freeform

annotated

• Keywords Area

• model

• surrogate

• global

1540 CHAPTER 6. KEYWORDS AREA

• export points file

• annotated

Selects annotated tabular file format

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Default: annotated

Description
An annotated tabular file is a whitespace-separated text file with one leading header row of comments/column la-
bels. Each subsequent row contains an evaluation ID and interface ID, followed by data for variables, or variables
followed by responses, depending on context.

Default Behavior
By default, Dakota imports and exports tabular files in annotated format. The annotated keyword can be

used to explicitly specify this.
Usage Tips

• To specify pre-Dakota 6.1 tabular format, which did not include interface id, specify custom annotated
header eval id

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export an annotated top-level tabular data file containing a header row, leading eval id and interface id columns,
and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
annotated

Resulting tabular file:

%eval_id interface x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 NO_ID 0.9 1.1 0.0002 0.26 0.76
2 NO_ID 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 NO_ID 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

6.3. MODEL 1541

custom annotated

• Keywords Area

• model

• surrogate

• global

• export points file

• custom annotated

Selects custom-annotated tabular file format

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional header Enable header row
in
custom-annotated
tabular file

Optional eval id Enable evaluation
ID column in
custom-annotated
tabular file

Optional interface id Enable interface
ID column in
custom-annotated
tabular file

Description
A custom-annotated tabular file is a whitespace-separated text file typically containing row data for variables, or
variables followed by responses, though the format is used for other tabular exports/imports as well. Custom-
annotated allows user options for whether header row, eval id column, and interface id column appear
in the tabular file, thus bridging freeform and (fully) annotated.

Default Behavior
The annotated format is the default for tabular export/import. To control which header row and columns

are in the input/output, specify custom annotated, followed by options, in the relevant export/import context.
Usage Tips

1542 CHAPTER 6. KEYWORDS AREA

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export a custom-annotated tabular file in Dakota 6.0 format, which contained only header and eval id (no interface-
id), and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
custom_annotated header eval_id

Resulting tabular file:

%eval_id x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 0.9 1.1 0.0002 0.26 0.76
2 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

header

• Keywords Area

• model

• surrogate

• global

• export points file

• custom annotated

• header

Enable header row in custom-annotated tabular file

Specification

Alias: none
Argument(s): none

Description

See description of parent custom annotated

6.3. MODEL 1543

eval id

• Keywords Area

• model

• surrogate

• global

• export points file

• custom annotated

• eval id

Enable evaluation ID column in custom-annotated tabular file

Specification
Alias: none

Argument(s): none

Description
See description of parent custom annotated

interface id

• Keywords Area

• model

• surrogate

• global

• export points file

• custom annotated

• interface id

Enable interface ID column in custom-annotated tabular file

Specification
Alias: none

Argument(s): none

Description
See description of parent custom annotated

1544 CHAPTER 6. KEYWORDS AREA

freeform

• Keywords Area

• model

• surrogate

• global

• export points file

• freeform

Selects freeform file format

Topics

This keyword is related to the topics:

• file formats

Specification

Alias: none
Argument(s): none
Default: annotated

Description

A freeform tabular file is whitespace-separated text file with no leading header row and no leading columns. Most
commonly, each row contains data for variables, or variables followed by responses, though the format is used for
other tabular exports/imports as well.

Default Behavior
The annotated format is the default for tabular export/import. To change this behavior, specify freeform

in the relevant export/import context.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• In freeform, the num rows x num cols total data entries may be separated with any whitespace including
spaces, tabs, and newlines. In this format, vectors may therefore appear as a single row or single column
(or mixture; entries will populate the vector in order).

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

6.3. MODEL 1545

Examples
Export a freeform tabular file containing only data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
freeform

Resulting tabular file:

0.9 1.1 0.0002 0.26 0.76
0.90009 1.1 0.0001996404857 0.2601620081 0.759955
0.89991 1.1 0.0002003604863 0.2598380081 0.760045

...

use derivatives

• Keywords Area

• model

• surrogate

• global

• use derivatives

Use derivative data to construct surrogate models

Specification
Alias: none

Argument(s): none
Default: use function values only

Description
The use derivatives flag specifies that any available derivative information should be used in global approx-
imation builds, for those global surrogate types that support it (currently, polynomial regression and the Surfpack
Gaussian process).

However, it’s use with Surfpack Gaussian process is not recommended.

correction

• Keywords Area

• model

• surrogate

• global

• correction

Correction approaches for surrogate models

1546 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): none
Default: no surrogate correction

6.3. MODEL 1547

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

correction order
(Group 1)

zeroth order Specify that truth
values must be
matched.

first order Specify that truth
values and
gradients must be
matched.

second order Specify that truth
values, gradients
and Hessians must
be matched.

Required(Choose
One)

correction type
(Group 2)

additive Additive correction
factor for local
surrogate accuracy

multiplicative Multiplicative
correction factor
for local surrogate
accuracy.

combined Multipoint
correction for a
hierarchical
surrogate

Description
Some of the surrogate model types support the use of correction factors that improve the local accuracy of the
surrogate models.

The correction specification specifies that the approximation will be corrected to match truth data, either
matching truth values in the case of zeroth order matching, matching truth values and gradients in the case
of first order matching, or matching truth values, gradients, and Hessians in the case of second order
matching. For additive and multiplicative corrections, the correction is local in that the truth data is
matched at a single point, typically the center of the approximation region. The additive correction adds a
scalar offset (zeroth order), a linear function (first order), or a quadratic function (second order)
to the approximation to match the truth data at the point, and the multiplicative correction multiplies
the approximation by a scalar (zeroth order), a linear function (first order), or a quadratic function
(second order) to match the truth data at the point. The additive first order case is due to[57] and
the multiplicative first order case is commonly known as beta correction[40]. For the combined
correction, the use of both additive and multiplicative corrections allows the satisfaction of an additional matching
condition, typically the truth function values at the previous correction point (e.g., the center of the previous trust
region). The combined correction is then a multipoint correction, as opposed to the local additive and
multiplicative corrections. Each of these correction capabilities is described in detail in[24].

The correction factors force the surrogate models to match the true function values and possibly true function

1548 CHAPTER 6. KEYWORDS AREA

derivatives at the center point of each trust region. Currently, Dakota supports either zeroth-, first-, or second-order
accurate correction methods, each of which can be applied using either an additive, multiplicative, or combined
correction function. For each of these correction approaches, the correction is applied to the surrogate model and
the corrected model is then interfaced with whatever algorithm is being employed. The default behavior is that no
correction factor is applied.

The simplest correction approaches are those that enforce consistency in function values between the surrogate
and original models at a single point in parameter space through use of a simple scalar offset or scaling applied
to the surrogate model. First-order corrections such as the first-order multiplicative correction (also known as
beta correction[15]) and the first-order additive correction[57] also enforce consistency in the gradients and pro-
vide a much more substantial correction capability that is sufficient for ensuring provable convergence in SBO
algorithms. SBO convergence rates can be further accelerated through the use of second-order corrections which
also enforce consistency in the Hessians[24], where the second-order information may involve analytic, finite-
difference, or quasi-Newton Hessians.

Correcting surrogate models with additive corrections involves

ˆfhiα(x) = flo(x) + α(x) (6.1)

where multifidelity notation has been adopted for clarity. For multiplicative approaches, corrections take the form

ˆfhiβ (x) = flo(x)β(x) (6.2)

where, for local corrections, α(x) and β(x) are first or second-order Taylor series approximations to the exact
correction functions:

α(x) = A(xc) +∇A(xc)T (x− xc) +
1
2

(x− xc)T∇2A(xc)(x− xc) (6.3)

β(x) = B(xc) +∇B(xc)T (x− xc) +
1
2

(x− xc)T∇2B(xc)(x− xc) (6.4)

where the exact correction functions are

A(x) = fhi(x)− flo(x) (6.5)

B(x) =
fhi(x)
flo(x)

(6.6)

Refer to[24] for additional details on the derivations.
A combination of additive and multiplicative corrections can provide for additional flexibility in minimizing

the impact of the correction away from the trust region center. In other words, both additive and multiplicative
corrections can satisfy local consistency, but through the combination, global accuracy can be addressed as well.
This involves a convex combination of the additive and multiplicative corrections:

ˆfhiγ (x) = γ ˆfhiα(x) + (1− γ) ˆfhiβ (x)

where γ is calculated to satisfy an additional matching condition, such as matching values at the previous design
iterate.

It should be noted that in both first order correction methods, the function f̂(x) matches the function value and
gradients of ft(x) at x = xc. This property is necessary in proving that the first order-corrected SBO algorithms
are provably convergent to a local minimum of ft(x). However, the first order correction methods are significantly
more expensive than the zeroth order correction methods, since the first order methods require computing both
∇ft(xc) and ∇fs(xc). When the SBO strategy is used with either of the zeroth order correction methods, or

6.3. MODEL 1549

with no correction method, convergence is not guaranteed to a local minimum of ft(x). That is, the SBO strategy
becomes a heuristic optimization algorithm. From a mathematical point of view this is undesirable, but as a
practical matter, the heuristic variants of SBO are often effective in finding local minima.

Usage guidelines

• Both the additive zeroth order and multiplicative zeroth order correction methods are ”free”
since they use values of ft(xc) that are normally computed by the SBO strategy.

• The use of either the additive first order method or the multiplicative first order method does
not necessarily improve the rate of convergence of the SBO algorithm.

• When using the first order correction methods, the gradient-related response keywords must be modified
to allow either analytic or numerical gradients to be computed. This provides the gradient data needed to
compute the correction function.

• For many computationally expensive engineering optimization problems, gradients often are too expensive
to obtain or are discontinuous (or may not exist at all). In such cases the heuristic SBO algorithm has been
an effective approach at identifying optimal designs[35].

zeroth order

• Keywords Area

• model

• surrogate

• global

• correction

• zeroth order

Specify that truth values must be matched.

Specification
Alias: none

Argument(s): none

Description
The correction specification specifies that the approximation will be corrected to match truth data. The keyword
zeroth order matching ensures that truth values are matched.

first order

• Keywords Area

• model

• surrogate

• global

1550 CHAPTER 6. KEYWORDS AREA

• correction

• first order

Specify that truth values and gradients must be matched.

Specification
Alias: none

Argument(s): none

Description
This correction specification specifies that the approximation will be corrected to match truth data. The keyword
first order matching ensures that truth values and gradients are matched.

second order

• Keywords Area

• model

• surrogate

• global

• correction

• second order

Specify that truth values, gradients and Hessians must be matched.

Specification
Alias: none

Argument(s): none

Description
The correction specification specifies that the approximation will be corrected to match truth data. The keyword
second order matching ensures that truth values, gradients and Hessians are matched.

additive

• Keywords Area

• model

• surrogate

• global

• correction

• additive

Additive correction factor for local surrogate accuracy

6.3. MODEL 1551

Specification
Alias: none

Argument(s): none

Description
Use an additive correction factor to improve the local accuracy of a surrogate.

multiplicative

• Keywords Area

• model

• surrogate

• global

• correction

• multiplicative

Multiplicative correction factor for local surrogate accuracy.

Specification
Alias: none

Argument(s): none

Description
Use a multiplicative correction factor to improve the local accuracy of a surrogate.

combined

• Keywords Area

• model

• surrogate

• global

• correction

• combined

Multipoint correction for a hierarchical surrogate

Specification
Alias: none

Argument(s): none

1552 CHAPTER 6. KEYWORDS AREA

Description
For the combined correction, the use of both additive and multiplicative corrections allows the satisfaction of an
additional matching condition, typically the truth function values at the previous correction point (e.g., the center
of the previous trust region). The combined correction is then a multipoint correction, as opposed to the local
additive and multiplicative corrections.

metrics

• Keywords Area

• model

• surrogate

• global

• metrics

Compute surrogate quality metrics

Topics
This keyword is related to the topics:

• surrogate models

Specification
Alias: diagnostics

Argument(s): STRINGLIST
Default: No diagnostics

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional cross validation Perform k-fold
cross validation

Optional press Leave-one-out
cross validation

Description
A variety of diagnostic metrics are available to assess the goodness of fit of a global surrogate to its training data.

The default diagnostics are:

• root mean squared

• mean abs

• rsquared

Additional available diagnostics include

6.3. MODEL 1553

• sum squared

• mean squared

• sum abs

• max abs

The keywords press and cross validation further specify leave-one-out or k-fold cross validation, re-
spectively, for all of the active metrics from above.

Theory
Most of these diagnostics refer to some operation on the residuals (the difference between the surrogate model
and the truth model at the data points upon which the surrogate is built).

For example, sum squared refers to the sum of the squared residuals, and mean abs refers to the mean of
the absolute value of the residuals. rsquared refers to the R-squared value typically used in regression analysis
(the proportion of the variability in the response that can be accounted for by the surrogate model). Care should
be taken when interpreting metrics, for example, errors may be near zero for interpolatory models or rsquared
may not be applicable for non-polynomial models.

cross validation

• Keywords Area

• model

• surrogate

• global

• metrics

• cross validation

Perform k-fold cross validation

Topics
This keyword is related to the topics:

• surrogate models

Specification
Alias: none

Argument(s): none
Default: No cross validation

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

1554 CHAPTER 6. KEYWORDS AREA

Optional(Choose
One)

Group 1 folds Number of cross
validation folds

percent Percent data per
cross validation
fold

Description

General k-fold cross validation may be performed by specifying cross validation. The cross-validation
statistics will be calculated for all metrics.

Cross validation may further specify:

• folds, the number of folds into which to divide the build data (between 2 and number of data points) or

• percent, the fraction of data (between 0 and 0.5) to use in each fold.

These will be adjusted as needed based on the number of available training points. The default number of folds k
= 10, or 0.1

folds

• Keywords Area

• model

• surrogate

• global

• metrics

• cross validation

• folds

Number of cross validation folds

Specification

Alias: none
Argument(s): INTEGER
Default: 10

Description

Number of folds (partitions) of the training data to use in cross validation (default 10).

6.3. MODEL 1555

percent

• Keywords Area

• model

• surrogate

• global

• metrics

• cross validation

• percent

Percent data per cross validation fold

Specification
Alias: none

Argument(s): REAL
Default: 0.1

Description
Percent of the training data to use in each cross validation fold (default 0.1).

press

• Keywords Area

• model

• surrogate

• global

• metrics

• press

Leave-one-out cross validation

Specification
Alias: none

Argument(s): none
Default: No PRESS cross validation

Description
Leave-one-out (PRESS) cross validation may be performed by specifying press. The cross-validation statistics
will be calculated for all metrics.

1556 CHAPTER 6. KEYWORDS AREA

challenge points file

• Keywords Area

• model

• surrogate

• global

• challenge points file

Datafile of points to assess surrogate quality

Specification

Alias: none
Argument(s): STRING
Default: no user challenge data

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional(Choose
One)

tabular format
(Group 1)

annotated Selects annotated
tabular file format

custom annotated Selects
custom-annotated
tabular file format

freeform Selects freeform
file format

Optional active only Import only active
variables from
tabular data file

Description

Specifies a data file containing variable and response (truth) values, in one of three formats:

• annotated (default)

• custom annotated

• freeform

The surrogate is evaluated at the points in the file, and the surrogate (approximate) responses are compared against
the truth results from the file. All metrics specified with metrics will be computed for the challenge data.

6.3. MODEL 1557

annotated

• Keywords Area

• model

• surrogate

• global

• challenge points file

• annotated

Selects annotated tabular file format

Topics

This keyword is related to the topics:

• file formats

Specification

Alias: none
Argument(s): none
Default: annotated

Description

An annotated tabular file is a whitespace-separated text file with one leading header row of comments/column la-
bels. Each subsequent row contains an evaluation ID and interface ID, followed by data for variables, or variables
followed by responses, depending on context.

Default Behavior
By default, Dakota imports and exports tabular files in annotated format. The annotated keyword can be

used to explicitly specify this.
Usage Tips

• To specify pre-Dakota 6.1 tabular format, which did not include interface id, specify custom annotated
header eval id

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

1558 CHAPTER 6. KEYWORDS AREA

Examples
Export an annotated top-level tabular data file containing a header row, leading eval id and interface id columns,
and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
annotated

Resulting tabular file:

%eval_id interface x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 NO_ID 0.9 1.1 0.0002 0.26 0.76
2 NO_ID 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 NO_ID 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

custom annotated

• Keywords Area

• model

• surrogate

• global

• challenge points file

• custom annotated

Selects custom-annotated tabular file format

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional header Enable header row
in
custom-annotated
tabular file

6.3. MODEL 1559

Optional eval id Enable evaluation
ID column in
custom-annotated
tabular file

Optional interface id Enable interface
ID column in
custom-annotated
tabular file

Description
A custom-annotated tabular file is a whitespace-separated text file typically containing row data for variables, or
variables followed by responses, though the format is used for other tabular exports/imports as well. Custom-
annotated allows user options for whether header row, eval id column, and interface id column appear
in the tabular file, thus bridging freeform and (fully) annotated.

Default Behavior
The annotated format is the default for tabular export/import. To control which header row and columns

are in the input/output, specify custom annotated, followed by options, in the relevant export/import context.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export a custom-annotated tabular file in Dakota 6.0 format, which contained only header and eval id (no interface-
id), and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
custom_annotated header eval_id

Resulting tabular file:

%eval_id x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 0.9 1.1 0.0002 0.26 0.76
2 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
...

header

• Keywords Area

• model

• surrogate

1560 CHAPTER 6. KEYWORDS AREA

• global

• challenge points file

• custom annotated

• header

Enable header row in custom-annotated tabular file

Specification

Alias: none
Argument(s): none

Description

See description of parent custom annotated

eval id

• Keywords Area

• model

• surrogate

• global

• challenge points file

• custom annotated

• eval id

Enable evaluation ID column in custom-annotated tabular file

Specification

Alias: none
Argument(s): none

Description

See description of parent custom annotated

6.3. MODEL 1561

interface id

• Keywords Area

• model

• surrogate

• global

• challenge points file

• custom annotated

• interface id

Enable interface ID column in custom-annotated tabular file

Specification
Alias: none

Argument(s): none

Description
See description of parent custom annotated

freeform

• Keywords Area

• model

• surrogate

• global

• challenge points file

• freeform

Selects freeform file format

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Default: annotated

1562 CHAPTER 6. KEYWORDS AREA

Description
A freeform tabular file is whitespace-separated text file with no leading header row and no leading columns. Most
commonly, each row contains data for variables, or variables followed by responses, though the format is used for
other tabular exports/imports as well.

Default Behavior
The annotated format is the default for tabular export/import. To change this behavior, specify freeform

in the relevant export/import context.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

• In freeform, the num rows x num cols total data entries may be separated with any whitespace including
spaces, tabs, and newlines. In this format, vectors may therefore appear as a single row or single column
(or mixture; entries will populate the vector in order).

• Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples
Export a freeform tabular file containing only data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’
freeform

Resulting tabular file:

0.9 1.1 0.0002 0.26 0.76
0.90009 1.1 0.0001996404857 0.2601620081 0.759955
0.89991 1.1 0.0002003604863 0.2598380081 0.760045

...

active only

• Keywords Area

• model

• surrogate

• global

• challenge points file

• active only

Import only active variables from tabular data file

Topics
This keyword is related to the topics:

• file formats

6.3. MODEL 1563

Specification
Alias: none

Argument(s): none

Description
By default, files for tabular data imports are expected to contain columns for all variables, active and inactive. The
keyword active only indicates that the file to import contains only the active variables.

This option should only be used in contexts where the inactive variables have no influence, for example,
building a surrogate over active variables, with the state variables held at nominal. It should not be used in more
complex nested contexts, where the values of inactive variables are relevant to the function evaluations used to
build the surrogate.

multipoint

• Keywords Area

• model

• surrogate

• multipoint

Construct a surrogate from multiple existing training points

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required tana Local multi-point
model via
two-point
nonlinear
approximation

Required actual model -
pointer

Pointer to specify a
”truth” model,
from which to
construct a
surrogate

Description
Multipoint approximations use data from previous design points to improve the accuracy of local approximations.
The data often comes from the current and previous iterates of a minimization algorithm.

Currently, only the Two-point Adaptive Nonlinearity Approximation (TANA-3) method of [91] is supported
with the tana keyword.

The truth model to be used to generate the value/gradient data used in the approximation is identified through
the required actual model pointer specification.

1564 CHAPTER 6. KEYWORDS AREA

See Also
These keywords may also be of interest:

• local

• global

• hierarchical

tana

• Keywords Area

• model

• surrogate

• multipoint

• tana

Local multi-point model via two-point nonlinear approximation

Specification
Alias: none

Argument(s): none

Description
TANA stands for Two Point Adaptive Nonlinearity Approximation.

The TANA-3 method[91] is a multipoint approximation method based on the two point exponential approximation[25].
This approach involves a Taylor series approximation in intermediate variables where the powers used for the in-
termediate variables are selected to match information at the current and previous expansion points.

Theory
The form of the TANA model is:

f̂(x) ≈ f(x2) +
n∑
i=1

∂f

∂xi
(x2)

x1−pi
i,2

pi
(xpii − x

pi
i,2) +

1
2
ε(x)

n∑
i=1

(xpii − x
pi
i,2)2

where n is the number of variables and:

pi = 1+ln

[
∂f
∂xi

(x1)
∂f
∂xi

(x2)

]/
ln
[
xi,1
xi,2

]
ε(x) =

H∑n
i=1(xpii − x

pi
i,1)2 +

∑n
i=1(xpii − x

pi
i,2)2

H = 2

[
f(x1)− f(x2)−

n∑
i=1

∂f

∂xi
(x2)

x1−pi
i,2

pi
(xpii,1 − x

pi
i,2)

]

and x2 and x1 are the current and previous expansion points. Prior to the availability of two expansion points,
a first-order Taylor series is used.

6.3. MODEL 1565

actual model pointer

• Keywords Area

• model

• surrogate

• multipoint

• actual model pointer

Pointer to specify a ”truth” model, from which to construct a surrogate

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING

Description
This must point to a model block, identified by id model. That model will be run to generate training data, from
which a surrogate model will be constructed.

See block pointer for details about pointers.

local

• Keywords Area

• model

• surrogate

• local

Build a locally accurate surrogate from data at a single point

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

1566 CHAPTER 6. KEYWORDS AREA

Required taylor series Construct a Taylor
Series expansion
around a point

Required actual model -
pointer

Pointer to specify a
”truth” model,
from which to
construct a
surrogate

Description

Local approximations use value, gradient, and possibly Hessian data from a single point to form a series expansion
for approximating data in the vicinity of this point.

The currently available local approximation is the taylor series selection.
The truth model to be used to generate the value/gradient/Hessian data used in the series expansion is iden-

tified through the required actual model pointer specification. The use of a model pointer (as opposed
to an interface pointer) allows additional flexibility in defining the approximation. In particular, the derivative
specification for the truth model may differ from the derivative specification for the approximation, and the truth
model results being approximated may involve a model recursion (e.g., the values/gradients from a nested model).

See Also

These keywords may also be of interest:

• global

• hierarchical

• multipoint

taylor series

• Keywords Area

• model

• surrogate

• local

• taylor series

Construct a Taylor Series expansion around a point

Specification

Alias: none
Argument(s): none

6.3. MODEL 1567

Description
The Taylor series model is purely a local approximation method. That is, it provides local trends in the vicinity of
a single point in parameter space.

The order of the Taylor series may be either first-order or second-order, which is automatically determined
from the gradient and Hessian specifications in the responses specification (see responses for info on how to
specify gradients and Hessians) for the truth model.

Theory
The first-order Taylor series expansion is:

f̂(x) ≈ f(x0) +∇xf(x0)T (x− x0) (6.7)

and the second-order expansion is:

f̂(x) ≈ f(x0) +∇xf(x0)T (x− x0) +
1
2

(x− x0)T∇2
xf(x0)(x− x0) (6.8)

where x0 is the expansion point in n-dimensional parameter space and f(x0), ∇xf(x0), and ∇2
xf(x0) are

the computed response value, gradient, and Hessian at the expansion point, respectively.
As dictated by the responses specification used in building the local surrogate, the gradient may be analytic or

numerical and the Hessian may be analytic, numerical, or based on quasi-Newton secant updates.
In general, the Taylor series model is accurate only in the region of parameter space that is close to x0 .

While the accuracy is limited, the first-order Taylor series model reproduces the correct value and gradient at
the point x0, and the second-order Taylor series model reproduces the correct value, gradient, and Hessian. This
consistency is useful in provably-convergent surrogate-based optimization. The other surface fitting methods do
not use gradient information directly in their models, and these methods rely on an external correction procedure
in order to satisfy the consistency requirements of provably-convergent SBO.

actual model pointer

• Keywords Area

• model

• surrogate

• local

• actual model pointer

Pointer to specify a ”truth” model, from which to construct a surrogate

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING

1568 CHAPTER 6. KEYWORDS AREA

Description

This must point to a model block, identified by id model. That model will be run to generate training data, from
which a surrogate model will be constructed.

See block pointer for details about pointers.

hierarchical

• Keywords Area

• model

• surrogate

• hierarchical

Hierarchical approximations use corrected results from a low fidelity model as an approximation to the results
of a high fidelity ”truth” model.

Specification

Alias: none
Argument(s): none

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required low fidelity -
model pointer

Pointer to low
fidelity model

Required high fidelity -
model pointer

Pointer to high
fidelity model

Required correction Correction
approaches for
surrogate models

Description

Hierarchical approximations use corrected results from a low fidelity model as an approximation to the results
of a high fidelity ”truth” model. These approximations are also known as model hierarchy, multifidelity, variable
fidelity, and variable complexity approximations. The required low fidelity model pointer specification
points to the low fidelity model specification. This model is used to generate low fidelity responses which are then
corrected and returned to an iterator. The required high fidelity model pointer specification points
to the specification for the high fidelity truth model. This model is used only for verifying low fidelity results
and updating low fidelity corrections. The correction specification specifies which correction technique will
be applied to the low fidelity results in order to match the high fidelity results at one or more points. In the
hierarchical case (as compared to the global case), the correction specification is required, since the omission
of a correction technique would effectively eliminate the purpose of the high fidelity model. If it is desired to use
a low fidelity model without corrections, then a hierarchical approximation is not needed and a single model
should be used. Refer to global for additional information on available correction approaches.

6.3. MODEL 1569

Theory
Multifidelity Surrogates : Multifidelity modeling involves the use of a low-fidelity physics-based model as a
surrogate for the original high-fidelity model. The low-fidelity model typically involves a coarser mesh, looser
convergence tolerances, reduced element order, or omitted physics. It is a separate model in its own right and
does not require data from the high-fidelity model for construction. Rather, the primary need for high-fidelity
evaluations is for defining correction functions that are applied to the low-fidelity results.

Multifidelity Surrogate Models
A second type of surrogate is the {model hierarchy} type (also called multifidelity, variable fidelity, variable

complexity, etc.). In this case, a model that is still physics-based but is of lower fidelity (e.g., coarser discretization,
reduced element order, looser convergence tolerances, omitted physics) is used as the surrogate in place of the
high-fidelity model. For example, an inviscid, incompressible Euler CFD model on a coarse discretization could
be used as a low-fidelity surrogate for a high-fidelity Navier-Stokes model on a fine discretization.

See Also
These keywords may also be of interest:

• global

• local

• multipoint

low fidelity model pointer

• Keywords Area

• model

• surrogate

• hierarchical

• low fidelity model pointer

Pointer to low fidelity model

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING

Description
low fidelity model pointer points to the model (using its id model label) to use for generating low
fidelity responses, which are corrected and returned to an iterator as explained on the parent page.

1570 CHAPTER 6. KEYWORDS AREA

high fidelity model pointer

• Keywords Area

• model

• surrogate

• hierarchical

• high fidelity model pointer

Pointer to high fidelity model

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING

Description
high fidelity model pointer points to the model (using its id model label) to use for verifying low
fidelity results and updating low fidelity corrections, as explained on the parent page.

correction

• Keywords Area

• model

• surrogate

• hierarchical

• correction

Correction approaches for surrogate models

Specification
Alias: none

Argument(s): none
Default: no surrogate correction

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

6.3. MODEL 1571

Required(Choose
One)

correction order
(Group 1)

zeroth order Specify that truth
values must be
matched.

first order Specify that truth
values and
gradients must be
matched.

second order Specify that truth
values, gradients
and Hessians must
be matched.

Required(Choose
One)

correction type
(Group 2)

additive Additive correction
factor for local
surrogate accuracy

multiplicative Multiplicative
correction factor
for local surrogate
accuracy.

combined Multipoint
correction for a
hierarchical
surrogate

Description
Some of the surrogate model types support the use of correction factors that improve the local accuracy of the
surrogate models.

The correction specification specifies that the approximation will be corrected to match truth data, either
matching truth values in the case of zeroth order matching, matching truth values and gradients in the case
of first order matching, or matching truth values, gradients, and Hessians in the case of second order
matching. For additive and multiplicative corrections, the correction is local in that the truth data is
matched at a single point, typically the center of the approximation region. The additive correction adds a
scalar offset (zeroth order), a linear function (first order), or a quadratic function (second order)
to the approximation to match the truth data at the point, and the multiplicative correction multiplies
the approximation by a scalar (zeroth order), a linear function (first order), or a quadratic function
(second order) to match the truth data at the point. The additive first order case is due to[57] and
the multiplicative first order case is commonly known as beta correction[40]. For the combined
correction, the use of both additive and multiplicative corrections allows the satisfaction of an additional matching
condition, typically the truth function values at the previous correction point (e.g., the center of the previous trust
region). The combined correction is then a multipoint correction, as opposed to the local additive and
multiplicative corrections. Each of these correction capabilities is described in detail in[24].

The correction factors force the surrogate models to match the true function values and possibly true function
derivatives at the center point of each trust region. Currently, Dakota supports either zeroth-, first-, or second-order
accurate correction methods, each of which can be applied using either an additive, multiplicative, or combined

1572 CHAPTER 6. KEYWORDS AREA

correction function. For each of these correction approaches, the correction is applied to the surrogate model and
the corrected model is then interfaced with whatever algorithm is being employed. The default behavior is that no
correction factor is applied.

The simplest correction approaches are those that enforce consistency in function values between the surrogate
and original models at a single point in parameter space through use of a simple scalar offset or scaling applied
to the surrogate model. First-order corrections such as the first-order multiplicative correction (also known as
beta correction[15]) and the first-order additive correction[57] also enforce consistency in the gradients and pro-
vide a much more substantial correction capability that is sufficient for ensuring provable convergence in SBO
algorithms. SBO convergence rates can be further accelerated through the use of second-order corrections which
also enforce consistency in the Hessians[24], where the second-order information may involve analytic, finite-
difference, or quasi-Newton Hessians.

Correcting surrogate models with additive corrections involves

ˆfhiα(x) = flo(x) + α(x) (6.9)

where multifidelity notation has been adopted for clarity. For multiplicative approaches, corrections take the form

ˆfhiβ (x) = flo(x)β(x) (6.10)

where, for local corrections, α(x) and β(x) are first or second-order Taylor series approximations to the exact
correction functions:

α(x) = A(xc) +∇A(xc)T (x− xc) +
1
2

(x− xc)T∇2A(xc)(x− xc) (6.11)

β(x) = B(xc) +∇B(xc)T (x− xc) +
1
2

(x− xc)T∇2B(xc)(x− xc) (6.12)

where the exact correction functions are

A(x) = fhi(x)− flo(x) (6.13)

B(x) =
fhi(x)
flo(x)

(6.14)

Refer to[24] for additional details on the derivations.
A combination of additive and multiplicative corrections can provide for additional flexibility in minimizing

the impact of the correction away from the trust region center. In other words, both additive and multiplicative
corrections can satisfy local consistency, but through the combination, global accuracy can be addressed as well.
This involves a convex combination of the additive and multiplicative corrections:

ˆfhiγ (x) = γ ˆfhiα(x) + (1− γ) ˆfhiβ (x)

where γ is calculated to satisfy an additional matching condition, such as matching values at the previous design
iterate.

It should be noted that in both first order correction methods, the function f̂(x) matches the function value and
gradients of ft(x) at x = xc. This property is necessary in proving that the first order-corrected SBO algorithms
are provably convergent to a local minimum of ft(x). However, the first order correction methods are significantly
more expensive than the zeroth order correction methods, since the first order methods require computing both
∇ft(xc) and ∇fs(xc). When the SBO strategy is used with either of the zeroth order correction methods, or
with no correction method, convergence is not guaranteed to a local minimum of ft(x). That is, the SBO strategy
becomes a heuristic optimization algorithm. From a mathematical point of view this is undesirable, but as a
practical matter, the heuristic variants of SBO are often effective in finding local minima.

Usage guidelines

6.3. MODEL 1573

• Both the additive zeroth order and multiplicative zeroth order correction methods are ”free”
since they use values of ft(xc) that are normally computed by the SBO strategy.

• The use of either the additive first order method or the multiplicative first order method does
not necessarily improve the rate of convergence of the SBO algorithm.

• When using the first order correction methods, the gradient-related response keywords must be modified
to allow either analytic or numerical gradients to be computed. This provides the gradient data needed to
compute the correction function.

• For many computationally expensive engineering optimization problems, gradients often are too expensive
to obtain or are discontinuous (or may not exist at all). In such cases the heuristic SBO algorithm has been
an effective approach at identifying optimal designs[35].

zeroth order

• Keywords Area

• model

• surrogate

• hierarchical

• correction

• zeroth order

Specify that truth values must be matched.

Specification
Alias: none

Argument(s): none

Description
The correction specification specifies that the approximation will be corrected to match truth data. The keyword
zeroth order matching ensures that truth values are matched.

first order

• Keywords Area

• model

• surrogate

• hierarchical

• correction

• first order

Specify that truth values and gradients must be matched.

1574 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): none

Description
This correction specification specifies that the approximation will be corrected to match truth data. The keyword
first order matching ensures that truth values and gradients are matched.

second order

• Keywords Area

• model

• surrogate

• hierarchical

• correction

• second order

Specify that truth values, gradients and Hessians must be matched.

Specification
Alias: none

Argument(s): none

Description
The correction specification specifies that the approximation will be corrected to match truth data. The keyword
second order matching ensures that truth values, gradients and Hessians are matched.

additive

• Keywords Area

• model

• surrogate

• hierarchical

• correction

• additive

Additive correction factor for local surrogate accuracy

Specification
Alias: none

Argument(s): none

6.3. MODEL 1575

Description
Use an additive correction factor to improve the local accuracy of a surrogate.

multiplicative

• Keywords Area

• model

• surrogate

• hierarchical

• correction

• multiplicative

Multiplicative correction factor for local surrogate accuracy.

Specification
Alias: none

Argument(s): none

Description
Use a multiplicative correction factor to improve the local accuracy of a surrogate.

combined

• Keywords Area

• model

• surrogate

• hierarchical

• correction

• combined

Multipoint correction for a hierarchical surrogate

Specification
Alias: none

Argument(s): none

Description
For the combined correction, the use of both additive and multiplicative corrections allows the satisfaction of an
additional matching condition, typically the truth function values at the previous correction point (e.g., the center
of the previous trust region). The combined correction is then a multipoint correction, as opposed to the local
additive and multiplicative corrections.

1576 CHAPTER 6. KEYWORDS AREA

6.3.7 nested

• Keywords Area

• model

• nested

A model whose responses are computed through the use of a sub-iterator

Specification

Alias: none
Argument(s): none

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional optional interface-
pointer

Pointer to interface
that provides
non-nested
responses

Required sub method -
pointer

The
sub method -
pointer
specifies the
method block for
the sub-iterator

Description

Instead of appealing directly to a primary interface, a nested model maps variables to responses by executing a
secondary iterator, or a ”sub-iterator”. In other words, a function evaluation of the primary study consists of a
solution of an entire secondary study - potentially many secondary function evaluations.

The sub-iterator in turn operates on a sub-model. The sub-iterator responses may be combined with non-nested
contributions from an optional interface specification.

A sub method pointer must be provided in order to specify the method block describing the sub-iterator.
The remainder of the model is specified under that keyword.

A optional interface pointer points to the interface specification and optional interface-
responses pointer points to a responses specification describing the data to be returned by this interface).

This interface is used to provide non-nested data, which is then combined with data from the nested iterator using
the primary response mapping and secondary response mapping inputs (see mapping discussion
below).

Examples
An example of variable and response mappings is provided below:

primary_variable_mapping = ’’ ’’ ’X’ ’Y’
secondary_variable_mapping = ’’ ’’ ’mean’ ’mean’
primary_response_mapping = 1. 0. 0. 0. 0. 0. 0. 0. 0.
secondary_response_mapping = 0. 0. 0. 1. 3. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 1. 3. 0.

6.3. MODEL 1577

The variable mappings correspond to 4 top-level variables, the first two of which employ the default mappings
from active top-level variables to sub-model variables of the same type (option 3 above) and the latter two of
which are inserted into the mean distribution parameters of sub-model variables ’X’ and ’Y’ (option 1 above).
The response mappings define a 3 by 9 matrix corresponding to 9 inner loop response attributes and 3 outer
loop response functions (one primary response function and 2 secondary functions, such as one objective and
two constraints). Each row of the response mapping is a vector which is multiplied (i.e, with a dot-product)
against the 9 sub-iterator values to determine the outer loop function. Consider a UQ example with 3 response
functions, each providing a mean, a standard deviation, and one level mapping (if no level mappings are specified,
the responses would only have a mean and standard deviation). The primary response mapping can be seen to
extract the first value from the inner loop, which would correspond to the mean of the first response function.
This mapped sub-iterator response becomes a single objective function, least squares term, or generic response
function at the outer level, as dictated by the top-level response specification. The secondary response mapping
maps the fourth sub-iterator response function plus 3 times the fifth sub-iterator response function (mean plus 3
standard deviations) into one top-level nonlinear constraint and the seventh sub-iterator response function plus 3
times the eighth sub-iterator response function (mean plus 3 standard deviations) into another top-level nonlinear
constraint, where these top-level nonlinear constraints may be inequality or equality, as dictated by the top-level
response specification. Note that a common case is for each sub-iterator response to be mapped to a unique outer
loop response (for example, in the nested UQ case where one wants to determine an interval on each inner loop
statistic). In these simple cases, the response mapping would define an identity matrix.

See Also
These keywords may also be of interest:

• single

• surrogate

optional interface pointer

• Keywords Area

• model

• nested

• optional interface pointer

Pointer to interface that provides non-nested responses

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING
Default: no optional interface

1578 CHAPTER 6. KEYWORDS AREA

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional optional interface-
responses pointer

Pointer to
responses block
that defines
non-nested
responses

Description

optional interface pointer is used to specify an optional inferface (using that interface block’s id -
interface label) to provide non-nested responses, which will be combined with respones from the nested sub-
iterator. The primary response mapping and secondary response mapping keywords control how
responses are combined.

optional interface responses pointer

• Keywords Area

• model

• nested

• optional interface pointer

• optional interface responses pointer

Pointer to responses block that defines non-nested responses

Topics

This keyword is related to the topics:

• block pointer

Specification

Alias: none
Argument(s): STRING
Default: reuse of top-level responses specification

Description

optional interface responses pointer points to the reponses block (specifically, its id responses
label) that defines the non-nested response to return to the nested model. The primary response mapping
and secondary response mapping keywords control how these non-nested respones are combined with
responses from the nested sub-iterator. If optional interface responses pointer is not provided,
the top-level responses specification is reused.

6.3. MODEL 1579

sub method pointer

• Keywords Area

• model

• nested

• sub method pointer

The sub method pointer specifies the method block for the sub-iterator

Topics
This keyword is related to the topics:

• block pointer

Specification
Alias: none

Argument(s): STRING
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional iterator servers Specify the
number of iterator
servers when
Dakota is run in
parallel

Optional iterator scheduling Specify the
scheduling of
concurrent iterators
when Dakota is run
in parallel

Optional processors per -
iterator

Specify the
number of
processors per
iterator server
when Dakota is run
in parallel

Optional primary variable -
mapping

Primary mappning
of top-level
variables to
sub-model
variables

1580 CHAPTER 6. KEYWORDS AREA

Optional secondary -
variable mapping

Secondary
mappning of
top-level variables
to sub-model
variables

Optional primary response -
mapping

Primary mappning
of sub-model
responses to
top-level responses

Optional secondary -
response mapping

Secondary
mappning of
sub-model
responses to
top-level responses

Description
The sub method pointer specifies the method block for the sub-iterator.

See block pointer for details about pointers.
Nested models may employ mappings for both the variable inputs to the sub-model and the response outputs

from the sub-model. In the former case, the primary variable mapping and secondary variable-
mapping specifications are used to map from the active top-level variables into the sub-model variables, and

in the latter case, the primary response mapping and secondary response mapping specifications
are used to compute the sub-model response contributions to the top-level responses.

For the variable mappings, the primary and secondary specifications provide lists of strings which are used
to target specific sub-model variables and their sub-parameters, respectively. The primary strings are matched to
continuous or discrete variable labels such as ’cdv 1’ (either user-supplied or default labels), and the secondary
strings are matched to either real or integer random variable distribution parameters such as ’mean’ or ’num-
trials’ (the form of the uncertain distribution parameter keyword that is appropriate for a single variable

instance) or continuous or discrete design/state variable sub-parameters such as ’lower bound’ or ’upper-
bound’ (again, keyword form appropriate for a single variable instance). No coercion of types is supported, so

real-valued top-level variables should map to either real-valued sub-model variables or real-valued sub-parameters
and integer-valued top-level variables should map to either integer-valued sub-model variables or integer-valued
sub-parameters. As long as these real versus integer constraints are satisfied, mappings are free to cross vari-
able types (design, aleatory uncertain, epistemic uncertain, state) and domain types (continuous, discrete). Both
primary variable mapping and secondary variable mapping specifications are optional, which
is designed to support the following three possibilities:

1. If both primary and secondary variable mappings are specified, then an active top-level variable value will
be inserted into the identified sub-parameter (the secondary mapping) for the identified sub-model variable
(the primary mapping).

2. If a primary mapping is specified but a secondary mapping is not, then an active top-level variable value
will be inserted into the identified sub-model variable value (the primary mapping).

3. If a primary mapping is not specified (corresponding secondary mappings, if specified, are ignored), then
an active top-level variable value will be inserted into a corresponding sub-model variable, based on
matching of variable types (e.g., top-level and sub-model variable specifications both allocate a set of
’continuous design’ variables which are active at the top level). Multiple sub-model variable types
may be updated in this manner, provided that they are all active in the top-level variables. Since there is a
direct variable correspondence for these default insertions, sub-model bounds and labels are also updated

6.3. MODEL 1581

from the top-level bounds and labels in order to eliminate the need for redundant input file specifications.
Thus, it is typical for the sub-model variables specification to only contain the minimal required informa-
tion, such as the number of variables, for these insertion targets. The sub-model must allocate enough space
for each of the types that will accept default insertions, and the leading set of matching sub-model variables
are updated (i.e., the sub-model may allocate more than needed and the trailing set will be unmodified).

These different variable mapping possibilities may be used in any combination by employing empty strings
(’’) for particular omitted mappings (the number of strings in user-supplied primary and secondary variable
mapping specifications must equal the total number of active top-level variables, including both continuous and
discrete types). The ordering of the active variables is the same as shown in dakota.input.summary on Input Spec
Summary and as presented in variables.

If inactive variables are present at the outer level, then the default type 3 mapping is used for these variables;
that is, outer loop inactive variables are inserted into inner loop variables (active or inactive) based on matching
of variable types, top-level bounds and labels are also propagated, the inner loop must allocate sufficient space to
receive the outer loop values, and the leading subset within this inner loop allocation is updated. This capability
is important for allowing nesting beyond two levels, since an active variable at the outer-most loop may become
inactive at the next lower level, but still needs to be further propagated down to lower levels in the recursion.

For the response mappings, the primary and secondary specifications provide real-valued multipliers to be
applied to sub-iterator response results so that the responses from the inner loop can be mapped into a new
set of responses at the outer loop. For example, if the nested model is being employed within a mixed aleatory-
epistemic uncertainty quantification, then aleatory statistics from the inner loop (such as moments of the response)
are mapped to the outer level, where minima and maxima of these aleatory statistics are computed as functions of
the epistemic parameters. The response mapping defines a matrix which scales the values from the inner loop and
determines their position in the outer loop response vector. Each row of the mapping corresponds to one outer
loop response, where each column of the mapping corresponds to a value from the inner loop. Depending on the
number of responses and the particular attributes calculated on the inner loop, there will be a vector of inner loop
response values that need to be accounted for in the mapping. This vector of inner loop response results is defined
as follows for different sub-iterator types:

• optimization: the final objective function(s) and nonlinear constraints

• nonlinear least squares: the final least squares terms and nonlinear constraints

• aleatory uncertainty quantification (UQ): for each response function, a mean statistic, a standard deviation
statistic, and all probability/reliability/generalized reliability/response level results for any user-specified
response levels, probability levels, reliability levels, and/or gen reliability-
levels, in that order.

• epistemic and mixed aleatory/epistemic UQ using interval estimation methods: lower and upper interval
bounds for each response function.

• epistemic and mixed aleatory/epistemic UQ using evidence methods: for each response function, lower and
upper interval bounds (belief and plausibility) for all probability/reliability/generalized reliability/response
level results computed from any user-specified response levels, probability levels, reliability-
levels, and/or gen reliability levels, in that order.

• parameter studies and design of experiments: for optimization and least squares response data sets, the best
solution found (lowest constraint violation if infeasible, lowest composite objective function if feasible).
For generic response data sets, a best solution metric is not defined, so the sub-iterator response vector is
empty in this case.

1582 CHAPTER 6. KEYWORDS AREA

The primary values map sub-iterator response results into top-level objective functions, least squares terms,
or generic response functions, depending on the declared top-level response set. The secondary values map sub-
iterator response results into top-level nonlinear inequality and equality constraints.

Nested models utilize a sub-iterator and a sub-model to perform a complete iterative study as part of every
evaluation of the model. This sub-iteration accepts variables from the outer level, performs the sub-level analysis,
and computes a set of sub-level responses which are passed back up to the outer level. Mappings are employed
for both the variable inputs to the sub-model and the response outputs from the sub-model.

In the variable mapping case, primary and secondary variable mapping specifications are used to map from the
top-level variables into the sub-model variables. These mappings support three possibilities in any combination-
: (1) insertion of an active top-level variable value into an identified sub-model distribution parameter for an
identified active sub-model variable, (2) insertion of an active top-level variable value into an identified active
sub-model variable value, and (3) addition of an active top-level variable value as an inactive sub-model variable,
augmenting the active sub-model variables.

In the response mapping case, primary and secondary response mapping specifications are used to map from
the sub-model responses back to the top-level responses. These specifications provide real-valued multipliers that
are applied to the sub-iterator response results to define the outer level response set. These nested data results may
be combined with non-nested data through use of the ”optional interface” component within nested models.

The nested model constructs admit a wide variety of multi-iterator, multi-model solution approaches. For
example, optimization within optimization (for hierarchical multidisciplinary optimization), uncertainty quantifi-
cation within uncertainty quantification (for second-order probability), uncertainty quantification within optimiza-
tion (for optimization under uncertainty), and optimization within uncertainty quantification (for uncertainty of
optima) are all supported, with and without surrogate model indirection. Several examples of nested model usage
are provided in the Users Manual, most notably mixed epistemic-aleatory UQ, optimization under uncertainty
(OUU), and surrogate-based UQ.

iterator servers

• Keywords Area

• model

• nested

• sub method pointer

• iterator servers

Specify the number of iterator servers when Dakota is run in parallel

Topics

This keyword is related to the topics:

• concurrency and parallelism

Specification

Alias: none
Argument(s): INTEGER

6.3. MODEL 1583

Description
An important feature for component-based iterators is that execution of sub-iterator runs may be performed con-
currently. The optional iterator servers specification supports user override of the automatic parallel con-
figuration for the number of iterator servers. That is, if the automatic configuration is undesirable for some
reason, the user can enforce a desired number of partitions at the iterator parallelism level. Currently, hybrid,
multi start, and pareto set component-based iterators support concurrency in their sub-iterators. Refer
to ParallelLibrary and the Parallel Computing chapter of the Users Manual [4] for additional information.

iterator scheduling

• Keywords Area

• model

• nested

• sub method pointer

• iterator scheduling

Specify the scheduling of concurrent iterators when Dakota is run in parallel

Topics
This keyword is related to the topics:

• concurrency and parallelism

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 master Specify a
dedicated master
partition for
parallel iterator
scheduling

peer Specify a peer
partition for
parallel iterator
scheduling

Description
An important feature for component-based iterators is that execution of sub-iterator runs may be performed con-
currently. The optional iterator scheduling specification supports user override of the automatic parallel
configuration for the number of iterator servers. That is, if the automatic configuration is undesirable for some
reason, the user can enforce a desired number of partitions at the iterator parallelism level. Currently, hybrid,
multi start, and pareto set component-based iterators support concurrency in their sub-iterators. Refer
to ParallelLibrary and the Parallel Computing chapter of the Users Manual [4] for additional information.

1584 CHAPTER 6. KEYWORDS AREA

master

• Keywords Area

• model

• nested

• sub method pointer

• iterator scheduling

• master

Specify a dedicated master partition for parallel iterator scheduling

Topics
This keyword is related to the topics:

• concurrency and parallelism

Specification
Alias: none

Argument(s): none

Description
This option overrides the Dakota parallel automatic configuration, forcing the use of a dedicated master partition.
In a dedicated master partition, one processor (the ”master”) dynamically schedules work on the iterator servers.
This reduces the number of processors available to create servers by 1.

peer

• Keywords Area

• model

• nested

• sub method pointer

• iterator scheduling

• peer

Specify a peer partition for parallel iterator scheduling

Topics
This keyword is related to the topics:

• concurrency and parallelism

6.3. MODEL 1585

Specification
Alias: none

Argument(s): none

Description
This option overrides the Dakota parallel automatic configuration, forcing the use of a peer partition. In a peer par-
tition, all processors are available to be assigned to iterator servers. Note that unlike the case of evaluation -
scheduling, it is not possible to specify static or dynamic.

processors per iterator

• Keywords Area

• model

• nested

• sub method pointer

• processors per iterator

Specify the number of processors per iterator server when Dakota is run in parallel

Topics
This keyword is related to the topics:

• concurrency and parallelism

Specification
Alias: none

Argument(s): INTEGER

Description
An important feature for component-based iterators is that execution of sub-iterator runs may be performed con-
currently. The optional processors per iterator specification supports user override of the automatic
parallel configuration for the number of processors in each iterator server. That is, if the automatic configura-
tion is undesirable for some reason, the user can enforce a desired server size at the iterator parallelism level.
Currently, hybrid, multi start, and pareto set component-based iterators support concurrency in their
sub-iterators. Refer to ParallelLibrary and the Parallel Computing chapter of the Users Manual[4] for additional
information.

primary variable mapping

• Keywords Area

• model

• nested

1586 CHAPTER 6. KEYWORDS AREA

• sub method pointer

• primary variable mapping

Primary mappning of top-level variables to sub-model variables

Specification

Alias: none
Argument(s): STRINGLIST
Default: default variable insertions based on variable type

Description

The primary variable mapping, secondary variable mapping, primary response mapping,
and secondary response mapping keywords control how top-level variables and responses are mapped to
variables and responses in the sub-model. Their usage is explained on the parent keyword (sub method -
pointer) page.

secondary variable mapping

• Keywords Area

• model

• nested

• sub method pointer

• secondary variable mapping

Secondary mappning of top-level variables to sub-model variables

Specification

Alias: none
Argument(s): STRINGLIST
Default: primary mappings into sub-model variables are value-based

Description

The primary variable mapping, secondary variable mapping, primary response mapping,
and secondary response mapping keywords control how top-level variables and responses are mapped to
variables and responses in the sub-model. Their usage is explained on the parent keyword (sub method -
pointer) page.

6.3. MODEL 1587

primary response mapping

• Keywords Area

• model

• nested

• sub method pointer

• primary response mapping

Primary mappning of sub-model responses to top-level responses

Specification
Alias: none

Argument(s): REALLIST
Default: no sub-iterator contribution to primary functions

Description
The primary variable mapping, secondary variable mapping, primary response mapping,
and secondary response mapping keywords control how top-level variables and responses are mapped to
variables and responses in the sub-model. Their usage is explained on the parent keyword (sub method -
pointer) page.

secondary response mapping

• Keywords Area

• model

• nested

• sub method pointer

• secondary response mapping

Secondary mappning of sub-model responses to top-level responses

Specification
Alias: none

Argument(s): REALLIST
Default: no sub-iterator contribution to secondary functions

Description
The primary variable mapping, secondary variable mapping, primary response mapping,
and secondary response mapping keywords control how top-level variables and responses are mapped to
variables and responses in the sub-model. Their usage is explained on the parent keyword (sub method -
pointer) page.

1588 CHAPTER 6. KEYWORDS AREA

6.4 variables
• Keywords Area

• variables

Specifies the parameter set to be iterated by a particular method.

Topics
This keyword is related to the topics:

• block

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional id variables Name the variables
block; helpful
when there are
multiple

Optional active Set the active
variables view a
method will see

Optional(Choose
One)

Group 1 mixed Maintain
continuous/discrete
variable distinction

relaxed Allow treatment of
discrete variables
as continuous

Optional continuous design Continuous design
variables; each
defined by a real
interval

6.4. VARIABLES 1589

Optional discrete design -
range

Discrete design
variables; each
defined by an
integer interval

Optional discrete design set Set-valued discrete
design variables

Optional normal uncertain Aleatory uncertain
variable - normal
(Gaussian)

Optional lognormal -
uncertain

Aleatory uncertain
variable -
lognormal

Optional uniform uncertain Aleatory uncertain
variable - uniform

Optional loguniform -
uncertain

Aleatory uncertain
variable -
loguniform

Optional triangular -
uncertain

Aleatory uncertain
variable -
triangular

Optional exponential -
uncertain

Aleatory uncertain
variable -
exponential

Optional beta uncertain Aleatory uncertain
variable - beta

Optional gamma uncertain Aleatory uncertain
variable - gamma

Optional gumbel uncertain Aleatory uncertain
variable - gumbel

Optional frechet uncertain Aleatory uncertain
variable - Frechet

Optional weibull uncertain Aleatory uncertain
variable - Weibull

Optional histogram bin -
uncertain

Aleatory uncertain
variable -
continuous
histogram

1590 CHAPTER 6. KEYWORDS AREA

Optional poisson uncertain Aleatory uncertain
discrete variable -
Poisson

Optional binomial uncertain Aleatory uncertain
discrete variable -
binomial

Optional negative binomial-
uncertain

Aleatory uncertain
discrete variable -
negative binomial

Optional geometric -
uncertain

Aleatory uncertain
discrete variable -
geometric

Optional hypergeometric -
uncertain

Aleatory uncertain
discrete variable -
hypergeometric

Optional histogram point -
uncertain

Aleatory uncertain
variable - discrete
histogram

Optional uncertain -
correlation matrix

Correlation among
aleatory uncertain
variables

Optional continuous -
interval uncertain

Epistemic
uncertain variable -
values from one or
more continuous
intervals

Optional discrete interval -
uncertain

Epistemic
uncertain variable -
values from one or
more discrete
intervals

Optional discrete uncertain-
set

Set-valued discrete
uncertain variables

Optional continuous state Continuous state
variables

Optional discrete state -
range

Discrete state
variables; each
defined by an
integer interval

6.4. VARIABLES 1591

Optional discrete state set Set-valued discrete
state variables

Description
The variables specification in a Dakota input file specifies the parameter set to be iterated by a particular
method.

In the case of

• An optimization study:

– These variables are adjusted in order to locate an optimal design.

• Parameter studies/sensitivity analysis/design of experiments:

– These parameters are perturbed to explore the parameter space.

• Uncertainty analysis:

– The variables are associated with distribution/interval characterizations which are used to compute
corresponding distribution/interval characterizations for response functions.

To accommodate these different studies, Dakota supports different:

• Variable types

– design

– aleatory uncertain

– epistemic uncertain

– state

• Variable domains

– continuous

– discrete

∗ discrete range
∗ discrete integer set
∗ discrete string set
∗ discrete real set

Use the variables page to browse the available variables by type and domain.
Variable Types

• Design Variables

– Design variables are those variables which are modified for the purposes of computing an optimal
design.

– The most common type of design variables encountered in engineering applications are of the contin-
uous type. These variables may assume any real value within their bounds.

– All but a handful of the optimization algorithms in Dakota support continuous design variables exclu-
sively.

1592 CHAPTER 6. KEYWORDS AREA

• Aleatory Uncertain Variables

– Aleatory uncertainty is also known as inherent variability, irreducible uncertainty, or randomness.

– Aleatory uncertainty is predominantly characterized using probability theory. This is the only option
implemented in Dakota.

• Epistemic Uncertain Variables

– Epistemic uncertainty is uncertainty due to lack of knowledge.

– In Dakota, epistemic uncertainty is characterized by interval analysis or the Dempster-Shafer theory
of evidence.

– Note that epistemic uncertainty can also be modeled with probability density functions (as done with
aleatory uncertainty). Dakota does not support this capability.

• State Variables

– State variables consist of ”other” variables which are to be mapped through the simulation interface,
in that they are not to be used for design and they are not modeled as being uncertain.

– State variables provide a convenient mechanism for managing additional model parameterizations
such as mesh density, simulation convergence tolerances, and time step controls.

– Only parameter studies and design of experiments methods will iterate on state variables.

– The initial value is used as the only value for the state variable for all other methods, unless
active state is invoked.

– See more details on the state variables page.

Variable Domains
Continuous variables are defined by bounds. Discrete variables can be defined in one of three ways, which are

discussed on the page discrete variables.
Ordering of Variables
The ordering of variables is important, and a consistent ordering is employed throughout the Dakota software.

The ordering is shown in dakota.input.summary and can be summarized as:

1. design

(a) continuous

(b) discrete integer

(c) discrete string

(d) discrete real

2. aleatory uncertain

(a) continuous

(b) discrete integer

(c) discrete string

(d) discrete real

3. epistemic uncertain

(a) continuous

6.4. VARIABLES 1593

(b) discrete integer

(c) discrete string

(d) discrete real

4. state

(a) continuous

(b) discrete integer

(c) discrete string

(d) discrete real

Ordering of variable types below this granularity (e.g., from normal to histogram bin within aleatory uncertain
- continuous) is defined somewhat arbitrarily, but is enforced consistently throughout the code.

Active Variables
The reason variable types exist is that methods have the capability to treat variable types differently. All

methods have default behavior that determines which variable types are ”active” and will be assigned values by
the method. For example, optimization methods will only vary the design variables - by default.

The default behavior should be described on each method page, or on topics pages that relate to classes of
methods. In addition, the default behavior can be modified using the active keyword.

Examples
Several examples follow. In the first example, two continuous design variables are specified:

variables,
continuous_design = 2

initial_point 0.9 1.1
upper_bounds 5.8 2.9
lower_bounds 0.5 -2.9
descriptors ’radius’ ’location’

In the next example, defaults are employed. In this case, initial point will default to a vector of 0.
values, upper bounds will default to vector values of DBL MAX (the maximum number representable in double
precision for a particular platform, as defined in the platform’s float.h C header file), lower bounds will
default to a vector of -DBL MAX values, and descriptors will default to a vector of ’cdv i’ strings, where
i ranges from one to two:

variables,
continuous_design = 2

In the following example, the syntax for a normal-lognormal distribution is shown. One normal and one
lognormal uncertain variable are completely specified by their means and standard deviations. In addition, the
dependence structure between the two variables is specified using the uncertain correlation matrix.

variables,
normal_uncertain = 1
means = 1.0
std_deviations = 1.0
descriptors = ’TF1n’

lognormal_uncertain = 1
means = 2.0
std_deviations = 0.5
descriptors = ’TF2ln’

uncertain_correlation_matrix = 1.0 0.2
0.2 1.0

1594 CHAPTER 6. KEYWORDS AREA

An example of the syntax for a state variables specification follows:

variables,
continuous_state = 1

initial_state 4.0
lower_bounds 0.0
upper_bounds 8.0
descriptors ’CS1’

discrete_state_range = 1
initial_state 104
lower_bounds 100
upper_bounds 110
descriptors ’DS1’

And in a more advanced example, a variables specification containing a set identifier, continuous and discrete
design variables, normal and uniform uncertain variables, and continuous and discrete state variables is shown:

variables,
id_variables = ’V1’
continuous_design = 2

initial_point 0.9 1.1
upper_bounds 5.8 2.9
lower_bounds 0.5 -2.9
descriptors ’radius’ ’location’

discrete_design_range = 1
initial_point 2
upper_bounds 1
lower_bounds 3
descriptors ’material’

normal_uncertain = 2
means = 248.89, 593.33
std_deviations = 12.4, 29.7
descriptors = ’TF1n’ ’TF2n’

uniform_uncertain = 2
lower_bounds = 199.3, 474.63
upper_bounds = 298.5, 712.
descriptors = ’TF1u’ ’TF2u’

continuous_state = 2
initial_state = 1.e-4 1.e-6
descriptors = ’EPSIT1’ ’EPSIT2’

discrete_state_set_int = 1
initial_state = 100
set_values = 100 212 375
descriptors = ’load_case’

6.4.1 id variables
• Keywords Area

• variables

• id variables

Name the variables block; helpful when there are multiple

Topics
This keyword is related to the topics:

• block pointer

6.4. VARIABLES 1595

Specification
Alias: none

Argument(s): STRING
Default: use of last variables parsed

Description
The optional set identifier specification uses the keyword id variables to input a unique string for use in
identifying a particular variables set. A model can then identify the use of this variables set by specifying the
same string in its variables pointer specification.

If the id variables specification is omitted, a particular variables set will be used by a model only if that
model omits specifying a variables pointer and if the variables set was the last set parsed (or is the only set
parsed). In common practice, if only one variables set exists, then id variables can be safely omitted from
the variables specification and variables pointer can be omitted from the model specification(s), since
there is no potential for ambiguity in this case.

Examples
For example, a model whose specification contains variables pointer = ’V1’ will use a variables spec-
ification containing the set identifier id variables = ’V1’.

See Also
These keywords may also be of interest:

• variables pointer

6.4.2 active
• Keywords Area

• variables

• active

Set the active variables view a method will see

Specification
Alias: none

Argument(s): none
Default: Infer from response or method specification

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1

all Option for the
active keyword

1596 CHAPTER 6. KEYWORDS AREA

design Option for the
active keyword

uncertain Option for the
active keyword

aleatory Option for the
active keyword

epistemic Option for the
active keyword

state Option for the
active keyword

Description
There are certain situations where the user may want to explicitly control the subset of variables that is considered
active for a certain Dakota method. This is done by specifying the keyword active in the variables specification
block, followed by one of the following: all, design, uncertain, aleatory, epistemic, or state.

Specifying one of these subsets of variables will allow the Dakota method to operate on the specified variable
types and override the default active subset.

If the user does not specify any explicit override of the active view of the variables, Dakota first considers the
response function specification.

• If the user specifies objective functions or calibration terms in the response specification block, then we
can infer that the active variables should be the design variables (since design variables are used within
optimization and least squares methods).

• If the user instead specifies the generic response type of response functions, then Dakota cannot
infer the active variable subset from the response specification and will instead infer it from the method
selection.

1. If the method is a parameter study, or any of the methods available under dace, psuade, or fsu methods,
the active view is set to all variables.

2. For uncertainty quantification methods, if the method is sampling, then the view is set to aleatory
if only aleatory variables are present, epistemic if only epistemic variables are present, or uncertain
(covering both aleatory and epistemic) if both are present.

3. If the uncertainty method involves interval estimation or evidence calculations, the view is set to
epistemic.

4. For other uncertainty quantification methods not mentioned in the previous sentences (e.g., reliability
methods or stochastic expansion methods), the default view is set to aleatory.

5. Finally, for verification studies using the Richardson extrapolation method, the active view is set to
state.

6. Note that in surrogate-based optimization, where the surrogate is built on points defined by the method
defined by the dace method pointer, the sampling used to generate the points is performed only
over the design variables as a default unless otherwise specified (e.g. state variables will not be
sampled for surrogate construction).

As alluded to in the previous section, the iterative method selected for use in Dakota determines what subset,
or view, of the variables data is active in the iteration. The general case of having a mixture of various different
types of variables is supported within all of the Dakota methods even though certain methods will only modify
certain types of variables (e.g., optimizers and least squares methods only modify design variables, and uncertainty
quantification methods typically only utilize uncertain variables). This implies that variables which are not under

6.4. VARIABLES 1597

the direct control of a particular iterator will be mapped through the interface in an unmodified state. This allows
for a variety of parameterizations within the model in addition to those which are being used by a particular
iterator, which can provide the convenience of consolidating the control over various modeling parameters in a
single file (the Dakota input file). An important related point is that the variable set that is active with a particular
iterator is the same variable set for which derivatives are typically computed.

Examples
For example, the default behavior for a nondeterministic sampling method is to sample the uncertain variables.
However, if the user specifed active all in the variables specification block, the sampling would be performed
over all variables (e.g. design and state variables in addition to the uncertain variables). This may be desired in
situations such as surrogate-based optimization under uncertainty, where a surrogate may be constructed to span
both design and uncertain variables. This is an example where we expand the active subset beyond the default, but
in other situations, we may wish to restrict from the default. An example of this would be performing design of
experiments in the presence of multiple variable types (for which all types are active by default), but only wanting
to sample over the design variables for purposes of constructing a surrogate model for optimization.

Theory
The optional status of the different variable type specifications allows the user to specify only those variables
which are present (rather than explicitly specifying that the number of a particular type of variables is zero).
However, at least one type of variables that are active for the iterator in use must have nonzero size or an input
error message will result.

all

• Keywords Area

• variables

• active

• all

Option for the active keyword

Specification
Alias: none

Argument(s): none

Description
See the active keyword

design

• Keywords Area

• variables

• active

1598 CHAPTER 6. KEYWORDS AREA

• design

Option for the active keyword

Specification
Alias: none

Argument(s): none

Description
See the active keyword

uncertain

• Keywords Area

• variables

• active

• uncertain

Option for the active keyword

Specification
Alias: none

Argument(s): none

Description
See the active keyword

aleatory

• Keywords Area

• variables

• active

• aleatory

Option for the active keyword

Specification
Alias: none

Argument(s): none

Description
See the active keyword

6.4. VARIABLES 1599

epistemic

• Keywords Area

• variables

• active

• epistemic

Option for the active keyword

Specification
Alias: none

Argument(s): none

Description
See the active keyword

state

• Keywords Area

• variables

• active

• state

Option for the active keyword

Specification
Alias: none

Argument(s): none

Description
See the active keyword

6.4.3 mixed
• Keywords Area

• variables

• mixed

Maintain continuous/discrete variable distinction

1600 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): none
Default: relaxed (branch and bound), mixed (all other methods)

Description
The variables domain specifies how the discrete variables are treated. If the user specifies mixed in the variable
specification block, the continuous and discrete variables are treated separately. If the user specifies relaxed in
the variable specification block, the discrete variables are relaxed and treated as continuous variables. This may
be useful in optimization problems involving both continuous and discrete variables when a user would like to use
an optimization method that is designed for continuous variable optimization. All Dakota methods have a default
value of mixed for the domain type except for the branch-and-bound method which has a default domain type of
relaxed. Note that the branch-and-bound method is under development at this time. Finally, note that the domain
selection applies to all variable types: design, aleatory uncertain, epistemic uncertain, and state.

With respect to domain type, if the user does not specify an explicit override of mixed or relaxed, Dakota
infers the domain type from the method. As mentioned above, all methods currently use a mixed domain as a
default, except the branch-and-bound method which is under development.

See Also
These keywords may also be of interest:

• relaxed

6.4.4 relaxed
• Keywords Area

• variables

• relaxed

Allow treatment of discrete variables as continuous

Specification
Alias: none

Argument(s): none

Description
The variables domain specifies how the discrete variables are treated. If the user specifies mixed in the variable
specification block, the continuous and discrete variables are treated separately. If the user specifies relaxed in
the variable specification block, the discrete variables are relaxed and treated as continuous variables. This may
be useful in optimization problems involving both continuous and discrete variables when a user would like to use
an optimization method that is designed for continuous variable optimization. All Dakota methods have a default
value of mixed for the domain type except for the branch-and-bound method which has a default domain type of
relaxed. Note that the branch-and-bound method is under development at this time. Finally, note that the domain
selection applies to all variable types: design, aleatory uncertain, epistemic uncertain, and state.

6.4. VARIABLES 1601

With respect to domain type, if the user does not specify an explicit override of mixed or relaxed, Dakota
infers the domain type from the method. As mentioned above, all methods currently use a mixed domain as a
default, except the branch-and-bound method which is under development.

See Also
These keywords may also be of interest:

• mixed

6.4.5 continuous design
• Keywords Area

• variables

• continuous design

Continuous design variables; each defined by a real interval

Topics
This keyword is related to the topics:

• continuous variables

• design variables

Specification
Alias: none

Argument(s): INTEGER
Default: no continuous design variables

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional initial point Initial values

Optional lower bounds Specify minimum
values

Optional upper bounds Specify maximium
values

Optional scale types Specify scaling for
the variables

Optional scales Specify scaling for
the variable.

Optional descriptors Labels for the
variables

Description
Continuous variables that are changed during the search for the optimal design.

1602 CHAPTER 6. KEYWORDS AREA

initial point

• Keywords Area

• variables

• continuous design

• initial point

Initial values

Specification
Alias: cdv initial point

Argument(s): REALLIST
Default: 0.0

Description
The initial point specifications provide the point in design space (variable values) from which an iterator
is started. These default to the midpoint of bounds (continuous design variables) or the middle value (discrete
design variables).

lower bounds

• Keywords Area

• variables

• continuous design

• lower bounds

Specify minimum values

Specification
Alias: cdv lower bounds

Argument(s): REALLIST
Default: -infinity

Description
Specify minimum values

upper bounds

• Keywords Area

• variables

• continuous design

• upper bounds

Specify maximium values

6.4. VARIABLES 1603

Specification

Alias: cdv upper bounds
Argument(s): REALLIST
Default: infinity

Description

Specify maximium values

scale types

• Keywords Area

• variables

• continuous design

• scale types

Specify scaling for the variables

Specification

Alias: cdv scale types
Argument(s): STRINGLIST
Default: vector values = ’none’

Description

For continuous variables, the scale types specification includes strings specifying the scaling type for each
component of the continuous design variables vector in methods that support scaling, when scaling is enabled.

Each entry in scale types may be selected from ’none’, ’value’, ’auto’, or ’log’, to select no,
characteristic value, automatic, or logarithmic scaling, respectively. If a single string is specified it will apply to
all components of the continuous design variables vector. Each entry in scales may be a user-specified nonzero
real characteristic value to be used in scaling each variable component. These values are ignored for scaling type
’none’, required for ’value’, and optional for ’auto’ and ’log’. If a single real value is specified it will
apply to all components of the continuous design variables vector.

Examples
Two continuous design variables, one scaled by a value, the other log scaled,

continuous_design = 2
initial_point -1.2 1.0
lower_bounds -2.0 0.001
upper_bounds 2.0 2.0
descriptors ’x1’ "x2"
scale_types = ’value’ ’log’
scales = 4.0 0.1

1604 CHAPTER 6. KEYWORDS AREA

scales

• Keywords Area

• variables

• continuous design

• scales

Specify scaling for the variable.

Specification

Alias: cdv scales
Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

Description

For continuous variables, the scale types specification includes strings specifying the scaling type for each
component of the continuous design variables vector in methods that support scaling, when scaling is enabled.
Each entry in scale types may be selected from ’none’, ’value’, ’auto’, or ’log’, to select no,
characteristic value, automatic, or logarithmic scaling, respectively. If a single string is specified it will apply to
all components of the continuous design variables vector. Each entry in scales may be a user-specified nonzero
real characteristic value to be used in scaling each variable component. These values are ignored for scaling type
’none’, required for ’value’, and optional for ’auto’ and ’log’. If a single real value is specified it will
apply to all components of the continuous design variables vector.

Examples
Two continuous design variables, both scaled by the characteristic value 4.0

continuous_design = 2
initial_point -1.2 1.0
lower_bounds -200 0.001
upper_bounds 200 2.0
descriptors ’x1’ "x2"
scale_types = ’value’ ’none’
scales = 10.0

descriptors

• Keywords Area

• variables

• continuous design

• descriptors

Labels for the variables

6.4. VARIABLES 1605

Specification
Alias: cdv descriptors

Argument(s): STRINGLIST
Default: cdv {i}

Description
The optional variables labels specification descriptors is a list of strings which identify the variables. These
are used in console and tabular output.

The default descriptor strings use a root string plus a numeric identifier.

6.4.6 discrete design range
• Keywords Area

• variables

• discrete design range

Discrete design variables; each defined by an integer interval

Topics
This keyword is related to the topics:

• discrete variables

• design variables

Specification
Alias: none

Argument(s): INTEGER
Default: no discrete design variables

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional initial point Initial values

Optional lower bounds Specify minimum
values

Optional upper bounds Specify maximium
values

Optional descriptors Labels for the
variables

Description
These variables take on a range of integer values from the specified lower bound to the specified upper bound.
The details of how to specify this discrete variable are located on the discrete variables page.

1606 CHAPTER 6. KEYWORDS AREA

initial point

• Keywords Area

• variables

• discrete design range

• initial point

Initial values

Specification
Alias: ddv initial point

Argument(s): INTEGERLIST
Default: 0

Description
The initial point specifications provide the point in design space (variable values) from which an iterator
is started. These default to the midpoint of bounds (continuous design variables) or the middle value (discrete
design variables).

lower bounds

• Keywords Area

• variables

• discrete design range

• lower bounds

Specify minimum values

Specification
Alias: ddv lower bounds

Argument(s): INTEGERLIST
Default: INT MIN

Description
Specify minimum values

upper bounds

• Keywords Area

• variables

• discrete design range

• upper bounds

Specify maximium values

6.4. VARIABLES 1607

Specification
Alias: ddv upper bounds

Argument(s): INTEGERLIST
Default: INT MAX

Description
Specify maximium values

descriptors

• Keywords Area

• variables

• discrete design range

• descriptors

Labels for the variables

Specification
Alias: ddv descriptors

Argument(s): STRINGLIST
Default: ddriv {i}

Description
The optional variables labels specification descriptors is a list of strings which identify the variables. These
are used in console and tabular output.

The default descriptor strings use a root string plus a numeric identifier.

6.4.7 discrete design set
• Keywords Area

• variables

• discrete design set

Set-valued discrete design variables

Topics
This keyword is related to the topics:

• discrete variables

• design variables

Specification
Alias: none

Argument(s): none

1608 CHAPTER 6. KEYWORDS AREA

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional integer Integer-valued
discrete design
variables

Optional string String-valued
discrete design set
variables

Optional real Real-valued
discrete design
variables

Description
Discrete design variables whose values come from a set of admissible elements. Each variable specified must be
of type integer, string, or real.

integer

• Keywords Area

• variables

• discrete design set

• integer

Integer-valued discrete design variables

Topics
This keyword is related to the topics:

• discrete variables

• design variables

Specification
Alias: none

Argument(s): INTEGER
Default: no discrete design set integer variables

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

6.4. VARIABLES 1609

Optional elements per -
variable

Number of
admissible
elements for each
set variable

Required elements The permissible
values for each
discrete variable

Optional categorical Whether the
set-valued
variables are
categorical or
relaxable

Optional initial point Initial values

Optional descriptors Labels for the
variables

Description

A design variable whose values come from a specified set of admissible integers. The details of how to specify
this discrete variable are located on the discrete variables page.

Examples

Four integer variables whose values will be selected from the following sets during the search for an optimal
design. y1 ∈ {0, 1}, y2 ∈ {0, 1}, y3 ∈ {0, 5} and y4 ∈ {10, 15, 20, 23}.

discrete_design_set
integer 4

descriptors ’y1’ ’y2’ ’y3’ ’y4’
elements_per_variable 2 2 2 4
elements 0 1 0 1 0 5 10 15 20 23

elements per variable

• Keywords Area

• variables

• discrete design set

• integer

• elements per variable

Number of admissible elements for each set variable

1610 CHAPTER 6. KEYWORDS AREA

Specification
Alias: num set values

Argument(s): INTEGERLIST
Default: equal distribution

Description
Discrete set variables (including design, uncertain, and state) take on only a fixed set of values. For each type
(integer, string, or real), this keyword specifies how many admissible values are provided for each variable. If
not specified, equal apportionment of elements among variables is assumed, and the number of elements must be
evenly divisible by the number of variables.

elements

• Keywords Area

• variables

• discrete design set

• integer

• elements

The permissible values for each discrete variable

Specification
Alias: set values

Argument(s): INTEGERLIST

Description
Specify the permissible values for discrete set variables (of type integer, string, or real). See the description on
the discrete variables page.

categorical

• Keywords Area

• variables

• discrete design set

• integer

• categorical

Whether the set-valued variables are categorical or relaxable

Specification
Alias: none

Argument(s): STRINGLIST

6.4. VARIABLES 1611

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional adjacency matrix 1-0 matrix defining
which categorical
variable levels are
related.

Description

A list of strings of length equal to the number of set (integer, string, or real) variables indicating whether they are
strictly categorical, meaning may only take on values from the provided set, or relaxable, meaning may take on
any integer or real value between the lowest and highest specified element. Valid categorical strings include ’yes’,
’no’, ’true’, and ’false’, or any abbreviation in [yYnNtTfF][.]∗

Examples

Discrete design set variable, ’rotor blades’, can take on only integer values, 2, 4, or 7 by default. Since categorical
is specified to be false, the integrality can be relaxed and ’rotor blades’ can take on any value between 2 and 7,
e.g., 3, 6, or 5.5.

discrete_design_set
integer 1

elements 2 4 7
descriptor ’rotor_blades’
categorical ’no’

adjacency matrix

• Keywords Area

• variables

• discrete design set

• integer

• categorical

• adjacency matrix

1-0 matrix defining which categorical variable levels are related.

Specification

Alias: none
Argument(s): INTEGERLIST

1612 CHAPTER 6. KEYWORDS AREA

Description

The adjacency matrix keyword is associated with discrete design set variables that are specified to
be categorical. Each such variable is associated with one k×k symmetric matrix, where k is the number of values
(or levels) of the variable. Entry i, j of a matrix should be 1 if level i and level j are related by some subjective
criteria or if i = j; it should be 0 otherwise. The matrices for all variables of the same type (string, real, or
integer) are entered sequentially as a list of integers as shown in the examples below.

Default Behavior
The adjacency matrix keyword is only relevant for discrete design set real and discrete-

design set integer variables if one or more of them have been specified to be categorical. It is always
relevant for discrete design set string variables. If the user does not define an adjacency matrix, the
default is method dependent. Currently, the only method that makes use of the adjacency matrix is mesh adaptive-
search, which uses a tri-diagonal adjacency matrix by default.

Expected Output
The expected output is method dependent.
Usage Tips
If an adjacency matrix is defined for one type of (categorical) discrete design set variable, if must be

defined for all variables of that type, even for those not defined to be categorical. Those for the non-categorical
set variables will be ignored.

Examples

The following example shows a variables specification where some real and some integer discrete design-
set variables are categorical.

variables
continuous_design = 3

initial_point -1.0 1.5 2.0
lower_bounds -10.0 -10.0 -10.0
upper_bounds 10.0 10.0 10.0
descriptors ’x1’ ’x2’ ’x3’

discrete_design_range = 2
initial_point 2 2
lower_bounds 1 1
upper_bounds 4 9
descriptors ’y1’ ’y2’

discrete_design_set
real = 2

elements_per_variable = 4 5
elements = 1.2 2.3 3.4 4.5 1.2 3.3 4.4 5.5 7.7
descriptors ’y3’ ’y4’
categorical ’no’ ’yes’
adjacency_matrix 1 1 0 0 # Begin entry of 4x4 matrix for y3

1 1 1 0
0 1 1 1
0 0 1 1
1 0 1 0 1 # Begin entry of 5x5 matrix for y4
0 1 0 1 0
1 0 1 0 1
0 1 0 1 0
1 0 1 0 1

integer = 2
elements_per_variable = 2 3
elements = 4 7 8 9 12
descriptors ’z1’ ’z2’
categorical ’yes’ ’yes’

6.4. VARIABLES 1613

Note that for the real case, the user wants to define an adjacency matrix for the categorical variable, so ad-
jacency matrices for both variables must be specified. The matrix for the first one will be ignored. Note that
no adjacency matrix is specified for either integer categorical variable. The default will be used in both cases.
Currently the only method taking advantage of adjacency matrices is mesh adaptive search, which uses a
tri-diagonal adjacency matrix by default. Thus, the matrices used would be

z1: 1 1
1 1

z2: 1 1 0
1 1 1
0 1 1

The following example shows a variables specification for string variables. Note that string variables are
always considered to be categorical. If an adjacency matrix is not specified, a method-dependent default matrix
will be used.

variables,
continuous_design = 2

initial_point 0.5 0.5
lower_bounds 0. 0.
upper_bounds 1. 1.
descriptors = ’x’ ’y’

discrete_design_set string = 1
elements = ’aniso1’ ’aniso2’ ’iso1’ ’iso2’ ’iso3’
descriptors = ’ancomp’
adjacency_matrix 1 1 0 0 0

1 1 0 0 0
0 0 1 1 1
0 0 1 1 1
0 0 1 1 1

See Also
These keywords may also be of interest:

• mesh adaptive search

initial point

• Keywords Area

• variables

• discrete design set

• integer

• initial point

Initial values

Specification
Alias: none

Argument(s): INTEGERLIST
Default: middle set value, or rounded down

1614 CHAPTER 6. KEYWORDS AREA

Description
The initial point specifications provide the point in design space (variable values) from which an iterator
is started. These default to the midpoint of bounds (continuous design variables) or the middle value (discrete
design variables).

descriptors

• Keywords Area

• variables

• discrete design set

• integer

• descriptors

Labels for the variables

Specification
Alias: none

Argument(s): STRINGLIST

Description
The optional variables labels specification descriptors is a list of strings which identify the variables. These
are used in console and tabular output.

The default descriptor strings use a root string plus a numeric identifier.

string

• Keywords Area

• variables

• discrete design set

• string

String-valued discrete design set variables

Topics
This keyword is related to the topics:

• discrete variables

• design variables

Specification
Alias: none

Argument(s): INTEGER
Default: no discrete design set string variables

6.4. VARIABLES 1615

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional elements per -
variable

Number of
admissible
elements for each
set variable

Required elements The permissible
values for each
discrete variable

Optional adjacency matrix 1-0 matrix defining
which categorical
variable levels are
related.

Optional initial point Initial values

Optional descriptors Labels for the
variables

Description
Discrete design variables whose values come from a specified set of admissible strings. The details of how
to specify this discrete variable are located on the discrete variables page. Each string element value must be
quoted and may contain alphanumeric, dash, underscore, and colon. White space, quote characters, and back-
slash/metacharacters are not permitted.

Examples
Two string variables whose values will be selected from the set of provided elements. The first variable, ’linear
solver’, takes on values from a set of three possible elements and the second variable, ’mesh file’, from a set of
two possible elements.

discrete_design_set
string 2

descriptors ’linear_solver’ ’mesh_file’
elements_per_variable 3 2
elements ’cg’ ’gmres’ ’direct’

’mesh64.exo’ ’mesh128.exo’

elements per variable

• Keywords Area

• variables

• discrete design set

• string

• elements per variable

Number of admissible elements for each set variable

1616 CHAPTER 6. KEYWORDS AREA

Specification
Alias: num set values

Argument(s): INTEGERLIST
Default: equal distribution

Description
Discrete set variables (including design, uncertain, and state) take on only a fixed set of values. For each type
(integer, string, or real), this keyword specifies how many admissible values are provided for each variable. If
not specified, equal apportionment of elements among variables is assumed, and the number of elements must be
evenly divisible by the number of variables.

elements

• Keywords Area

• variables

• discrete design set

• string

• elements

The permissible values for each discrete variable

Specification
Alias: set values

Argument(s): STRINGLIST

Description
Specify the permissible values for discrete set variables (of type integer, string, or real). See the description on
the discrete variables page.

adjacency matrix

• Keywords Area

• variables

• discrete design set

• string

• adjacency matrix

1-0 matrix defining which categorical variable levels are related.

Specification
Alias: none

Argument(s): INTEGERLIST

6.4. VARIABLES 1617

Description

The adjacency matrix keyword is associated with discrete design set variables that are specified to
be categorical. Each such variable is associated with one k×k symmetric matrix, where k is the number of values
(or levels) of the variable. Entry i, j of a matrix should be 1 if level i and level j are related by some subjective
criteria or if i = j; it should be 0 otherwise. The matrices for all variables of the same type (string, real, or
integer) are entered sequentially as a list of integers as shown in the examples below.

Default Behavior
The adjacency matrix keyword is only relevant for discrete design set real and discrete-

design set integer variables if one or more of them have been specified to be categorical. It is always
relevant for discrete design set string variables. If the user does not define an adjacency matrix, the
default is method dependent. Currently, the only method that makes use of the adjacency matrix is mesh adaptive-
search, which uses a tri-diagonal adjacency matrix by default.

Expected Output
The expected output is method dependent.
Usage Tips
If an adjacency matrix is defined for one type of (categorical) discrete design set variable, if must be

defined for all variables of that type, even for those not defined to be categorical. Those for the non-categorical
set variables will be ignored.

Examples

The following example shows a variables specification where some real and some integer discrete design-
set variables are categorical.

variables
continuous_design = 3

initial_point -1.0 1.5 2.0
lower_bounds -10.0 -10.0 -10.0
upper_bounds 10.0 10.0 10.0
descriptors ’x1’ ’x2’ ’x3’

discrete_design_range = 2
initial_point 2 2
lower_bounds 1 1
upper_bounds 4 9
descriptors ’y1’ ’y2’

discrete_design_set
real = 2

elements_per_variable = 4 5
elements = 1.2 2.3 3.4 4.5 1.2 3.3 4.4 5.5 7.7
descriptors ’y3’ ’y4’
categorical ’no’ ’yes’
adjacency_matrix 1 1 0 0 # Begin entry of 4x4 matrix for y3

1 1 1 0
0 1 1 1
0 0 1 1
1 0 1 0 1 # Begin entry of 5x5 matrix for y4
0 1 0 1 0
1 0 1 0 1
0 1 0 1 0
1 0 1 0 1

integer = 2
elements_per_variable = 2 3
elements = 4 7 8 9 12
descriptors ’z1’ ’z2’
categorical ’yes’ ’yes’

1618 CHAPTER 6. KEYWORDS AREA

Note that for the real case, the user wants to define an adjacency matrix for the categorical variable, so ad-
jacency matrices for both variables must be specified. The matrix for the first one will be ignored. Note that
no adjacency matrix is specified for either integer categorical variable. The default will be used in both cases.
Currently the only method taking advantage of adjacency matrices is mesh adaptive search, which uses a
tri-diagonal adjacency matrix by default. Thus, the matrices used would be

z1: 1 1
1 1

z2: 1 1 0
1 1 1
0 1 1

The following example shows a variables specification for string variables. Note that string variables are
always considered to be categorical. If an adjacency matrix is not specified, a method-dependent default matrix
will be used.

variables,
continuous_design = 2

initial_point 0.5 0.5
lower_bounds 0. 0.
upper_bounds 1. 1.
descriptors = ’x’ ’y’

discrete_design_set string = 1
elements = ’aniso1’ ’aniso2’ ’iso1’ ’iso2’ ’iso3’
descriptors = ’ancomp’
adjacency_matrix 1 1 0 0 0

1 1 0 0 0
0 0 1 1 1
0 0 1 1 1
0 0 1 1 1

See Also
These keywords may also be of interest:

• mesh adaptive search

initial point

• Keywords Area

• variables

• discrete design set

• string

• initial point

Initial values

Specification
Alias: none

Argument(s): STRINGLIST
Default: middle set value, or rounded down

6.4. VARIABLES 1619

Description
The initial point specifications provide the point in design space (variable values) from which an iterator
is started. These default to the midpoint of bounds (continuous design variables) or the middle value (discrete
design variables).

descriptors

• Keywords Area

• variables

• discrete design set

• string

• descriptors

Labels for the variables

Specification
Alias: none

Argument(s): STRINGLIST

Description
The optional variables labels specification descriptors is a list of strings which identify the variables. These
are used in console and tabular output.

The default descriptor strings use a root string plus a numeric identifier.

real

• Keywords Area

• variables

• discrete design set

• real

Real-valued discrete design variables

Topics
This keyword is related to the topics:

• discrete variables

• design variables

Specification
Alias: none

Argument(s): INTEGER
Default: no discrete design set real variables

1620 CHAPTER 6. KEYWORDS AREA

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional elements per -
variable

Number of
admissible
elements for each
set variable

Required elements The permissible
values for each
discrete variable

Optional categorical Whether the
set-valued
variables are
categorical or
relaxable

Optional initial point Initial values

Optional descriptors Labels for the
variables

Description
A design variable whose values come from a specified set of admissible reals. The details of how to specify this
discrete variable are located on the discrete variables page.

Examples
Two continuous, restricted variables whose values will be selected from the following sets during the search for
an optimal design. y1 ∈ {0.25, 1.25, 2.25, 3.25, 4.25}, y2 ∈ {0, 5}

discrete_design_set
real 2

descriptors ’y1’ ’y2’
elements_per_variable 5 2
elemetns 0.25 1.25 2.25 3.25 4.25 0 5

elements per variable

• Keywords Area

• variables

• discrete design set

• real

• elements per variable

Number of admissible elements for each set variable

6.4. VARIABLES 1621

Specification
Alias: num set values

Argument(s): INTEGERLIST
Default: equal distribution

Description
Discrete set variables (including design, uncertain, and state) take on only a fixed set of values. For each type
(integer, string, or real), this keyword specifies how many admissible values are provided for each variable. If
not specified, equal apportionment of elements among variables is assumed, and the number of elements must be
evenly divisible by the number of variables.

elements

• Keywords Area

• variables

• discrete design set

• real

• elements

The permissible values for each discrete variable

Specification
Alias: set values

Argument(s): REALLIST

Description
Specify the permissible values for discrete set variables (of type integer, string, or real). See the description on
the discrete variables page.

categorical

• Keywords Area

• variables

• discrete design set

• real

• categorical

Whether the set-valued variables are categorical or relaxable

Specification
Alias: none

Argument(s): STRINGLIST

1622 CHAPTER 6. KEYWORDS AREA

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional adjacency matrix 1-0 matrix defining
which categorical
variable levels are
related.

Description

A list of strings of length equal to the number of set (integer, string, or real) variables indicating whether they are
strictly categorical, meaning may only take on values from the provided set, or relaxable, meaning may take on
any integer or real value between the lowest and highest specified element. Valid categorical strings include ’yes’,
’no’, ’true’, and ’false’, or any abbreviation in [yYnNtTfF][.]∗

Examples

Discrete design set variable, ’rotor blades’, can take on only integer values, 2, 4, or 7 by default. Since categorical
is specified to be false, the integrality can be relaxed and ’rotor blades’ can take on any value between 2 and 7,
e.g., 3, 6, or 5.5.

discrete_design_set
integer 1

elements 2 4 7
descriptor ’rotor_blades’
categorical ’no’

adjacency matrix

• Keywords Area

• variables

• discrete design set

• real

• categorical

• adjacency matrix

1-0 matrix defining which categorical variable levels are related.

Specification

Alias: none
Argument(s): INTEGERLIST

6.4. VARIABLES 1623

Description

The adjacency matrix keyword is associated with discrete design set variables that are specified to
be categorical. Each such variable is associated with one k×k symmetric matrix, where k is the number of values
(or levels) of the variable. Entry i, j of a matrix should be 1 if level i and level j are related by some subjective
criteria or if i = j; it should be 0 otherwise. The matrices for all variables of the same type (string, real, or
integer) are entered sequentially as a list of integers as shown in the examples below.

Default Behavior
The adjacency matrix keyword is only relevant for discrete design set real and discrete-

design set integer variables if one or more of them have been specified to be categorical. It is always
relevant for discrete design set string variables. If the user does not define an adjacency matrix, the
default is method dependent. Currently, the only method that makes use of the adjacency matrix is mesh adaptive-
search, which uses a tri-diagonal adjacency matrix by default.

Expected Output
The expected output is method dependent.
Usage Tips
If an adjacency matrix is defined for one type of (categorical) discrete design set variable, if must be

defined for all variables of that type, even for those not defined to be categorical. Those for the non-categorical
set variables will be ignored.

Examples

The following example shows a variables specification where some real and some integer discrete design-
set variables are categorical.

variables
continuous_design = 3

initial_point -1.0 1.5 2.0
lower_bounds -10.0 -10.0 -10.0
upper_bounds 10.0 10.0 10.0
descriptors ’x1’ ’x2’ ’x3’

discrete_design_range = 2
initial_point 2 2
lower_bounds 1 1
upper_bounds 4 9
descriptors ’y1’ ’y2’

discrete_design_set
real = 2

elements_per_variable = 4 5
elements = 1.2 2.3 3.4 4.5 1.2 3.3 4.4 5.5 7.7
descriptors ’y3’ ’y4’
categorical ’no’ ’yes’
adjacency_matrix 1 1 0 0 # Begin entry of 4x4 matrix for y3

1 1 1 0
0 1 1 1
0 0 1 1
1 0 1 0 1 # Begin entry of 5x5 matrix for y4
0 1 0 1 0
1 0 1 0 1
0 1 0 1 0
1 0 1 0 1

integer = 2
elements_per_variable = 2 3
elements = 4 7 8 9 12
descriptors ’z1’ ’z2’
categorical ’yes’ ’yes’

1624 CHAPTER 6. KEYWORDS AREA

Note that for the real case, the user wants to define an adjacency matrix for the categorical variable, so ad-
jacency matrices for both variables must be specified. The matrix for the first one will be ignored. Note that
no adjacency matrix is specified for either integer categorical variable. The default will be used in both cases.
Currently the only method taking advantage of adjacency matrices is mesh adaptive search, which uses a
tri-diagonal adjacency matrix by default. Thus, the matrices used would be

z1: 1 1
1 1

z2: 1 1 0
1 1 1
0 1 1

The following example shows a variables specification for string variables. Note that string variables are
always considered to be categorical. If an adjacency matrix is not specified, a method-dependent default matrix
will be used.

variables,
continuous_design = 2

initial_point 0.5 0.5
lower_bounds 0. 0.
upper_bounds 1. 1.
descriptors = ’x’ ’y’

discrete_design_set string = 1
elements = ’aniso1’ ’aniso2’ ’iso1’ ’iso2’ ’iso3’
descriptors = ’ancomp’
adjacency_matrix 1 1 0 0 0

1 1 0 0 0
0 0 1 1 1
0 0 1 1 1
0 0 1 1 1

See Also
These keywords may also be of interest:

• mesh adaptive search

initial point

• Keywords Area

• variables

• discrete design set

• real

• initial point

Initial values

Specification
Alias: none

Argument(s): REALLIST
Default: middle set value, or rounded down

6.4. VARIABLES 1625

Description
The initial point specifications provide the point in design space (variable values) from which an iterator
is started. These default to the midpoint of bounds (continuous design variables) or the middle value (discrete
design variables).

descriptors

• Keywords Area

• variables

• discrete design set

• real

• descriptors

Labels for the variables

Specification
Alias: none

Argument(s): STRINGLIST

Description
The optional variables labels specification descriptors is a list of strings which identify the variables. These
are used in console and tabular output.

The default descriptor strings use a root string plus a numeric identifier.

6.4.8 normal uncertain
• Keywords Area

• variables

• normal uncertain

Aleatory uncertain variable - normal (Gaussian)

Topics
This keyword is related to the topics:

• continuous variables

• aleatory uncertain variables

Specification
Alias: none

Argument(s): INTEGER
Default: no normal uncertain variables

1626 CHAPTER 6. KEYWORDS AREA

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required means First parameter of
the distribution

Required std deviations Second parameter
of the distribution

Optional lower bounds Specify minimum
values

Optional upper bounds Specify maximium
values

Optional initial point Initial values

Optional descriptors Labels for the
variables

Description
Within the normal uncertain optional group specification, the number of normal uncertain variables, the means,
and standard deviations are required specifications, and the distribution lower and upper bounds and variable
descriptors are optional specifications. The normal distribution is widely used to model uncertain variables such
as population characteristics. It is also used to model the mean of a sample: as the sample size becomes very large,
the Central Limit Theorem states that the distribution of the mean becomes approximately normal, regardless of
the distribution of the original variables.

The density function for the normal distribution is:

f(x) =
1√

2πσN
e
− 1

2

“
x−µN
σN

”2

where µN and σN are the mean and standard deviation of the normal distribution, respectively.
Note that if you specify bounds for a normal distribution, the sampling occurs from the underlying distribution

with the given mean and standard deviation, but samples are not taken outside the bounds (see ”bounded normal”
distribution type in[89]). This can result in the mean and the standard deviation of the sample data being different
from the mean and standard deviation of the underlying distribution. For example, if you are sampling from a
normal distribution with a mean of 5 and a standard deviation of 3, but you specify bounds of 1 and 7, the resulting
mean of the samples will be around 4.3 and the resulting standard deviation will be around 1.6. This is because
you have bounded the original distribution significantly, and asymetrically, since 7 is closer to the original mean
than 1.

Theory
When used with design of experiments and multidimensional parameter studies, distribution bounds are inferred.
These bounds are [µ− 3σ, µ+ 3σ]

For vector and centered parameter studies, an inferred initial starting point is needed for the uncertain vari-
ables. These variables are initialized to their means for these studies.

means

• Keywords Area

• variables

6.4. VARIABLES 1627

• normal uncertain

• means

First parameter of the distribution

Specification
Alias: nuv means

Argument(s): REALLIST

Description
Means

std deviations

• Keywords Area

• variables

• normal uncertain

• std deviations

Second parameter of the distribution

Specification
Alias: nuv std deviations

Argument(s): REALLIST

Description
Standard deviation

lower bounds

• Keywords Area

• variables

• normal uncertain

• lower bounds

Specify minimum values

Specification
Alias: nuv lower bounds

Argument(s): REALLIST
Default: -infinity

1628 CHAPTER 6. KEYWORDS AREA

Description

Specify minimum values

upper bounds

• Keywords Area

• variables

• normal uncertain

• upper bounds

Specify maximium values

Specification

Alias: nuv upper bounds
Argument(s): REALLIST
Default: infinity

Description

Specify maximium values

initial point

• Keywords Area

• variables

• normal uncertain

• initial point

Initial values

Specification

Alias: none
Argument(s): REALLIST

Description

The initial point specifications provide the point in design space (variable values) from which an iterator
is started. These default to the midpoint of bounds (continuous design variables) or the middle value (discrete
design variables).

6.4. VARIABLES 1629

descriptors

• Keywords Area

• variables

• normal uncertain

• descriptors

Labels for the variables

Specification
Alias: nuv descriptors

Argument(s): STRINGLIST
Default: nuv {i}

Description
The optional variables labels specification descriptors is a list of strings which identify the variables. These
are used in console and tabular output.

The default descriptor strings use a root string plus a numeric identifier.

6.4.9 lognormal uncertain
• Keywords Area

• variables

• lognormal uncertain

Aleatory uncertain variable - lognormal

Topics
This keyword is related to the topics:

• continuous variables

• aleatory uncertain variables

Specification
Alias: none

Argument(s): INTEGER
Default: no lognormal uncertain variables

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

1630 CHAPTER 6. KEYWORDS AREA

Required(Choose
One)

Group 1 lambdas First parameter of
the lognormal
distribution (option
3)

means First parameter of
the lognormal
distribution
(options 1 & 2)

Optional lower bounds Specify minimum
values

Optional upper bounds Specify maximium
values

Optional initial point Initial values

Optional descriptors Labels for the
variables

Description
If the logarithm of an uncertain variable X has a normal distribution, that is logX ∼ N(µ, σ), then X is distributed
with a lognormal distribution. The lognormal is often used to model:

1. time to perform some task

2. variables which are the product of a large number of other quantities, by the Central Limit Theorem

3. quantities which cannot have negative values.

Within the lognormal uncertain optional group specification, the number of lognormal uncertain variables,
the means, and either standard deviations or error factors must be specified, and the distribution lower and upper
bounds and variable descriptors are optional specifications. These distribution bounds can be used to truncate the
tails of lognormal distributions, which as for bounded normal, can result in the mean and the standard deviation of
the sample data being different from the mean and standard deviation of the underlying distribution (see ”bounded
lognormal” and ”bounded lognormal-n” distribution types in[89]).

For the lognormal variables, one may specify either the mean µ and standard deviation σ of the actual lognor-
mal distribution (option 1), the mean µ and error factor ε of the actual lognormal distribution (option 2), or the
mean λ (”lambda”) and standard deviation ζ (”zeta”) of the underlying normal distribution (option 3).

The conversion equations from lognormal mean µ and either lognormal error factor ε or lognormal standard
deviation σ to the mean λ and standard deviation ζ of the underlying normal distribution are as follows:

ζ =
ln(ε)
1.645

ζ2 = ln(
σ2

µ2
+ 1)

λ = ln(µ)− ζ2

2
Conversions from λ and ζ back to µ and ε or σ are as follows:

µ = eλ+ ζ2

2

6.4. VARIABLES 1631

σ2 = e2λ+ζ2(eζ
2
− 1)

ε = e1.645ζ

The density function for the lognormal distribution is:

f(x) =
1√

2πζx
e−

1
2 (lnx−λζ)2

Theory
When used with design of experiments and multidimensional parameter studies, distribution bounds are inferred.
These bounds are [0, µ+ 3σ].

For vector and centered parameter studies, an inferred initial starting point is needed for the uncertain vari-
ables. These variables are initialized to their means for these studies.

lambdas

• Keywords Area

• variables

• lognormal uncertain

• lambdas

First parameter of the lognormal distribution (option 3)

Specification
Alias: lnuv lambdas

Argument(s): REALLIST
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required zetas Second parameter
of the lognormal
distribution (option
3)

Description
For the lognormal variables, one may specify the mean λ (”lambda”) and standard deviation ζ (”zeta”) of the
underlying normal distribution.

zetas

• Keywords Area

• variables

• lognormal uncertain

• lambdas

• zetas

Second parameter of the lognormal distribution (option 3)

1632 CHAPTER 6. KEYWORDS AREA

Specification
Alias: lnuv zetas

Argument(s): REALLIST

Description
For the lognormal variables, one may specify the mean λ (”lambda”) and standard deviation ζ (”zeta”) of the
underlying normal distribution.

means

• Keywords Area

• variables

• lognormal uncertain

• means

First parameter of the lognormal distribution (options 1 & 2)

Specification
Alias: lnuv means

Argument(s): REALLIST
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 std deviations Second parameter
of the lognormal
distribution (option
1)

error factors Second parameter
of the lognormal
distribution (option
2)

Description
For the lognormal variables, one may specify either the mean µ and standard deviation σ of the actual lognormal
distribution, the mean µ and error factor ε of the actual lognormal distribution.

This corresponds to the mean of the lognormal random variable

std deviations

• Keywords Area

• variables

• lognormal uncertain

• means

• std deviations

Second parameter of the lognormal distribution (option 1)

6.4. VARIABLES 1633

Specification
Alias: lnuv std deviations

Argument(s): REALLIST

Description
For the lognormal variables, one may specify either the mean µ and standard deviation σ of the actual lognormal
distribution.

This corresponds to the standard deviation of the lognormal random variable.

error factors

• Keywords Area

• variables

• lognormal uncertain

• means

• error factors

Second parameter of the lognormal distribution (option 2)

Specification
Alias: lnuv error factors

Argument(s): REALLIST

Description
For the lognormal variables, one may specify the mean µ and error factor ε of the actual lognormal distribution.

This specifies the error function of the lognormal random variable.

lower bounds

• Keywords Area

• variables

• lognormal uncertain

• lower bounds

Specify minimum values

Specification
Alias: lnuv lower bounds

Argument(s): REALLIST
Default: 0

1634 CHAPTER 6. KEYWORDS AREA

Description

Specify minimum values

upper bounds

• Keywords Area

• variables

• lognormal uncertain

• upper bounds

Specify maximium values

Specification

Alias: lnuv upper bounds
Argument(s): REALLIST
Default: infinity

Description

Specify maximium values

initial point

• Keywords Area

• variables

• lognormal uncertain

• initial point

Initial values

Specification

Alias: none
Argument(s): REALLIST

Description

The initial point specifications provide the point in design space (variable values) from which an iterator
is started. These default to the midpoint of bounds (continuous design variables) or the middle value (discrete
design variables).

6.4. VARIABLES 1635

descriptors

• Keywords Area

• variables

• lognormal uncertain

• descriptors

Labels for the variables

Specification
Alias: lnuv descriptors

Argument(s): STRINGLIST
Default: lnuv {i}

Description
The optional variables labels specification descriptors is a list of strings which identify the variables. These
are used in console and tabular output.

The default descriptor strings use a root string plus a numeric identifier.

6.4.10 uniform uncertain
• Keywords Area

• variables

• uniform uncertain

Aleatory uncertain variable - uniform

Topics
This keyword is related to the topics:

• continuous variables

• aleatory uncertain variables

Specification
Alias: none

Argument(s): INTEGER
Default: no uniform uncertain variables

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

1636 CHAPTER 6. KEYWORDS AREA

Required lower bounds Specify minimum
values

Required upper bounds Specify maximium
values

Optional initial point Initial values

Optional descriptors Labels for the
variables

Description

Within the uniform uncertain optional group specification, the number of uniform uncertain variables and the dis-
tribution lower and upper bounds are required specifications, and variable descriptors is an optional specification.
The uniform distribution has the density function:

f(x) =
1

UU − LU

where UU and LU are the upper and lower bounds of the uniform distribution, respectively. The mean of the
uniform distribution is UU+LU

2 and the variance is (UU−LU)2

12 .

Theory

Note that this distribution is a special case of the more general beta distribution.

lower bounds

• Keywords Area

• variables

• uniform uncertain

• lower bounds

Specify minimum values

Specification

Alias: uuv lower bounds
Argument(s): REALLIST

Description

Specify minimum values

6.4. VARIABLES 1637

upper bounds

• Keywords Area

• variables

• uniform uncertain

• upper bounds

Specify maximium values

Specification
Alias: uuv upper bounds

Argument(s): REALLIST

Description
Specify maximium values

initial point

• Keywords Area

• variables

• uniform uncertain

• initial point

Initial values

Specification
Alias: none

Argument(s): REALLIST

Description
The initial point specifications provide the point in design space (variable values) from which an iterator
is started. These default to the midpoint of bounds (continuous design variables) or the middle value (discrete
design variables).

descriptors

• Keywords Area

• variables

• uniform uncertain

• descriptors

Labels for the variables

1638 CHAPTER 6. KEYWORDS AREA

Specification

Alias: uuv descriptors
Argument(s): STRINGLIST
Default: uuv {i}

Description

The optional variables labels specification descriptors is a list of strings which identify the variables. These
are used in console and tabular output.

The default descriptor strings use a root string plus a numeric identifier.

6.4.11 loguniform uncertain

• Keywords Area

• variables

• loguniform uncertain

Aleatory uncertain variable - loguniform

Topics

This keyword is related to the topics:

• continuous variables

• aleatory uncertain variables

Specification

Alias: none
Argument(s): INTEGER
Default: no loguniform uncertain variables

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required lower bounds Specify minimum
values

Required upper bounds Specify maximium
values

Optional initial point Initial values

Optional descriptors Labels for the
variables

6.4. VARIABLES 1639

Description
If the logarithm of an uncertain variable X has a uniform distribution, that is logX ∼ U(LLU , ULU), then X is
distributed with a loguniform distribution. The distribution lower bound is LLU and upper bound is LLU The
loguniform distribution has the density function:

f(x) =
1

x(lnULU − lnLLU)

Theory
For vector and centered parameter studies, an inferred initial starting point is needed for the uncertain variables.
These variables are initialized to their means for these studies.

lower bounds

• Keywords Area

• variables

• loguniform uncertain

• lower bounds

Specify minimum values

Specification
Alias: luuv lower bounds

Argument(s): REALLIST

Description
Specify minimum values

upper bounds

• Keywords Area

• variables

• loguniform uncertain

• upper bounds

Specify maximium values

Specification
Alias: luuv upper bounds

Argument(s): REALLIST

1640 CHAPTER 6. KEYWORDS AREA

Description

Specify maximium values

initial point

• Keywords Area

• variables

• loguniform uncertain

• initial point

Initial values

Specification

Alias: none
Argument(s): REALLIST

Description

The initial point specifications provide the point in design space (variable values) from which an iterator
is started. These default to the midpoint of bounds (continuous design variables) or the middle value (discrete
design variables).

descriptors

• Keywords Area

• variables

• loguniform uncertain

• descriptors

Labels for the variables

Specification

Alias: luuv descriptors
Argument(s): STRINGLIST
Default: luuv {i}

Description

The optional variables labels specification descriptors is a list of strings which identify the variables. These
are used in console and tabular output.

The default descriptor strings use a root string plus a numeric identifier.

6.4. VARIABLES 1641

6.4.12 triangular uncertain
• Keywords Area

• variables

• triangular uncertain

Aleatory uncertain variable - triangular

Topics
This keyword is related to the topics:

• continuous variables

• aleatory uncertain variables

Specification
Alias: none

Argument(s): INTEGER
Default: no triangular uncertain variables

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required modes Distribution
parameter

Required lower bounds Specify minimum
values

Required upper bounds Specify maximium
values

Optional initial point Initial values

Optional descriptors Labels for the
variables

Description
The triangular distribution is often used when one does not have much data or information, but does have an
estimate of the most likely value and the lower and upper bounds. Within the triangular uncertain optional group
specification, the number of triangular uncertain variables, the modes, and the distribution lower and upper bounds
are required specifications, and variable descriptors is an optional specification.

The density function for the triangular distribution is:

f(x) =
2(x− LT)

(UT − LT)(MT − LT)

if LT ≤ x ≤MT , and

f(x) =
2(UT − x)

(UT − LT)(UT −MT)

if MT ≤ x ≤ UT , and 0 elsewhere. In these equations, LT is the lower bound, UT is the upper bound, and MT is
the mode of the triangular distribution.

1642 CHAPTER 6. KEYWORDS AREA

modes

• Keywords Area

• variables

• triangular uncertain

• modes

Distribution parameter

Specification
Alias: tuv modes

Argument(s): REALLIST

Description
Specify the modes

lower bounds

• Keywords Area

• variables

• triangular uncertain

• lower bounds

Specify minimum values

Specification
Alias: tuv lower bounds

Argument(s): REALLIST

Description
Specify minimum values

upper bounds

• Keywords Area

• variables

• triangular uncertain

• upper bounds

Specify maximium values

6.4. VARIABLES 1643

Specification

Alias: tuv upper bounds
Argument(s): REALLIST

Description

Specify maximium values

initial point

• Keywords Area

• variables

• triangular uncertain

• initial point

Initial values

Specification

Alias: none
Argument(s): REALLIST

Description

The initial point specifications provide the point in design space (variable values) from which an iterator
is started. These default to the midpoint of bounds (continuous design variables) or the middle value (discrete
design variables).

descriptors

• Keywords Area

• variables

• triangular uncertain

• descriptors

Labels for the variables

Specification

Alias: tuv descriptors
Argument(s): STRINGLIST
Default: tuv {i}

1644 CHAPTER 6. KEYWORDS AREA

Description

The optional variables labels specification descriptors is a list of strings which identify the variables. These
are used in console and tabular output.

The default descriptor strings use a root string plus a numeric identifier.

6.4.13 exponential uncertain

• Keywords Area

• variables

• exponential uncertain

Aleatory uncertain variable - exponential

Topics

This keyword is related to the topics:

• continuous variables

• aleatory uncertain variables

Specification

Alias: none
Argument(s): INTEGER
Default: no exponential uncertain variables

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required betas Parameter of the
exponential
distribution

Optional initial point Initial values

Optional descriptors Labels for the
variables

Description

The exponential distribution is often used for modeling failure rates.
The density function for the exponential distribution is given by:

f(x) =
1
β
e
−x
β

where µE = β and σ2
E = β2.

Note that this distribution is a special case of the more general gamma distribution.

6.4. VARIABLES 1645

Theory
When used with design of experiments and multidimensional parameter studies, distribution bounds are inferred.
These bounds are [0, µ+ 3σ].

For vector and centered parameter studies, an inferred initial starting point is needed for the uncertain vari-
ables. These variables are initialized to their means for these studies.

betas

• Keywords Area

• variables

• exponential uncertain

• betas

Parameter of the exponential distribution

Specification
Alias: euv betas

Argument(s): REALLIST

Description
Specifies the list of β parameters to define the distributions of the exponential random variables. Length must
match the other parameters and the number of exponential random variables.

initial point

• Keywords Area

• variables

• exponential uncertain

• initial point

Initial values

Specification
Alias: none

Argument(s): REALLIST

Description
The initial point specifications provide the point in design space (variable values) from which an iterator
is started. These default to the midpoint of bounds (continuous design variables) or the middle value (discrete
design variables).

1646 CHAPTER 6. KEYWORDS AREA

descriptors

• Keywords Area

• variables

• exponential uncertain

• descriptors

Labels for the variables

Specification
Alias: euv descriptors

Argument(s): STRINGLIST
Default: euv {i}

Description
The optional variables labels specification descriptors is a list of strings which identify the variables. These
are used in console and tabular output.

The default descriptor strings use a root string plus a numeric identifier.

6.4.14 beta uncertain
• Keywords Area

• variables

• beta uncertain

Aleatory uncertain variable - beta

Topics
This keyword is related to the topics:

• continuous variables

• aleatory uncertain variables

Specification
Alias: none

Argument(s): INTEGER
Default: no beta uncertain variables

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

6.4. VARIABLES 1647

Required alphas First parameter of
the beta
distribution

Required betas Second parameter
of the beta
distribution

Required lower bounds Specify minimum
values

Required upper bounds Specify maximium
values

Optional initial point Initial values

Optional descriptors Labels for the
variables

Description
Within the beta uncertain optional group specification, the number of beta uncertain variables, the alpha and beta
parameters, and the distribution upper and lower bounds are required specifications, and the variable descriptors is
an optional specification. The beta distribution can be helpful when the actual distribution of an uncertain variable
is unknown, but the user has a good idea of the bounds, the mean, and the standard deviation of the uncertain
variable. The density function for the beta distribution is

f(x) =
Γ(α+ β)
Γ(α)Γ(β)

(x− LB)α−1(UB − x)β−1

(UB − LB)α+β−1

where Γ(α) is the gamma function and B(α, β) = Γ(α)Γ(β)
Γ(α+β) is the beta function. To calculate the mean and

standard deviation from the alpha, beta, upper bound, and lower bound parameters of the beta distribution, the
following expressions may be used.

µB = LB +
α

α+ β
(UB − LB)

σ2
B =

αβ

(α+ β)2(α+ β + 1)
(UB − LB)2

Solving these for α and β gives:

α = (µB − LB)
(µB − LB)(UB − µB)− σ2

B

σ2
B(UB − LB)

β = (UB − µB)
(µB − LB)(UB − µB)− σ2

B

σ2
B(UB − LB)

Note that the uniform distribution is a special case of this distribution for parameters α = β = 1.

Theory
For vector and centered parameter studies, an inferred initial starting point is needed for the uncertain variables.
These variables are initialized to their means for these studies.

1648 CHAPTER 6. KEYWORDS AREA

alphas

• Keywords Area

• variables

• beta uncertain

• alphas

First parameter of the beta distribution

Specification
Alias: buv alphas

Argument(s): REALLIST

Description
Specifies the list of α parameters to define the distributions of the beta random variables. Length must match the
other parameters and the number of beta random variables.

betas

• Keywords Area

• variables

• beta uncertain

• betas

Second parameter of the beta distribution

Specification
Alias: buv betas

Argument(s): REALLIST

Description
Specifies the list of β parameters to define the distributions of the beta random variables. Length must match the
other parameters and the number of beta random variables.

lower bounds

• Keywords Area

• variables

• beta uncertain

• lower bounds

Specify minimum values

6.4. VARIABLES 1649

Specification
Alias: buv lower bounds

Argument(s): REALLIST

Description
Specify minimum values

upper bounds

• Keywords Area

• variables

• beta uncertain

• upper bounds

Specify maximium values

Specification
Alias: buv upper bounds

Argument(s): REALLIST

Description
Specify maximium values

initial point

• Keywords Area

• variables

• beta uncertain

• initial point

Initial values

Specification
Alias: none

Argument(s): REALLIST

Description
The initial point specifications provide the point in design space (variable values) from which an iterator
is started. These default to the midpoint of bounds (continuous design variables) or the middle value (discrete
design variables).

1650 CHAPTER 6. KEYWORDS AREA

descriptors

• Keywords Area

• variables

• beta uncertain

• descriptors

Labels for the variables

Specification
Alias: buv descriptors

Argument(s): STRINGLIST
Default: buv {i}

Description
The optional variables labels specification descriptors is a list of strings which identify the variables. These
are used in console and tabular output.

The default descriptor strings use a root string plus a numeric identifier.

6.4.15 gamma uncertain
• Keywords Area

• variables

• gamma uncertain

Aleatory uncertain variable - gamma

Topics
This keyword is related to the topics:

• continuous variables

• aleatory uncertain variables

Specification
Alias: none

Argument(s): INTEGER
Default: no gamma uncertain variables

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

6.4. VARIABLES 1651

Required alphas First parameter of
the gamma
distribution

Required betas Second parameter
of the gamma
distribution

Optional initial point Initial values

Optional descriptors Labels for the
variables

Description
The gamma distribution is sometimes used to model time to complete a task, such as a repair or service task. It is
a very flexible distribution with its shape governed by alpha and beta.

The density function for the gamma distribution is given by:

f(x) =
xα−1e

−x
β

βαΓ(α)

where µGA = αβ and σ2
GA = αβ2. Note that the exponential distribution is a special case of this distribution for

parameter α = 1.

Theory
When used with design of experiments and multidimensional parameter studies, distribution bounds are inferred.
These bounds are [0, µ+ 3σ].

For vector and centered parameter studies, an inferred initial starting point is needed for the uncertain vari-
ables. These variables are initialized to their means for these studies.

alphas

• Keywords Area

• variables

• gamma uncertain

• alphas

First parameter of the gamma distribution

Specification
Alias: gauv alphas

Argument(s): REALLIST

Description
Specifies the list of α parameters to define the distributions of the gamma random variables. Length must match
the other parameters and the number of gamma random variables.

1652 CHAPTER 6. KEYWORDS AREA

betas

• Keywords Area

• variables

• gamma uncertain

• betas

Second parameter of the gamma distribution

Specification
Alias: gauv betas

Argument(s): REALLIST

Description
Specifies the list of β parameters to define the distributions of the gamma random variables. Length must match
the other parameters and the number of gamma random variables.

initial point

• Keywords Area

• variables

• gamma uncertain

• initial point

Initial values

Specification
Alias: none

Argument(s): REALLIST

Description
The initial point specifications provide the point in design space (variable values) from which an iterator
is started. These default to the midpoint of bounds (continuous design variables) or the middle value (discrete
design variables).

descriptors

• Keywords Area

• variables

• gamma uncertain

• descriptors

Labels for the variables

6.4. VARIABLES 1653

Specification

Alias: gauv descriptors
Argument(s): STRINGLIST
Default: gauv {i}

Description

The optional variables labels specification descriptors is a list of strings which identify the variables. These
are used in console and tabular output.

The default descriptor strings use a root string plus a numeric identifier.

6.4.16 gumbel uncertain

• Keywords Area

• variables

• gumbel uncertain

Aleatory uncertain variable - gumbel

Topics

This keyword is related to the topics:

• continuous variables

• aleatory uncertain variables

Specification

Alias: none
Argument(s): INTEGER
Default: no gumbel uncertain variables

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required alphas First parameter of
the gumbel
distribution

Required betas Second parameter
of the gumbel
distribution

Optional initial point Initial values

Optional descriptors Labels for the
variables

1654 CHAPTER 6. KEYWORDS AREA

Description
The Gumbel distribution is also referred to as the Type I Largest Extreme Value distribution. The distribution of
maxima in sample sets from a population with a normal distribution will asymptotically converge to this distribu-
tion. It is commonly used to model demand variables such as wind loads and flood levels.

The density function for the Gumbel distribution is given by:

f(x) = αe−α(x−β)exp(−e−α(x−β))

where µGU = β + 0.5772
α and σGU = π√

6α
.

Theory
When used with design of experiments and multidimensional parameter studies, distribution bounds are inferred.
These bounds are [µ− 3σ, µ+ 3σ]

For vector and centered parameter studies, an inferred initial starting point is needed for the uncertain vari-
ables. These variables are initialized to their means for these studies.

alphas

• Keywords Area

• variables

• gumbel uncertain

• alphas

First parameter of the gumbel distribution

Specification
Alias: guuv alphas

Argument(s): REALLIST

Description
Specifies the list of β parameters to define the distributions of the gumbel random variables. Length must match
the other parameters and the number of gumbel random variables.

betas

• Keywords Area

• variables

• gumbel uncertain

• betas

Second parameter of the gumbel distribution

6.4. VARIABLES 1655

Specification

Alias: guuv betas
Argument(s): REALLIST

Description

Specifies the list of β parameters to define the distributions of the gumbel random variables. Length must match
the other parameters and the number of gumbel random variables.

initial point

• Keywords Area

• variables

• gumbel uncertain

• initial point

Initial values

Specification

Alias: none
Argument(s): REALLIST

Description

The initial point specifications provide the point in design space (variable values) from which an iterator
is started. These default to the midpoint of bounds (continuous design variables) or the middle value (discrete
design variables).

descriptors

• Keywords Area

• variables

• gumbel uncertain

• descriptors

Labels for the variables

Specification

Alias: guuv descriptors
Argument(s): STRINGLIST
Default: guuv {i}

1656 CHAPTER 6. KEYWORDS AREA

Description
The optional variables labels specification descriptors is a list of strings which identify the variables. These
are used in console and tabular output.

The default descriptor strings use a root string plus a numeric identifier.

6.4.17 frechet uncertain
• Keywords Area

• variables

• frechet uncertain

Aleatory uncertain variable - Frechet

Topics
This keyword is related to the topics:

• continuous variables

• aleatory uncertain variables

Specification
Alias: none

Argument(s): INTEGER
Default: no frechet uncertain variables

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required alphas First parameter of
the Frechet
distribution

Required betas Second parameter
of the Frechet
distribution

Optional initial point Initial values

Optional descriptors Labels for the
variables

Description
The Frechet distribution is also referred to as the Type II Largest Extreme Value distribution. The distribution
of maxima in sample sets from a population with a lognormal distribution will asymptotically converge to this
distribution. It is commonly used to model non-negative demand variables.

The density function for the frechet distribution is:

f(x) =
α

β
(
β

x
)α+1e−(βx)α

where µF = βΓ(1− 1
α) and σ2

F = β2[Γ(1− 2
α)− Γ2(1− 1

α)]

6.4. VARIABLES 1657

Theory

When used with design of experiments and multidimensional parameter studies, distribution bounds are inferred.
These bounds are [0, µ+ 3σ].

For vector and centered parameter studies, an inferred initial starting point is needed for the uncertain vari-
ables. These variables are initialized to their means for these studies.

alphas

• Keywords Area

• variables

• frechet uncertain

• alphas

First parameter of the Frechet distribution

Specification

Alias: fuv alphas
Argument(s): REALLIST

Description

Specifies the list of α parameters to define the distributions of the Frechet random variables. Length must match
the other parameters and the number of Frechet random variables.

betas

• Keywords Area

• variables

• frechet uncertain

• betas

Second parameter of the Frechet distribution

Specification

Alias: fuv betas
Argument(s): REALLIST

Description

Specifies the list of β parameters to define the distributions of the Frechet random variables. Length must match
the other parameters and the number of Frechet random variables.

1658 CHAPTER 6. KEYWORDS AREA

initial point

• Keywords Area

• variables

• frechet uncertain

• initial point

Initial values

Specification
Alias: none

Argument(s): REALLIST

Description
The initial point specifications provide the point in design space (variable values) from which an iterator
is started. These default to the midpoint of bounds (continuous design variables) or the middle value (discrete
design variables).

descriptors

• Keywords Area

• variables

• frechet uncertain

• descriptors

Labels for the variables

Specification
Alias: fuv descriptors

Argument(s): STRINGLIST
Default: fuv {i}

Description
The optional variables labels specification descriptors is a list of strings which identify the variables. These
are used in console and tabular output.

The default descriptor strings use a root string plus a numeric identifier.

6.4.18 weibull uncertain
• Keywords Area

• variables

• weibull uncertain

Aleatory uncertain variable - Weibull

6.4. VARIABLES 1659

Topics

This keyword is related to the topics:

• continuous variables

• aleatory uncertain variables

Specification

Alias: none
Argument(s): INTEGER
Default: no weibull uncertain variables

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required alphas First parameter of
the Weibull
distribution

Required betas Second parameter
of the Weibull
distribution

Optional initial point Initial values

Optional descriptors Labels for the
variables

Description

The Weibull distribution is also referred to as the Type III Smallest Extreme Value distribution. The Weibull
distribution is commonly used in reliability studies to predict the lifetime of a device. It is also used to model
capacity variables such as material strength.

The density function for the Weibull distribution is given by:

f(x) =
α

β

(
x

β

)α−1

e−(xβ)α

where µW = βΓ(1 + 1
α) and σW =

√
Γ(1+ 2

α)

Γ2(1+ 1
α)
− 1µW

alphas

• Keywords Area

• variables

• weibull uncertain

• alphas

First parameter of the Weibull distribution

1660 CHAPTER 6. KEYWORDS AREA

Specification
Alias: wuv alphas

Argument(s): REALLIST

Description
Specifies the list of α parameters to define the distributions of the Weibull random variables.

Length must match the other parameters and the number of Weibull random variables.

betas

• Keywords Area

• variables

• weibull uncertain

• betas

Second parameter of the Weibull distribution

Specification
Alias: wuv betas

Argument(s): REALLIST

Description
Specifies the list of β parameters to define the distributions of the Weibull random variables. Length must match
the other parameters and the number of Weibull random variables.

initial point

• Keywords Area

• variables

• weibull uncertain

• initial point

Initial values

Specification
Alias: none

Argument(s): REALLIST

Description
The initial point specifications provide the point in design space (variable values) from which an iterator
is started. These default to the midpoint of bounds (continuous design variables) or the middle value (discrete
design variables).

6.4. VARIABLES 1661

descriptors

• Keywords Area

• variables

• weibull uncertain

• descriptors

Labels for the variables

Specification
Alias: wuv descriptors

Argument(s): STRINGLIST
Default: wuv {i}

Description
The optional variables labels specification descriptors is a list of strings which identify the variables. These
are used in console and tabular output.

The default descriptor strings use a root string plus a numeric identifier.

6.4.19 histogram bin uncertain
• Keywords Area

• variables

• histogram bin uncertain

Aleatory uncertain variable - continuous histogram

Topics
This keyword is related to the topics:

• continuous variables

• aleatory uncertain variables

Specification
Alias: none

Argument(s): INTEGER
Default: no histogram bin uncertain variables

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

1662 CHAPTER 6. KEYWORDS AREA

Optional pairs per variable Number of pairs
defining each
histogram bin
variable

Required abscissas Real abscissas for
a bin histogram

Required(Choose
One)

Group 1 ordinates Ordinates
specifying a
”skyline”
probability density
function

counts Frequency or
relative probability
of each bin

Optional initial point Initial values

Optional descriptors Labels for the
variables

Description
Histogram uncertain variables are typically used to model a set of empirical data. The bin histogram (contrast:
histogram point uncertain) is a continuous aleatory distribution characterized by bins of non-zero width where
the uncertain variable may lie, together with the relative frequencies of each bin. Hence it can be used to specify
a marginal probability density function arising from data.

The histogram bin uncertain keyword specifies the number of variables to be characterized as con-
tinuous histograms. The required sub-keywords are: abscissas (ranges of values the variable can take on) and
either ordinates or counts (characterizing each variable’s frequency information). When using histogram bin vari-
ables, each variable must be defined by at least one bin (with two bounding value pairs). When more than one
histogram bin variable is active, pairs per variable can be used to specify unequal apportionment of provided bin
pairs among the variables.

The abscissas specification defines abscissa values (”x” coordinates) for the probability density function
of each histogram variable. When paired with counts, the specifications provide sets of (x,c) pairs for each
histogram variable where c defines a count (i.e., a frequency or relative probability) associated with a bin. If using
bins of unequal width and specification of probability densities is more natural, then the counts specification
can be replaced with an ordinates specification (”y” coordinates) in order to support interpretation of the input
as (x,y) pairs defining the profile of a ”skyline” probability density function.

Conversion between the two specifications is straightforward: a count/frequency is a cumulative probability
quantity defined from the product of the ordinate density value and the x bin width. Thus, in the cases of bins of
equal width, ordinate and count specifications are equivalent. In addition, ordinates and counts may be relative
values; it is not necessary to scale them as all user inputs will be normalized.

To fully specify a bin-based histogram with n bins (potentially of unequal width), n+1 (x,c) or (x,y) pairs
must be specified with the following features:

• x is the parameter value for the left boundary of a histogram bin and c is the corresponding count for that

6.4. VARIABLES 1663

bin. Alternatively, y defines the ordinate density value for this bin within a skyline probability density
function. The right boundary of the bin is defined by the left boundary of the next pair.

• the final pair specifies the right end of the last bin and must have a c or y value of zero.

• the x values must be strictly increasing.

• all c or y values must be positive, except for the last which must be zero.

• a minimum of two pairs must be specified for each bin-based histogram variable.

Examples
The pairs per variable specification provides for the proper association of multiple sets of (x,c) or (x,y)
pairs with individual histogram variables. For example, in this input snippet

histogram_bin_uncertain = 2
pairs_per_variable = 3 4
abscissas = 5 8 10 .1 .2 .3 .4
counts = 17 21 0 12 24 12 0
descriptors = ’hbu_1’ ’hbu_2’

pairs per variable associates the first 3 (x,c) pairs from abscissas and counts {(5,17),(8,21),(10,0)}
with one bin-based histogram variable, where one bin is defined between 5 and 8 with a count of 17 and another
bin is defined between 8 and 10 with a count of 21. The following set of 4 (x,c) pairs {(.1,12),(.2,24),(.3,12),(.4,0)}
defines a second bin-based histogram variable containing three equal-width bins with counts 12, 24, and 12 (mid-
dle bin is twice as probable as the other two).

See Also
These keywords may also be of interest:

• histogram point uncertain

FAQ
Difference between bin and point histograms: A (continuous) bin histogram specifies bins of non-zero width,
whereas a (discrete) point histogram specifies individual point values, which can be thought of as bins with zero
width. In the terminology of LHS[89], the bin pairs specification defines a ”continuous linear” distribution and
the point pairs specification defines a ”discrete histogram” distribution (although the points are real-valued, the
number of possible values is finite).

pairs per variable

• Keywords Area

• variables

• histogram bin uncertain

• pairs per variable

Number of pairs defining each histogram bin variable

1664 CHAPTER 6. KEYWORDS AREA

Specification
Alias: num pairs

Argument(s): INTEGERLIST
Default: equal distribution

Description
By default, the list of abscissas and counts or ordinateswill be evenly divided among the histogram-
bin uncertain variables. pairs per variable is a list of integers that specify the number of pairs to

apportion to each variable.

abscissas

• Keywords Area

• variables

• histogram bin uncertain

• abscissas

Real abscissas for a bin histogram

Specification
Alias: huv bin abscissas

Argument(s): REALLIST

Description
A list of real abscissa (”x” coordinate) values characterizing the probability density function for each of the
histogram bin uncertain variables. These are paired with either counts or ordinates. See histogram bin-
uncertain for details and examples.

ordinates

• Keywords Area

• variables

• histogram bin uncertain

• ordinates

Ordinates specifying a ”skyline” probability density function

Specification
Alias: huv bin ordinates

Argument(s): REALLIST

6.4. VARIABLES 1665

Description

The ordinates list of real values defines the profile of a ”skyline” probability density function by pairing with
the specified abscissas. See histogram bin uncertain for details.

counts

• Keywords Area

• variables

• histogram bin uncertain

• counts

Frequency or relative probability of each bin

Specification

Alias: huv bin counts
Argument(s): REALLIST

Description

The counts list of real values gives the frequency or relative probability for each bin in a histogram bin -
uncertain specification. These are paired with the specified abscissas. See histogram bin uncertain for details.

initial point

• Keywords Area

• variables

• histogram bin uncertain

• initial point

Initial values

Specification

Alias: none
Argument(s): REALLIST

Description

The initial point specifications provide the point in design space (variable values) from which an iterator
is started. These default to the midpoint of bounds (continuous design variables) or the middle value (discrete
design variables).

1666 CHAPTER 6. KEYWORDS AREA

descriptors

• Keywords Area

• variables

• histogram bin uncertain

• descriptors

Labels for the variables

Specification
Alias: huv bin descriptors

Argument(s): STRINGLIST
Default: hbuv {i}

Description
The optional variables labels specification descriptors is a list of strings which identify the variables. These
are used in console and tabular output.

The default descriptor strings use a root string plus a numeric identifier.

6.4.20 poisson uncertain
• Keywords Area

• variables

• poisson uncertain

Aleatory uncertain discrete variable - Poisson

Topics
This keyword is related to the topics:

• discrete variables

• aleatory uncertain variables

Specification
Alias: none

Argument(s): INTEGER
Default: no poisson uncertain variables

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

6.4. VARIABLES 1667

Required lambdas The parameter for
the Poisson
distribution, the
expected number
of events in the
time interval of
interest

Optional initial point Initial values

Optional descriptors Labels for the
variables

Description
The Poisson distribution is used to predict the number of discrete events that happen in a single time interval. The
random events occur uniformly and independently. The expected number of occurences in a single time interval
is λ, which must be a positive real number. For example, if events occur on average 4 times per year and we
are interested in the distribution of events over six months, λ would be 2. However, if we were interested in the
distribution of events occuring over 5 years, λ would be 20.

The density function for the poisson distribution is given by:

f(x) =
λe−λ

x!

where

• λ is the expected number of events occuring in a single time interval -x is the number of events that occur
in this time period -f(x) is the probability that x events occur in this time period

Theory
When used with design of experiments and multidimensional parameter studies, distribution bounds are inferred.
These bounds are [0, µ+ 3σ].

For vector and centered parameter studies, an inferred initial starting point is needed for the uncertain vari-
ables. These variables are initialized to their means for these studies.

lambdas

• Keywords Area

• variables

• poisson uncertain

• lambdas

The parameter for the Poisson distribution, the expected number of events in the time interval of interest

Specification
Alias: none

Argument(s): REALLIST

1668 CHAPTER 6. KEYWORDS AREA

Description
The density function for the poisson distribution is given by:

f(x) =
λe−λ

x!

where λ is the frequency of events happening, and x is the number of events that occur.

initial point

• Keywords Area

• variables

• poisson uncertain

• initial point

Initial values

Specification
Alias: none

Argument(s): INTEGERLIST

Description
The initial point specifications provide the point in design space (variable values) from which an iterator
is started. These default to the midpoint of bounds (continuous design variables) or the middle value (discrete
design variables).

descriptors

• Keywords Area

• variables

• poisson uncertain

• descriptors

Labels for the variables

Specification
Alias: none

Argument(s): STRINGLIST
Default: puv {i}

Description
The optional variables labels specification descriptors is a list of strings which identify the variables. These
are used in console and tabular output.

The default descriptor strings use a root string plus a numeric identifier.

6.4. VARIABLES 1669

6.4.21 binomial uncertain
• Keywords Area

• variables

• binomial uncertain

Aleatory uncertain discrete variable - binomial

Topics
This keyword is related to the topics:

• discrete variables

• aleatory uncertain variables

Specification
Alias: none

Argument(s): INTEGER
Default: no binomial uncertain variables

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required probability per -
trial

A distribution
parameter for the
binomial
distribution

Required num trials A distribution
parameter

Optional initial point Initial values

Optional descriptors Labels for the
variables

Description
The binomial distribution describes probabilities associated with a series of independent Bernoulli trials. A
Bernoulli trial is an event with two mutually exclusive outcomes, such as 0 or 1, yes or no, success or fail.
The probability of success remains the same (the trials are independent).

The density function for the binomial distribution is given by:

f(x) =
(
n
x

)
px(1− p)(n−x)

where p is the probability of failure per trial, n is the number of trials and x is the number of successes.

Theory
The binomial distribution is typically used to predict the number of failures or defective items in a total of n
independent tests or trials, where each trial has the probability p of failing or being defective.

1670 CHAPTER 6. KEYWORDS AREA

probability per trial

• Keywords Area

• variables

• binomial uncertain

• probability per trial

A distribution parameter for the binomial distribution

Specification
Alias: prob per trial

Argument(s): REALLIST

Description
The binomial distribution is typically used to predict the number of failures (or defective items or some type of
event) in a total of n independent tests or trials, where each trial has the probability p of failing or being defective.
Each particular test can be considered as a Bernoulli trial.

num trials

• Keywords Area

• variables

• binomial uncertain

• num trials

A distribution parameter

Specification
Alias: none

Argument(s): INTEGERLIST

Description
The binomial distribution is typically used to predict the number of failures (or defective items or some type of
event) in a total of n independent tests or trials, where each trial has the probability p of failing or being defective.
Each particular test can be considered as a Bernoulli trial.

initial point

• Keywords Area

• variables

• binomial uncertain

• initial point

Initial values

6.4. VARIABLES 1671

Specification
Alias: none

Argument(s): INTEGERLIST

Description
The initial point specifications provide the point in design space (variable values) from which an iterator
is started. These default to the midpoint of bounds (continuous design variables) or the middle value (discrete
design variables).

descriptors

• Keywords Area

• variables

• binomial uncertain

• descriptors

Labels for the variables

Specification
Alias: none

Argument(s): STRINGLIST
Default: biuv {i}

Description
The optional variables labels specification descriptors is a list of strings which identify the variables. These
are used in console and tabular output.

The default descriptor strings use a root string plus a numeric identifier.

6.4.22 negative binomial uncertain
• Keywords Area

• variables

• negative binomial uncertain

Aleatory uncertain discrete variable - negative binomial

Topics
This keyword is related to the topics:

• discrete variables

• aleatory uncertain variables

1672 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): INTEGER
Default: no negative binomial uncertain variables

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required probability per -
trial

A negative
binomial
distribution
parameter

Required num trials A negative
binomial
distribution
parameter

Optional initial point Initial values

Optional descriptors Labels for the
variables

Description
The density function for the negative binomial distribution is given by:

f(x) =
(
n+ x− 1

x

)
pn(1− p)x

where

• p is the probability of success per trial

• n is the number of successful trials

• X is the number of failures

Theory
The negative binomial distribution is typically used to predict the number of failures observed when repeating a
test until a total of n successes have occurred, where each test has a probability p of success.

probability per trial

• Keywords Area

• variables

• negative binomial uncertain

• probability per trial

A negative binomial distribution parameter

6.4. VARIABLES 1673

Specification
Alias: prob per trial

Argument(s): REALLIST

Description
The negative binomial distribution is typically used to predict the number of failures observed when repeating a
test until a total of n successes have occurred, where each test has a probability p of success.

The density function for the negative binomial distribution is given by:

f(x) =
(
n+ x− 1

x

)
pn(1− p)x

where

• p is the probability of success per trial

• n is the number of successful trials

• X is the number of failures

num trials

• Keywords Area

• variables

• negative binomial uncertain

• num trials

A negative binomial distribution parameter

Specification
Alias: none

Argument(s): INTEGERLIST

Description
The negative binomial distribution is typically used to predict the number of failures observed when repeating a
test until a total of n successes have occurred, where each test has a probability p of success.

The density function for the negative binomial distribution is given by:

f(x) =
(
n+ x− 1

x

)
pn(1− p)x

where

• p is the probability of success per trial

• n is the number of successful trials

• X is the number of failures

1674 CHAPTER 6. KEYWORDS AREA

initial point

• Keywords Area

• variables

• negative binomial uncertain

• initial point

Initial values

Specification
Alias: none

Argument(s): INTEGERLIST

Description
The initial point specifications provide the point in design space (variable values) from which an iterator
is started. These default to the midpoint of bounds (continuous design variables) or the middle value (discrete
design variables).

descriptors

• Keywords Area

• variables

• negative binomial uncertain

• descriptors

Labels for the variables

Specification
Alias: none

Argument(s): STRINGLIST
Default: nbuv {i}

Description
The optional variables labels specification descriptors is a list of strings which identify the variables. These
are used in console and tabular output.

The default descriptor strings use a root string plus a numeric identifier.

6.4.23 geometric uncertain
• Keywords Area

• variables

• geometric uncertain

Aleatory uncertain discrete variable - geometric

6.4. VARIABLES 1675

Topics

This keyword is related to the topics:

• discrete variables

• aleatory uncertain variables

Specification

Alias: none
Argument(s): INTEGER
Default: no geometric uncertain variables

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required probability per -
trial

Geometric
distribution
parameter

Optional initial point Initial values

Optional descriptors Labels for the
variables

Description

The geometric distribution represents the number of successful trials that might occur before a failure is observed.
The density function for the geometric distribution is given by:

f(x) = p(1− p)x

where p is the probability of failure per trial.

probability per trial

• Keywords Area

• variables

• geometric uncertain

• probability per trial

Geometric distribution parameter

Specification

Alias: prob per trial
Argument(s): REALLIST

1676 CHAPTER 6. KEYWORDS AREA

Description
The geometric distribution represents the number of successful trials that occur before a failure is observed.

The density function for the geometric distribution is given by:

f(x) = p(1− p)x

where p is the probability of failure per trial and x is the number of successful trials.

initial point

• Keywords Area

• variables

• geometric uncertain

• initial point

Initial values

Specification
Alias: none

Argument(s): INTEGERLIST

Description
The initial point specifications provide the point in design space (variable values) from which an iterator
is started. These default to the midpoint of bounds (continuous design variables) or the middle value (discrete
design variables).

descriptors

• Keywords Area

• variables

• geometric uncertain

• descriptors

Labels for the variables

Specification
Alias: none

Argument(s): STRINGLIST
Default: geuv {i}

Description
The optional variables labels specification descriptors is a list of strings which identify the variables. These
are used in console and tabular output.

The default descriptor strings use a root string plus a numeric identifier.

6.4. VARIABLES 1677

6.4.24 hypergeometric uncertain
• Keywords Area

• variables

• hypergeometric uncertain

Aleatory uncertain discrete variable - hypergeometric

Topics
This keyword is related to the topics:

• discrete variables

• aleatory uncertain variables

Specification
Alias: none

Argument(s): INTEGER
Default: no hypergeometric uncertain variables

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required total population Parameter for the
hypergeometric
probability
distribution

Required selected -
population

Distribution
parameter for the
hypergeometric
distribution

Required num drawn Distribution
parameter for the
hypergeometric
distribution

Optional initial point Initial values

Optional descriptors Labels for the
variables

Description
The hypergeometric probability density is used when sampling without replacement from a total population of
elements where

• The resulting element of each sample can be separated into one of two non-overlapping sets

• The probability of success changes with each sample.

1678 CHAPTER 6. KEYWORDS AREA

The density function for the hypergeometric distribution is given by:

f(x) =

(
m
x

)(
N −m
n− x

)
(
N
n

)
where:

• N is the total population

• m is the number of items in the selected population (e.g. the number of white balls in the full urn of N
items)

• n is the size of the sample drawn (e.g. number of balls drawn)

• x is the number of sucess (e.g. drawing a white ball)

• a
b is a binomial coeffecient

Theory
The hypergeometric is often described using an urn model. For example, say we have a total population containing
N balls, and we know that m of the balls are white and the remaining balls are green. If we draw n balls from the
urn without replacement, the hypergeometric distribution describes the probability of drawing x white balls.

total population

• Keywords Area

• variables

• hypergeometric uncertain

• total population

Parameter for the hypergeometric probability distribution

Specification
Alias: none

Argument(s): INTEGERLIST

Description
The density function for the hypergeometric distribution is given by:

f(x) =

(
m
x

)(
N −m
n− x

)
(
N
n

)
where

6.4. VARIABLES 1679

• N is the total population (e.g. the total number of balls in the urn)

• m is the number of items in the selected population (e.g. the number of white balls in the full urn of N
items)

• n is the size of the sample (e.g. number of balls drawn)

• x is the number of sucess (e.g. drawing a white ball)

• a
b is a binomial coeffecient

selected population

• Keywords Area

• variables

• hypergeometric uncertain

• selected population

Distribution parameter for the hypergeometric distribution

Specification

Alias: none
Argument(s): INTEGERLIST

Description

The density function for the hypergeometric distribution is given by:

f(x) =

(
m
x

)(
N −m
n− x

)
(
N
n

)
where

• N is the total population (e.g. the total number of balls in the urn)

• m is the number of items in the selected population (e.g. the number of white balls in the full urn of N
items)

• n is the size of the sample (e.g. number of balls drawn)

• x is the number of sucess (e.g. drawing a white ball)

• a
b is a binomial coeffecient

1680 CHAPTER 6. KEYWORDS AREA

num drawn

• Keywords Area

• variables

• hypergeometric uncertain

• num drawn

Distribution parameter for the hypergeometric distribution

Specification
Alias: none

Argument(s): INTEGERLIST

Description
The density function for the hypergeometric distribution is given by:

f(x) =

(
m
x

)(
N −m
n− x

)
(
N
n

)
where

• N is the total population (e.g. the total number of balls in the urn)

• m is the number of items in the selected population (e.g. the number of white balls in the full urn of N
items)

• n is the size of the sample (e.g. number of balls drawn)

• x is the number of sucess (e.g. drawing a white ball)

• a
b is a binomial coeffecient

initial point

• Keywords Area

• variables

• hypergeometric uncertain

• initial point

Initial values

Specification
Alias: none

Argument(s): INTEGERLIST

6.4. VARIABLES 1681

Description
The initial point specifications provide the point in design space (variable values) from which an iterator
is started. These default to the midpoint of bounds (continuous design variables) or the middle value (discrete
design variables).

descriptors

• Keywords Area

• variables

• hypergeometric uncertain

• descriptors

Labels for the variables

Specification
Alias: none

Argument(s): STRINGLIST
Default: hguv {i}

Description
The optional variables labels specification descriptors is a list of strings which identify the variables. These
are used in console and tabular output.

The default descriptor strings use a root string plus a numeric identifier.

6.4.25 histogram point uncertain
• Keywords Area

• variables

• histogram point uncertain

Aleatory uncertain variable - discrete histogram

Topics
This keyword is related to the topics:

• discrete variables

• aleatory uncertain variables

Specification
Alias: none

Argument(s): none
Default: no histogram point uncertain variables

1682 CHAPTER 6. KEYWORDS AREA

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional integer Integer valued
point histogram
variable

Optional string String (categorical)
valued point
histogram variable

Optional real Real valued point
histogram variable

Description
Histogram uncertain variables are typically used to model a set of empirical data. When the variables take on only
discrete values or categories, a discrete, or point histogram is used to describe their probability mass function (one
could think of this as a histogram bin uncertain variable with ”bins” of zero width). Dakota supports integer-,
string-, and real-valued point histograms.

Point histograms are similar to discrete design set and discrete state set, but as they are uncertain variables,
include the relative probabilities of observing the different values within the set.

The histogram point uncertain keyword is followed by one or more of integer, string, or
real, each of which specify the number of variables to be characterized as discrete histograms of that sub-type.

Each discrete histogram variable is specified by one or more abscissa/count pairs. The abscissas, are the
possible values the variable can take on (”x” coordinates of type integer, string, or real), and must be specified
in increasing order. These are paired with counts c which provide the frequency of the given value or string,
relative to other possible values/strings.

Thus, to fully specify a point-based histogram with n points, n (x,c) pairs must be specified with the following
features:

• x is the point value (integer, string, or real) and c is the corresponding count for that value.

• the x values must be strictly increasing (lexicographically for strings).

• all c values must be positive.

• a minimum of one pair must be specified for each point-based histogram.

Examples
The pairs per variable specification provides for the proper association of multiple sets of (x,c) or (x,y)
pairs with individual histogram variables. For example, in the following specification,

histogram_point_uncertain
integer = 2
pairs_per_variable = 2 3
abscissas = 3 4 100 200 300
counts = 1 1 1 2 1

pairs per variable associates the (x,c) pairs {(3,1),(4,1)} with one point-based histogram variable
(where the values 3 and 4 are equally probable) and associates the (x,c) pairs {(100,1),(200,2),(300,1)} with a
second point-based histogram variable (where the value 200 is twice as probable as either 100 or 300).

6.4. VARIABLES 1683

See Also
These keywords may also be of interest:

• histogram bin uncertain

FAQ
Difference between bin and point histograms: A (continuous) bin histogram specifies bins of non-zero width,
whereas a (discrete) point histogram specifies individual point values, which can be thought of as bins with zero
width. In the terminology of LHS[89], the bin pairs specification defines a ”continuous linear” distribution and
the point pairs specification defines a ”discrete histogram” distribution (although the points are real-valued, the
number of possible values is finite).

integer

• Keywords Area

• variables

• histogram point uncertain

• integer

Integer valued point histogram variable

Specification
Alias: none

Argument(s): INTEGER
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional pairs per variable Number of pairs
defining each
histogram point
integer variable

Required abscissas Integer abscissas
for a point
histogram

Required counts Counts for
integer-valued
point histogram

1684 CHAPTER 6. KEYWORDS AREA

Optional initial point Initial values

Optional descriptors Labels for the
variables

Description

This probability mass function is integer-valued; the abscissa values must all be integers. The n abscissa values are
paired with n counts which indicate the relative frequency (mass) of each integer relative to the other specified
integers.

Examples
histogram_point_uncertain

integer = 2
pairs_per_variable = 2 3
abscissas = 3 4 100 200 300
counts = 1 1 1 2 1

There are two variables, the first one has two possible integer values which are equally probable. The second
one has three options, and 200 is twice as probable as either 100 or 300.

pairs per variable

• Keywords Area

• variables

• histogram point uncertain

• integer

• pairs per variable

Number of pairs defining each histogram point integer variable

Specification

Alias: num pairs
Argument(s): INTEGERLIST
Default: equal distribution

Description

By default, the list of abscissas and counts will be evenly divided among the histogram point integer
variables. The number of pairs per variable specifies the apportionment of abscissa/count pairs among
the histogram point integer variables. It must specify one integer >=1 per variable that indicates how many of the
(abscissa, count) = (x,c) pairs to associate with that variable.

6.4. VARIABLES 1685

abscissas

• Keywords Area

• variables

• histogram point uncertain

• integer

• abscissas

Integer abscissas for a point histogram

Specification

Alias: none
Argument(s): INTEGERLIST

Description

A list of integer abscissa (”x” coordinate) values characterizing the probability density function for each of the
integer histogram point uncertain variables. These must be listed in increasing order for each variable,
and are paired with counts. See histogram point uncertain for details and examples.

counts

• Keywords Area

• variables

• histogram point uncertain

• integer

• counts

Counts for integer-valued point histogram

Specification

Alias: none
Argument(s): REALLIST

Description

Count or frequency for each of abscissas. See histogram point uncertain for details and examples.

1686 CHAPTER 6. KEYWORDS AREA

initial point

• Keywords Area

• variables

• histogram point uncertain

• integer

• initial point

Initial values

Specification

Alias: none
Argument(s): INTEGERLIST

Description

The initial point specifications provide the point in design space (variable values) from which an iterator
is started. These default to the midpoint of bounds (continuous design variables) or the middle value (discrete
design variables).

descriptors

• Keywords Area

• variables

• histogram point uncertain

• integer

• descriptors

Labels for the variables

Specification

Alias: none
Argument(s): STRINGLIST
Default: hpiv {i}

Description

The optional variables labels specification descriptors is a list of strings which identify the variables. These
are used in console and tabular output.

The default descriptor strings use a root string plus a numeric identifier.

6.4. VARIABLES 1687

string

• Keywords Area

• variables

• histogram point uncertain

• string

String (categorical) valued point histogram variable

Specification
Alias: none

Argument(s): INTEGER
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional pairs per variable Number of pairs
defining each
histogram point
string variable

Required abscissas String abscissas for
a point histogram

Required counts Counts for
string-valued point
histogram

Optional initial point Initial values

Optional descriptors Labels for the
variables

Description
This probability mass function is string-valued; the abscissa values must all be strings. The n abscissa values are
paired with n counts which indicate the relative frequency (mass) of each string relative to the other specified
strings.

Examples
histogram_point_uncertain

string = 2
pairs_per_variable = 2 3
abscissas = ’no’ ’yes’ ’function1’ ’function2’ ’function3’
counts = 1 1 1 2 1
descriptors = ’vote’ ’which_function’

Here there are two variables, the first one (’vote’) has two possible string values ’yes’ and ’no’ which are
equally probable. The second one has three options for ’which function’, and ’function2’ is twice as probable as
’function1’ or ’function3’.

1688 CHAPTER 6. KEYWORDS AREA

pairs per variable

• Keywords Area

• variables

• histogram point uncertain

• string

• pairs per variable

Number of pairs defining each histogram point string variable

Specification

Alias: num pairs
Argument(s): INTEGERLIST
Default: equal distribution

Description

By default, the list of abscissas and counts will be evenly divided among the histogram point string vari-
ables. The number of pairs per variable specifies the apportionment of abscissa/count pairs among the
histogram point string variables. It must specify one integer >=1 per variable that indicates how many of the
(abscissa, count) = (x,c) pairs to associate with that variable.

abscissas

• Keywords Area

• variables

• histogram point uncertain

• string

• abscissas

String abscissas for a point histogram

Specification

Alias: none
Argument(s): STRINGLIST

Description

A list of string abscissa (”x” coordinate) values characterizing the probability density function for each of the
string histogram point uncertain variables. These must be listed in (lexicographically) increasing order
for each variable, and are paired with counts. See histogram point uncertain for details and examples.

6.4. VARIABLES 1689

counts

• Keywords Area

• variables

• histogram point uncertain

• string

• counts

Counts for string-valued point histogram

Specification

Alias: none
Argument(s): REALLIST

Description

Count or frequency for each of abscissas. See histogram point uncertain for details and examples.

initial point

• Keywords Area

• variables

• histogram point uncertain

• string

• initial point

Initial values

Specification

Alias: none
Argument(s): STRINGLIST

Description

The initial point specifications provide the point in design space (variable values) from which an iterator
is started. These default to the midpoint of bounds (continuous design variables) or the middle value (discrete
design variables).

1690 CHAPTER 6. KEYWORDS AREA

descriptors

• Keywords Area

• variables

• histogram point uncertain

• string

• descriptors

Labels for the variables

Specification
Alias: none

Argument(s): STRINGLIST
Default: hpsv {i}

Description
The optional variables labels specification descriptors is a list of strings which identify the variables. These
are used in console and tabular output.

The default descriptor strings use a root string plus a numeric identifier.

real

• Keywords Area

• variables

• histogram point uncertain

• real

Real valued point histogram variable

Specification
Alias: none

Argument(s): INTEGER
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional pairs per variable Number of pairs
defining each
histogram point
real variable

6.4. VARIABLES 1691

Required abscissas Real abscissas for
a point histogram

Required counts Counts for
real-valued point
histogram

Optional initial point Initial values

Optional descriptors Labels for the
variables

Description

This probability mass function is real-valued; the abscissa values must all be integers. The n abscissa values are
paired with n counts which indicate the relative frequency (mass) of each real relative to the other specified
reals.

Examples
histogram_point_uncertain

real = 2
pairs_per_variable = 2 3
abscissas = 3.1415 4.5389 100 200.112345 300
counts = 1 1 1 2 1

There are two variables, the first one has two possible real values which are equally probable. The second one
has three possible real value options, and 200.112345 is twice as probable as either 100 or 300.

pairs per variable

• Keywords Area

• variables

• histogram point uncertain

• real

• pairs per variable

Number of pairs defining each histogram point real variable

Specification

Alias: num pairs
Argument(s): INTEGERLIST
Default: equal distribution

1692 CHAPTER 6. KEYWORDS AREA

Description
By default, the list of abscissas and counts will be evenly divided among the histogram point real variables.
The number of pairs per variable specifies the apportionment of abscissa/count pairs among the histogram
point real variables. It must specify one integer >=1 per variable that indicates how many of the (abscissa, count)
= (x,c) pairs to associate with that variable.

abscissas

• Keywords Area

• variables

• histogram point uncertain

• real

• abscissas

Real abscissas for a point histogram

Specification
Alias: none

Argument(s): REALLIST

Description
A list of real abscissa (”x” coordinate) values characterizing the probability density function for each of the real
histogram point uncertain variables. These must be listed in increasing order for each variable, and are
paired with counts. See histogram point uncertain for details and examples.

counts

• Keywords Area

• variables

• histogram point uncertain

• real

• counts

Counts for real-valued point histogram

Specification
Alias: none

Argument(s): REALLIST

Description
Count or frequency for each of abscissas. See histogram point uncertain for details and examples.

6.4. VARIABLES 1693

initial point

• Keywords Area

• variables

• histogram point uncertain

• real

• initial point

Initial values

Specification

Alias: none
Argument(s): REALLIST

Description

The initial point specifications provide the point in design space (variable values) from which an iterator
is started. These default to the midpoint of bounds (continuous design variables) or the middle value (discrete
design variables).

descriptors

• Keywords Area

• variables

• histogram point uncertain

• real

• descriptors

Labels for the variables

Specification

Alias: none
Argument(s): STRINGLIST
Default: hpruv {i}

Description

The optional variables labels specification descriptors is a list of strings which identify the variables. These
are used in console and tabular output.

The default descriptor strings use a root string plus a numeric identifier.

1694 CHAPTER 6. KEYWORDS AREA

6.4.26 uncertain correlation matrix
• Keywords Area

• variables

• uncertain correlation matrix

Correlation among aleatory uncertain variables

Specification
Alias: none

Argument(s): REALLIST
Default: identity matrix (uncorrelated)

Description
Aleatory uncertain variables may have correlations specified through use of an uncertain correlation-
matrix specification. This specification is generalized in the sense that its specific meaning depends on the

nondeterministic method in use.
When the method is a nondeterministic sampling method (i.e., sampling), then the correlation matrix specifies

rank correlations [52].
When the method is a reliability (i.e., local reliability or global reliability) or stochastic

expansion (i.e., polynomial chaos or stoch collocation) method, then the correlation matrix specifies
correlation coefficients (normalized covariance)[42].

In either of these cases, specifying the identity matrix results in uncorrelated uncertain variables (the default).
The matrix input should be symmetric and have all n2 entries where n is the total number of aleatory uncertain
variables.

Ordering of the aleatory uncertain variables is:

1. normal

2. lognormal

3. uniform

4. loguniform

5. triangular

6. exponential

7. beta

8. gamma

9. gumbel

10. frechet

11. weibull

12. histogram bin

13. poisson

6.4. VARIABLES 1695

14. binomial

15. negative binomial

16. geometric

17. hypergeometric

18. histogram point

When additional variable types are activated, they assume uniform distributions, and the ordering is as listed
on variables.

Examples
Consider the following random variables, distributions and correlations:

• X1, normal, uncorrelated with others

• X2, normal, correlated with X3, X4 and X5

• X3, weibull , correlated with X5

• X4, exponential, correlated with X3, X4 and X5

• X5, normal, correlated with X5 These correlations are captured by the following commands (order of the
variables is respected).

uncertain_correlation_matrix
ordering normal, exponential, weibull
\f$X_1\f$ \f$X_2\f$ \f$X_5\f$ \fX_4\f \f$X_3\f$
1.00 0.00 0.00 0.00 0.00
0.00 1.00 0.50 0.24 0.78
0.00 0.50 1.00 0.00 0.20
0.00 0.24 0.00 1.00 0.49
0.00 0.78 0.20 0.49 1.0

6.4.27 continuous interval uncertain
• Keywords Area

• variables

• continuous interval uncertain

Epistemic uncertain variable - values from one or more continuous intervals

Topics
This keyword is related to the topics:

• continuous variables

• epistemic uncertain variables

Specification
Alias: interval uncertain

Argument(s): INTEGER
Default: no continuous interval uncertain variables

1696 CHAPTER 6. KEYWORDS AREA

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional num intervals Specify the
number of intervals
for each variable

Optional interval -
probabilities

Assign probability
mass to each
interval

Required lower bounds Specify minimum
values

Required upper bounds Specify maximium
values

Optional initial point Initial values

Optional descriptors Labels for the
variables

Description
Continuous interval uncertain variables are epistemic types. They can specify a single interval per variable which
may be used in interval analysis, where the goal is to determine the interval bounds on the output corresponding to
the interval bounds on the input. All values between the bounds are permissible. More detailed continuous interval
representations can specify a set of belief structures based on intervals that may be contiguous, overlapping, or
disjoint. This is used in specifying the inputs necessary for an epistemic uncertainty analysis using Dempster--
Shafer theory of evidence.

Other epistemic types include:

• discrete interval uncertain

• discrete uncertain set integer

• discrete uncertain set string

• discrete uncertain set real

Examples
The following specification is for an interval analysis:

continuous_interval_uncertain = 2
lower_bounds = 2.0 4.0
upper_bounds = 2.5 5.0

The following specification is for a Dempster-Shafer analysis:

continuous_interval_uncertain = 2
num_intervals = 3 2
interval_probs = 0.25 0.5 0.25 0.4 0.6
lower_bounds = 2.0 4.0 4.5 1.0 3.0
upper_bounds = 2.5 5.0 6.0 5.0 5.0

Here there are 2 interval uncertain variables. The first one is defined by three intervals, and the second by
two intervals. The three intervals for the first variable have basic probability assignments of 0.2, 0.5, and 0.3,
respectively, while the basic probability assignments for the two intervals for the second variable are 0.4 and 0.6.

6.4. VARIABLES 1697

The basic probability assignments for each interval variable must sum to one. The interval bounds for the first
variable are [2, 2.5], [4, 5], and [4.5, 6], and the interval bounds for the second variable are [1.0, 5.0] and [3.0,
5.0]. Note that the intervals can be overlapping or disjoint. The BPA for the first variable indicates that it is twice
as likely that the value occurs on the interval [4,5] than either [2,2.5] or [4.5,6].

Theory

The continuous interval uncertain variable is NOT a probability distribution. Although it may seem similar to a
histogram, the interpretation of this uncertain variable is different. It is used in epistemic uncertainty analysis,
where one is trying to model uncertainty due to lack of knowledge. The continuous interval uncertain variable is
used in both interval analysis and in Dempster-Shafer theory of evidence.

• interval analysis -only one interval is allowed for each continuous interval uncertain variable
-the interval is defined by lower and upper bounds -the value of the random variable lies somewhere in this
interval -output is the minimum and maximum function value conditional on the specified interval

• Dempster-Shafer theory of evidence -multiple intervals can be assigned to each continuous interval-
uncertain variable -a Basic Probability Assignment (BPA) is associated with each interval. The BPA

represents a probability that the value of the uncertain variable is located within that interval. -each interval
is defined by lower and upper bounds -outputs are called ”belief” and ”plausibility.” Belief represents the
smallest possible probability that is consistent with the evidence, while plausibility represents the largest
possible probability that is consistent with the evidence. Evidence is the intervals together with their BPA.

num intervals

• Keywords Area

• variables

• continuous interval uncertain

• num intervals

Specify the number of intervals for each variable

Specification

Alias: iuv num intervals
Argument(s): INTEGERLIST
Default: Equal apportionment of intervals among variables

Description

In Dakota, epistemic uncertainty analysis is performed using either interval estimation or Dempster-Shafer theory
of evidence. In these approaches, one does not assign a probability distribution to each uncertain input variable.
Rather, one divides each uncertain input variable into one or more intervals. The input parameters are only known
to occur within intervals; nothing more is assumed. num intervals specifies the number of such intervals
associated with each interval uncertain parameter.

1698 CHAPTER 6. KEYWORDS AREA

interval probabilities

• Keywords Area

• variables

• continuous interval uncertain

• interval probabilities

Assign probability mass to each interval

Specification
Alias: interval probs iuv interval probs

Argument(s): REALLIST
Default: Equal probability assignments for each interval (1/num intervals[i])

Description
The basic probability assignments for each interval variable must sum to one. For example, if an interval variable
is defined with three intervals, the probabilities for these intervals could be 0.2, 0.5, and 0.3 which sum to one,
but could not be 0.5,0.5, and 0.5 which do not sum to one.

lower bounds

• Keywords Area

• variables

• continuous interval uncertain

• lower bounds

Specify minimum values

Specification
Alias: none

Argument(s): REALLIST

Description
Specify minimum values

upper bounds

• Keywords Area

• variables

• continuous interval uncertain

• upper bounds

Specify maximium values

6.4. VARIABLES 1699

Specification

Alias: none
Argument(s): REALLIST

Description

Specify maximium values

initial point

• Keywords Area

• variables

• continuous interval uncertain

• initial point

Initial values

Specification

Alias: none
Argument(s): REALLIST

Description

The initial point specifications provide the point in design space (variable values) from which an iterator
is started. These default to the midpoint of bounds (continuous design variables) or the middle value (discrete
design variables).

descriptors

• Keywords Area

• variables

• continuous interval uncertain

• descriptors

Labels for the variables

Specification

Alias: iuv descriptors
Argument(s): STRINGLIST
Default: ciuv {i}

1700 CHAPTER 6. KEYWORDS AREA

Description
The optional variables labels specification descriptors is a list of strings which identify the variables. These
are used in console and tabular output.

The default descriptor strings use a root string plus a numeric identifier.

6.4.28 discrete interval uncertain
• Keywords Area

• variables

• discrete interval uncertain

Epistemic uncertain variable - values from one or more discrete intervals

Topics
This keyword is related to the topics:

• discrete variables

• epistemic uncertain variables

Specification
Alias: discrete uncertain range

Argument(s): INTEGER
Default: No discrete interval uncertain variables

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional num intervals Specify the
number of intervals
for each variable

Optional interval -
probabilities

Assign probability
mass to each
interval

Required lower bounds Specify minimum
values

Required upper bounds Specify maximium
values

Optional initial point Initial values

Optional descriptors Labels for the
variables

Description
Discrete interval uncertain variables are epistemic types. They can specify a single interval per variable which
may be used in interval analysis, where the goal is to determine the interval bounds on the output corresponding to
the interval bounds on the input. Permissible values are any integer within the bound. More detailed continuous

6.4. VARIABLES 1701

interval representations can specify a set of belief structures based on intervals that may be contiguous, over-
lapping, or disjoint. This is used in specifying the inputs necessary for an epistemic uncertainty analysis using
Dempster-Shafer theory of evidence.

Other epistemic types include:

• continuous interval uncertain

• discrete uncertain set integer

• discrete uncertain set string

• discrete uncertain set real

Examples
Let d1 be 2, 3 or 4 with probability 0.2, 4 or 5 with probability 0.5 and 6 with probability 0.3. Let d2 be 4, 5
or 6 with probability 0.4 and 6, 7 or 8 with probability 0.6. The following specification is for a Dempster-Shafer
analysis:

discrete_interval_uncertain = 2
num_intervals = 3 2
interval_probs = 0.2 0.5 0.3 0.4 0.6
lower_bounds = 2 4 6 4 6
upper_bounds = 4 5 6 6 8

Theory

• Dempster-Shafer theory of evidence -multiple intervals can be assigned to each discrete interval-
uncertain variable -a Basic Probability Assignment (BPA) is associated with each interval. The BPA

represents a probability that the value of the uncertain variable is located within that interval. -each interval
is defined by lower and upper bounds -outputs are called ”belief” and ”plausibility.” Belief represents the
smallest possible probability that is consistent with the evidence, while plausibility represents the largest
possible probability that is consistent with the evidence. Evidence is the intervals together with their BPA.

num intervals

• Keywords Area

• variables

• discrete interval uncertain

• num intervals

Specify the number of intervals for each variable

Specification

Alias: none
Argument(s): INTEGERLIST
Default: Equal apportionment of intervals among variables

1702 CHAPTER 6. KEYWORDS AREA

Description
In Dakota, epistemic uncertainty analysis is performed using either interval estimation or Dempster-Shafer theory
of evidence. In these approaches, one does not assign a probability distribution to each uncertain input variable.
Rather, one divides each uncertain input variable into one or more intervals. The input parameters are only known
to occur within intervals; nothing more is assumed. num intervals specifies the number of such intervals
associated with each interval uncertain parameter.

interval probabilities

• Keywords Area

• variables

• discrete interval uncertain

• interval probabilities

Assign probability mass to each interval

Specification
Alias: interval probs range probabilities range probs

Argument(s): REALLIST
Default: Equal probability assignments for each interval (1/num intervals[i])

Description
The basic probability assignments for each interval variable must sum to one. For example, if an interval variable
is defined with three intervals, the probabilities for these intervals could be 0.2, 0.5, and 0.3 which sum to one,
but could not be 0.5,0.5, and 0.5 which do not sum to one.

lower bounds

• Keywords Area

• variables

• discrete interval uncertain

• lower bounds

Specify minimum values

Specification
Alias: none

Argument(s): INTEGERLIST

Description
Specify minimum values

6.4. VARIABLES 1703

upper bounds

• Keywords Area

• variables

• discrete interval uncertain

• upper bounds

Specify maximium values

Specification
Alias: none

Argument(s): INTEGERLIST

Description
Specify maximium values

initial point

• Keywords Area

• variables

• discrete interval uncertain

• initial point

Initial values

Specification
Alias: none

Argument(s): INTEGERLIST

Description
The initial point specifications provide the point in design space (variable values) from which an iterator
is started. These default to the midpoint of bounds (continuous design variables) or the middle value (discrete
design variables).

descriptors

• Keywords Area

• variables

• discrete interval uncertain

• descriptors

Labels for the variables

1704 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): STRINGLIST
Default: diuv {i}

Description
The optional variables labels specification descriptors is a list of strings which identify the variables. These
are used in console and tabular output.

The default descriptor strings use a root string plus a numeric identifier.

6.4.29 discrete uncertain set
• Keywords Area

• variables

• discrete uncertain set

Set-valued discrete uncertain variables

Topics
This keyword is related to the topics:

• discrete variables

• epistemic uncertain variables

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional integer Discrete, epistemic
uncertain variable -
integers within a
set

Optional string Discrete, epistemic
uncertain variable -
strings within a set

6.4. VARIABLES 1705

Optional real Discrete, epistemic
uncertain variable -
real numbers
within a set

Description
Discrete uncertain variables whose values come from a set of admissible elements. Each variable specified must
be of type integer, string, or real.

integer

• Keywords Area

• variables

• discrete uncertain set

• integer

Discrete, epistemic uncertain variable - integers within a set

Topics
This keyword is related to the topics:

• discrete variables

• epistemic uncertain variables

Specification
Alias: none

Argument(s): INTEGER
Default: no discrete uncertain set integer variables

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional elements per -
variable

Number of
admissible
elements for each
set variable

Required elements The permissible
values for each
discrete variable

1706 CHAPTER 6. KEYWORDS AREA

Optional set probabilities This keyword
defines the
probabilities for
the various
elements of
discrete sets.

Optional categorical Whether the
set-valued
variables are
categorical or
relaxable

Optional initial point Initial values

Optional descriptors Labels for the
variables

Description
Discrete set variables may be used to specify categorical choices which are epistemic. For example, if we have
three possible forms for a physics model (model 1, 2, or 3) and there is epistemic uncertainty about which one is
correct, a discrete uncertain set may be used to represent this type of uncertainty.

This variable is defined by a set of integers, in which the discrete value may take any value within the integer
set (for example, the set may be defined as 1, 2, and 4)

Other epistemic types include:

• continuous interval uncertain

• discrete interval uncertain

• discrete uncertain set string

• discrete uncertain set real

Examples
Let d1 be 2 or 13 and d2 be 4, 5 or 26. The following specification is for an interval analysis:

discrete_uncertain_set
integer
num_set_values 2 3
set_values 2 13 4 5 26
descriptors ’di1’ ’di2’

Theory
The discrete uncertain set-integer variable is NOT a discrete random variable. It can be contrasted
to a the histogram-defined random variables: histogram bin uncertain and histogram point uncertain. It is used
in epistemic uncertainty analysis, where one is trying to model uncertainty due to lack of knowledge.

The discrete uncertain set integer variable is used in both interval analysis and in Dempster-Shafer theory of
evidence.

6.4. VARIABLES 1707

• interval analysis -the values are integers, equally weighted -the true value of the random variable is one of
the integers in this set -output is the minimum and maximum function value conditional on the specified
inputs

• Dempster-Shafer theory of evidence -the values are integers, but they can be assigned different weights
-outputs are called ”belief” and ”plausibility.” Belief represents the smallest possible probability that is
consistent with the evidence, while plausibility represents the largest possible probability that is consistent
with the evidence. Evidence is the values together with their weights.

elements per variable

• Keywords Area

• variables

• discrete uncertain set

• integer

• elements per variable

Number of admissible elements for each set variable

Specification
Alias: num set values

Argument(s): INTEGERLIST
Default: equal distribution

Description
Discrete set variables (including design, uncertain, and state) take on only a fixed set of values. For each type
(integer, string, or real), this keyword specifies how many admissible values are provided for each variable. If
not specified, equal apportionment of elements among variables is assumed, and the number of elements must be
evenly divisible by the number of variables.

elements

• Keywords Area

• variables

• discrete uncertain set

• integer

• elements

The permissible values for each discrete variable

Specification
Alias: set values

Argument(s): INTEGERLIST

1708 CHAPTER 6. KEYWORDS AREA

Description

Specify the permissible values for discrete set variables (of type integer, string, or real). See the description on
the discrete variables page.

set probabilities

• Keywords Area

• variables

• discrete uncertain set

• integer

• set probabilities

This keyword defines the probabilities for the various elements of discrete sets.

Specification

Alias: set probs
Argument(s): REALLIST
Default: Equal probability assignments for each set member (1/num set values[i])

Description

There are three types of discrete uncertain set variables: integer, string, or real sets. With each of
these types, one defines the number of elements of the set per that variable, the values of those elements, and the
associated probabilities. For example, if one has an integer discrete uncertain set variable with 3 elements {3,4,8},
then one could define the probabilities associated with those set elements as (for example) 0.2, 0.5, and 0.3. The
set probabilities for a particular variable should sum to one over all the elements in that set.

categorical

• Keywords Area

• variables

• discrete uncertain set

• integer

• categorical

Whether the set-valued variables are categorical or relaxable

Specification

Alias: none
Argument(s): STRINGLIST

6.4. VARIABLES 1709

Description
A list of strings of length equal to the number of set (integer, string, or real) variables indicating whether they are
strictly categorical, meaning may only take on values from the provided set, or relaxable, meaning may take on
any integer or real value between the lowest and highest specified element. Valid categorical strings include ’yes’,
’no’, ’true’, and ’false’, or any abbreviation in [yYnNtTfF][.]∗

Examples
Discrete design set variable, ’rotor blades’, can take on only integer values, 2, 4, or 7 by default. Since categorical
is specified to be false, the integrality can be relaxed and ’rotor blades’ can take on any value between 2 and 7,
e.g., 3, 6, or 5.5.

discrete_design_set
integer 1

elements 2 4 7
descriptor ’rotor_blades’
categorical ’no’

initial point

• Keywords Area

• variables

• discrete uncertain set

• integer

• initial point

Initial values

Specification
Alias: none

Argument(s): INTEGERLIST

Description
The initial point specifications provide the point in design space (variable values) from which an iterator
is started. These default to the midpoint of bounds (continuous design variables) or the middle value (discrete
design variables).

descriptors

• Keywords Area

• variables

• discrete uncertain set

• integer

• descriptors

Labels for the variables

1710 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): STRINGLIST
Default: dusiv {i}

Description
The optional variables labels specification descriptors is a list of strings which identify the variables. These
are used in console and tabular output.

The default descriptor strings use a root string plus a numeric identifier.

string

• Keywords Area

• variables

• discrete uncertain set

• string

Discrete, epistemic uncertain variable - strings within a set

Topics
This keyword is related to the topics:

• discrete variables

• epistemic uncertain variables

Specification
Alias: none

Argument(s): INTEGER
Default: no discrete uncertain set string variables

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional elements per -
variable

Number of
admissible
elements for each
set variable

6.4. VARIABLES 1711

Required elements The permissible
values for each
discrete variable

Optional set probabilities This keyword
defines the
probabilities for
the various
elements of
discrete sets.

Optional initial point Initial values

Optional descriptors Labels for the
variables

Description
Discrete set variables may be used to specify categorical choices which are epistemic. For example, if we have
three possible forms for a physics model (model 1, 2, or 3) and there is epistemic uncertainty about which one is
correct, a discrete uncertain set may be used to represent this type of uncertainty.

This variable is defined by a set of strings, in which the discrete value may take any value within the string set
(for example, the set may be defined as ’coarse’, ’medium’, and ’fine’)

Other epistemic types include:

• continuous interval uncertain

• discrete interval uncertain

• discrete uncertain set integer

• discrete uncertain set real

Examples
discrete_uncertain_set
string
num_set_values 2 3
set_values ’red’ ’blue’ ’coarse’ ’medium’ ’fine’
descriptors ’ds1’ ’ds2’

elements per variable

• Keywords Area

• variables

• discrete uncertain set

• string

• elements per variable

Number of admissible elements for each set variable

1712 CHAPTER 6. KEYWORDS AREA

Specification

Alias: num set values
Argument(s): INTEGERLIST
Default: equal distribution

Description

Discrete set variables (including design, uncertain, and state) take on only a fixed set of values. For each type
(integer, string, or real), this keyword specifies how many admissible values are provided for each variable. If
not specified, equal apportionment of elements among variables is assumed, and the number of elements must be
evenly divisible by the number of variables.

elements

• Keywords Area

• variables

• discrete uncertain set

• string

• elements

The permissible values for each discrete variable

Specification

Alias: set values
Argument(s): STRINGLIST

Description

Specify the permissible values for discrete set variables (of type integer, string, or real). See the description on
the discrete variables page.

set probabilities

• Keywords Area

• variables

• discrete uncertain set

• string

• set probabilities

This keyword defines the probabilities for the various elements of discrete sets.

6.4. VARIABLES 1713

Specification
Alias: set probs

Argument(s): REALLIST
Default: Equal probability assignments for each set member (1/num set values[i])

Description
There are three types of discrete uncertain set variables: integer, string, or real sets. With each of
these types, one defines the number of elements of the set per that variable, the values of those elements, and the
associated probabilities. For example, if one has an integer discrete uncertain set variable with 3 elements {3,4,8},
then one could define the probabilities associated with those set elements as (for example) 0.2, 0.5, and 0.3. The
set probabilities for a particular variable should sum to one over all the elements in that set.

initial point

• Keywords Area

• variables

• discrete uncertain set

• string

• initial point

Initial values

Specification
Alias: none

Argument(s): STRINGLIST

Description
The initial point specifications provide the point in design space (variable values) from which an iterator
is started. These default to the midpoint of bounds (continuous design variables) or the middle value (discrete
design variables).

descriptors

• Keywords Area

• variables

• discrete uncertain set

• string

• descriptors

Labels for the variables

1714 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): STRINGLIST
Default: dussv {i}

Description
The optional variables labels specification descriptors is a list of strings which identify the variables. These
are used in console and tabular output.

The default descriptor strings use a root string plus a numeric identifier.

real

• Keywords Area

• variables

• discrete uncertain set

• real

Discrete, epistemic uncertain variable - real numbers within a set

Topics
This keyword is related to the topics:

• discrete variables

• epistemic uncertain variables

Specification
Alias: none

Argument(s): INTEGER
Default: no discrete uncertain set real variables

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional elements per -
variable

Number of
admissible
elements for each
set variable

6.4. VARIABLES 1715

Required elements The permissible
values for each
discrete variable

Optional set probabilities This keyword
defines the
probabilities for
the various
elements of
discrete sets.

Optional categorical Whether the
set-valued
variables are
categorical or
relaxable

Optional initial point Initial values

Optional descriptors Labels for the
variables

Description
Discrete set variables may be used to specify categorical choices which are epistemic. For example, if we have
three possible forms for a physics model (model 1, 2, or 3) and there is epistemic uncertainty about which one is
correct, a discrete uncertain set may be used to represent this type of uncertainty.

This variable is defined by a set of reals, in which the discrete variable may take any value defined within the
real set (for example, a parameter may have two allowable real values, 3.285 or 4.79).

Other epistemic types include:

• continuous interval uncertain

• discrete interval uncertain

• discrete uncertain set integer

• discrete uncertain set string

Examples
Let d1 be 2.1 or 1.3 and d2 be 0.4, 5 or 2.6. The following specification is for an interval analysis:

discrete_uncertain_set
integer
num_set_values 2 3
set_values 2.1 1.3 0.4 5 2.6
descriptors ’dr1’ ’dr2’

Theory
The discrete uncertain set-integer variable is NOT a discrete random variable. It can be contrasted
to a the histogram-defined random variables: histogram bin uncertain and histogram point uncertain. It is used
in epistemic uncertainty analysis, where one is trying to model uncertainty due to lack of knowledge.

1716 CHAPTER 6. KEYWORDS AREA

The discrete uncertain set integer variable is used in both interval analysis and in Dempster-Shafer theory of
evidence.

• interval analysis -the values are integers, equally weighted -the true value of the random variable is one of
the integers in this set -output is the minimum and maximum function value conditional on the specified
inputs

• Dempster-Shafer theory of evidence -the values are integers, but they can be assigned different weights
-outputs are called ”belief” and ”plausibility.” Belief represents the smallest possible probability that is
consistent with the evidence, while plausibility represents the largest possible probability that is consistent
with the evidence. Evidence is the values together with their weights.

elements per variable

• Keywords Area

• variables

• discrete uncertain set

• real

• elements per variable

Number of admissible elements for each set variable

Specification
Alias: num set values

Argument(s): INTEGERLIST
Default: equal distribution

Description
Discrete set variables (including design, uncertain, and state) take on only a fixed set of values. For each type
(integer, string, or real), this keyword specifies how many admissible values are provided for each variable. If
not specified, equal apportionment of elements among variables is assumed, and the number of elements must be
evenly divisible by the number of variables.

elements

• Keywords Area

• variables

• discrete uncertain set

• real

• elements

The permissible values for each discrete variable

6.4. VARIABLES 1717

Specification

Alias: set values
Argument(s): REALLIST

Description

Specify the permissible values for discrete set variables (of type integer, string, or real). See the description on
the discrete variables page.

set probabilities

• Keywords Area

• variables

• discrete uncertain set

• real

• set probabilities

This keyword defines the probabilities for the various elements of discrete sets.

Specification

Alias: set probs
Argument(s): REALLIST
Default: Equal probability assignments for each set member (1/num set values[i])

Description

There are three types of discrete uncertain set variables: integer, string, or real sets. With each of
these types, one defines the number of elements of the set per that variable, the values of those elements, and the
associated probabilities. For example, if one has an integer discrete uncertain set variable with 3 elements {3,4,8},
then one could define the probabilities associated with those set elements as (for example) 0.2, 0.5, and 0.3. The
set probabilities for a particular variable should sum to one over all the elements in that set.

categorical

• Keywords Area

• variables

• discrete uncertain set

• real

• categorical

Whether the set-valued variables are categorical or relaxable

1718 CHAPTER 6. KEYWORDS AREA

Specification

Alias: none
Argument(s): STRINGLIST

Description

A list of strings of length equal to the number of set (integer, string, or real) variables indicating whether they are
strictly categorical, meaning may only take on values from the provided set, or relaxable, meaning may take on
any integer or real value between the lowest and highest specified element. Valid categorical strings include ’yes’,
’no’, ’true’, and ’false’, or any abbreviation in [yYnNtTfF][.]∗

Examples

Discrete design set variable, ’rotor blades’, can take on only integer values, 2, 4, or 7 by default. Since categorical
is specified to be false, the integrality can be relaxed and ’rotor blades’ can take on any value between 2 and 7,
e.g., 3, 6, or 5.5.

discrete_design_set
integer 1

elements 2 4 7
descriptor ’rotor_blades’
categorical ’no’

initial point

• Keywords Area

• variables

• discrete uncertain set

• real

• initial point

Initial values

Specification

Alias: none
Argument(s): REALLIST

Description

The initial point specifications provide the point in design space (variable values) from which an iterator
is started. These default to the midpoint of bounds (continuous design variables) or the middle value (discrete
design variables).

6.4. VARIABLES 1719

descriptors

• Keywords Area

• variables

• discrete uncertain set

• real

• descriptors

Labels for the variables

Specification
Alias: none

Argument(s): STRINGLIST
Default: dusrv {i}

Description
The optional variables labels specification descriptors is a list of strings which identify the variables. These
are used in console and tabular output.

The default descriptor strings use a root string plus a numeric identifier.

6.4.30 continuous state
• Keywords Area

• variables

• continuous state

Continuous state variables

Topics
This keyword is related to the topics:

• state variables

• continuous variables

Specification
Alias: none

Argument(s): INTEGER
Default: No continuous state variables

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

1720 CHAPTER 6. KEYWORDS AREA

Optional initial state Initial values for
the state variables

Optional lower bounds Specify minimum
values

Optional upper bounds Specify maximium
values

Optional descriptors Labels for the
variables

Description

Continuous state variables are defined by bounds.
Default behavior for most methods is that only the initial state values are used.
See the state variables page for details on the behavior of state variables.

initial state

• Keywords Area

• variables

• continuous state

• initial state

Initial values for the state variables

Specification

Alias: csv initial state
Argument(s): REALLIST
Default: 0.0

Description

The initial state specifications provide the initial values for the state variables.
This is an optional keyword. If it is not specified, the initial state will be inferred from the other keywords that

define the state variable.
Defaults are:

• Continuous state variables - use the midpoint of the bounds

• Set variables - use the value with the index closest to the middle of the set

• Range variables - use the midpoint of the range

6.4. VARIABLES 1721

lower bounds

• Keywords Area

• variables

• continuous state

• lower bounds

Specify minimum values

Specification
Alias: csv lower bounds

Argument(s): REALLIST
Default: -infinity

Description
Specify minimum values

upper bounds

• Keywords Area

• variables

• continuous state

• upper bounds

Specify maximium values

Specification
Alias: csv upper bounds

Argument(s): REALLIST
Default: infinity

Description
Specify maximium values

descriptors

• Keywords Area

• variables

• continuous state

• descriptors

Labels for the variables

1722 CHAPTER 6. KEYWORDS AREA

Specification
Alias: csv descriptors

Argument(s): STRINGLIST
Default: csv {i}

Description
The optional variables labels specification descriptors is a list of strings which identify the variables. These
are used in console and tabular output.

The default descriptor strings use a root string plus a numeric identifier.

6.4.31 discrete state range
• Keywords Area

• variables

• discrete state range

Discrete state variables; each defined by an integer interval

Topics
This keyword is related to the topics:

• discrete variables

• state variables

Specification
Alias: none

Argument(s): INTEGER
Default: No discrete state variables

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional initial state Initial values for
the state variables

Optional lower bounds Specify minimum
values

Optional upper bounds Specify maximium
values

Optional descriptors Labels for the
variables

Description
Discrete state variables defined by bounds.

The details of how to specify this discrete variable are located on the discrete variables page.
See the state variables page for details on the behavior of state variables.

6.4. VARIABLES 1723

initial state

• Keywords Area

• variables

• discrete state range

• initial state

Initial values for the state variables

Specification
Alias: dsv initial state

Argument(s): INTEGERLIST
Default: 0

Description
The initial state specifications provide the initial values for the state variables.

This is an optional keyword. If it is not specified, the initial state will be inferred from the other keywords that
define the state variable.

Defaults are:

• Continuous state variables - use the midpoint of the bounds

• Set variables - use the value with the index closest to the middle of the set

• Range variables - use the midpoint of the range

lower bounds

• Keywords Area

• variables

• discrete state range

• lower bounds

Specify minimum values

Specification
Alias: dsv lower bounds

Argument(s): INTEGERLIST
Default: INT MIN

Description
Specify minimum values

1724 CHAPTER 6. KEYWORDS AREA

upper bounds

• Keywords Area

• variables

• discrete state range

• upper bounds

Specify maximium values

Specification
Alias: dsv upper bounds

Argument(s): INTEGERLIST
Default: INT MAX

Description
Specify maximium values

descriptors

• Keywords Area

• variables

• discrete state range

• descriptors

Labels for the variables

Specification
Alias: dsv descriptors

Argument(s): STRINGLIST
Default: dsriv {i}

Description
The optional variables labels specification descriptors is a list of strings which identify the variables. These
are used in console and tabular output.

The default descriptor strings use a root string plus a numeric identifier.

6.4.32 discrete state set
• Keywords Area

• variables

• discrete state set

Set-valued discrete state variables

6.4. VARIABLES 1725

Topics
This keyword is related to the topics:

• discrete variables

• state variables

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional integer Discrete state
variables, each
defined by a set of
permissible
integers

Optional string String-valued
discrete state set
variables

Optional real Discrete state
variables, each
defined by a set of
permissible real
numbers

Description
Discrete state variables whose values come from a set of admissible elements. Each variable specified must be of
type integer, string, or real.

integer

• Keywords Area

• variables

• discrete state set

• integer

Discrete state variables, each defined by a set of permissible integers

Topics
This keyword is related to the topics:

• discrete variables

• state variables

1726 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): INTEGER
Default: no discrete state set integer variables

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional elements per -
variable

Number of
admissible
elements for each
set variable

Required elements The permissible
values for each
discrete variable

Optional categorical Whether the
set-valued
variables are
categorical or
relaxable

Optional initial state Initial values for
the state variables

Optional descriptors Labels for the
variables

Description
Discrete state variables defined by a set of permissible integers.

The details of how to specify this discrete variable are located on the discrete variables page.
See the state variables page for details on the behavior of state variables.

elements per variable

• Keywords Area

• variables

• discrete state set

• integer

• elements per variable

Number of admissible elements for each set variable

Specification
Alias: num set values

Argument(s): INTEGERLIST
Default: equal distribution

6.4. VARIABLES 1727

Description
Discrete set variables (including design, uncertain, and state) take on only a fixed set of values. For each type
(integer, string, or real), this keyword specifies how many admissible values are provided for each variable. If
not specified, equal apportionment of elements among variables is assumed, and the number of elements must be
evenly divisible by the number of variables.

elements

• Keywords Area

• variables

• discrete state set

• integer

• elements

The permissible values for each discrete variable

Specification
Alias: set values

Argument(s): INTEGERLIST

Description
Specify the permissible values for discrete set variables (of type integer, string, or real). See the description on
the discrete variables page.

categorical

• Keywords Area

• variables

• discrete state set

• integer

• categorical

Whether the set-valued variables are categorical or relaxable

Specification
Alias: none

Argument(s): STRINGLIST

Description
A list of strings of length equal to the number of set (integer, string, or real) variables indicating whether they are
strictly categorical, meaning may only take on values from the provided set, or relaxable, meaning may take on
any integer or real value between the lowest and highest specified element. Valid categorical strings include ’yes’,
’no’, ’true’, and ’false’, or any abbreviation in [yYnNtTfF][.]∗

1728 CHAPTER 6. KEYWORDS AREA

Examples
Discrete design set variable, ’rotor blades’, can take on only integer values, 2, 4, or 7 by default. Since categorical
is specified to be false, the integrality can be relaxed and ’rotor blades’ can take on any value between 2 and 7,
e.g., 3, 6, or 5.5.

discrete_design_set
integer 1

elements 2 4 7
descriptor ’rotor_blades’
categorical ’no’

initial state

• Keywords Area

• variables

• discrete state set

• integer

• initial state

Initial values for the state variables

Specification
Alias: none

Argument(s): INTEGERLIST
Default: middle set value, or rounded down

Description
The initial state specifications provide the initial values for the state variables.

This is an optional keyword. If it is not specified, the initial state will be inferred from the other keywords that
define the state variable.

Defaults are:

• Continuous state variables - use the midpoint of the bounds

• Set variables - use the value with the index closest to the middle of the set

• Range variables - use the midpoint of the range

descriptors

• Keywords Area

• variables

• discrete state set

• integer

• descriptors

Labels for the variables

6.4. VARIABLES 1729

Specification
Alias: none

Argument(s): STRINGLIST
Default: dssiv {i}

Description
The optional variables labels specification descriptors is a list of strings which identify the variables. These
are used in console and tabular output.

The default descriptor strings use a root string plus a numeric identifier.

string

• Keywords Area

• variables

• discrete state set

• string

String-valued discrete state set variables

Topics
This keyword is related to the topics:

• discrete variables

• state variables

Specification
Alias: none

Argument(s): INTEGER
Default: no discrete state set string variables

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional elements per -
variable

Number of
admissible
elements for each
set variable

1730 CHAPTER 6. KEYWORDS AREA

Required elements The permissible
values for each
discrete variable

Optional initial state Initial values for
the state variables

Optional descriptors Labels for the
variables

Description
Discrete state variables whose values come from a specified set of admissible strings. The details of how to
specify this discrete variable are located on the discrete variables page. See the state variables page for details on
the behavior of state variables. Each string element value must be quoted and may contain alphanumeric, dash,
underscore, and colon. White space, quote characters, and backslash/metacharacters are not permitted.

elements per variable

• Keywords Area

• variables

• discrete state set

• string

• elements per variable

Number of admissible elements for each set variable

Specification
Alias: num set values

Argument(s): INTEGERLIST
Default: equal distribution

Description
Discrete set variables (including design, uncertain, and state) take on only a fixed set of values. For each type
(integer, string, or real), this keyword specifies how many admissible values are provided for each variable. If
not specified, equal apportionment of elements among variables is assumed, and the number of elements must be
evenly divisible by the number of variables.

elements

• Keywords Area

• variables

• discrete state set

• string

6.4. VARIABLES 1731

• elements

The permissible values for each discrete variable

Specification

Alias: set values
Argument(s): STRINGLIST

Description

Specify the permissible values for discrete set variables (of type integer, string, or real). See the description on
the discrete variables page.

initial state

• Keywords Area

• variables

• discrete state set

• string

• initial state

Initial values for the state variables

Specification

Alias: none
Argument(s): STRINGLIST
Default: middle set value, or rounded down

Description

The initial state specifications provide the initial values for the state variables.
This is an optional keyword. If it is not specified, the initial state will be inferred from the other keywords that

define the state variable.
Defaults are:

• Continuous state variables - use the midpoint of the bounds

• Set variables - use the value with the index closest to the middle of the set

• Range variables - use the midpoint of the range

1732 CHAPTER 6. KEYWORDS AREA

descriptors

• Keywords Area

• variables

• discrete state set

• string

• descriptors

Labels for the variables

Specification
Alias: none

Argument(s): STRINGLIST
Default: dsssv {i}

Description
The optional variables labels specification descriptors is a list of strings which identify the variables. These
are used in console and tabular output.

The default descriptor strings use a root string plus a numeric identifier.

real

• Keywords Area

• variables

• discrete state set

• real

Discrete state variables, each defined by a set of permissible real numbers

Topics
This keyword is related to the topics:

• discrete variables

• state variables

Specification
Alias: none

Argument(s): INTEGER
Default: no discrete state set real variables

6.4. VARIABLES 1733

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional elements per -
variable

Number of
admissible
elements for each
set variable

Required elements The permissible
values for each
discrete variable

Optional categorical Whether the
set-valued
variables are
categorical or
relaxable

Optional initial state Initial values for
the state variables

Optional descriptors Labels for the
variables

Description

Discrete state variables defined by a set of permissible real numbers.
The details of how to specify this discrete variable are located on the discrete variables page.
See the state variables page for details on the behavior of state variables.

elements per variable

• Keywords Area

• variables

• discrete state set

• real

• elements per variable

Number of admissible elements for each set variable

Specification

Alias: num set values
Argument(s): INTEGERLIST
Default: equal distribution

1734 CHAPTER 6. KEYWORDS AREA

Description
Discrete set variables (including design, uncertain, and state) take on only a fixed set of values. For each type
(integer, string, or real), this keyword specifies how many admissible values are provided for each variable. If
not specified, equal apportionment of elements among variables is assumed, and the number of elements must be
evenly divisible by the number of variables.

elements

• Keywords Area

• variables

• discrete state set

• real

• elements

The permissible values for each discrete variable

Specification
Alias: set values

Argument(s): REALLIST

Description
Specify the permissible values for discrete set variables (of type integer, string, or real). See the description on
the discrete variables page.

categorical

• Keywords Area

• variables

• discrete state set

• real

• categorical

Whether the set-valued variables are categorical or relaxable

Specification
Alias: none

Argument(s): STRINGLIST

Description
A list of strings of length equal to the number of set (integer, string, or real) variables indicating whether they are
strictly categorical, meaning may only take on values from the provided set, or relaxable, meaning may take on
any integer or real value between the lowest and highest specified element. Valid categorical strings include ’yes’,
’no’, ’true’, and ’false’, or any abbreviation in [yYnNtTfF][.]∗

6.4. VARIABLES 1735

Examples
Discrete design set variable, ’rotor blades’, can take on only integer values, 2, 4, or 7 by default. Since categorical
is specified to be false, the integrality can be relaxed and ’rotor blades’ can take on any value between 2 and 7,
e.g., 3, 6, or 5.5.

discrete_design_set
integer 1

elements 2 4 7
descriptor ’rotor_blades’
categorical ’no’

initial state

• Keywords Area

• variables

• discrete state set

• real

• initial state

Initial values for the state variables

Specification
Alias: none

Argument(s): REALLIST
Default: middle set value, or rounded down

Description
The initial state specifications provide the initial values for the state variables.

This is an optional keyword. If it is not specified, the initial state will be inferred from the other keywords that
define the state variable.

Defaults are:

• Continuous state variables - use the midpoint of the bounds

• Set variables - use the value with the index closest to the middle of the set

• Range variables - use the midpoint of the range

descriptors

• Keywords Area

• variables

• discrete state set

• real

• descriptors

Labels for the variables

1736 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): STRINGLIST
Default: dssrv {i}

Description
The optional variables labels specification descriptors is a list of strings which identify the variables. These
are used in console and tabular output.

The default descriptor strings use a root string plus a numeric identifier.

6.5 interface
• Keywords Area

• interface

Specifies how function evaluations will be performed in order to map the variables into the responses.

Topics
This keyword is related to the topics:

• block

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional id interface Name the interface
block; helpful
when there are
multiple

Optional algebraic -
mappings

Use AMPL to
define algebraic
input-output
mappings

Optional analysis drivers Define how Dakota
should run a
function evaluation

6.5. INTERFACE 1737

Optional asynchronous Specify analysis
driver concurrency,
when Dakota is run
in serial

Optional evaluation servers Specify the
number of
evaluation servers
when Dakota is run
in parallel

Optional evaluation -
scheduling

Specify the
scheduling of
concurrent
evaluations when
Dakota is run in
parallel

Optional processors per -
evaluation

Specify the
number of
processors per
evaluation server
when Dakota is run
in parallel

Optional analysis servers Specify the
number of analysis
servers when
Dakota is run in
parallel

Optional analysis -
scheduling

Specify the
scheduling of
concurrent
analyses when
Dakota is run in
parallel

Description
The interface section in a Dakota input file specifies how function evaluations will be performed in order to map
the variables into the responses.

In this context, a ”function evaluation” is the series of operations that takes the variables and computes the
responses. This can be comprised of one or many codes, scripts, and glue, which are generically referred to as
”analysis drivers”.

The optional asynchronous flag specifies use of asynchronous protocols (i.e., background system calls,
nonblocking forks, POSIX threads) when evaluations or analyses are invoked. The evaluation concurrency
and analysis concurrency specifications serve a dual purpose:

• when running Dakota on a single processor in asynchronous mode, the default concurrency of evalua-
tions and analyses is all concurrency that is available. The evaluation concurrency and analysis-
concurrency specifications can be used to limit this concurrency in order to avoid machine overload or

usage policy violation.

• when running Dakota on multiple processors in message passing mode, the default concurrency of eval-
uations and analyses on each of the servers is one (i.e., the parallelism is exclusively that of the message

1738 CHAPTER 6. KEYWORDS AREA

passing). With the evaluation concurrency and analysis concurrency specifications, a hy-
brid parallelism can be selected through combination of message passing parallelism with asynchronous
parallelism on each server.

If Dakota’s automatic parallel configuration is undesirable for some reason, the user can specify overrides that en-
force a desired number of partitions, a size for the partitions, and/or a desired scheduling configuration at the eval-
uation and analysis parallelism levels. The optional evaluation servers and analysis servers spec-
ifications support user overrides of the automatic parallel configuration for the number of evaluation servers and
the number of analysis servers, and the optional processors per evaluation specification supports user
overrides for the size of processor allocations for evaluation servers (Note: see direct for the processors per-
analysis specification supported for direct interfaces). Similarly, the optional evaluation scheduling

and analysis scheduling specifications can be used to override the automatic parallel configuration at the
evaluation and analysis parallelism levels to use either a dedicated master or a peer partition. In addition,
the evaluation parallelism level supports an override for the scheduling algorithm used within a peer partition;
this can be either dynamic or static scheduling (default configuration of a peer partition employs a dynamic
scheduler when it can be supported; i.e., when the peer 1 local scheduling can be asynchronous). The Parallel-
Library class and the Parallel Computing chapter of the Users Manual[4] provide additional details on parallel
configurations.

When performing asynchronous local evaluations, the local evaluation scheduling keyword con-
trols how new evaluation jobs are dispatched when one completes. If the local evaluation scheduling
is specified as dynamic (the default), each completed evaluation will be replaced by the next in the local evalua-
tion queue. If local evaluation scheduling is specified as static, each completed evaluation will be
replaced by an evaluation number that is congruent modulo the evaluation concurrency. This is helpful
for relative node scheduling as described in Dakota/examples/parallelism. For example, assuming only
asynchronous local concurrency (no MPI), if the local concurrency is 6 and job 2 completes, it will be replaced
with job 8. For the case of hybrid parallelism, static local scheduling results in evaluation replacements that are
modulo the total capacity, defined as the product of the evaluation concurrency and the number of evaluation
servers. Both of these cases can result in idle processors if runtimes are non-uniform, so the default dynamic
scheduling is preferred when relative node scheduling is not required.

Theory
Function evaluations are performed using either interfaces to simulation codes, algebraic mappings, or a combi-
nation of the two.

When employing mappings with simulation codes, the interface invokes the simulation using either forks,
direct function invocations, or computational grid invocations.

• In the fork case, Dakota will treat the simulation as a black-box and communication between Dakota and
the simulation occurs through parameter and result files. This is the most common case.

• In the direct function case, the simulation is internal to Dakota and communication occurs through the
function parameter list. The direct case can involve linked simulation codes or test functions which are
compiled into the Dakota executable. The test functions allow for rapid testing of algorithms without
process creation overhead or engineering simulation expense.

• The grid case is experimental and under development, but is intended to support simulations which are
external to Dakota and geographically distributed.

When employing algebraic mappings, the AMPL solver library[29] is used to evaluate a directed acyclic graph
(DAG) specification from a separate stub.nl file. Separate stub.col and stub.row files are also required to declare
the string identifiers of the subset of inputs and outputs, respectively, that will be used in the algebraic mappings.

6.5. INTERFACE 1739

6.5.1 id interface
• Keywords Area

• interface

• id interface

Name the interface block; helpful when there are multiple

Topics
This keyword is related to the topics:

• block identifier

Specification
Alias: none

Argument(s): STRING
Default: use of last interface parsed

Description
The optional set identifier specification uses the keyword id interface to input a string for use in identifying
a particular interface specification. A model can then identify the use of this interface by specifying the same
string in its interface pointer specification.

If the id interface specification is omitted, a particular interface specification will be used by a model
only if that model omits specifying a interface pointer and if the interface set was the last set parsed (or
is the only set parsed). In common practice, if only one interface set exists, then id interface can be safely
omitted from the interface specification and interface pointer can be omitted from the model specifica-
tion(s), since there is no potential for ambiguity in this case.

Examples
For example, a model whose specification contains interface pointer = ’I1’ will use an interface specifi-
cation with id interface = ’I1’.

6.5.2 algebraic mappings
• Keywords Area

• interface

• algebraic mappings

Use AMPL to define algebraic input-output mappings

Specification
Alias: none

Argument(s): STRING
Default: no algebraic mappings

1740 CHAPTER 6. KEYWORDS AREA

Description
If desired, one can define algebraic input-output mappings using the AMPL code[26] and save these mappings in
3 files: stub.nl, stub.col, and stub.row, where stub is a particular root name describing a particular
problem. These files names can be communicated to Dakota using the algebraic mappings input. This
string may either specify the stub.nl filename, or alternatively, just the stub itself.

Dakota then uses stub.col and stub.row to extract the input and output identifier strings and employs
the AMPL solver library[29] to process the DAG specification in stub.nl. The variable and objective function
names declared within AMPL should be a subset of the variable descriptors and response descriptors used by
Dakota (see variables and descriptors). Ordering is not important, as Dakota will reorder data as needed.

6.5.3 analysis drivers
• Keywords Area

• interface

• analysis drivers

Define how Dakota should run a function evaluation

Specification
Alias: none

Argument(s): STRINGLIST
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional analysis -
components

Provide additional
identifiers to
analysis drivers.

Optional input filter Run a
pre-processing
script before the
analysis drivers

Optional output filter Run a
post-processing
script after the
analysis drivers

Required(Choose
One)

Group 1

system (Not
recommended)
Launch analysis
drivers with a
system call

6.5. INTERFACE 1741

fork Launch analysis
drivers using fork
command

direct Run analysis
drivers that are
linked-to or
compiled-with
Dakota

matlab Run Matlab with a
direct interface -
requires special
Dakota build

python Run Python with a
direct interface -
requires special
Dakota build

scilab Run Scilab with a
direct interface -
requires special
Dakota build

grid Experimental
capability

Optional failure capture Determine how
Dakota responds to
analysis driver
failure

Optional deactivate Deactivate Dakota
features to simplify
interface
development,
increase execution
speed, or reduce
memory and disk
requirements

Description
The required analysis drivers keyword provides the names of one or more executable analysis programs
or scripts, a.k.a. ”drivers” which comprise a function evaluation. The optional and required sub-keywords specify
how Dakota will manage directories and files, and run the driver(s).

Types of Interfaces
Dakota has two recommended ways of running analysis drivers:

• as an external processes (fork), or

• using internal code to couple to the analysis driver (direct)

Other options are available for advanced users, and are not as well documented, supported, or tested:

• external processes (system)

• internal coupling (python, matlab, scilab, grid)

1742 CHAPTER 6. KEYWORDS AREA

Use Cases
The internally coupled codes have few options because many of the details are already handled with the

coupling. Their behavior is described in the direct keyword.
For external processes using the fork keyword,
A function evaluation may comprise:

1. A single analysis driver: Function evaluation, including all pre- and post-processing is contained entirely
within a single script/executable.

2. A single analysis driver with filters: Function evaluation is explicitly split into pre-processing (performed
by the input filter), analysis, and post-processing (by the output filter).

3. A single analysis driver with environment variables: Function evaluation is contained within one analysis
driver, but it requires environment variables to be set before running.

4. Multiple analysis drivers: Drivers are run sequentially or concurrently (See the asynchronous keyword)
and can have any of the above options as well.

For fork and system interfaces, the analysis driver list contains the names of one or more executable programs
or scripts taking parameters files as input and producing results files as output. The first field in each analysis
driver string must be an executable program or script for Dakota to spawn to perform the function evaluation.
Drivers support:

• One set of nested quotes, for arguments with spaces

• Dakota will define special environment variables DAKOTA PARAMETERS FILE and DAKOTA RESULT-
S FILE which can be used in the driver script.

• Variable definitions preceding the executable program or script, such as ’MY VAR=2 run analysis.sh’ are
no longer supported.

For details and examples see the Simulation Interface Components section of the Interfaces chapter of the
User’s Manual; for details on the filters and environment variables, see the subsection on Syntax for Filter and
Driver Strings.

Examples
Examples:

1. analysis_drivers = ’run_simulation_part1.sh’ ’run_simulation_part2.sh’

2. analysis_driver = ’run_simulation.sh -option "option 1"’

3. analysis_driver = ’simulation.exe -option value -dakota_params $DAKOTA_PARAMETERS_FILE -input sim.in -dakota_results_file $DAKOTA_RESULTS_FILE’

FAQ
Where will Dakota look for the analysis driver? Dakota will locate analysis driver programs first in (or relative
to) the present working directory (”.”, the interface-analysis drivers-fork-work directory if used, otherwise the
directory in which Dakota is started), then the directory from which Dakota is started, then using the system
$PATH environment variable (Path% on Windows).

Where should the driver be located? When the driver is a script it is most commonly placed in the same
directory as the Dakota input file. When using a work directory, Dakota will also look for drivers in the specified
working directory, so link files or copy files may specify the driver to get copied or linked into the work directory.

6.5. INTERFACE 1743

When executable programs are used as drivers, they are often elsewhere on the filesystem. These can be specified
using absolute paths, or by prepending the PATH environment variable so Dakota finds them.

What if Dakota fails to run my analysis driver? Prepend the absolute location of the driver to the PATH
environment variable before running Dakota, or specify an absolute path to the driver in the Dakota input file.

analysis components

• Keywords Area

• interface

• analysis drivers

• analysis components

Provide additional identifiers to analysis drivers.

Specification

Alias: none
Argument(s): STRINGLIST
Default: no additional identifiers

Description

The optional analysis components specification allows the user to provide additional identifiers (e.g., mesh
file names) for use by the analysis drivers. This is particularly useful when the same analysis driver is to be
reused multiple times for slightly different analyses. The specific content within the strings is open-ended and
can involve whatever syntax is convenient for a particular analysis driver. The number of analysis components nc
should be an integer multiple of the number of drivers nd, and the first nc/nd component strings will be passed
to the first driver, etc.

input filter

• Keywords Area

• interface

• analysis drivers

• input filter

Run a pre-processing script before the analysis drivers

Specification

Alias: none
Argument(s): STRING
Default: no input filter

1744 CHAPTER 6. KEYWORDS AREA

Description
The optional input filter and output filter specifications provide the names of separate pre- and post-
processing programs or scripts which assist in mapping Dakota parameters files into analysis input files and
mapping analysis output files into Dakota results files, respectively.

If there is only a single analysis driver, then it is usually most convenient to combine pre- and post-processing
requirements into a single analysis driver script and omit the separate input and output filters. However, in the
case of multiple analysis drivers, the input and output filters provide a convenient location for non-repeated pre-
and post-processing requirements. That is, input and output filters are only executed once per function evalua-
tion, regardless of the number of analysis drivers, which makes them convenient locations for data processing
operations that are shared among the analysis drivers.

output filter

• Keywords Area

• interface

• analysis drivers

• output filter

Run a post-processing script after the analysis drivers

Specification
Alias: none

Argument(s): STRING
Default: no output filter

Description
The optional input filter and output filter specifications provide the names of separate pre- and post-
processing programs or scripts which assist in mapping Dakota parameters files into analysis input files and
mapping analysis output files into Dakota results files, respectively.

If there is only a single analysis driver, then it is usually most convenient to combine pre- and post-processing
requirements into a single analysis driver script and omit the separate input and output filters. However, in the
case of multiple analysis drivers, the input and output filters provide a convenient location for non-repeated pre-
and post-processing requirements. That is, input and output filters are only executed once per function evalua-
tion, regardless of the number of analysis drivers, which makes them convenient locations for data processing
operations that are shared among the analysis drivers.

system

• Keywords Area

• interface

• analysis drivers

• system

(Not recommended) Launch analysis drivers with a system call

6.5. INTERFACE 1745

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional parameters file Specify the name
of the parameters
file

Optional results file Specify the name
of the results file

Optional allow existing -
results

Change how
Dakota deals with
existing results
files

Optional verbatim Specify the
command Dakota
uses to launch
analysis driver(s)
and filters

Optional aprepro Write parameters
files in APREPRO
syntax

Optional file tag Tag each
parameters &
results file name
with the function
evaluation number

Optional file save Keep the
parameters &
results files after
the analysis driver
completes

Optional work directory Perform each
function evaluation
in a separate
working directory

Description
The system call interface is included in Dakota for portability and backward compatibility. Users are strongly
encouraged to use the fork interface if possible, reverting to system only when necessary. To enable the system
call interface, replace the fork keyword with system. All other keywords have identical meanings to those for
the fork interface

See Also
These keywords may also be of interest:

• fork

1746 CHAPTER 6. KEYWORDS AREA

parameters file

• Keywords Area

• interface

• analysis drivers

• system

• parameters file

Specify the name of the parameters file

Specification
Alias: none

Argument(s): STRING
Default: Unix temp files

Description
The parameters file is used by Dakota to pass the parameter values to the analysis driver. The name of the file can
be optionally specified using the parameters file keyword.

If this is not specified, the default data transfer files are temporary files with system-generated names (e.g.,
/usr/tmp/aaaa08861).

results file

• Keywords Area

• interface

• analysis drivers

• system

• results file

Specify the name of the results file

Specification
Alias: none

Argument(s): STRING
Default: Unix temp files

Description
The results file must be written by the analysis driver. It is read by Dakota to determine the response values for
each function evaluation.

The name of the file can be optionally specified using the results file keyword.
If this is not specified, the default data transfer files are temporary files with system-generated names (e.g.,

/usr/tmp/aaaa08861).

6.5. INTERFACE 1747

allow existing results

• Keywords Area

• interface

• analysis drivers

• system

• allow existing results

Change how Dakota deals with existing results files

Specification
Alias: none

Argument(s): none
Default: results files removed before each evaluation

Description
By default Dakota will remove existing results files before invoking the analysis driver to avoid problems
created by stale files in the current directory. To override this behavior and not delete existing files, specify
allow existing results.

verbatim

• Keywords Area

• interface

• analysis drivers

• system

• verbatim

Specify the command Dakota uses to launch analysis driver(s) and filters

Specification
Alias: none

Argument(s): none
Default: driver/filter invocation syntax augmented with file names

Description
The typical commands that Dakota uses to launch analysis drivers are:

> analysis_driver parameters_file_name results_file_name

Dakota will automatically arrange the executables and file names.
If the analysis driver requires a different syntax, the entire command can be specified as the analysis driver

and the verbatim keyword will tell Dakota to use this as the command.
Note, this will not allow the use of file tag, because the exact command must be specified.
For additional information on invocation syntax, see the Interfaces chapter of the Users Manual[4].

1748 CHAPTER 6. KEYWORDS AREA

Examples
In the following example, the analysis driver command is run without any edits from Dakota.
interface

analysis_driver = "matlab -nodesktop -nojvm -r ’MatlabDriver_hardcoded_filenames; exit’ "
fork

parameters_file ’params.in’
results_file ’results.out’
verbatim # this tells Dakota to fork the command exactly as written, instead of appending I/O filenames

The -r flag identifies the commands that will be run by matlab. The Matlab script has the parameters file and
results file names hardcoded, so no additional arguments are required.

aprepro

• Keywords Area

• interface

• analysis drivers

• system

• aprepro

Write parameters files in APREPRO syntax

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: dprepro

Argument(s): none
Default: standard parameters file format

Description
The format of data in the parameters files can be modified for direct usage with the APREPRO pre-processing
tool [75] using the aprepro specification

Without this keyword, the parameters file are written in DPrePro format. DPrePro is a utility included with
Dakota, described in the Users Manual[4].

file tag

• Keywords Area

• interface

• analysis drivers

• system

• file tag

Tag each parameters & results file name with the function evaluation number

6.5. INTERFACE 1749

Specification
Alias: none

Argument(s): none
Default: no tagging

Description
If this keyword is used, Dakota will append a period and the function evaluation number to the names of the
parameter and results files.

For example, if the following is included in the interface section of the Dakota input:

parameters_file = params.in
results_file = results.out
file_tag

Then for the 3rd evaluation, Dakota will write params.in.3, and will expect results.out.3 to be written
by the analysis driver.

If this keyword is omitted, the default is no file tagging.
File tagging is most useful when multiple function evaluations are running simultaneously using files in a

shared disk space. The analysis driver will be able to infer the function evaluation number from the file names.
Note that when the file save keyword is used, Dakota renames parameters and results files, giving them tags,
after execution of the analysis driver if they otherwise would be overwritten by the next evaluation.

file save

• Keywords Area

• interface

• analysis drivers

• system

• file save

Keep the parameters & results files after the analysis driver completes

Specification
Alias: none

Argument(s): none
Default: file cleanup

Description
If file save is used, Dakota will not delete the parameters and results files after the function evaluation is
completed.

The default behavior is NOT to save these files.
If file tag is not specified and the saved files would be overwritten by a future evaluation, Dakota renames

them after the analysis driver has run by tagging them with the evaluation number.
File saving is most useful when debugging the data communication between Dakota and the simulation.

1750 CHAPTER 6. KEYWORDS AREA

work directory

• Keywords Area

• interface

• analysis drivers

• system

• work directory

Perform each function evaluation in a separate working directory

Specification
Alias: none

Argument(s): none
Default: no work directory

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional named The base name of
the work directory
created by Dakota

Optional directory tag Tag each work
directory with the
function evaluation
number

Optional directory save Preserve the work
directory after
function evaluation
completion

Optional link files Paths to be linked
into each working
directory

Optional copy files Files and
directories to be
copied into each
working directory

6.5. INTERFACE 1751

Optional replace Overwrite existing
files within a work
directory

Description
When performing concurrent evaluations, it is typically necessary to cloister simulation input and output files in
separate directories to avoid conflicts. When the work directory feature is enabled, Dakota will create a
directory for each evaluation, with optional tagging (directory tag) and saving (directory save), as
with files, and execute the analysis driver from that working directory.

The directory may be named with a string, or left anonymous to use an automatically-generated directory in
the system’s temporary file space, e.g., /tmp/dakota work c93vb71z/. The optional link files and copy -
files keywords specify files or directories which should appear in each working directory.

When using work directory, the analysis drivers may be given by an absolute path, located in (or relative to)
the startup directory alongside the Dakota input file, in the list of template files linked or copied, or on the $PATH
(Path% on Windows).

named

• Keywords Area

• interface

• analysis drivers

• system

• work directory

• named

The base name of the work directory created by Dakota

Specification
Alias: none

Argument(s): STRING
Default: workdir

Description
The named keyword is followed by a string, indicating the name of the work directory created by Dakota. If
relative, the work directory will be created relative to the directory from which Dakota is invoked.

If named is not used, the default work directory is a temporary directory with a system-generated name (e.g.,
/tmp/dakota work c93vb71z/).

See Also
These keywords may also be of interest:

• directory tag

• directory save

1752 CHAPTER 6. KEYWORDS AREA

directory tag

• Keywords Area

• interface

• analysis drivers

• system

• work directory

• directory tag

Tag each work directory with the function evaluation number

Specification
Alias: dir tag

Argument(s): none
Default: no work directory tagging

Description
If this keyword is used, Dakota will append a period and the function evaluation number to the work directory
names.

If this keyword is omitted, the default is no tagging, and the same work directory will be used for ALL function
evaluations. Tagging is most useful when multiple function evaluations are running simultaneously.

directory save

• Keywords Area

• interface

• analysis drivers

• system

• work directory

• directory save

Preserve the work directory after function evaluation completion

Specification
Alias: dir save

Argument(s): none
Default: remove work directory

Description
By default, when a working directory is created by Dakota using the work directory keyword, it is deleted
after the evaluation is completed. The directory save keyword will cause Dakota to leave (not delete) the
directory.

6.5. INTERFACE 1753

link files

• Keywords Area

• interface

• analysis drivers

• system

• work directory

• link files

Paths to be linked into each working directory

Specification
Alias: none

Argument(s): STRINGLIST
Default: no linked files

Description
Specifies the paths (files or directories) that will be symbolically linked from each working directory. Wildcards
using ∗ and ? are permitted. Linking is space-saving and useful for files not modified during the function evalua-
tion. However, not all filesystems support linking, for example, support on Windows varies.

Examples
Specifying

link_files = ’siminput*.in’ ’/path/to/simdir1’ ’simdir2/*’

will create copies

workdir/siminput*.in # links to each of rundir / siminput*.in
workdir/simdir1/ # whole directory simdir1 linked
workdir/* # each entry in directory simdir2 linked

copy files

• Keywords Area

• interface

• analysis drivers

• system

• work directory

• copy files

Files and directories to be copied into each working directory

1754 CHAPTER 6. KEYWORDS AREA

Specification

Alias: none
Argument(s): STRINGLIST
Default: no copied files

Description

Specifies the files or directories that will be recursively copied into each working directory. Wildcards using ∗ and
? are permitted.

Examples
Specifying

copy_files = ’siminput*.in’ ’/path/to/simdir1’ ’simdir2/*’

will create copies

workdir/siminput*.in # files rundir/siminput*.in copied
workdir/simdir1/ # whole directory simdir1 recursively copied
workdir/* # contents of directory simdir2 recursively copied

where rundir is the directory in which Dakota was started.

replace

• Keywords Area

• interface

• analysis drivers

• system

• work directory

• replace

Overwrite existing files within a work directory

Specification

Alias: none
Argument(s): none
Default: do not overwrite files

Description

By default, Dakota will not overwrite any existing files in a work directory. The replace keyword changes this
behavior to force overwriting.

6.5. INTERFACE 1755

fork

• Keywords Area

• interface

• analysis drivers

• fork

Launch analysis drivers using fork command

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional parameters file Specify the name
of the parameters
file

Optional results file Specify the name
of the results file

Optional allow existing -
results

Change how
Dakota deals with
existing results
files

Optional verbatim Specify the
command Dakota
uses to launch
analysis driver(s)
and filters

Optional aprepro Write parameters
files in APREPRO
syntax

Optional file tag Tag each
parameters &
results file name
with the function
evaluation number

Optional file save Keep the
parameters &
results files after
the analysis driver
completes

1756 CHAPTER 6. KEYWORDS AREA

Optional work directory Perform each
function evaluation
in a separate
working directory

Description
The fork interface is the most common means by which Dakota launches a separate application analysis process.

The fork interface is recommended over system for most analysis drivers that are external to Dakota (i.e.
not using the direct interface).

As explained in the Users Manual, the parameters and results file names are passed on the command line to
the analysis driver(s). If input/output filters are specified, they will be run before/after the analysis drivers. The
verbatim keyword is used to modify the default driver/filter commands.

For additional information on invocation syntax, see the Interfaces chapter of the Users Manual[4].

Examples
interface

analysis_drivers = ’rosenbrock’
fork

parameters_file = ’params.in’
results_file = ’results.out’
file_tag
file_save

parameters file

• Keywords Area

• interface

• analysis drivers

• fork

• parameters file

Specify the name of the parameters file

Specification
Alias: none

Argument(s): STRING
Default: Unix temp files

Description
The parameters file is used by Dakota to pass the parameter values to the analysis driver. The name of the file can
be optionally specified using the parameters file keyword.

If this is not specified, the default data transfer files are temporary files with system-generated names (e.g.,
/usr/tmp/aaaa08861).

6.5. INTERFACE 1757

results file

• Keywords Area

• interface

• analysis drivers

• fork

• results file

Specify the name of the results file

Specification
Alias: none

Argument(s): STRING
Default: Unix temp files

Description
The results file must be written by the analysis driver. It is read by Dakota to determine the response values for
each function evaluation.

The name of the file can be optionally specified using the results file keyword.
If this is not specified, the default data transfer files are temporary files with system-generated names (e.g.,

/usr/tmp/aaaa08861).

allow existing results

• Keywords Area

• interface

• analysis drivers

• fork

• allow existing results

Change how Dakota deals with existing results files

Specification
Alias: none

Argument(s): none
Default: results files removed before each evaluation

Description
By default Dakota will remove existing results files before invoking the analysis driver to avoid problems
created by stale files in the current directory. To override this behavior and not delete existing files, specify
allow existing results.

1758 CHAPTER 6. KEYWORDS AREA

verbatim

• Keywords Area

• interface

• analysis drivers

• fork

• verbatim

Specify the command Dakota uses to launch analysis driver(s) and filters

Specification
Alias: none

Argument(s): none
Default: driver/filter invocation syntax augmented with file names

Description
The typical commands that Dakota uses to launch analysis drivers are:

> analysis_driver parameters_file_name results_file_name

Dakota will automatically arrange the executables and file names.
If the analysis driver requires a different syntax, the entire command can be specified as the analysis driver

and the verbatim keyword will tell Dakota to use this as the command.
Note, this will not allow the use of file tag, because the exact command must be specified.
For additional information on invocation syntax, see the Interfaces chapter of the Users Manual[4].

Examples
In the following example, the analysis driver command is run without any edits from Dakota.

interface
analysis_driver = "matlab -nodesktop -nojvm -r ’MatlabDriver_hardcoded_filenames; exit’ "

fork
parameters_file ’params.in’
results_file ’results.out’
verbatim # this tells Dakota to fork the command exactly as written, instead of appending I/O filenames

The -r flag identifies the commands that will be run by matlab. The Matlab script has the parameters file and
results file names hardcoded, so no additional arguments are required.

aprepro

• Keywords Area

• interface

• analysis drivers

• fork

• aprepro

Write parameters files in APREPRO syntax

6.5. INTERFACE 1759

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: dprepro

Argument(s): none
Default: standard parameters file format

Description
The format of data in the parameters files can be modified for direct usage with the APREPRO pre-processing
tool [75] using the aprepro specification

Without this keyword, the parameters file are written in DPrePro format. DPrePro is a utility included with
Dakota, described in the Users Manual[4].

file tag

• Keywords Area

• interface

• analysis drivers

• fork

• file tag

Tag each parameters & results file name with the function evaluation number

Specification
Alias: none

Argument(s): none
Default: no tagging

Description
If this keyword is used, Dakota will append a period and the function evaluation number to the names of the
parameter and results files.

For example, if the following is included in the interface section of the Dakota input:
parameters_file = params.in
results_file = results.out
file_tag

Then for the 3rd evaluation, Dakota will write params.in.3, and will expect results.out.3 to be written
by the analysis driver.

If this keyword is omitted, the default is no file tagging.
File tagging is most useful when multiple function evaluations are running simultaneously using files in a

shared disk space. The analysis driver will be able to infer the function evaluation number from the file names.
Note that when the file save keyword is used, Dakota renames parameters and results files, giving them tags,
after execution of the analysis driver if they otherwise would be overwritten by the next evaluation.

1760 CHAPTER 6. KEYWORDS AREA

file save

• Keywords Area

• interface

• analysis drivers

• fork

• file save

Keep the parameters & results files after the analysis driver completes

Specification
Alias: none

Argument(s): none
Default: file cleanup

Description
If file save is used, Dakota will not delete the parameters and results files after the function evaluation is
completed.

The default behavior is NOT to save these files.
If file tag is not specified and the saved files would be overwritten by a future evaluation, Dakota renames

them after the analysis driver has run by tagging them with the evaluation number.
File saving is most useful when debugging the data communication between Dakota and the simulation.

work directory

• Keywords Area

• interface

• analysis drivers

• fork

• work directory

Perform each function evaluation in a separate working directory

Specification
Alias: none

Argument(s): none
Default: no work directory

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

6.5. INTERFACE 1761

Optional named The base name of
the work directory
created by Dakota

Optional directory tag Tag each work
directory with the
function evaluation
number

Optional directory save Preserve the work
directory after
function evaluation
completion

Optional link files Paths to be linked
into each working
directory

Optional copy files Files and
directories to be
copied into each
working directory

Optional replace Overwrite existing
files within a work
directory

Description
When performing concurrent evaluations, it is typically necessary to cloister simulation input and output files in
separate directories to avoid conflicts. When the work directory feature is enabled, Dakota will create a
directory for each evaluation, with optional tagging (directory tag) and saving (directory save), as
with files, and execute the analysis driver from that working directory.

The directory may be named with a string, or left anonymous to use an automatically-generated directory in
the system’s temporary file space, e.g., /tmp/dakota work c93vb71z/. The optional link files and copy -
files keywords specify files or directories which should appear in each working directory.

When using work directory, the analysis drivers may be given by an absolute path, located in (or relative to)
the startup directory alongside the Dakota input file, in the list of template files linked or copied, or on the $PATH
(Path% on Windows).

named

• Keywords Area

• interface

• analysis drivers

• fork

• work directory

1762 CHAPTER 6. KEYWORDS AREA

• named

The base name of the work directory created by Dakota

Specification
Alias: none

Argument(s): STRING
Default: workdir

Description
The named keyword is followed by a string, indicating the name of the work directory created by Dakota. If
relative, the work directory will be created relative to the directory from which Dakota is invoked.

If named is not used, the default work directory is a temporary directory with a system-generated name (e.g.,
/tmp/dakota work c93vb71z/).

See Also
These keywords may also be of interest:

• directory tag

• directory save

directory tag

• Keywords Area

• interface

• analysis drivers

• fork

• work directory

• directory tag

Tag each work directory with the function evaluation number

Specification
Alias: dir tag

Argument(s): none
Default: no work directory tagging

Description
If this keyword is used, Dakota will append a period and the function evaluation number to the work directory
names.

If this keyword is omitted, the default is no tagging, and the same work directory will be used for ALL function
evaluations. Tagging is most useful when multiple function evaluations are running simultaneously.

6.5. INTERFACE 1763

directory save

• Keywords Area

• interface

• analysis drivers

• fork

• work directory

• directory save

Preserve the work directory after function evaluation completion

Specification
Alias: dir save

Argument(s): none
Default: remove work directory

Description
By default, when a working directory is created by Dakota using the work directory keyword, it is deleted
after the evaluation is completed. The directory save keyword will cause Dakota to leave (not delete) the
directory.

link files

• Keywords Area

• interface

• analysis drivers

• fork

• work directory

• link files

Paths to be linked into each working directory

Specification
Alias: none

Argument(s): STRINGLIST
Default: no linked files

Description
Specifies the paths (files or directories) that will be symbolically linked from each working directory. Wildcards
using ∗ and ? are permitted. Linking is space-saving and useful for files not modified during the function evalua-
tion. However, not all filesystems support linking, for example, support on Windows varies.

1764 CHAPTER 6. KEYWORDS AREA

Examples
Specifying

link_files = ’siminput*.in’ ’/path/to/simdir1’ ’simdir2/*’

will create copies

workdir/siminput*.in # links to each of rundir / siminput*.in
workdir/simdir1/ # whole directory simdir1 linked
workdir/* # each entry in directory simdir2 linked

copy files

• Keywords Area

• interface

• analysis drivers

• fork

• work directory

• copy files

Files and directories to be copied into each working directory

Specification

Alias: none
Argument(s): STRINGLIST
Default: no copied files

Description

Specifies the files or directories that will be recursively copied into each working directory. Wildcards using ∗ and
? are permitted.

Examples
Specifying

copy_files = ’siminput*.in’ ’/path/to/simdir1’ ’simdir2/*’

will create copies

workdir/siminput*.in # files rundir/siminput*.in copied
workdir/simdir1/ # whole directory simdir1 recursively copied
workdir/* # contents of directory simdir2 recursively copied

where rundir is the directory in which Dakota was started.

6.5. INTERFACE 1765

replace

• Keywords Area

• interface

• analysis drivers

• fork

• work directory

• replace

Overwrite existing files within a work directory

Specification

Alias: none
Argument(s): none
Default: do not overwrite files

Description

By default, Dakota will not overwrite any existing files in a work directory. The replace keyword changes this
behavior to force overwriting.

direct

• Keywords Area

• interface

• analysis drivers

• direct

Run analysis drivers that are linked-to or compiled-with Dakota

Specification

Alias: none
Argument(s): none

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional processors per -
analysis

Specify the
number of
processors per
analysis when
Dakota is run in
parallel

1766 CHAPTER 6. KEYWORDS AREA

Description
The primary use of the direct interface is to invoke internal test functions that perform parameter to response
mappings for simple functions as inexpensively as possible. These problems are compiled directly into the Dakota
executable as part of the direct function interface class and are used for algorithm testing.

Dakota also supports direct interfaces to a few select simulation codes. One example is ModelCenter, a
commercial simulation management framework from Phoenix Integration. To utilize this interface, a user must
first define the simulation specifics within a ModelCenter session and then save these definitions to a Model-
Center configuration file. The analysis components specification provides the means to communicate this
configuration file to Dakota’s ModelCenter interface.

Examples
The rosenbrock function is available as an executable, which can be launched with fork, and is also compiled with
Dakota. The internal version can be launched with:
interface

analysis_drivers = ’rosenbrock’
direct

processors per analysis

• Keywords Area

• interface

• analysis drivers

• direct

• processors per analysis

Specify the number of processors per analysis when Dakota is run in parallel

Topics
This keyword is related to the topics:

• concurrency and parallelism

Specification
Alias: none

Argument(s): INTEGER
Default: no override of auto configure

Description
For direct function interfaces, processors per analysis is an additional optional setting within the re-
quired group which can be used to specify multiprocessor analysis partitions. As with the evaluation -
servers, analysis servers, evaluation self scheduling, evaluation static scheduling,
analysis self scheduling, and analysis static scheduling specifications, processors -
per analysis provides a means for the user to override the automatic parallel configuration (refer to Parallel-
Library and the Parallel Computing chapter of the Users Manual [4]) for the number of processors used for each
analysis partition. Note that if both analysis servers and processors per analysis are specified
and they are not in agreement, then analysis servers takes precedence.

6.5. INTERFACE 1767

matlab

• Keywords Area

• interface

• analysis drivers

• matlab

Run Matlab with a direct interface - requires special Dakota build

Specification

Alias: none
Argument(s): none

Description

Dakota supports library-linked interfaces to Matlab, Scilab, and Python scientific computation software, but they
must be explicitly enabled when compiling Dakota from source. First consult the Users Manual[4] for discussion
and examples.

Contact the Dakota users mailing list for assistance building and using Dakota with these interfaces.
In all these interfaces, the analysis driver is used to specify a Matlab, Scilab, or Python file which

implements the parameter to response mapping.

python

• Keywords Area

• interface

• analysis drivers

• python

Run Python with a direct interface - requires special Dakota build

Specification

Alias: none
Argument(s): none

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional numpy Enable the use of
numpy in Dakota’s
Python interface

1768 CHAPTER 6. KEYWORDS AREA

Description

Dakota supports library-linked interfaces to Matlab, Scilab, and Python scientific computation software, but they
must be explicitly enabled when compiling Dakota from source. First consult the Users Manual[4] for discussion
and examples.

Contact the Dakota users mailing list for assistance building and using Dakota with these interfaces.
In all these interfaces, the analysis driver is used to specify a Matlab, Scilab, or Python file which

implements the parameter to response mapping.

numpy

• Keywords Area

• interface

• analysis drivers

• python

• numpy

Enable the use of numpy in Dakota’s Python interface

Specification

Alias: none
Argument(s): none
Default: Python list dataflow

Description

When the numpy keyword is used, Dakota expects responses in the form of a Python dictionary of numpy arrays.
See the example in examples/linked interfaces/Python.

scilab

• Keywords Area

• interface

• analysis drivers

• scilab

Run Scilab with a direct interface - requires special Dakota build

Specification

Alias: none
Argument(s): none

6.5. INTERFACE 1769

Description
Dakota supports library-linked interfaces to Matlab, Scilab, and Python scientific computation software, but they
must be explicitly enabled when compiling Dakota from source. First consult the Users Manual[4] for discussion
and examples.

Contact the Dakota users mailing list for assistance building and using Dakota with these interfaces.
In all these interfaces, the analysis driver is used to specify a Matlab, Scilab, or Python file which

implements the parameter to response mapping.

grid

• Keywords Area

• interface

• analysis drivers

• grid

Experimental capability

Specification
Alias: none

Argument(s): none

Description
For grid interfaces, no additional specifications are used at this time.

This capability has been used for interfaces with IDEA and JAVASpaces in the past and is currently a place-
holder for future work with Condor and/or Globus services. It is not currently operational.

failure capture

• Keywords Area

• interface

• analysis drivers

• failure capture

Determine how Dakota responds to analysis driver failure

Specification
Alias: none

Argument(s): none
Default: abort

1770 CHAPTER 6. KEYWORDS AREA

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

failure mitigation
(Group 1)

abort (Default) Abort the
Dakota job

retry Rerun failed
analyses

recover Substitute dummy
values for the
responses

continuation Cause Dakota to
step toward the
failed ”target”
simulation from a
nearby successful
”source”

Description
Dakota can deal with analysis failure in a few ways.

The first step is that Dakota must detect analysis failure. Importantly, Dakota always expects a results file to be
written by the analysis driver, even when a failure has occurred. If the file does not exist when the analysis driver
exits, a Dakota error results, causing Dakota itself to terminate. The analysis driver communicates an analysis
failure to Dakota by writing a results file beginning with the word ”fail”, which is not case sensitive. Everything
after ”fail” is ignored.

Once Dakota detects analysis failure, the failure can be mitigated in four ways:

• abort (the default)

• retry

• recover

• continuation

Refer to the Simulation Code Failure Capturing chapter of the Users Manual[4] for additional information.

abort

• Keywords Area

• interface

• analysis drivers

• failure capture

• abort

(Default) Abort the Dakota job

Specification
Alias: none

Argument(s): none

6.5. INTERFACE 1771

Description

abort will stop the Dakota job, as well as any other running analysis drivers.

retry

• Keywords Area

• interface

• analysis drivers

• failure capture

• retry

Rerun failed analyses

Specification

Alias: none
Argument(s): INTEGER

Description

The retry selection supports an integer input for specifying a limit on retries

recover

• Keywords Area

• interface

• analysis drivers

• failure capture

• recover

Substitute dummy values for the responses

Specification

Alias: none
Argument(s): REALLIST

Description

The recover selection supports a list of reals for specifying the dummy function values (only zeroth order
information is supported) to use for the failed function evaluation.

1772 CHAPTER 6. KEYWORDS AREA

continuation

• Keywords Area

• interface

• analysis drivers

• failure capture

• continuation

Cause Dakota to step toward the failed ”target” simulation from a nearby successful ”source”

Specification
Alias: none

Argument(s): none

Description
When failure capture continuation is enabled and an evaluation fails, then Dakota will attempt to
march incrementally from a previous good evaluation (the ”source”) toward the failing one (the ”target”). Further
details about the algorithm employed by Dakota are supplied in the User’s Manual [4].

deactivate

• Keywords Area

• interface

• analysis drivers

• deactivate

Deactivate Dakota features to simplify interface development, increase execution speed, or reduce memory
and disk requirements

Specification
Alias: none

Argument(s): none
Default: Active set vector control, function evaluation cache, and restart file features are active

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional active set vector Deactivate the
Active Set Vector

Optional evaluation cache Do not retain
function evaluation
history in memory

6.5. INTERFACE 1773

Optional strict cache -
equality

Do not require
strict cache
equality when
finding duplicates

Optional restart file Deactivate writing
to the restart file

Description

The optional deactivate specification block includes three features which a user may deactivate in order to
simplify interface development, increase execution speed, and/or reduce memory and disk requirements:

• Active set vector (ASV) control: deactivation of this feature using a deactivate active set vector
specification allows the user to turn off any variability in ASV values so that active set logic can be omitted
in the user’s simulation interface. This option trades some efficiency for simplicity in interface development.
The default behavior is to request the minimum amount of data required by an algorithm at any given time,
which implies that the ASV values may vary from one function evaluation to the next. Since the user’s
interface must return the data set requested by the ASV values, this interface must contain additional logic
to account for any variations in ASV content. Deactivating this ASV control causes Dakota to always
request a ”full” data set (the full function, gradient, and Hessian data that is available from the interface
as specified in the responses specification) on each function evaluation. For example, if ASV control has
been deactivated and the responses section specifies four response functions, analytic gradients, and no
Hessians, then the ASV on every function evaluation will be { 3 3 3 3 }, regardless of what subset of this
data is currently needed. While wasteful of computations in many instances, this simplifies the interface
and allows the user to return the same data set on every evaluation. Conversely, if ASV control is active
(the default behavior), then the ASV requests in this example might vary from { 1 1 1 1 } to { 2 0 0 2 },
etc., according to the specific data needed on a particular function evaluation. This will require the user’s
interface to read the ASV requests and perform the appropriate logic in conditionally returning only the data
requested. In general, the default ASV behavior is recommended for the sake of computational efficiency,
unless interface development time is a critical concern. Note that in both cases, the data returned to Dakota
from the user’s interface must match the ASV passed in, or else a response recovery error will result.
However, when the ASV control is deactivated, the ASV values are invariant and need not be checked on
every evaluation. Note: Deactivating the ASV control can have a positive effect on load balancing for
parallel Dakota executions. Thus, there is significant overlap in this ASV control option with speculative
gradients. There is also overlap with the mode override approach used with certain optimizers to combine
individual value, gradient, and Hessian requests.

• Function evaluation cache: deactivation of this feature using a deactivate evaluation cache spec-
ification allows the user to avoid retention of the complete function evaluation history in memory. This can
be important for reducing memory requirements in large-scale applications (i.e., applications with a large
number of variables or response functions) and for eliminating the overhead of searching for duplicates
within the function evaluation cache prior to each new function evaluation (e.g., for improving speed in
problems with 1000’s of inexpensive function evaluations or for eliminating overhead when performing
timing studies). However, the downside is that unnecessary computations may be performed since duplica-
tion in function evaluation requests may not be detected. For this reason, this option is not recommended
when function evaluations are costly. Note: duplication detection within Dakota can be deactivated, but
duplication detection features within specific optimizers may still be active.

• Strict Cache Equality: By default, Dakota’s evaluation cache and restart capabilities are based on strict
binary equality. This provides a performance advantage, as it permits a hash-based data structure to be used

1774 CHAPTER 6. KEYWORDS AREA

to search the evaluation cache. However, deactiving strict equality may prevent cache misses, which can
occur when attempting to use a restart file on a machine different from the one on which it was generated.

• Restart file: deactivation of this feature using a deactivate restart file specification allows the
user to eliminate the output of each new function evaluation to the binary restart file. This can increase speed
and reduce disk storage requirements, but at the expense of a loss in the ability to recover and continue a
run that terminates prematurely (e.g., due to a system crash or network problem). This option is not recom-
mended when function evaluations are costly or prone to failure. Please note that using the deactivate
restart file specification will result in a zero length restart file with the default name dakota.rst.

These three features may be deactivated independently and concurrently.

active set vector

• Keywords Area

• interface

• analysis drivers

• deactivate

• active set vector

Deactivate the Active Set Vector

Specification
Alias: none

Argument(s): none

Description
Described on parent page

evaluation cache

• Keywords Area

• interface

• analysis drivers

• deactivate

• evaluation cache

Do not retain function evaluation history in memory

Specification
Alias: none

Argument(s): none

6.5. INTERFACE 1775

Description
Described on parent page

strict cache equality

• Keywords Area

• interface

• analysis drivers

• deactivate

• strict cache equality

Do not require strict cache equality when finding duplicates

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional cache tolerance Specify tolerance
when identifying
duplicate function
evaluations

Description
Described on parent page

cache tolerance

• Keywords Area

• interface

• analysis drivers

• deactivate

• strict cache equality

• cache tolerance

Specify tolerance when identifying duplicate function evaluations

Specification
Alias: none

Argument(s): REAL

1776 CHAPTER 6. KEYWORDS AREA

Description
Described on parent page

restart file

• Keywords Area

• interface

• analysis drivers

• deactivate

• restart file

Deactivate writing to the restart file

Specification
Alias: none

Argument(s): none

Description
Described on parent page

6.5.4 asynchronous
• Keywords Area

• interface

• asynchronous

Specify analysis driver concurrency, when Dakota is run in serial

Topics
This keyword is related to the topics:

• concurrency and parallelism

Specification
Alias: none

Argument(s): none
Default: synchronous interface usage

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

6.5. INTERFACE 1777

Optional evaluation -
concurrency

Determine how
many concurrent
evaluations Dakota
will schedule

Optional local evaluation -
scheduling

Control how local
asynchronous jobs
are scheduled

Optional analysis -
concurrency

Limit the number
of analysis drivers
within an
evaluation that
Dakota will
schedule

Description
The optional asynchronous keyword specifies use of asynchronous protocols (i.e., background system calls,
nonblocking forks, POSIX threads) when evaluations or analyses are invoked. The evaluation concurrency
and analysis concurrency specifications serve a dual purpose:

• when running Dakota on a single processor in asynchronous mode, the default concurrency of evalua-
tions and analyses is all concurrency that is available. The evaluation concurrency and analysis-
concurrency specifications can be used to limit this concurrency in order to avoid machine overload or

usage policy violation.

• when running Dakota on multiple processors in message passing mode, the default concurrency of eval-
uations and analyses on each of the servers is one (i.e., the parallelism is exclusively that of the message
passing). With the evaluation concurrency and analysis concurrency specifications, a hy-
brid parallelism can be selected through combination of message passing parallelism with asynchronous
parallelism on each server.

evaluation concurrency

• Keywords Area

• interface

• asynchronous

• evaluation concurrency

Determine how many concurrent evaluations Dakota will schedule

Topics
This keyword is related to the topics:

• concurrency and parallelism

Specification
Alias: none

Argument(s): INTEGER
Default: local: unlimited concurrency, hybrid: no concurrency

1778 CHAPTER 6. KEYWORDS AREA

Description
When asynchronous execution is enabled, the default behavior is to launch all available evaluations simulta-
neously. The evaluation concurrency keywrod can be used to limit the number of concurrent evaluations.

local evaluation scheduling

• Keywords Area

• interface

• asynchronous

• local evaluation scheduling

Control how local asynchronous jobs are scheduled

Topics
This keyword is related to the topics:

• concurrency and parallelism

Specification
Alias: none

Argument(s): none
Default: dynamic

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 dynamic Dynamic local
scheduling
(sequential)

static Static local
scheduling (tiled)

Description
When performing asynchronous local evaluations, the local evaluation scheduling keyword controls how new
evaluation jobs are dispatched when one completes.

The two options are:

• dynamic

• static

If the local evaluation scheduling is specified as dynamic (the default), each completed evaluation will be replaced
by the next in the local evaluation queue.

If local evaluation scheduling is specified as static, each completed evaluation will be replaced by an evalu-
ation number that is congruent modulo the evaluation concurrency. This is helpful for relative node scheduling
as described in Dakota/examples/parallelism. For example, assuming only asynchronous local concurrency (no
MPI), if the local concurrency is 6 and job 2 completes, it will be replaced with job 8.

6.5. INTERFACE 1779

For the case of hybrid parallelism, static local scheduling results in evaluation replacements that are modulo
the total capacity, defined as the product of the evaluation concurrency and the number of evaluation servers.
Both of these cases can result in idle processors if runtimes are non-uniform, so the default dynamic scheduling
is preferred when relative node scheduling is not required.

dynamic

• Keywords Area

• interface

• asynchronous

• local evaluation scheduling

• dynamic

Dynamic local scheduling (sequential)

Specification

Alias: none
Argument(s): none

Description

If the local evaluation scheduling is specified as dynamic (the default), each completed evaluation will be replaced
by the next in the local evaluation queue.

static

• Keywords Area

• interface

• asynchronous

• local evaluation scheduling

• static

Static local scheduling (tiled)

Specification

Alias: none
Argument(s): none

1780 CHAPTER 6. KEYWORDS AREA

Description

If local evaluation scheduling is specified as static, each completed evaluation will be replaced by an evaluation
number that is congruent modulo the evaluation concurrency. This is helpful for relative node scheduling as
described in Dakota/examples/parallelism. For example, assuming only asynchronous local concurrency (no M-
PI), if the local concurrency is 6 and job 2 completes, it will be replaced with job 8.

For the case of hybrid parallelism, static local scheduling results in evaluation replacements that are modulo
the total capacity, defined as the product of the evaluation concurrency and the number of evaluation servers.
Both of these cases can result in idle processors if runtimes are non-uniform, so the default dynamic scheduling
is preferred when relative node scheduling is not required.

analysis concurrency

• Keywords Area

• interface

• asynchronous

• analysis concurrency

Limit the number of analysis drivers within an evaluation that Dakota will schedule

Topics

This keyword is related to the topics:

• concurrency and parallelism

Specification

Alias: none
Argument(s): INTEGER
Default: local: unlimited concurrency, hybrid: no concurrency

Description

When asynchronous execution is enabled and each evaluation involves multiple analysis drivers, then the
default behavior is to launch all drivers simultaneously. The analysis concurrency keyword can be used
to limit the number of concurrently run drivers.

6.5.5 evaluation servers

• Keywords Area

• interface

• evaluation servers

Specify the number of evaluation servers when Dakota is run in parallel

6.5. INTERFACE 1781

Topics
This keyword is related to the topics:

• concurrency and parallelism

Specification
Alias: none

Argument(s): INTEGER
Default: no override of auto configure

Description
The optional evaluation servers specification supports user override of the automatic parallel configura-
tion for the number of evaluation servers. That is, if the automatic configuration is undesirable for some reason,
the user can enforce a desired number of partitions at the evaluation parallelism level. Refer to ParallelLibrary
and the Parallel Computing chapter of the Users Manual [4] for additional information.

6.5.6 evaluation scheduling
• Keywords Area

• interface

• evaluation scheduling

Specify the scheduling of concurrent evaluations when Dakota is run in parallel

Specification
Alias: none

Argument(s): none
Default: automatic (see discussion)

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 master Specify a
dedicated master
partition for
parallel evaluation
scheduling

peer Specify a peer
partition for
parallel evaluation
scheduling

Description
When Dakota is run in parallel, the partition type and scheduling for the evaluation servers are determined au-
tomatically. If these settings are undesirable, they may be overridden by the user using the evaluation -
scheduling keyword.

The partition type and scheduling are

1782 CHAPTER 6. KEYWORDS AREA

master

• Keywords Area

• interface

• evaluation scheduling

• master

Specify a dedicated master partition for parallel evaluation scheduling

Topics
This keyword is related to the topics:

• concurrency and parallelism

Specification
Alias: none

Argument(s): none

Description
This option overrides the Dakota parallel automatic configuration, forcing the use of a dedicated master parti-
tion. In a dedicated master partition, one processor (the ”master”) dynamically schedules work on the evaluation
servers. This reduces the number of processors available to create servers by 1.

peer

• Keywords Area

• interface

• evaluation scheduling

• peer

Specify a peer partition for parallel evaluation scheduling

Topics
This keyword is related to the topics:

• concurrency and parallelism

Specification
Alias: none

Argument(s): none

6.5. INTERFACE 1783

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 dynamic Specify dynamic
scheduling in a
peer partition when
Dakota is run in
parallel.

static Specify static
scheduling in a
peer partition when
Dakota is run in
parallel.

Description

This option overrides the Dakota parallel automatic configuration, forcing the use of a peer partition. In a peer
partition, all processors are available to be assigned to evaluation servers. The scheduling,static or dynamic,
must also be specified.

dynamic

• Keywords Area

• interface

• evaluation scheduling

• peer

• dynamic

Specify dynamic scheduling in a peer partition when Dakota is run in parallel.

Topics

This keyword is related to the topics:

• concurrency and parallelism

Specification

Alias: none
Argument(s): none
Default: dynamic (see discussion)

Description

In dynamic scheduling, evaluations are assigned to servers as earlier evaluations complete. Dynamic scheduling
is advantageous when evaluations are of uneven duration.

1784 CHAPTER 6. KEYWORDS AREA

static

• Keywords Area

• interface

• evaluation scheduling

• peer

• static

Specify static scheduling in a peer partition when Dakota is run in parallel.

Topics
This keyword is related to the topics:

• concurrency and parallelism

Specification
Alias: none

Argument(s): none

Description
In static scheduling, all available evaluations are assigned to servers in a predetermined fashion. Each com-
pleted evaluation is replaced with one congruent modulo the evaluation concurrency. For example, with 6 servers,
eval number 2 will be replaced by eval number 8.

6.5.7 processors per evaluation
• Keywords Area

• interface

• processors per evaluation

Specify the number of processors per evaluation server when Dakota is run in parallel

Topics
This keyword is related to the topics:

• concurrency and parallelism

Specification
Alias: none

Argument(s): INTEGER

6.5. INTERFACE 1785

Description
The optional processors per evaluation specification supports user override of the automatic parallel
configuration for the number of processors in each evaluation server. That is, if the automatic configuration is
undesirable for some reason, the user can enforce a desired server size at the evaluation parallelism level. Refer
to ParallelLibrary and the Parallel Computing chapter of the Users Manual [4] for additional information.

6.5.8 analysis servers
• Keywords Area

• interface

• analysis servers

Specify the number of analysis servers when Dakota is run in parallel

Topics
This keyword is related to the topics:

• concurrency and parallelism

Specification
Alias: none

Argument(s): INTEGER
Default: no override of auto configure

Description
The optional analysis servers specification supports user override of the automatic parallel configuration
for the number of analysis servers. That is, if the automatic configuration is undesirable for some reason, the
user can enforce a desired number of partitions at the analysis parallelism level. Refer to ParallelLibrary and the
Parallel Computing chapter of the Users Manual [4] for additional information.

6.5.9 analysis scheduling
• Keywords Area

• interface

• analysis scheduling

Specify the scheduling of concurrent analyses when Dakota is run in parallel

Topics
This keyword is related to the topics:

• concurrency and parallelism

1786 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): none
Default: no override of auto configure

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 master Specify a
dedicated master
partition for
parallel analysis
scheduling

peer Specify a peer
partition for
parallel analysis
scheduling

Description
When Dakota is run in parallel, the partition type for the analysis servers is determined automatically. If this
setting is undesirable, it may be overridden by the user using the analysis scheduling keyword.

The partition type and scheduling are

master

• Keywords Area

• interface

• analysis scheduling

• master

Specify a dedicated master partition for parallel analysis scheduling

Topics
This keyword is related to the topics:

• concurrency and parallelism

Specification
Alias: none

Argument(s): none

Description
This option overrides the Dakota parallel automatic configuration, forcing the use of a dedicated master partition.
In a dedicated master partition, one processor (the ”master”) dynamically schedules work on the analysis servers.
This reduces the number of processors available to create servers by 1.

6.6. RESPONSES 1787

peer

• Keywords Area

• interface

• analysis scheduling

• peer

Specify a peer partition for parallel analysis scheduling

Topics
This keyword is related to the topics:

• concurrency and parallelism

Specification
Alias: none

Argument(s): none

Description
This option overrides the Dakota parallel automatic configuration, forcing the use of a peer partition. In a peer par-
tition, all processors are available to be assigned to analysis servers. Note that unlike the case of evaluation-
scheduling, it is not possible to specify static or dynamic.

6.6 responses
• Keywords Area

• responses

Description of the model output data returned to Dakota upon evaluation of an interface.

Topics
This keyword is related to the topics:

• block

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

1788 CHAPTER 6. KEYWORDS AREA

Optional id responses Name the response
block, helpful
when there are
multiple

Optional descriptors Labels for the
responses

Required(Choose
One)

Group 1
objective functions Response type

suitable for
optimization

calibration terms Response type
suitable for
calibration or least
squares

response functions Generic response
type

Required(Choose
One)

gradient type
(Group 2)

no gradients Gradients will not
be used

analytic gradients Analysis driver
will return
gradients

mixed gradients Gradients are
needed and will be
obtained from a
mix of numerical
and analytic
sources

numerical -
gradients

Gradients are
needed and will be
approximated by
finite differences

Required(Choose
One)

Hessian type
(Group 3)

no hessians Hessians will not
be used

numerical hessians Hessians are
needed and will be
approximated by
finite differences

quasi hessians Hessians are
needed and will be
approximated by
secant updates
(BFGS or SR1)
from a series of
gradient
evaluations

6.6. RESPONSES 1789

analytic hessians Hessians are
needed and are
available directly
from the analysis
driver

mixed hessians Hessians are
needed and will be
obtained from a
mix of numerical,
analytic, and
”quasi” sources

Description

The responses specification in a Dakota input file indicates the types of data that can be returned by an interface
when invoked during Dakota’s execution. The specification includes three groups and two optional keywords.

Group 1 is related to the type and number of responses expected by Dakota
The specification must be one of three types:

1. objective and constraint functions

2. calibration (least squares) terms and constraint functions

3. a generic response functions specification.

These correspond to optimization, least squares, and uncertainty quantification methods, respectively. The
response type chosen from Group 1 should be consistent with the iterative technique called for in the method
specification. Certain general-purpose iterative techniques, such as parameter studies and design of experiments
methods, can be used with any of these data sets.

Each type of response has additional required and optional keywords.
Group 2 is related to the availability of first derivatives (gradient vectors) for the response functions.
The gradient specification also links back to the iterative method used. Gradients commonly are needed when

the iterative study involves gradient-based optimization, local reliability analysis for uncertainty quantification, or
local sensitivity analysis. They can optionally be used to build some types of surrogate models.

Group 3 is related to the availability of second derivatives (Hessian matrices) for the response functions.
Hessian availability for the response functions is similar to the gradient availability specifications, with the

addition of support for ”quasi-Hessians”. The Hessian specification also links back to the iterative method in
use; Hessians commonly would be used in gradient-based optimization by full Newton methods or in reliability
analysis with second-order limit state approximations or second-order probability integrations.

Examples

Several examples follow. The first example shows an optimization data set containing an objective function and
two nonlinear inequality constraints. These three functions have analytic gradient availability and no Hessian
availability.

responses
objective_functions = 1

nonlinear_inequality_constraints = 2
analytic_gradients
no_hessians

1790 CHAPTER 6. KEYWORDS AREA

The next example shows a typical specification for a calibration data set. The six residual functions will
have numerical gradients computed using the dakota finite differencing routine with central differences of 0.1%
(plus/minus delta relative to current variables value = .001∗value).

responses
calibration_terms = 6
numerical_gradients

method_source dakota
interval_type central
fd_gradient_step_size = .001

no_hessians

The last example shows a generic specification that could be used with a nondeterministic sampling iterator.
The three response functions have no gradient or Hessian availability; therefore, only function values will be used
by the iterator.

responses
response_functions = 3
no_gradients
no_hessians

Parameter study and design of experiments iterators are not restricted in terms of the response data sets which
may be catalogued; they may be used with any of the function specification examples shown above.

Theory
Responses specify the total data set that is available for use by the method over the course of iteration. This is
distinguished from the data subset described by an active set vector (see Dakota File Data Formats in the Users
Manual [Adams et al., 2010]) indicating the particular subset of the response data needed for a particular function
evaluation. Thus, the responses specification is a broad description of the data to be used during a study whereas
the active set vector indicates the subset currently needed.

6.6.1 id responses
• Keywords Area

• responses

• id responses

Name the response block, helpful when there are multiple

Topics
This keyword is related to the topics:

• block identifier

Specification
Alias: none

Argument(s): STRING
Default: use of last responses parsed

6.6. RESPONSES 1791

Description
The optional block identifier id responses specifies a string to uniquely identify a particular responses speci-
fication (typically used when there are multiple present). A model can then specify or point to this response set by
specifying the same string in its responses pointer specification. For example, a model whose specification
contains responses pointer = ’R1’ will use a responses set with id responses = ’R1’.

If the id responses specification is omitted, a particular responses specification will be used by a model
only if that model omits specifying a responses pointer and if the responses set was the last set parsed
(or is the only set parsed). In common practice, if only one responses set exists, then id responses can
be safely omitted from the responses specification and responses pointer can be omitted from the model
specification(s), since there is no potential for ambiguity in this case.

6.6.2 descriptors
• Keywords Area

• responses

• descriptors

Labels for the responses

Specification
Alias: response descriptors

Argument(s): STRINGLIST
Default: root strings plus numeric identifiers

Description
The optional response labels specification descriptors is a list of strings which will be printed in Dakota
output to identify the values for particular response functions.

Note that the ordering of responses and descriptors in the input currently must match the order of the values
returned to Dakota in a results file. See the example below.

The default descriptor strings use a root string plus a numeric identifier. This root string is

• "obj fn" for objective functions

• "least sq term" for least squares terms

• "response fn" for generic response functions

• "nln ineq con" for nonlinear inequality constraints

• "nln eq con" for nonlinear equality constraints

Examples
Note that the descriptors currently must match the order of the values in the results file; they are not used to
validate the returned data. For example, if the responses block contains:

\c descriptors ’x1’ ’x2’ ’x3’

and the results file contains

1792 CHAPTER 6. KEYWORDS AREA

4 x1
5 x3
6 x2

Then Dakota will understand the returned data to be:

x1 = 4
x2 = 5
x3 = 6

6.6.3 objective functions
• Keywords Area

• responses

• objective functions

Response type suitable for optimization

Specification
Alias: num objective functions

Argument(s): INTEGER
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional sense Whether to
minimize or
maximize each
objective function

Optional primary scale -
types

Choose a scaling
type for each
response

Optional primary scales Supply a
characteristic value
to scale each
reponse

Optional weights Specify weights
for each objective
function

Optional nonlinear -
inequality -
constraints

Group to specify
nonlinear
inequality
constraints

6.6. RESPONSES 1793

Optional nonlinear equality-
constraints

Group to specify
nonlinear equality
constraints

Optional scalar objectives Number of scalar
objective functions

Optional field objectives Number of field
objective functions

Description
The objective functions keyword specifies the number of objective functions returned to Dakota. The
number of objective functions must be 1 or greater.

Constraints
The keywords nonlinear inequality constraints, and nonlinear equality constraints

specify the number of nonlinear inequality constraints, and nonlinear equality constraints, respectively. When in-
terfacing to external applications, the responses must be returned to Dakota in this order: objective functions,
nonlinear inequality constraints, then nonlinear equality constraints.

Any linear constraints present in an application need only be input to an optimizer at start up and do not need
to be part of the data returned on every function evaluation. These are therefore specified in the method block.

Bounds on the design variables are specified in the variables block.
Optional Keywords
The optional keywords relate to scaling the objective functions (for better numerical results), formulating the

problem as minimization or maximization, and dealing with multiple objective functions. If scaling is used, it is
applied before multi-objective weighted sums are formed.

See Also
These keywords may also be of interest:

• calibration terms

• response functions

• method

• variables

sense

• Keywords Area

• responses

• objective functions

• sense

Whether to minimize or maximize each objective function

Specification
Alias: none

Argument(s): STRINGLIST
Default: vector values = ’minimize’

1794 CHAPTER 6. KEYWORDS AREA

Description
The sense keyword is used to declare whether each objective function should be minimized or maximized. The
argument options are:

• "minimization"

• "maximization" These can be abbreviated to "min" and "max".

The number of strings should either be equal to the number of objective functions, or one. If a single string is
specified it will apply to each objective function.

primary scale types

• Keywords Area

• responses

• objective functions

• primary scale types

Choose a scaling type for each response

Specification
Alias: objective function scale types

Argument(s): STRINGLIST
Default: no scaling

Description
The primary scale types keyword specifies one of number of primary functions strings indicating the scal-
ing type for each response value in methods that support scaling, when scaling is enabled.

See the scaling page for details on how to use this keyword. Note that primary response functions (objective,
calibration, or response functions) cannot be automaticaly scaled due to lack of bounds, so valid scale types are
’none’ ’value’ and ’log’.

primary scales

• Keywords Area

• responses

• objective functions

• primary scales

Supply a characteristic value to scale each reponse

Specification
Alias: objective function scales

Argument(s): REALLIST
Default: 1.0 (no scaling)

6.6. RESPONSES 1795

Description
Each entry in primary scales is a user-specified nonzero characteristic value to scale each response.

The argument may be of length 1 or the number of primary response functions. See the scaling page for details
on how to use this keyword.

weights

• Keywords Area

• responses

• objective functions

• weights

Specify weights for each objective function

Specification
Alias: multi objective weights

Argument(s): REALLIST
Default: equal weights

Description
If the number of objective functions is greater than 1, then a weights specification provides a simple weighted-
sum approach to combining multiple objectives into a single objective:

f =
n∑
i=1

wifi

If weights are not specified, then each response is given equal weighting:

f =
n∑
i=1

fi
n

where, in both of these cases, a ”minimization” sense will retain a positive weighting for a minimizer and a
”maximization” sense will apply a negative weighting.

nonlinear inequality constraints

• Keywords Area

• responses

• objective functions

• nonlinear inequality constraints

Group to specify nonlinear inequality constraints

Specification
Alias: num nonlinear inequality constraints

Argument(s): INTEGER
Default: 0

1796 CHAPTER 6. KEYWORDS AREA

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional lower bounds Specify minimum
values

Optional upper bounds Specify maximium
values

Optional scale types Choose how each
constraint is scaled

Optional scales Characteristic
values for scaling

Description
The lower bounds and upper bounds specifications provide the lower and upper bounds for 2-sided non-
linear inequalities of the form

gl ≤ g(x) ≤ gu
The defaults for the inequality constraint bounds are selected so that one-sided inequalities of the form

g(x) ≤ 0.0

result when there are no user constraint bounds specifications (this provides backwards compatibility with previ-
ous Dakota versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize
are treated as -infinity. This feature is commonly used to drop one of the bounds in order to specify a 1-sided
constraint (just as the default lower bounds drop out since -DBL MAX < -bigRealBoundSize). The same
approach is used for nonexistent linear inequality bounds and for nonexistent design variable bounds.

The scale types and scales keywords are related to scaling of g (x). See the scaling page for details.

lower bounds

• Keywords Area

• responses

• objective functions

• nonlinear inequality constraints

• lower bounds

Specify minimum values

Specification
Alias: nonlinear inequality lower bounds

Argument(s): REALLIST
Default: vector values = -infinity

Description
Specify minimum values

6.6. RESPONSES 1797

upper bounds

• Keywords Area

• responses

• objective functions

• nonlinear inequality constraints

• upper bounds

Specify maximium values

Specification

Alias: nonlinear inequality upper bounds
Argument(s): REALLIST
Default: vector values = 0 .

Description

Specify maximium values

scale types

• Keywords Area

• responses

• objective functions

• nonlinear inequality constraints

• scale types

Choose how each constraint is scaled

Specification

Alias: nonlinear inequality scale types
Argument(s): STRINGLIST
Default: no scaling

Description

See the scaling page for details on how to use this keyword.

1798 CHAPTER 6. KEYWORDS AREA

scales

• Keywords Area

• responses

• objective functions

• nonlinear inequality constraints

• scales

Characteristic values for scaling

Specification
Alias: nonlinear inequality scales

Argument(s): REALLIST
Default: 1.0 (no scaling)

Description
See the scaling page for details on how to use this keyword.

nonlinear equality constraints

• Keywords Area

• responses

• objective functions

• nonlinear equality constraints

Group to specify nonlinear equality constraints

Specification
Alias: num nonlinear equality constraints

Argument(s): INTEGER
Default: 0

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional targets Target values for
the nonlinear
equality constraint

Optional scale types Choose how each
constraint is scaled

6.6. RESPONSES 1799

Optional scales Characteristic
values for scaling

Description
The targets specification provides the targets for nonlinear equalities of the form

g(x) = gt

and the defaults for the equality targets enforce a value of 0. for each constraint

g(x) = 0.0

The scale types and scales keywords are related to scaling of g (x). See the scaling page for details.

targets

• Keywords Area

• responses

• objective functions

• nonlinear equality constraints

• targets

Target values for the nonlinear equality constraint

Specification
Alias: nonlinear equality targets

Argument(s): REALLIST
Default: vector values = 0 .

Description
The targets specification provides the targets for nonlinear equalities of the form

g(x) = gt

and the defaults for the equality targets enforce a value of 0.0 for each constraint:

g(x) = 0.0

scale types

• Keywords Area

• responses

• objective functions

• nonlinear equality constraints

• scale types

Choose how each constraint is scaled

1800 CHAPTER 6. KEYWORDS AREA

Specification

Alias: nonlinear equality scale types
Argument(s): STRINGLIST
Default: no scaling

Description

See the scaling page for details on how to use this keyword.

scales

• Keywords Area

• responses

• objective functions

• nonlinear equality constraints

• scales

Characteristic values for scaling

Specification

Alias: nonlinear equality scales
Argument(s): REALLIST
Default: 1.0 (no scaling)

Description

See the scaling page for details on how to use this keyword.

scalar objectives

• Keywords Area

• responses

• objective functions

• scalar objectives

Number of scalar objective functions

Specification

Alias: num scalar objectives
Argument(s): INTEGER

6.6. RESPONSES 1801

Description
This keyword describes the number of scalar objective functions. It is meant to be used in conjunction with
field objectives, which describes the number of field objectives functions. The total number of objective
functions, both scalar and field, is given by objective functions. If only scalar objective functions are
specified, it is not necessary to specify the number of scalar terms explicitly: one can simply say objective -
functions = 5 and get 5 scalar objectives. However, if there are three scalar objectives and 2 field objectives,
then objective functions = 5 but scalar objectives = 3 and field objectives = 2.

Objective functions are responses that are used with optimization methods in Dakota. Currently, each term
in a field objective is added to the total objective function presented to the optimizer. For example, if you have
one field objective with 100 terms (e.g. a time-temperature trace with 100 time points and 100 corresponding
temperature points), the 100 temperature values will be added to create the overall objective.

See Also
These keywords may also be of interest:

• field objectives

field objectives

• Keywords Area

• responses

• objective functions

• field objectives

Number of field objective functions

Specification
Alias: num field objectives

Argument(s): INTEGER
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required lengths Lengths of field
responses

Optional num coordinates -
per field

Number of
independent
coordinates for
field responses

Optional(Choose
One)

Group 1 coordinate list Values of the
independent
coordinates for
field data

1802 CHAPTER 6. KEYWORDS AREA

coordinate data -
file

Name of the file
which stores the
values of the
independent
coordinates for
field data

Description

This keyword describes the number of field objective functions. A field function is a set of related response
values collected over a range of independent coordinate values which may or may not be specified by the user.
For example, voltage over time would be a field function, where voltage is the field objective and time
is the independent coordinate. Similarly, temperature over time and space would be a field response, where the
independent coordinates would be both time and spatial coordinates such as (x,y) or (x,y,z), depending on the
application. The main difference between scalar objectives and field objectives is that for field data, we plan to
implement methods that take advantage of the correlation or relationship between the field values.

Note that if there is one field objective, and it has length 100 (meaning 100 values), then the user’s
simulation code must return 100 values. Also, if there are both scalar and field objectives, the user should specify
the number of scalar objectives as scalar objectives. If there are only field objectives, it still is necessary
to specify both objective functions = NN and field objectives = NN, where NN is the number of
field objectives.

Objective functions are responses that are used with optimization methods in Dakota. Currently, each term
in a field objective is added to the total objective function presented to the optimizer. For example, if you have
one field objective with 100 terms (e.g. a time-temperature trace with 100 time points and 100 corresponding
temperature points), the 100 temperature values will be added to create the overall objective.

See Also

These keywords may also be of interest:

• scalar objectives

lengths

• Keywords Area

• responses

• objective functions

• field objectives

• lengths

Lengths of field responses

Specification

Alias: none
Argument(s): INTEGERLIST

6.6. RESPONSES 1803

Description

This keyword describes the lengths of each field response. It is an integer vector of length field responses.
For example, if the field responses = 2, an example would be lengths = 50 200, indicating that the
first field response has 50 field elements but the second one has 200. The coordinate values (e.g. the independent
variables) corresponding to these field responses are defined either with coordinate list or coordinate-
data file.

See Also

These keywords may also be of interest:

• field responses

num coordinates per field

• Keywords Area

• responses

• objective functions

• field objectives

• num coordinates per field

Number of independent coordinates for field responses

Specification

Alias: none
Argument(s): INTEGERLIST

Description

This keyword describes the number of independent coordinates for each field response. It is an integer vector
of length field responses. For example, if the field responses = 2, an example would be num -
coordinates per field = 2 1 means that the first field response has two sets of independent coordinates
(perhaps x, y locations), but the second response only has one (for example, time where the field response is only
dependent upon time). The actual coordinate values (e.g. the independent variables) corresponding to these field
responses are defined either with coordinate list or coordinate data file.

See Also

These keywords may also be of interest:

• field responses

1804 CHAPTER 6. KEYWORDS AREA

coordinate list

• Keywords Area

• responses

• objective functions

• field objectives

• coordinate list

Values of the independent coordinates for field data

Specification
Alias: none

Argument(s): REALLIST

Description
Field data involves a field quantity or response that is dependent upon some quantity. For example, temperature
(the field response) might be dependent on time (the independent coordinate). Another example is where accel-
eration (the field response) might be dependent on a spatial (x,y,z) location, in this case on three independent
coordinates.

The coordinate list specifies the actual coordinate values. Note that the number of dimensions are
defined by num coordinates per field. The length of the coordinate list is defined by lengths. If the
length a particular field data response is very long (e.g. lengths = 10000), it will be easier to read the independent
coordinates by reading a data file instead of specifying them with a coordinate list in the Dakota input file. For
example, one could say coordinate data file = ’my coord data.dat’ instead of the coordinate list values.

See Also
These keywords may also be of interest:

• field responses

coordinate data file

• Keywords Area

• responses

• objective functions

• field objectives

• coordinate data file

Name of the file which stores the values of the independent coordinates for field data

Specification
Alias: none

Argument(s): STRING

6.6. RESPONSES 1805

Description
Field data involves a field quantity or response that is dependent upon some quantity. For example, temperature
(the field response) might be dependent on time (the independent coordinate). Another example is where accel-
eration (the field response) might be dependent on a spatial (x,y,z) location, in this case on three independent
coordinates.

The coordinate data file specifies the file which contains the actual coordinate values. Note that
the number of dimensions (the number of columns of the file) is defined by num coordinates per field.
The length of the file (e.g. the number of rows in the file) is defined by lengths. If the length a particular
field data response is very long (e.g. lengths = 10000), we recommend using this option. It is easier to read the
independent coordinates by reading a data file instead of specifying them with a coordinate list in the Dakota input
file. However, an alternative to reading them from a file is to read them via coordinate list.

See Also
These keywords may also be of interest:

• field responses

6.6.4 calibration terms
• Keywords Area

• responses

• calibration terms

Response type suitable for calibration or least squares

Specification
Alias: least squares terms num least squares terms

Argument(s): INTEGER
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional scalar calibration -
terms

Number of scalar
calibration terms

Optional field calibration -
terms

Number of field
calibration terms

Optional primary scale -
types

Choose a scaling
type for each
response

Optional primary scales Supply a
characteristic value
to scale each
reponse

1806 CHAPTER 6. KEYWORDS AREA

Optional weights Apply different
weights to each
response

Optional(Choose
One)

Group 1 calibration data Supply calibration
data in the case of
field data or mixed
data (both scalar
and field data).

calibration data -
file

Specify a text file
containing
calibration data for
scalar responses

Optional nonlinear -
inequality -
constraints

Group to specify
nonlinear
inequality
constraints

Optional nonlinear equality-
constraints

Group to specify
nonlinear equality
constraints

Description
Responses for a calibration study are specified using calibration terms and optional keywords for weight-
ing/scaling, data, and constraints. In general when calibrating, Dakota automatically tunes parameters θ to mini-
mize discrepancies or residuals between the model and the data:

Ri = yModel
i (θ)− yDatai .

There are two use cases:

• If calibration data file is NOT specified, then each of the calibration terms returned to Dakota through the
interface is a residual Ri to be driven toward zero.

• If calibration data file IS specified, then each of the calibration terms returned to Dakota must be a response
yModel
i (θ), which Dakota will difference with the data in the specified data file.

Constraints
The keywords nonlinear inequality constraints, and nonlinear equality constraints

specify the number of nonlinear inequality constraints, and nonlinear equality constraints, respectively. When
interfacing to external applications, the responses must be returned to Dakota in this order: calibration terms,
nonlinear inequality constraints, then nonlinear equality constraints.

Any linear constraints present in an application need only be input to an optimizer at start up and do not need
to be part of the data returned on every function evaluation. These are therefore specified in the method block.

Optional Keywords
The optional keywords relate to scaling responses (for better numerical results), dealing with multiple residu-

als, and importing data.
See scaling for more details on scaling. If scaling is specified, then it is applied to each residual prior to

squaring:

f =
n∑
i=1

wi(
yModel
i − yDatai

si
)2

6.6. RESPONSES 1807

In the case where experimental data uncertainties are supplied, then the weights are automatically defined to
be the inverse of the experimental variance:

f =
n∑
i=1

1
σ2
i

(
yModel
i − yDatai

si
)2

Theory

Dakota calibration terms are typically used to solve problems of parameter estimation, system identification, and
model calibration/inversion. Local least squares calibration problems are most efficiently solved using special-
purpose least squares solvers such as Gauss-Newton or Levenberg-Marquardt; however, they may also be solved
using any general-purpose optimization algorithm in Dakota. While Dakota can solve these problems with either
least squares or optimization algorithms, the response data sets to be returned from the simulator are different
when using objective functions versus calibration terms.

Least squares calibration involves a set of residual functions, whereas optimization involves a single objective
function (sum of the squares of the residuals), i.e.,

f =
n∑
i=1

R2
i =

n∑
i=1

(
yModel
i (θ)− yDatai

)2
where f is the objective function and the set of Ri are the residual functions, most commonly defined as the
difference between a model response and data. Therefore, function values and derivative data in the least squares
case involve the values and derivatives of the residual functions, whereas the optimization case involves values and
derivatives of the sum of squares objective function. This means that in the least squares calibration case, the user
must return each of n residuals separately as a separate calibration term. Switching between the two approaches
sometimes requires different simulation interfaces capable of returning the different granularity of response data
required, although Dakota supports automatic recasting of residuals into a sum of squares for presentation to
an optimization method. Typically, the user must compute the difference between the model results and the
observations when computing the residuals. However, the user has the option of specifying the observational data
(e.g. from physical experiments or other sources) in a file.

See Also

These keywords may also be of interest:

• objective functions

• response functions

scalar calibration terms

• Keywords Area

• responses

• calibration terms

• scalar calibration terms

Number of scalar calibration terms

1808 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): INTEGER

Description
This keyword describes the number of scalar calibration terms. It is meant to be used in conjunction with field-
calibration terms, which describes the number of field calibration terms. The total number of calibration

terms, both scalar and field, is given by calibration terms. If only scalar calibration terms are specified, it
is not necessary to specify the number of scalar terms explicitly: one can simply say calibration terms =
5 and get 5 scalar terms. However, if there are three scalar terms and 2 field terms, then calibration terms
= 5 but scalar calibration terms = 3 and field calibration terms = 2.

Calibration terms are responses that are used with calibration methods in Dakota, such as least squares opti-
mizers. Currently, each scalar term is added to the total sum-of-squares error function presented to the optimizer.
However, each individual field value is added as well. For example, if you have one field calibration term with
length 100 (e.g. a time - temperature trace with 100 time points and 100 temperature points), the 100 temperature
values will be added to create the overall sum-of-squares error function used in calibration.

See Also
These keywords may also be of interest:

• field calibration terms

field calibration terms

• Keywords Area

• responses

• calibration terms

• field calibration terms

Number of field calibration terms

Specification
Alias: none

Argument(s): INTEGER
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required lengths Lengths of field
responses

Optional num coordinates -
per field

Number of
independent
coordinates for
field responses

6.6. RESPONSES 1809

Optional(Choose
One)

Group 1 coordinate list Values of the
independent
coordinates for
field data

coordinate data -
file

Name of the file
which stores the
values of the
independent
coordinates for
field data

Description
This keyword describes the number of field calibration terms. A set of field calibration terms is a set of related
response values collected over a range of independent coordinate values which may or may not be specified by
the user. For example, voltage over time would be a field function, where voltage is the field objective
and time is the independent coordinate. Similarly, temperature over time and space would be a field response,
where the independent coordinates would be both time and spatial coordinates such as (x,y) or (x,y,z), depending
on the application. The main difference between scalar calibration terms and field calibration terms is that for
field data, we plan to implement methods that take advantage of the correlation or relationship between the field
values. For example, with calibration, if we want to calibrate parameters that result in a good model fit to a time-
temperature curve, we may have to do some interpolation between the experimental data and the simulation data.
That capability requires knowledge of the independent coordinates.

Note that if there is one field calibration terms, and it has length 100 (meaning 100 values), then
the user’s simulation code must return 100 values. Also, if there are both scalar and field calibration, the user
should specify the number of scalar terms as scalar calibration terms. If there are only field calibration
terms, it still is necessary to specify both field calibration terms = NN and calibration terms =
NN, where NN is the number of field calibration terms.

Calibration terms are responses that are used with calibration methods in Dakota, such as least squares opti-
mizers. Currently, each scalar term is added to the total sum-of-squares error function presented to the optimizer.
However, each individual field value is added as well. For example, if you have one field calibration term with
length 100 (e.g. a time-temperature trace with 100 time points and 100 temperature points), the 100 temperature
values will be added to create the overall sum-of-squares error function used in calibration. We have an initial
capability to interpolate the field data from the user’s simulation to the experimental data. For example, if the user
has thermocouple readings at 20 time points, it will be an experimental field response with 20 time points and
20 temperature values. Dakota takes the 100 simulation time-temperature values (from the example above) and
interpolates those to the 20 experimental points, to create 20 residual terms (simulation minus experimental data
points) that will be used in calibration.

See Also
These keywords may also be of interest:

• scalar calibration terms

lengths

• Keywords Area

• responses

1810 CHAPTER 6. KEYWORDS AREA

• calibration terms

• field calibration terms

• lengths

Lengths of field responses

Specification
Alias: none

Argument(s): INTEGERLIST

Description
This keyword describes the lengths of each field response. It is an integer vector of length field responses.
For example, if the field responses = 2, an example would be lengths = 50 200, indicating that the
first field response has 50 field elements but the second one has 200. The coordinate values (e.g. the independent
variables) corresponding to these field responses are defined either with coordinate list or coordinate-
data file.

See Also
These keywords may also be of interest:

• field responses

num coordinates per field

• Keywords Area

• responses

• calibration terms

• field calibration terms

• num coordinates per field

Number of independent coordinates for field responses

Specification
Alias: none

Argument(s): INTEGERLIST

Description
This keyword describes the number of independent coordinates for each field response. It is an integer vector
of length field responses. For example, if the field responses = 2, an example would be num -
coordinates per field = 2 1 means that the first field response has two sets of independent coordinates
(perhaps x, y locations), but the second response only has one (for example, time where the field response is only
dependent upon time). The actual coordinate values (e.g. the independent variables) corresponding to these field
responses are defined either with coordinate list or coordinate data file.

6.6. RESPONSES 1811

See Also
These keywords may also be of interest:

• field responses

coordinate list

• Keywords Area

• responses

• calibration terms

• field calibration terms

• coordinate list

Values of the independent coordinates for field data

Specification
Alias: none

Argument(s): REALLIST

Description
Field data involves a field quantity or response that is dependent upon some quantity. For example, temperature
(the field response) might be dependent on time (the independent coordinate). Another example is where accel-
eration (the field response) might be dependent on a spatial (x,y,z) location, in this case on three independent
coordinates.

The coordinate list specifies the actual coordinate values. Note that the number of dimensions are
defined by num coordinates per field. The length of the coordinate list is defined by lengths. If the
length a particular field data response is very long (e.g. lengths = 10000), it will be easier to read the independent
coordinates by reading a data file instead of specifying them with a coordinate list in the Dakota input file. For
example, one could say coordinate data file = ’my coord data.dat’ instead of the coordinate list values.

See Also
These keywords may also be of interest:

• field responses

coordinate data file

• Keywords Area

• responses

• calibration terms

• field calibration terms

• coordinate data file

Name of the file which stores the values of the independent coordinates for field data

1812 CHAPTER 6. KEYWORDS AREA

Specification

Alias: none
Argument(s): STRING

Description

Field data involves a field quantity or response that is dependent upon some quantity. For example, temperature
(the field response) might be dependent on time (the independent coordinate). Another example is where accel-
eration (the field response) might be dependent on a spatial (x,y,z) location, in this case on three independent
coordinates.

The coordinate data file specifies the file which contains the actual coordinate values. Note that
the number of dimensions (the number of columns of the file) is defined by num coordinates per field.
The length of the file (e.g. the number of rows in the file) is defined by lengths. If the length a particular
field data response is very long (e.g. lengths = 10000), we recommend using this option. It is easier to read the
independent coordinates by reading a data file instead of specifying them with a coordinate list in the Dakota input
file. However, an alternative to reading them from a file is to read them via coordinate list.

See Also

These keywords may also be of interest:

• field responses

primary scale types

• Keywords Area

• responses

• calibration terms

• primary scale types

Choose a scaling type for each response

Specification

Alias: calibration term scale types least squares term scale types
Argument(s): STRINGLIST
Default: no scaling

Description

The primary scale types keyword specifies one of number of primary functions strings indicating the scal-
ing type for each response value in methods that support scaling, when scaling is enabled.

See the scaling page for details on how to use this keyword. Note that primary response functions (objective,
calibration, or response functions) cannot be automaticaly scaled due to lack of bounds, so valid scale types are
’none’ ’value’ and ’log’.

6.6. RESPONSES 1813

primary scales

• Keywords Area

• responses

• calibration terms

• primary scales

Supply a characteristic value to scale each reponse

Specification
Alias: calibration term scales least squares term scales

Argument(s): REALLIST
Default: 1.0 (no scaling)

Description
Each entry in primary scales is a user-specified nonzero characteristic value to scale each response.

The argument may be of length 1 or the number of primary response functions. See the scaling page for details
on how to use this keyword.

weights

• Keywords Area

• responses

• calibration terms

• weights

Apply different weights to each response

Specification
Alias: calibration weights least squares weights

Argument(s): REALLIST
Default: equal weights

Description
The weights specification provides a means to specify a relative emphasis among the vector of squared residuals
through multiplication of these squared residuals by a vector of weights:

f =
n∑
i=1

wiR
2
i =

n∑
i=1

wi(yMi − yOi)2

1814 CHAPTER 6. KEYWORDS AREA

calibration data

• Keywords Area

• responses

• calibration terms

• calibration data

Supply calibration data in the case of field data or mixed data (both scalar and field data).

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional num experiments Add context to
data: number of
different
experiments

Optional num config -
variables

Add context to
data: number of
configuration
variables.

Optional variance type Add context to
experiment data
description by
specifying the type
of experimental
error.

Optional scalar data file Specify a scalar
data file to
complement field
data files (mixed
case)

Optional interpolate Flag to indicate
interpolation of
simulation values.

6.6. RESPONSES 1815

Optional read field -
coordinates

Add context to
data: flag to
indicate that field
coordinates should
be read

Description

calibration data specifies a keyword block that indicates that Dakota should read in various types of ex-
perimental data. This block is primarily to support the reading of field calibration data.

The user will specify the number of experiments, num experiments. If this is not specified, it is assumed
there is only one experiment.

For each experiment, there are four main types of data related to fields:

• values.

These are the values of the experiment field (e.g. temperature values, voltage levels, etc.) These MUS-
T be specified in a file named response descriptor.NUM.dat, where NUM is replaced by the number of
the experiment (1, 2, ...) and response descriptor is replaced by the actual response descriptor the
user has specified. For example, if response descriptor = voltage, then the voltage field values for
experiment 1 should be in a file labeled voltage.1.dat. The field values should be in a column (e.g. one field
value per row).

• field coordinates.

Field coordinates specify independent variables (e.g. spatial or temporal coordinates) upon which the field
depends. For example, the voltage level above might be a function of time, so time is the field coordinate.
If the user has field coordinates to read, they need to specify read field coordinates. The field
coordinates will then be read from a file named response descriptor.NUM.coords, similar to the pattern for
field values. The number of columns in the coords file should be equal to the number of field coordinates.

• variance terms.

The user needs to specify variance type, which defines the type of experimental measurement error.
This is a string list, with one variance type specified for each scalar and each field. The available types
are ’none’ (no variance is specified), ’scalar’ (one scalar value is specified which is applicable to all of the
measurements in the field), ’diagonal’ (a column vector is provided which contains the number of elements
of the experimental data field. Each element of the vector contains the experimental measurement variance
corresponding to that particular field measurement. For example, for the fifth term in the field, the fifth
term in the diagonal vector would have the variance of that measurement), and ’matrix’. In the matrix case,
a full covariance matrix is provided, which contains the pairwise correlations between each element in the
field. For each field, if the variance type is not ’none’, a data file must be provided with the name
response descriptor.NUM.sigma, which contains the appropriate variance data for that field.

• configuration variables.

Configuration variables specify the conditions corresponding to different experiments. This is used when
there is more than one experiment. If num config variables is positive, the configuration variables
for each experiment should be placed in a file named experiment.NUM.config, where the number of items
in that config file are the num config variables. Currently, configuration variables are not being
used. However, the intent is that they will be used as state variables for the simulation (for example) and
not as variables that would be calibrated.

1816 CHAPTER 6. KEYWORDS AREA

The above description is relevant for field data (with files for field values, field coordinates, field variances). If
the user also has scalar experimental data, it may be entered in the same way (e.g. one file for a scalar experimental
value named scalar response descriptor.NUM.dat, etc.) However, the user can choose to enter the scalar data in
the format that we offer for pure scalar data, where we have just one file, with the number of rows of that file equal
to the number of experiments. In that case, the scalar data is in the file given by the name scalar data file,
and the format of that file is the same as discussed in calibration data file.

One important feature of field data is the capability to interpolate between points in the field. For example, we
may have simulation data at a set of responses y at time points t: (ts1, ys1), (ts2, ys2), etc. In this example, t is the
independent coordinate for the simulation, and the simulation time and response points are denoted with subscripts
s1, s2, s3,. If the user has experimental data that is taken at different time points: (te1, ye1), (te2, ye2), ..., it is
necessary to interpolate the simulation data to provide estimates of the simulation response at the experimental
time points to construct the residual terms (model - experiment) at the experimental time points. Dakota can
perform this interpolation now. The user must specify the keyword interpolate, and also provide the field
coordinates as well as field values for the experiment data. If the interpolate keyword is not specified, Dakota
will assume that the simulation field data and the experiment field data is taken at the same set of independent
coordinate values and simply construct the difference between these field terms to create the set of residuals for the
sum-of-squares calculation. When interpolate is specified, the simulation coordinates are assumed fixed and
the same for each simulation. These coordinates are provided in coordinate data file or coordinate-
list. However, the experiment coordinates for each experiment can be different, and are provided in the files

numbered by experiment with the file names given by response descriptor.NUM.coords, as indicated above.

num experiments

• Keywords Area

• responses

• calibration terms

• calibration data

• num experiments

Add context to data: number of different experiments

Specification

Alias: none
Argument(s): INTEGER
Default: 1

Description

The number of different experiments. Dakota will expand the total number of residual terms based on the number
of calibration terms and the number of experiments. For example, if the number of calibration terms are five
scalars, and there are three experiments, the total number of residuals in the least squares formulation will be 15.
See calibration data or calibration data file.

6.6. RESPONSES 1817

num config variables

• Keywords Area

• responses

• calibration terms

• calibration data

• num config variables

Add context to data: number of configuration variables.

Specification

Alias: none
Argument(s): INTEGER
Default: 0

Description

This is an optional description. If there are multiple experiments, there can be different configuration variables
(e.g. experimental settings, boundary conditions, etc.) per experiment. See calibration data or calibration data-
file. Note: as of Dakota 6.2, configuration variables are not used. However, the intent is to treat them as state

variables which will be passed to the simulation, and not treated as parameters which are calibrated.

variance type

• Keywords Area

• responses

• calibration terms

• calibration data

• variance type

Add context to experiment data description by specifying the type of experimental error.

Specification

Alias: none
Argument(s): STRINGLIST
Default: none

1818 CHAPTER 6. KEYWORDS AREA

Description
There are four options for specifying the experimental error (e.g. the measurement error in the data you provide
for calibration purposes): ’none’, ’scalar’, ’diagonal’, or ’matrix.’

If the user specifies none, Dakota will calculate a variance (sigma-squared) term. This will be a constant
variance term across all of the data). If the user specifies scalar, they can provide a scalar variance per calibration
term. Note that for scalar calibration terms, only ’none’ or ’scalar’ are options for the measurement variance.
However, for field calibration terms, there are two additional options. ’diagonal’ allows the user to provide a
vector of measurement variances (one for each term in the calibration field). This vector corresponds to the
diagonal of the full covariance matrix of measurement errors. If the user specifies ’matrix’, they can provide a
full covariance matrix (not just the diagonal terms), where each element(i,j) of the covariance matrix represents
the covariance of the measurement error between the i-th and j-th field values.

scalar data file

• Keywords Area

• responses

• calibration terms

• calibration data

• scalar data file

Specify a scalar data file to complement field data files (mixed case)

Specification
Alias: none

Argument(s): STRING
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional(Choose
One)

tabular format
(Group 1)

annotated Selects annotated
tabular file format
for experiment data

custom annotated Selects
custom-annotated
tabular file format
for experiment data

freeform Selects free-form
tabular file format
for experiment data

Description
When calibrating both scalar and field calibration terms, to associated experimental data, the scalar data may be
provided in the file named by scalar data file. This file follows the same format as: calibration data file.

Default Behavior

6.6. RESPONSES 1819

If scalar data file is omitted, all calibration data, including for scalar responses, will be read from the
generic field calibration data format.

annotated

• Keywords Area

• responses

• calibration terms

• calibration data

• scalar data file

• annotated

Selects annotated tabular file format for experiment data

Topics

This keyword is related to the topics:

• file formats

Specification

Alias: none
Argument(s): none
Default: annotated format

Description

An annotated tabular file is a whitespace-separated text file with one leading header row of comments/column la-
bels. For experiment data files, each subsequent row contains an experiment ID, followed by data for configuration
variables, observations, and/or observation errors, depending on context.

Default Behavior
By default, Dakota imports tabular experiment data files in annotated format. The annotated keyword can

be used to explicitly specify this.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

1820 CHAPTER 6. KEYWORDS AREA

Examples
Import an annotated experimental data file containing a header row, leading exp id column, and experiment data
in a calibration study

responses
...
scalar_data_file ’shock_experiment.dat’

annotated

Example data file with two measured quantities, three experiments:

%exp_id velocity stress
1 18.23 83.21
2 34.14 93.24
3 22.41 88.92

custom annotated

• Keywords Area

• responses

• calibration terms

• calibration data

• scalar data file

• custom annotated

Selects custom-annotated tabular file format for experiment data

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Default: annotated format

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional header Enable header row
in
custom-annotated
tabular file

6.6. RESPONSES 1821

Optional exp id Enable experiment
ID column in
custom-annotated
tabular file

Description
A custom-annotated tabular file is a whitespace-separated text file containing experiment data, including configu-
ration variables, observatiions, and/or observation errors, depending on context. For experiment import, custom-
annotated allows user options for whether header row and exp id column appear in the tabular file, thus
bridging freeform and (fully) annotated.

Default Behavior
By default, Dakota imports tabular experiment data files in annotated format. The custom annotated

keyword, followed by options can be used to select other formats.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

Examples
Import an experimental data file containing a header row, no leading exp id column, and experiment data in a
calibration study

responses
...
scalar_data_file ’shock_experiment.dat’

custom_annotated header

Example data file with two measured quantities, three experiments:

% velocity stress
18.23 83.21
34.14 93.24
22.41 88.92

header

• Keywords Area

• responses

• calibration terms

• calibration data

• scalar data file

• custom annotated

• header

Enable header row in custom-annotated tabular file

1822 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): none
Default: no header

Description
See description of parent custom annotated

exp id

• Keywords Area

• responses

• calibration terms

• calibration data

• scalar data file

• custom annotated

• exp id

Enable experiment ID column in custom-annotated tabular file

Specification
Alias: none

Argument(s): none
Default: no exp id column

Description
See description of parent custom annotated

freeform

• Keywords Area

• responses

• calibration terms

• calibration data

• scalar data file

• freeform

Selects free-form tabular file format for experiment data

6.6. RESPONSES 1823

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Default: annotated format

Description
A freeform tabular file is whitespace-separated text file with no leading header row and no leading columns. For
experiment data files, each row contains data for configuration variables, observatiions, and/or observation errors,
depending on context.

Default Behavior
By default, Dakota imports tabular experiment data files in annotated format. Specify freeform to instead

select this format.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

Examples
Import a free-form experimental data file containing raw experiment data in a calibration study

responses
...
scalar_data_file ’shock_experiment.dat’

freeform

Example data file with two measured quantities, three experiments:

18.23 83.21
34.14 93.24
22.41 88.92

interpolate

• Keywords Area

• responses

• calibration terms

• calibration data

• interpolate

Flag to indicate interpolation of simulation values.

1824 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): none

Description
If interpolate is specified, Dakota will interpolate between the simulation data and the experiment data to
calculate the residuals for calibration methods. Specifically, the simulation data is interpolated onto the experi-
mental data points. So, if the simulation data is a field of length 100 with one independent coordinate, and the
experiment data is of length 5 with one independent coordinate, the interpolation is done between the 100 (t,f)
simulation points (where t is the independent coordinate and f is the simulation field value) onto the five (t e, f e)
points to obtain the residual differences between the simulation and experiment. See calibration data.

read field coordinates

• Keywords Area

• responses

• calibration terms

• calibration data

• read field coordinates

Add context to data: flag to indicate that field coordinates should be read

Specification
Alias: none

Argument(s): none

Description
See calibration data.

calibration data file

• Keywords Area

• responses

• calibration terms

• calibration data file

Specify a text file containing calibration data for scalar responses

Specification
Alias: least squares data file

Argument(s): STRING
Default: none

6.6. RESPONSES 1825

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional(Choose
One)

tabular format
(Group 1)

annotated Selects annotated
tabular file format
for experiment data

custom annotated Selects
custom-annotated
tabular file format
for experiment data

freeform Selects free-form
tabular file format
for experiment data

Optional num experiments Add context to
data: number of
different
experiments

Optional num config -
variables

Add context to
data: number of
configuration
variables.

Optional variance type Add context to
experiment data
description by
specifying the type
of experimental
error.

Description
Enables text file import of experimental observations for use in calibration, for scalar responses only. Dakota will
calibrate model variables to best match tese data. Key options include:

• format: whether the data file is in annotated, custom annotated, or freeform format

• content: where num experiments, num config variables, and variance type indicate which
columns appear in the data.

While some components may be omitted, the most complete version of a an annotated calibration data file could
include columns corresponding to:
exp_id | configuration xvars | y data observations | y data variances

Each row in the file corresponds to an experiment or replicate observation of an experiment to be compared to
the model output.

Usage Tips

• The calibration data file used when ONLY scalar calibration terms are present. If there are
field calibration terms, instead use calibration data. For mixed scalar and field calibration terms,
on may use the calibration data specification, together with its sub-specification scalar data -
file, which uses the format described here.

1826 CHAPTER 6. KEYWORDS AREA

Simple Case
In the simplest case, no data content descriptors are specified, so the data file must contain only the yData

observations which represent a single experimental observation. In this case, the data file should have Nterms
columns and 1 row, where Nterms is the value of calibration terms.

For each function evaluation, Dakota will run the analysis driver, which must return Nterms model responses.
Then the residuals are computed as:

Ri = yModel
i − yDatai .

These residuals can be weighted using weights.
With experimental variances
If information is known about the measurement error and the uncertainty in the measurement, that can be

specified by sending the measurement error variance to Dakota. In this case, the keyword variance type is
added, followed by a string of variance types of length one or of length Nterms , where Nterms is the value of
calibration terms. The variance type for each response can be ’none’ or ’scalar’. NOTE: you must specify
the same variance type for all scalar terms. That is, they will all be ’none’ or all be ’scalar.’

For each response that has a ’scalar’ variance type, each row of the datafile will now have Nterms of y
data values followed by Nterms columns that specify the measurement error (in units of variance, not standard
deviation of the measurement error) for y variances.

Dakota will run the analysis driver, which must return Nterms responses. Then the residuals are computed as:

Ri =
yModel
i − yDatai√

vari

for i = 1 . . . Nterms.
Fully general case
In the most general case, the content of the data file is described by the arguments of three parameters. The

parameters are optional, and defaults are described below.

• num experiments (Nexp)

Default: Nexp = 1

This indicates that the data represents multiple experiments, where each experiment might be conducted
with different values of configuration variables. An experiment can also be thought of as a replicate, where
the experiments are run at the same values of the configuration variables.

• num config variables (Ncfg)

This is not yet supported, but will specify the values of experimental conditions at which data were col-
lected.

• variance type (’none’ or ’scalar’)

This indicates if the data file contains variances for measurement error of the experimental data. The default
is ’none’.

If the user does not specify variance type, or if the variance type = ’none’, only the actual observa-
tions are specified in the calibration data file. If the user specifies variance type = ’scalar’, then
the calibration data file must contain two times calibration terms. The first calibration -
terms columns are the experimental data, and the second calibration terms columns are the experimental
measurement error variance. For example, if the user has three calibration terms, and specifies variance-
type = ’scalar’, then the calibration data must contain six columns. The first three columns will contain the data,

and the second three columns will contain the experimental error (in units of variance) for the data in the first three
columns. These variances are used to weight the residuals in the sum-of-squares objective.

6.6. RESPONSES 1827

A more advanced use of the calibration data filemight specify num experimentsNE indicating
that there are multiple experiments. When multiple experiments are present, Dakota will expand the number of
residuals for the repeat measurement data and difference with the data accordingly. For example, if the user has
five experiments in the example above with three calibration terms, the calibration data file would need
to contain five rows (one for each experiment), and each row should contain three experimental data values that
will be differenced with respect to the appropriate model response. In this example, NE = 5. To summarize,
Dakota will calculate the sum of the squared residuals as:

f =
NE∑
i=1

R2
i

where the residuals now are calculated as:

Ri = yModel
i (θ)− yDatai .

annotated

• Keywords Area

• responses

• calibration terms

• calibration data file

• annotated

Selects annotated tabular file format for experiment data

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Default: annotated format

Description
An annotated tabular file is a whitespace-separated text file with one leading header row of comments/column la-
bels. For experiment data files, each subsequent row contains an experiment ID, followed by data for configuration
variables, observations, and/or observation errors, depending on context.

Default Behavior
By default, Dakota imports tabular experiment data files in annotated format. The annotated keyword can

be used to explicitly specify this.
Usage Tips

1828 CHAPTER 6. KEYWORDS AREA

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

Examples
Import an annotated experimental data file containing a header row, leading exp id column, and experiment data
in a calibration study

responses
...
scalar_data_file ’shock_experiment.dat’

annotated

Example data file with two measured quantities, three experiments:

%exp_id velocity stress
1 18.23 83.21
2 34.14 93.24
3 22.41 88.92

custom annotated

• Keywords Area

• responses

• calibration terms

• calibration data file

• custom annotated

Selects custom-annotated tabular file format for experiment data

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Default: annotated format

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

6.6. RESPONSES 1829

Optional header Enable header row
in
custom-annotated
tabular file

Optional exp id Enable experiment
ID column in
custom-annotated
tabular file

Description
A custom-annotated tabular file is a whitespace-separated text file containing experiment data, including configu-
ration variables, observatiions, and/or observation errors, depending on context. For experiment import, custom-
annotated allows user options for whether header row and exp id column appear in the tabular file, thus
bridging freeform and (fully) annotated.

Default Behavior
By default, Dakota imports tabular experiment data files in annotated format. The custom annotated

keyword, followed by options can be used to select other formats.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

Examples
Import an experimental data file containing a header row, no leading exp id column, and experiment data in a
calibration study

responses
...
scalar_data_file ’shock_experiment.dat’

custom_annotated header

Example data file with two measured quantities, three experiments:

% velocity stress
18.23 83.21
34.14 93.24
22.41 88.92

header

• Keywords Area

• responses

• calibration terms

• calibration data file

1830 CHAPTER 6. KEYWORDS AREA

• custom annotated

• header

Enable header row in custom-annotated tabular file

Specification
Alias: none

Argument(s): none
Default: no header

Description
See description of parent custom annotated

exp id

• Keywords Area

• responses

• calibration terms

• calibration data file

• custom annotated

• exp id

Enable experiment ID column in custom-annotated tabular file

Specification
Alias: none

Argument(s): none
Default: no exp id column

Description
See description of parent custom annotated

freeform

• Keywords Area

• responses

• calibration terms

• calibration data file

• freeform

Selects free-form tabular file format for experiment data

6.6. RESPONSES 1831

Topics
This keyword is related to the topics:

• file formats

Specification
Alias: none

Argument(s): none
Default: annotated format

Description
A freeform tabular file is whitespace-separated text file with no leading header row and no leading columns. For
experiment data files, each row contains data for configuration variables, observatiions, and/or observation errors,
depending on context.

Default Behavior
By default, Dakota imports tabular experiment data files in annotated format. Specify freeform to instead

select this format.
Usage Tips

• Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

• When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

Examples
Import a free-form experimental data file containing raw experiment data in a calibration study

responses
...
scalar_data_file ’shock_experiment.dat’

freeform

Example data file with two measured quantities, three experiments:

18.23 83.21
34.14 93.24
22.41 88.92

num experiments

• Keywords Area

• responses

• calibration terms

• calibration data file

• num experiments

Add context to data: number of different experiments

1832 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): INTEGER
Default: 1

Description
The number of different experiments. Dakota will expand the total number of residual terms based on the number
of calibration terms and the number of experiments. For example, if the number of calibration terms are five
scalars, and there are three experiments, the total number of residuals in the least squares formulation will be 15.
See calibration data or calibration data file.

num config variables

• Keywords Area

• responses

• calibration terms

• calibration data file

• num config variables

Add context to data: number of configuration variables.

Specification
Alias: none

Argument(s): INTEGER
Default: 0

Description
This is an optional description. If there are multiple experiments, there can be different configuration variables
(e.g. experimental settings, boundary conditions, etc.) per experiment. See calibration data or calibration data-
file. Note: as of Dakota 6.2, configuration variables are not used. However, the intent is to treat them as state

variables which will be passed to the simulation, and not treated as parameters which are calibrated.

variance type

• Keywords Area

• responses

• calibration terms

• calibration data file

• variance type

Add context to experiment data description by specifying the type of experimental error.

6.6. RESPONSES 1833

Specification
Alias: none

Argument(s): STRINGLIST
Default: none

Description
There are four options for specifying the experimental error (e.g. the measurement error in the data you provide
for calibration purposes): ’none’, ’scalar’, ’diagonal’, or ’matrix.’

If the user specifies none, Dakota will calculate a variance (sigma-squared) term. This will be a constant
variance term across all of the data). If the user specifies scalar, they can provide a scalar variance per calibration
term. Note that for scalar calibration terms, only ’none’ or ’scalar’ are options for the measurement variance.
However, for field calibration terms, there are two additional options. ’diagonal’ allows the user to provide a
vector of measurement variances (one for each term in the calibration field). This vector corresponds to the
diagonal of the full covariance matrix of measurement errors. If the user specifies ’matrix’, they can provide a
full covariance matrix (not just the diagonal terms), where each element(i,j) of the covariance matrix represents
the covariance of the measurement error between the i-th and j-th field values.

nonlinear inequality constraints

• Keywords Area

• responses

• calibration terms

• nonlinear inequality constraints

Group to specify nonlinear inequality constraints

Specification
Alias: num nonlinear inequality constraints

Argument(s): INTEGER
Default: 0

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional lower bounds Specify minimum
values

Optional upper bounds Specify maximium
values

Optional scale types Choose how each
constraint is scaled

Optional scales Characteristic
values for scaling

Description
The lower bounds and upper bounds specifications provide the lower and upper bounds for 2-sided non-
linear inequalities of the form

gl ≤ g(x) ≤ gu

1834 CHAPTER 6. KEYWORDS AREA

The defaults for the inequality constraint bounds are selected so that one-sided inequalities of the form

g(x) ≤ 0.0

result when there are no user constraint bounds specifications (this provides backwards compatibility with previ-
ous Dakota versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize
are treated as -infinity. This feature is commonly used to drop one of the bounds in order to specify a 1-sided
constraint (just as the default lower bounds drop out since -DBL MAX < -bigRealBoundSize). The same
approach is used for nonexistent linear inequality bounds and for nonexistent design variable bounds.

The scale types and scales keywords are related to scaling of g (x). See the scaling page for details.

lower bounds

• Keywords Area

• responses

• calibration terms

• nonlinear inequality constraints

• lower bounds

Specify minimum values

Specification
Alias: nonlinear inequality lower bounds

Argument(s): REALLIST
Default: vector values = -infinity

Description
Specify minimum values

upper bounds

• Keywords Area

• responses

• calibration terms

• nonlinear inequality constraints

• upper bounds

Specify maximium values

Specification
Alias: nonlinear inequality upper bounds

Argument(s): REALLIST
Default: vector values = 0 .

6.6. RESPONSES 1835

Description

Specify maximium values

scale types

• Keywords Area

• responses

• calibration terms

• nonlinear inequality constraints

• scale types

Choose how each constraint is scaled

Specification

Alias: nonlinear inequality scale types
Argument(s): STRINGLIST
Default: no scaling

Description

See the scaling page for details on how to use this keyword.

scales

• Keywords Area

• responses

• calibration terms

• nonlinear inequality constraints

• scales

Characteristic values for scaling

Specification

Alias: nonlinear inequality scales
Argument(s): REALLIST
Default: 1.0 (no scaling)

Description

See the scaling page for details on how to use this keyword.

1836 CHAPTER 6. KEYWORDS AREA

nonlinear equality constraints

• Keywords Area

• responses

• calibration terms

• nonlinear equality constraints

Group to specify nonlinear equality constraints

Specification
Alias: num nonlinear equality constraints

Argument(s): INTEGER
Default: 0

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional targets Target values for
the nonlinear
equality constraint

Optional scale types Choose how each
constraint is scaled

Optional scales Characteristic
values for scaling

Description
The targets specification provides the targets for nonlinear equalities of the form

g(x) = gt

and the defaults for the equality targets enforce a value of 0. for each constraint

g(x) = 0.0

The scale types and scales keywords are related to scaling of g (x). See the scaling page for details.

targets

• Keywords Area

• responses

• calibration terms

• nonlinear equality constraints

• targets

Target values for the nonlinear equality constraint

6.6. RESPONSES 1837

Specification
Alias: nonlinear equality targets

Argument(s): REALLIST
Default: vector values = 0 .

Description
The targets specification provides the targets for nonlinear equalities of the form

g(x) = gt

and the defaults for the equality targets enforce a value of 0.0 for each constraint:

g(x) = 0.0

scale types

• Keywords Area

• responses

• calibration terms

• nonlinear equality constraints

• scale types

Choose how each constraint is scaled

Specification
Alias: nonlinear equality scale types

Argument(s): STRINGLIST
Default: no scaling

Description
See the scaling page for details on how to use this keyword.

scales

• Keywords Area

• responses

• calibration terms

• nonlinear equality constraints

• scales

Characteristic values for scaling

1838 CHAPTER 6. KEYWORDS AREA

Specification

Alias: nonlinear equality scales
Argument(s): REALLIST
Default: 1.0 (no scaling)

Description

See the scaling page for details on how to use this keyword.

6.6.5 response functions

• Keywords Area

• responses

• response functions

Generic response type

Specification

Alias: num response functions
Argument(s): INTEGER

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional scalar responses Number of scalar
response functions

Optional field responses Number of field
responses
functions

Description

A generic response data set is specified using response functions. Each of these functions is simply a
response quantity of interest with no special interpretation taken by the method in use.

Whereas objective, constraint, and residual functions have special meanings for optimization and least squares
algorithms, the generic response function data set need not have a specific interpretation and the user is free to
define whatever functional form is convenient.

Theory

This type of data set is used by uncertainty quantification methods, in which the effect of parameter uncertainty
on response functions is quantified, and can also be used in parameter study and design of experiments methods
(although these methods are not restricted to this data set), in which the effect of parameter variations on response
functions is evaluated.

6.6. RESPONSES 1839

See Also
These keywords may also be of interest:

• objective functions

• calibration terms

scalar responses

• Keywords Area

• responses

• response functions

• scalar responses

Number of scalar response functions

Specification
Alias: num scalar responses

Argument(s): INTEGER

Description
This keyword describes the number of scalar response functions. It is meant to be used in conjunction with
field responses, which describes the number of field response functions. The total number of response
functions, both scalar and field, is given by response functions. If only scalar responses functions are
specified, it is not necessary to specify the number of scalar terms explicitly: one can simply say response -
functions = 5 and get 5 scalar responses. However, if there are three scalar responses and 2 field responses,
then response functions = 5 but scalar responses = 3 and field responses = 2.

This type of data set is used by uncertainty quantification methods, in which the effect of parameter uncertainty
on response functions is quantified, and can also be used in parameter study and design of experiments methods
(although these methods are not restricted to this data set), in which the effect of parameter variations on response
functions is evaluated.

See Also
These keywords may also be of interest:

• field responses

field responses

• Keywords Area

• responses

• response functions

• field responses

Number of field responses functions

1840 CHAPTER 6. KEYWORDS AREA

Specification

Alias: num field responses
Argument(s): INTEGER

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required lengths Lengths of field
responses

Optional num coordinates -
per field

Number of
independent
coordinates for
field responses

Optional(Choose
One)

Group 1 coordinate list Values of the
independent
coordinates for
field data

coordinate data -
file

Name of the file
which stores the
values of the
independent
coordinates for
field data

Description

This keyword describes the number of field response functions. A field function is a set of related response
values collected over a range of independent coordinate values which may or may not be specified by the user.
For example, voltage over time would be a field function, where voltage is the field objective and time
is the independent coordinate. Similarly, temperature over time and space would be a field response, where the
independent coordinates would be both time and spatial coordinates such as (x,y) or (x,y,z), depending on the
application. The main difference between scalar responses and field responses is that for field data, we plan to
implement methods that take advantage of the correlation or relationship between the field values.

Note that if there is one field response, and it has length 100 (meaning 100 values), then the user’s
simulation code must return 100 values. Also, if there are both scalar and field responses, the user should specify
the number of scalar responses as scalar responses. If there are only field responses, it still is necessary to
specify both response functions = NN and field responses = NN, where NN is the number of field
responses.

This type of data set is used by uncertainty quantification methods, in which the effect of parameter uncertainty
on response functions is quantified, and can also be used in parameter study and design of experiments methods
(although these methods are not restricted to this data set), in which the effect of parameter variations on response
functions is evaluated. Currently, field response functions will be translated back to scalar responses. So, a field
of length 100 will be treated as 100 separate scalar responses. However, in future versions of Dakota, we plan to
implement methods which can exploit the nature of field data.

See Also

These keywords may also be of interest:

• scalar responses

6.6. RESPONSES 1841

lengths

• Keywords Area

• responses

• response functions

• field responses

• lengths

Lengths of field responses

Specification

Alias: none
Argument(s): INTEGERLIST

Description

This keyword describes the lengths of each field response. It is an integer vector of length field responses.
For example, if the field responses = 2, an example would be lengths = 50 200, indicating that the
first field response has 50 field elements but the second one has 200. The coordinate values (e.g. the independent
variables) corresponding to these field responses are defined either with coordinate list or coordinate-
data file.

See Also

These keywords may also be of interest:

• field responses

num coordinates per field

• Keywords Area

• responses

• response functions

• field responses

• num coordinates per field

Number of independent coordinates for field responses

Specification

Alias: none
Argument(s): INTEGERLIST

1842 CHAPTER 6. KEYWORDS AREA

Description
This keyword describes the number of independent coordinates for each field response. It is an integer vector
of length field responses. For example, if the field responses = 2, an example would be num -
coordinates per field = 2 1 means that the first field response has two sets of independent coordinates
(perhaps x, y locations), but the second response only has one (for example, time where the field response is only
dependent upon time). The actual coordinate values (e.g. the independent variables) corresponding to these field
responses are defined either with coordinate list or coordinate data file.

See Also
These keywords may also be of interest:

• field responses

coordinate list

• Keywords Area

• responses

• response functions

• field responses

• coordinate list

Values of the independent coordinates for field data

Specification
Alias: none

Argument(s): REALLIST

Description
Field data involves a field quantity or response that is dependent upon some quantity. For example, temperature
(the field response) might be dependent on time (the independent coordinate). Another example is where accel-
eration (the field response) might be dependent on a spatial (x,y,z) location, in this case on three independent
coordinates.

The coordinate list specifies the actual coordinate values. Note that the number of dimensions are
defined by num coordinates per field. The length of the coordinate list is defined by lengths. If the
length a particular field data response is very long (e.g. lengths = 10000), it will be easier to read the independent
coordinates by reading a data file instead of specifying them with a coordinate list in the Dakota input file. For
example, one could say coordinate data file = ’my coord data.dat’ instead of the coordinate list values.

See Also
These keywords may also be of interest:

• field responses

6.6. RESPONSES 1843

coordinate data file

• Keywords Area

• responses

• response functions

• field responses

• coordinate data file

Name of the file which stores the values of the independent coordinates for field data

Specification
Alias: none

Argument(s): STRING

Description
Field data involves a field quantity or response that is dependent upon some quantity. For example, temperature
(the field response) might be dependent on time (the independent coordinate). Another example is where accel-
eration (the field response) might be dependent on a spatial (x,y,z) location, in this case on three independent
coordinates.

The coordinate data file specifies the file which contains the actual coordinate values. Note that
the number of dimensions (the number of columns of the file) is defined by num coordinates per field.
The length of the file (e.g. the number of rows in the file) is defined by lengths. If the length a particular
field data response is very long (e.g. lengths = 10000), we recommend using this option. It is easier to read the
independent coordinates by reading a data file instead of specifying them with a coordinate list in the Dakota input
file. However, an alternative to reading them from a file is to read them via coordinate list.

See Also
These keywords may also be of interest:

• field responses

6.6.6 no gradients
• Keywords Area

• responses

• no gradients

Gradients will not be used

Specification
Alias: none

Argument(s): none

1844 CHAPTER 6. KEYWORDS AREA

Description
The no gradients specification means that gradient information is not needed in the study. Therefore, it will
neither be retrieved from the simulation nor computed with finite differences. The no gradients keyword is a
complete specification for this case.

See Also
These keywords may also be of interest:

• numerical gradients

• analytic gradients

• mixed gradients

6.6.7 analytic gradients
• Keywords Area

• responses

• analytic gradients

Analysis driver will return gradients

Specification
Alias: none

Argument(s): none

Description
The analytic gradients specification means that gradient information is available directly from the sim-
ulation (finite differencing is not required). The simulation must return the gradient data in the Dakota format
(enclosed in single brackets; see Dakota File Data Formats in the Users Manual[4]) for the case of file transfer of
data. The analytic gradients keyword is a complete specification for this case.

See Also
These keywords may also be of interest:

• numerical gradients

• no gradients

• mixed gradients

6.6.8 mixed gradients
• Keywords Area

• responses

• mixed gradients

Gradients are needed and will be obtained from a mix of numerical and analytic sources

6.6. RESPONSES 1845

Specification

Alias: none
Argument(s): none

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required id numerical -
gradients

Identify which
numerical gradient
corresponds to
which response

Required id analytic -
gradients

Identify which
analytical gradient
corresponds to
which response

Optional method source Specify which
finite difference
routine is used

Optional(Choose
One)

Group 1 dakota (Default) Use
internal Dakota
finite differences
algorithm

vendor Use non-Dakota fd
algorithm

Optional interval type Specify how to
compute gradients
and hessians

Optional(Choose
One)

Group 2 forward Use forward
differences

central Use central
differences

Optional fd step size Step size used
when computing
gradients and
Hessians

Description

The mixed gradients specification means that some gradient information is available directly from the sim-
ulation (analytic) whereas the rest will have to be finite differenced (numerical). This specification allows the user
to make use of as much analytic gradient information as is available and then finite difference for the rest.

The method source, interval type, and fd gradient step size specifications pertain to those
functions listed by the id numerical gradients list.

Examples

For example, the objective function may be a simple analytic function of the design variables (e.g., weight)
whereas the constraints are nonlinear implicit functions of complex analyses (e.g., maximum stress).

1846 CHAPTER 6. KEYWORDS AREA

See Also
These keywords may also be of interest:

• numerical gradients

• no gradients

• analytic gradients

id numerical gradients

• Keywords Area

• responses

• mixed gradients

• id numerical gradients

Identify which numerical gradient corresponds to which response

Topics
This keyword is related to the topics:

• objective function pointer

Specification
Alias: none

Argument(s): INTEGERLIST

Description
The id analytic gradients list specifies by number the functions which have analytic gradients, and the
id numerical gradients list specifies by number the functions which must use numerical gradients. Each
function identifier, from 1 through the total number of functions, must appear once and only once within the union
of the id analytic gradients and id numerical gradients lists.

See Also
These keywords may also be of interest:

• id analytic gradients

id analytic gradients

• Keywords Area

• responses

• mixed gradients

• id analytic gradients

Identify which analytical gradient corresponds to which response

6.6. RESPONSES 1847

Topics

This keyword is related to the topics:

• objective function pointer

Specification

Alias: none
Argument(s): INTEGERLIST

Description

The id analytic gradients list specifies by number the functions which have analytic gradients, and the
id numerical gradients list specifies by number the functions which must use numerical gradients. Each
function identifier, from 1 through the total number of functions, must appear once and only once within the union
of the id analytic gradients and id numerical gradients lists.

See Also

These keywords may also be of interest:

• id numerical gradients

method source

• Keywords Area

• responses

• mixed gradients

• method source

Specify which finite difference routine is used

Specification

Alias: none
Argument(s): none
Default: dakota

Description

The method source setting specifies the source of the finite differencing routine that will be used to compute
the numerical gradients:

• dakota (default)

• vendor

1848 CHAPTER 6. KEYWORDS AREA

dakota denotes Dakota’s internal finite differencing algorithm and vendor denotes the finite differencing al-
gorithm supplied by the iterator package in use (DOT, CONMIN, NPSOL, NL2SOL, NLSSOL, and OPT++ each
have their own internal finite differencing routines). The dakota routine is the default since it can execute in par-
allel and exploit the concurrency in finite difference evaluations (see Exploiting Parallelism in the Users Manual
[4]).

However, the vendor setting can be desirable in some cases since certain libraries will modify their algorithm
when the finite differencing is performed internally. Since the selection of the dakota routine hides the use of
finite differencing from the optimizers (the optimizers are configured to accept user-supplied gradients, which
some algorithms assume to be of analytic accuracy), the potential exists for the vendor setting to trigger the
use of an algorithm more optimized for the higher expense and/or lower accuracy of finite-differencing. For
example, NPSOL uses gradients in its line search when in user-supplied gradient mode (since it assumes they are
inexpensive), but uses a value-based line search procedure when internally finite differencing. The use of a value-
based line search will often reduce total expense in serial operations. However, in parallel operations, the use of
gradients in the NPSOL line search (user-supplied gradient mode) provides excellent load balancing without need
to resort to speculative optimization approaches.

In summary, then, the dakota routine is preferred for parallel optimization, and the vendor routine may be
preferred for serial optimization in special cases.

dakota

• Keywords Area

• responses

• mixed gradients

• dakota

(Default) Use internal Dakota finite differences algorithm

Specification
Alias: none

Argument(s): none
Default: relative

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional ignore bounds Do not respect
bounds when
computing
gradients or
Hessians

Optional(Choose
One)

Group 1
relative Scale step size by

the parameter
value

6.6. RESPONSES 1849

absolute Do not scale
step-size

bounds Scale step-size by
the domain of the
parameter

Description

The dakota routine is the default since it can execute in parallel and exploit the concurrency in finite difference
evaluations (see Exploiting Parallelism in the Users Manual [4]).

When the method source is dakota, the user may also specify the type of scaling desired when deter-
mining the finite difference step size. The choices are absolute, bounds, and relative. For absolute,
the step size will be applied as is. For bounds, it will be scaled by the range of each parameter. For relative,
it will be scaled by the parameter value.

ignore bounds

• Keywords Area

• responses

• mixed gradients

• dakota

• ignore bounds

Do not respect bounds when computing gradients or Hessians

Specification

Alias: none
Argument(s): none
Default: bounds respected

Description

When Dakota computes gradients or Hessians by finite differences and the variables in question have bounds,
it by default chooses finite-differencing steps that keep the variables within their specified bounds. Older ver-
sions of Dakota generally ignored bounds when computing finite differences. To restore the older behavior, one
can add keyword ignore bounds to the response specification when method source dakota (or just
dakota) is also specified.

In forward difference or backward difference computations, honoring bounds is straightforward.
To honor bounds when approximating ∂f/∂xi, i.e., component i of the gradient of f , by central differences,

Dakota chooses two steps h1 and h2 with h1 6= h2, such that x+ h1ei and x+ h2ei both satisfy the bounds, and
then computes

∂f

∂xi
∼=
h2

2(f1 − f0)− h2
1(f2 − f0)

h1h2(h2 − h1)
,

with f0 = f(x), f1 = f(x+ h1ei), and f2 = f(x+ h2ei).

1850 CHAPTER 6. KEYWORDS AREA

relative
• Keywords Area

• responses

• mixed gradients

• dakota

• relative

Scale step size by the parameter value

Specification
Alias: none

Argument(s): none

Description
Scale step size by the parameter value

absolute
• Keywords Area

• responses

• mixed gradients

• dakota

• absolute

Do not scale step-size

Specification
Alias: none

Argument(s): none
Default: relative

Description
Do not scale step-size

bounds
• Keywords Area

• responses

• mixed gradients

• dakota

• bounds

Scale step-size by the domain of the parameter

6.6. RESPONSES 1851

Specification

Alias: none
Argument(s): none

Description

Scale step-size by the domain of the parameter

vendor

• Keywords Area

• responses

• mixed gradients

• vendor

Use non-Dakota fd algorithm

Specification

Alias: none
Argument(s): none

Description

See parent page for usage notes.

interval type

• Keywords Area

• responses

• mixed gradients

• interval type

Specify how to compute gradients and hessians

Specification

Alias: none
Argument(s): none
Default: forward

1852 CHAPTER 6. KEYWORDS AREA

Description
The interval type setting is used to select between forward and central differences in the numerical
gradient calculations. The dakota, DOT vendor, and OPT++ vendor routines have both forward and central
differences available, the CONMIN and NL2SOL vendor routines support forward differences only, and the NP-
SOL and NLSSOL vendor routines start with forward differences and automatically switch to central differences
as the iteration progresses (the user has no control over this). The following forward difference expression

∇f(x) ∼=
f(x + hei)− f(x)

h

and the following central difference expression

∇f(x) ∼=
f(x + hei)− f(x− hei)

2h

are used to estimate the ith component of the gradient vector.

forward

• Keywords Area

• responses

• mixed gradients

• forward

Use forward differences

Specification
Alias: none

Argument(s): none
Default: forward

Description
See parent page for usage notes.

central

• Keywords Area

• responses

• mixed gradients

• central

Use central differences

Specification
Alias: none

Argument(s): none

6.6. RESPONSES 1853

Description
See parent page for usage notes.

fd step size

• Keywords Area

• responses

• mixed gradients

• fd step size

Step size used when computing gradients and Hessians

Specification
Alias: fd gradient step size

Argument(s): REALLIST
Default: 0.001

Description
fd gradient step size specifies the relative finite difference step size to be used in the computations. Either
a single value may be entered for use with all parameters, or a list of step sizes may be entered, one for each
parameter.

The latter option of a list of step sizes is only valid for use with the Dakota finite differencing routine. For
Dakota with an interval scaling type of absolute, the differencing interval will be fd gradient step -
size.

For Dakota with and interval scaling type of bounds, the differencing intervals are computed by multiply-
ing fd gradient step size with the range of the parameter. For Dakota (with an interval scaling type of
relative), DOT, CONMIN, and OPT++, the differencing intervals are computed by multiplying the fd -
gradient step size with the current parameter value. In this case, a minimum absolute differencing in-
terval is needed when the current parameter value is close to zero. This prevents finite difference intervals for
the parameter which are too small to distinguish differences in the response quantities being computed. Dakota,
DOT, CONMIN, and OPT++ all use .01∗fd gradient step size as their minimum absolute differenc-
ing interval. With a fd gradient step size = .001, for example, Dakota, DOT, CONMIN, and OPT++
will use intervals of .001∗current value with a minimum interval of 1.e-5. NPSOL and NLSSOL use a dif-
ferent formula for their finite difference intervals: fd gradient step size∗(1+|current parameter
value|). This definition has the advantage of eliminating the need for a minimum absolute differencing interval
since the interval no longer goes to zero as the current parameter value goes to zero.

6.6.9 numerical gradients
• Keywords Area

• responses

• numerical gradients

Gradients are needed and will be approximated by finite differences

1854 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional method source Specify which
finite difference
routine is used

Optional(Choose
One)

Group 1 dakota (Default) Use
internal Dakota
finite differences
algorithm

vendor Use non-Dakota fd
algorithm

Optional interval type Specify how to
compute gradients
and hessians

Optional(Choose
One)

Group 2 forward Use forward
differences

central Use central
differences

Optional fd step size Step size used
when computing
gradients and
Hessians

Description
The numerical gradients specification means that gradient information is needed and will be computed
with finite differences using either the native or one of the vendor finite differencing routines.

See Also
These keywords may also be of interest:

• no gradients

• analytic gradients

• mixed gradients

method source

• Keywords Area

• responses

• numerical gradients

• method source

Specify which finite difference routine is used

6.6. RESPONSES 1855

Specification
Alias: none

Argument(s): none
Default: dakota

Description
The method source setting specifies the source of the finite differencing routine that will be used to compute
the numerical gradients:

• dakota (default)

• vendor

dakota denotes Dakota’s internal finite differencing algorithm and vendor denotes the finite differencing al-
gorithm supplied by the iterator package in use (DOT, CONMIN, NPSOL, NL2SOL, NLSSOL, and OPT++ each
have their own internal finite differencing routines). The dakota routine is the default since it can execute in par-
allel and exploit the concurrency in finite difference evaluations (see Exploiting Parallelism in the Users Manual
[4]).

However, the vendor setting can be desirable in some cases since certain libraries will modify their algorithm
when the finite differencing is performed internally. Since the selection of the dakota routine hides the use of
finite differencing from the optimizers (the optimizers are configured to accept user-supplied gradients, which
some algorithms assume to be of analytic accuracy), the potential exists for the vendor setting to trigger the
use of an algorithm more optimized for the higher expense and/or lower accuracy of finite-differencing. For
example, NPSOL uses gradients in its line search when in user-supplied gradient mode (since it assumes they are
inexpensive), but uses a value-based line search procedure when internally finite differencing. The use of a value-
based line search will often reduce total expense in serial operations. However, in parallel operations, the use of
gradients in the NPSOL line search (user-supplied gradient mode) provides excellent load balancing without need
to resort to speculative optimization approaches.

In summary, then, the dakota routine is preferred for parallel optimization, and the vendor routine may be
preferred for serial optimization in special cases.

dakota

• Keywords Area

• responses

• numerical gradients

• dakota

(Default) Use internal Dakota finite differences algorithm

Specification
Alias: none

Argument(s): none
Default: relative

1856 CHAPTER 6. KEYWORDS AREA

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional ignore bounds Do not respect
bounds when
computing
gradients or
Hessians

Optional(Choose
One)

Group 1
relative Scale step size by

the parameter
value

absolute Do not scale
step-size

bounds Scale step-size by
the domain of the
parameter

Description
The dakota routine is the default since it can execute in parallel and exploit the concurrency in finite difference
evaluations (see Exploiting Parallelism in the Users Manual [4]).

When the method source is dakota, the user may also specify the type of scaling desired when deter-
mining the finite difference step size. The choices are absolute, bounds, and relative. For absolute,
the step size will be applied as is. For bounds, it will be scaled by the range of each parameter. For relative,
it will be scaled by the parameter value.

ignore bounds

• Keywords Area

• responses

• numerical gradients

• dakota

• ignore bounds

Do not respect bounds when computing gradients or Hessians

Specification
Alias: none

Argument(s): none
Default: bounds respected

Description
When Dakota computes gradients or Hessians by finite differences and the variables in question have bounds,
it by default chooses finite-differencing steps that keep the variables within their specified bounds. Older ver-
sions of Dakota generally ignored bounds when computing finite differences. To restore the older behavior, one
can add keyword ignore bounds to the response specification when method source dakota (or just
dakota) is also specified.

6.6. RESPONSES 1857

In forward difference or backward difference computations, honoring bounds is straightforward.
To honor bounds when approximating ∂f/∂xi, i.e., component i of the gradient of f , by central differences,

Dakota chooses two steps h1 and h2 with h1 6= h2, such that x+ h1ei and x+ h2ei both satisfy the bounds, and
then computes

∂f

∂xi
∼=
h2

2(f1 − f0)− h2
1(f2 − f0)

h1h2(h2 − h1)
,

with f0 = f(x), f1 = f(x+ h1ei), and f2 = f(x+ h2ei).

relative

• Keywords Area

• responses

• numerical gradients

• dakota

• relative

Scale step size by the parameter value

Specification
Alias: none

Argument(s): none

Description
Scale step size by the parameter value

absolute

• Keywords Area

• responses

• numerical gradients

• dakota

• absolute

Do not scale step-size

Specification
Alias: none

Argument(s): none
Default: relative

Description
Do not scale step-size

1858 CHAPTER 6. KEYWORDS AREA

bounds

• Keywords Area

• responses

• numerical gradients

• dakota

• bounds

Scale step-size by the domain of the parameter

Specification
Alias: none

Argument(s): none

Description
Scale step-size by the domain of the parameter

vendor

• Keywords Area

• responses

• numerical gradients

• vendor

Use non-Dakota fd algorithm

Specification
Alias: none

Argument(s): none

Description
See parent page for usage notes.

interval type

• Keywords Area

• responses

• numerical gradients

• interval type

Specify how to compute gradients and hessians

6.6. RESPONSES 1859

Specification
Alias: none

Argument(s): none
Default: forward

Description
The interval type setting is used to select between forward and central differences in the numerical
gradient calculations. The dakota, DOT vendor, and OPT++ vendor routines have both forward and central
differences available, the CONMIN and NL2SOL vendor routines support forward differences only, and the NP-
SOL and NLSSOL vendor routines start with forward differences and automatically switch to central differences
as the iteration progresses (the user has no control over this). The following forward difference expression

∇f(x) ∼=
f(x + hei)− f(x)

h

and the following central difference expression

∇f(x) ∼=
f(x + hei)− f(x− hei)

2h

are used to estimate the ith component of the gradient vector.

forward

• Keywords Area

• responses

• numerical gradients

• forward

Use forward differences

Specification
Alias: none

Argument(s): none
Default: forward

Description
See parent page for usage notes.

central

• Keywords Area

• responses

• numerical gradients

• central

Use central differences

1860 CHAPTER 6. KEYWORDS AREA

Specification

Alias: none
Argument(s): none

Description

See parent page for usage notes.

fd step size

• Keywords Area

• responses

• numerical gradients

• fd step size

Step size used when computing gradients and Hessians

Specification

Alias: fd gradient step size
Argument(s): REALLIST
Default: 0.001

Description

fd gradient step size specifies the relative finite difference step size to be used in the computations. Either
a single value may be entered for use with all parameters, or a list of step sizes may be entered, one for each
parameter.

The latter option of a list of step sizes is only valid for use with the Dakota finite differencing routine. For
Dakota with an interval scaling type of absolute, the differencing interval will be fd gradient step -
size.

For Dakota with and interval scaling type of bounds, the differencing intervals are computed by multiply-
ing fd gradient step size with the range of the parameter. For Dakota (with an interval scaling type of
relative), DOT, CONMIN, and OPT++, the differencing intervals are computed by multiplying the fd -
gradient step size with the current parameter value. In this case, a minimum absolute differencing in-
terval is needed when the current parameter value is close to zero. This prevents finite difference intervals for
the parameter which are too small to distinguish differences in the response quantities being computed. Dakota,
DOT, CONMIN, and OPT++ all use .01∗fd gradient step size as their minimum absolute differenc-
ing interval. With a fd gradient step size = .001, for example, Dakota, DOT, CONMIN, and OPT++
will use intervals of .001∗current value with a minimum interval of 1.e-5. NPSOL and NLSSOL use a dif-
ferent formula for their finite difference intervals: fd gradient step size∗(1+|current parameter
value|). This definition has the advantage of eliminating the need for a minimum absolute differencing interval
since the interval no longer goes to zero as the current parameter value goes to zero.

6.6. RESPONSES 1861

6.6.10 no hessians
• Keywords Area

• responses

• no hessians

Hessians will not be used

Specification
Alias: none

Argument(s): none

Description
The no hessians specification means that the method does not require Dakota to manage the computation of
any Hessian information. Therefore, it will neither be retrieved from the simulation nor computed by Dakota. The
no hessians keyword is a complete specification for this case. Note that, in some cases, Hessian information
may still be being approximated internal to an algorithm (e.g., within a quasi-Newton optimizer such as optpp-
q newton); however, Dakota has no direct involvement in this process and the responses specification need not

include it.

See Also
These keywords may also be of interest:

• numerical hessians

• quasi hessians

• analytic hessians

• mixed hessians

6.6.11 numerical hessians
• Keywords Area

• responses

• numerical hessians

Hessians are needed and will be approximated by finite differences

Specification
Alias: none

Argument(s): none

1862 CHAPTER 6. KEYWORDS AREA

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional fd step size Step size used
when computing
gradients and
Hessians

Optional(Choose
One)

Group 1
relative Scale step size by

the parameter
value

absolute Do not scale
step-size

bounds Scale step-size by
the domain of the
parameter

Optional(Choose
One)

difference
interval (Group 2)

forward Use forward
differences

central Use central
differences

Description
The numerical hessians specification means that Hessian information is needed and will be computed with
finite differences using either first-order gradient differencing (for the cases of analytic gradients or for
the functions identified by id analytic gradients in the case of mixed gradients) or first- or second-
order function value differencing (all other gradient specifications). In the former case, the following expression

∇2f(x)i ∼=
∇f(x + hei)−∇f(x)

h

estimates the ith Hessian column, and in the latter case, the following expressions

∇2f(x)i,j ∼=
f(x + hiei + hjej)− f(x + hiei)− f(x− hjej) + f(x)

hihj

and

∇2f(x)i,j ∼=
f(x + hei + hej)− f(x + hei − hej)− f(x− hei + hej) + f(x− hei − hej)

4h2

provide first- and second-order estimates of the ijth Hessian term. Prior to Dakota 5.0, Dakota always used
second-order estimates. In Dakota 5.0 and newer, the default is to use first-order estimates (which honor bounds
on the variables and require only about a quarter as many function evaluations as do the second-order estimates),
but specifying central after numerical hessians causes Dakota to use the old second-order estimates,
which do not honor bounds. In optimization algorithms that use Hessians, there is little reason to use second-order
differences in computing Hessian approximations.

See Also
These keywords may also be of interest:

• no hessians

• quasi hessians

6.6. RESPONSES 1863

• analytic hessians

• mixed hessians

fd step size

• Keywords Area

• responses

• numerical hessians

• fd step size

Step size used when computing gradients and Hessians

Specification
Alias: fd hessian step size

Argument(s): REALLIST
Default: 0.001 (forward), 0.002 (central)

Description
fd gradient step size specifies the relative finite difference step size to be used in the computations. Either
a single value may be entered for use with all parameters, or a list of step sizes may be entered, one for each
parameter.

The latter option of a list of step sizes is only valid for use with the Dakota finite differencing routine. For
Dakota with an interval scaling type of absolute, the differencing interval will be fd gradient step -
size.

For Dakota with and interval scaling type of bounds, the differencing intervals are computed by multiply-
ing fd gradient step size with the range of the parameter. For Dakota (with an interval scaling type of
relative), DOT, CONMIN, and OPT++, the differencing intervals are computed by multiplying the fd -
gradient step size with the current parameter value. In this case, a minimum absolute differencing in-
terval is needed when the current parameter value is close to zero. This prevents finite difference intervals for
the parameter which are too small to distinguish differences in the response quantities being computed. Dakota,
DOT, CONMIN, and OPT++ all use .01∗fd gradient step size as their minimum absolute differenc-
ing interval. With a fd gradient step size = .001, for example, Dakota, DOT, CONMIN, and OPT++
will use intervals of .001∗current value with a minimum interval of 1.e-5. NPSOL and NLSSOL use a dif-
ferent formula for their finite difference intervals: fd gradient step size∗(1+|current parameter
value|). This definition has the advantage of eliminating the need for a minimum absolute differencing interval
since the interval no longer goes to zero as the current parameter value goes to zero.

relative

• Keywords Area

• responses

• numerical hessians

• relative

Scale step size by the parameter value

1864 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): none

Description
Scale step size by the parameter value

absolute

• Keywords Area

• responses

• numerical hessians

• absolute

Do not scale step-size

Specification
Alias: none

Argument(s): none
Default: relative

Description
Do not scale step-size

bounds

• Keywords Area

• responses

• numerical hessians

• bounds

Scale step-size by the domain of the parameter

Specification
Alias: none

Argument(s): none

Description
Scale step-size by the domain of the parameter

6.6. RESPONSES 1865

forward

• Keywords Area

• responses

• numerical hessians

• forward

Use forward differences

Specification
Alias: none

Argument(s): none
Default: forward

Description
See parent page for usage notes.

central

• Keywords Area

• responses

• numerical hessians

• central

Use central differences

Specification
Alias: none

Argument(s): none

Description
See parent page for usage notes.

6.6.12 quasi hessians
• Keywords Area

• responses

• quasi hessians

Hessians are needed and will be approximated by secant updates (BFGS or SR1) from a series of gradient
evaluations

1866 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): none

6.6. RESPONSES 1867

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 bfgs Use BFGS method
to compute
quasi-hessians

sr1 Use the Symmetric
Rank 1 update
method to compute
quasi-Hessians

Description
The quasi hessians specification means that Hessian information is needed and will be approximated using
secant updates (sometimes called ”quasi-Newton updates”, though any algorithm that approximates Newton’s
method is a quasi-Newton method).

Compared to finite difference numerical Hessians, secant approximations do not expend additional function
evaluations in estimating all of the second-order information for every point of interest. Rather, they accumulate
approximate curvature information over time using the existing gradient evaluations.

The supported secant approximations include the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update (speci-
fied with the keyword bfgs) and the Symmetric Rank 1 (SR1) update (specified with the keyword sr1).

See Also
These keywords may also be of interest:

• no hessians

• numerical hessians

• analytic hessians

• mixed hessians

bfgs

• Keywords Area

• responses

• quasi hessians

• bfgs

Use BFGS method to compute quasi-hessians

Specification
Alias: none

Argument(s): none

1868 CHAPTER 6. KEYWORDS AREA

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional damped Numerical
safeguarding for
BFGS updates

Description

Broyden-Fletcher-Goldfarb-Shanno (BFGS) update will be used to compute quasi-Hessians.

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+
yky

T
k

yTk sk

where Bk is the kth approximation to the Hessian, sk = xk+1 − xk is the step and yk = ∇fk+1 −∇fk is the
corresponding yield in the gradients.

Notes

• Initial scaling of y
T
k yk
yTk sk

I is used for B0 prior to the first update.

• Numerical safeguarding is used to protect against numerically small denominators within the updates.

• This safeguarding skips the update if |yTk sk| < 10−6sTkBksk

• Additional safeguarding can be added using the damped option, which utilizes an alternative damped BF-
GS update when the curvature condition yTk sk > 0 is nearly violated.

damped

• Keywords Area

• responses

• quasi hessians

• bfgs

• damped

Numerical safeguarding for BFGS updates

Specification

Alias: none
Argument(s): none
Default: undamped BFGS

Description

See parent page.

6.6. RESPONSES 1869

sr1

• Keywords Area

• responses

• quasi hessians

• sr1

Use the Symmetric Rank 1 update method to compute quasi-Hessians

Specification
Alias: none

Argument(s): none

Description
The Symmetric Rank 1 (SR1) update (specified with the keyword sr1) will be used to compute quasi-Hessians.

Bk+1 = Bk +
(yk −Bksk)(yk −Bksk)T

(yk −Bksk)T sk

where Bk is the kth approximation to the Hessian, sk = xk+1 − xk is the step and yk = ∇fk+1 −∇fk is the
corresponding yield in the gradients.

Notes

• Initial scaling of y
T
k yk
yTk sk

I is used for B0 prior to the first update.

• Numerical safeguarding is used to protect against numerically small denominators within the updates.

• This safeguarding skips the update if |(yk −Bksk)T sk| < 10−6||sk||2||yk −Bksk||2

6.6.13 analytic hessians
• Keywords Area

• responses

• analytic hessians

Hessians are needed and are available directly from the analysis driver

Specification
Alias: none

Argument(s): none

Description
The analytic hessians specification means that Hessian information is available directly from the simula-
tion. The simulation must return the Hessian data in the Dakota format (enclosed in double brackets; see Dakota
File Data Formats in Users Manual [4]) for the case of file transfer of data. The analytic hessians keyword
is a complete specification for this case.

1870 CHAPTER 6. KEYWORDS AREA

See Also
These keywords may also be of interest:

• no hessians

• numerical hessians

• quasi hessians

• mixed hessians

6.6.14 mixed hessians
• Keywords Area

• responses

• mixed hessians

Hessians are needed and will be obtained from a mix of numerical, analytic, and ”quasi” sources

Specification
Alias: none

Argument(s): none
Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional id numerical -
hessians

Identify which
numerical-Hessian
corresponds to
which response

Optional(Choose
One)

Group 1
relative Scale step size by

the parameter
value

absolute Do not scale
step-size

bounds Scale step-size by
the domain of the
parameter

Optional(Choose
One)

difference
interval (Group 2)

forward Use forward
differences

central Use central
differences

Optional id quasi hessians Identify which
quasi-Hessian
corresponds to
which response

6.6. RESPONSES 1871

Optional id analytic -
hessians

Identify which
analytical Hessian
corresponds to
which response

Description
Hessian availability must be specified with either no hessians, numerical hessians, quasi hessians,
analytic hessians, or mixed hessians.

The mixed hessians specification means that some Hessian information is available directly from the
simulation (analytic) whereas the rest will have to be estimated by finite differences (numerical) or approximated
by secant updating. As for mixed gradients, this specification allows the user to make use of as much analytic
information as is available and then estimate/approximate the rest.

The id analytic hessians list specifies by number the functions which have analytic Hessians, and
the id numerical hessians and id quasi hessians lists specify by number the functions which must
use numerical Hessians and secant Hessian updates, respectively. Each function identifier, from 1 through the
total number of functions, must appear once and only once within the union of the id analytic hessians,
id numerical hessians, and id quasi hessians lists.

The fd hessian step size and bfgs, damped bfgs, or sr1 secant update selections are as de-
scribed previously in responses and pertain to those functions listed by the id numerical hessians and
id quasi hessians lists.

See Also
These keywords may also be of interest:

• no hessians

• numerical hessians

• quasi hessians

• analytic hessians

id numerical hessians

• Keywords Area

• responses

• mixed hessians

• id numerical hessians

Identify which numerical-Hessian corresponds to which response

Topics
This keyword is related to the topics:

• objective function pointer

1872 CHAPTER 6. KEYWORDS AREA

Specification
Alias: none

Argument(s): INTEGERLIST

6.6. RESPONSES 1873

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional fd step size Step size used
when computing
gradients and
Hessians

Description
The id analytic hessians list specifies by number the functions which have analytic Hessians, and the
id numerical hessians and id quasi hessians lists specify by number the functions which must use
numerical Hessians and secant Hessian updates, respectively. Each function identifier, from 1 through the total
number of functions, must appear once and only once within the union of the id analytic hessians, id -
numerical hessians, and id quasi hessians lists.

See Also
These keywords may also be of interest:

• id analytic hessians

• id quasi hessians

fd step size

• Keywords Area

• responses

• mixed hessians

• id numerical hessians

• fd step size

Step size used when computing gradients and Hessians

Specification
Alias: fd hessian step size

Argument(s): REALLIST
Default: 0.001 (forward), 0.002 (central)

Description
fd gradient step size specifies the relative finite difference step size to be used in the computations. Either
a single value may be entered for use with all parameters, or a list of step sizes may be entered, one for each
parameter.

The latter option of a list of step sizes is only valid for use with the Dakota finite differencing routine. For
Dakota with an interval scaling type of absolute, the differencing interval will be fd gradient step -
size.

For Dakota with and interval scaling type of bounds, the differencing intervals are computed by multiply-
ing fd gradient step size with the range of the parameter. For Dakota (with an interval scaling type of

1874 CHAPTER 6. KEYWORDS AREA

relative), DOT, CONMIN, and OPT++, the differencing intervals are computed by multiplying the fd -
gradient step size with the current parameter value. In this case, a minimum absolute differencing in-
terval is needed when the current parameter value is close to zero. This prevents finite difference intervals for
the parameter which are too small to distinguish differences in the response quantities being computed. Dakota,
DOT, CONMIN, and OPT++ all use .01∗fd gradient step size as their minimum absolute differenc-
ing interval. With a fd gradient step size = .001, for example, Dakota, DOT, CONMIN, and OPT++
will use intervals of .001∗current value with a minimum interval of 1.e-5. NPSOL and NLSSOL use a dif-
ferent formula for their finite difference intervals: fd gradient step size∗(1+|current parameter
value|). This definition has the advantage of eliminating the need for a minimum absolute differencing interval
since the interval no longer goes to zero as the current parameter value goes to zero.

relative

• Keywords Area

• responses

• mixed hessians

• relative

Scale step size by the parameter value

Specification
Alias: none

Argument(s): none

Description
Scale step size by the parameter value

absolute

• Keywords Area

• responses

• mixed hessians

• absolute

Do not scale step-size

Specification
Alias: none

Argument(s): none
Default: relative

Description
Do not scale step-size

6.6. RESPONSES 1875

bounds

• Keywords Area

• responses

• mixed hessians

• bounds

Scale step-size by the domain of the parameter

Specification
Alias: none

Argument(s): none

Description
Scale step-size by the domain of the parameter

forward

• Keywords Area

• responses

• mixed hessians

• forward

Use forward differences

Specification
Alias: none

Argument(s): none
Default: forward

Description
See parent page for usage notes.

central

• Keywords Area

• responses

• mixed hessians

• central

Use central differences

1876 CHAPTER 6. KEYWORDS AREA

Specification

Alias: none
Argument(s): none

Description

See parent page for usage notes.

id quasi hessians

• Keywords Area

• responses

• mixed hessians

• id quasi hessians

Identify which quasi-Hessian corresponds to which response

Topics

This keyword is related to the topics:

• objective function pointer

Specification

Alias: none
Argument(s): INTEGERLIST

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Required(Choose
One)

Group 1 bfgs Use BFGS method
to compute
quasi-hessians

sr1 Use the Symmetric
Rank 1 update
method to compute
quasi-Hessians

Description

The id analytic hessians list specifies by number the functions which have analytic Hessians, and the
id numerical hessians and id quasi hessians lists specify by number the functions which must use
numerical Hessians and secant Hessian updates, respectively. Each function identifier, from 1 through the total
number of functions, must appear once and only once within the union of the id analytic hessians, id -
numerical hessians, and id quasi hessians lists.

6.6. RESPONSES 1877

See Also

These keywords may also be of interest:

• id numerical hessians

• id analytic hessians

bfgs

• Keywords Area

• responses

• mixed hessians

• id quasi hessians

• bfgs

Use BFGS method to compute quasi-hessians

Specification

Alias: none
Argument(s): none

Required/-
Optional

Description of
Group

Dakota Keyword Dakota Keyword
Description

Optional damped Numerical
safeguarding for
BFGS updates

Description

Broyden-Fletcher-Goldfarb-Shanno (BFGS) update will be used to compute quasi-Hessians.

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+
yky

T
k

yTk sk

where Bk is the kth approximation to the Hessian, sk = xk+1 − xk is the step and yk = ∇fk+1 −∇fk is the
corresponding yield in the gradients.

Notes

• Initial scaling of y
T
k yk
yTk sk

I is used for B0 prior to the first update.

• Numerical safeguarding is used to protect against numerically small denominators within the updates.

• This safeguarding skips the update if |yTk sk| < 10−6sTkBksk

• Additional safeguarding can be added using the damped option, which utilizes an alternative damped BF-
GS update when the curvature condition yTk sk > 0 is nearly violated.

1878 CHAPTER 6. KEYWORDS AREA

damped

• Keywords Area

• responses

• mixed hessians

• id quasi hessians

• bfgs

• damped

Numerical safeguarding for BFGS updates

Specification
Alias: none

Argument(s): none
Default: undamped BFGS

Description
See parent page.

sr1

• Keywords Area

• responses

• mixed hessians

• id quasi hessians

• sr1

Use the Symmetric Rank 1 update method to compute quasi-Hessians

Specification
Alias: none

Argument(s): none

Description
The Symmetric Rank 1 (SR1) update (specified with the keyword sr1) will be used to compute quasi-Hessians.

Bk+1 = Bk +
(yk −Bksk)(yk −Bksk)T

(yk −Bksk)T sk

where Bk is the kth approximation to the Hessian, sk = xk+1 − xk is the step and yk = ∇fk+1 −∇fk is the
corresponding yield in the gradients.

Notes

6.6. RESPONSES 1879

• Initial scaling of y
T
k yk
yTk sk

I is used for B0 prior to the first update.

• Numerical safeguarding is used to protect against numerically small denominators within the updates.

• This safeguarding skips the update if |(yk −Bksk)T sk| < 10−6||sk||2||yk −Bksk||2

id analytic hessians

• Keywords Area

• responses

• mixed hessians

• id analytic hessians

Identify which analytical Hessian corresponds to which response

Topics
This keyword is related to the topics:

• objective function pointer

Specification
Alias: none

Argument(s): INTEGERLIST

Description
The id analytic hessians list specifies by number the functions which have analytic Hessians, and the
id numerical hessians and id quasi hessians lists specify by number the functions which must use
numerical Hessians and secant Hessian updates, respectively. Each function identifier, from 1 through the total
number of functions, must appear once and only once within the union of the id analytic hessians, id -
numerical hessians, and id quasi hessians lists.

See Also
These keywords may also be of interest:

• id numerical hessians

• id quasi hessians

1880 CHAPTER 6. KEYWORDS AREA

Bibliography

[1] Computational investigations of low-discrepancy sequences. ACM Transactions on Mathematical Software,
23(2):266–294, 1997. 1329, 1432, 1433

[2] M.A. Abramson, C. Audet, G. Couture, J.E. Dennis, Jr., S. Le Digabel, and C. Tribes. The NOMAD project.
Software available at http://www.gerad.ca/nomad. 534

[3] B. M. Adams, L. E. Bauman, W. J. Bohnhoff, K. R. Dalbey, J. P. Eddy, M. S. Ebeida, M. S. Eldred, P. D.
Hough, K. T. Hu, J. D. Jakeman, L. P. Swiler, J. A. Stephens, D. M. Vigil, and T. M. Wildey. Dakota,
a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty
quantification, and sensitivity analysis: Version 6.2 developers manual. Technical Report SAND2014-5014,
Sandia National Laboratories, Albuquerque, NM, Updated November 2014. Available online from http:
//dakota.sandia.gov/documentation.html. 7

[4] B. M. Adams, L. E. Bauman, W. J. Bohnhoff, K. R. Dalbey, J. P. Eddy, M. S. Ebeida, M. S. Eldred,
P. D. Hough, K. T. Hu, J. D. Jakeman, L. P. Swiler, J. A. Stephens, D. M. Vigil, and T. M. Wildey.
Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, un-
certainty quantification, and sensitivity analysis: Version 6.2 users manual. Technical Report SAND2014-
4633, Sandia National Laboratories, Albuquerque, NM, Updated November 2014. Available online from
http://dakota.sandia.gov/documentation.html. 7, 13, 14, 27, 76, 110, 120, 121, 122, 125,
208, 210, 211, 217, 219, 226, 227, 228, 230, 240, 241, 242, 309, 367, 759, 870, 1361, 1364, 1582, 1584,
1737, 1746, 1747, 1755, 1757, 1758, 1765, 1766, 1767, 1768, 1769, 1771, 1780, 1784, 1843, 1847, 1848,
1854, 1855, 1868

[5] B. M. Adams, L. E. Bauman, W. J. Bohnhoff, K. R. Dalbey, J. P. Eddy, M. S. Ebeida, M. S. Eldred, P. D.
Hough, K. T. Hu, J. D. Jakeman, L. P. Swiler, J. A. Stephens, D. M. Vigil, and T. M. Wildey. Dakota,
a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty
quantification, and sensitivity analysis: Version 6.2 reference manual. Technical Report SAND2014-5015,
Sandia National Laboratories, Albuquerque, NM, Updated November 2014. Available online from http:
//dakota.sandia.gov/documentation.html. 111, 114

[6] B. M. Adams, L. E. Bauman, W. J. Bohnhoff, K. R. Dalbey, J. P. Eddy, M. S. Ebeida, M. S. Eldred, P. D.
Hough, K. T. Hu, J. D. Jakeman, L. P. Swiler, J. A. Stephens, D. M. Vigil, and T. M. Wildey. Dakota,
a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty
quantification, and sensitivity analysis: Version 6.2 theory manual. Technical Report SAND2014-4253,
Sandia National Laboratories, Albuquerque, NM, Updated November 2014. Available online from http:
//dakota.sandia.gov/documentation.html. 759, 870

[7] G. Anderson and P. Anderson. The UNIX C Shell Field Guide. Prentice-Hall, Englewood Cliffs, NJ, 1986.
10

[8] J. S. Arora. Introduction to Optimum Design. McGraw-Hill, New York, 1989. 120

1881

http://www.gerad.ca/nomad
http://dakota.sandia.gov/documentation.html
http://dakota.sandia.gov/documentation.html
http://dakota.sandia.gov/documentation.html
http://dakota.sandia.gov/documentation.html
http://dakota.sandia.gov/documentation.html
http://dakota.sandia.gov/documentation.html
http://dakota.sandia.gov/documentation.html

1882 BIBLIOGRAPHY

[9] C. Audet, S. Le Digabel, and C. Tribes. NOMAD user guide. Technical Report G-2009-37, Les cahiers du
GERAD, 2009. 534

[10] J.-P. Berrut and L. N. Trefethen. Barycentric lagrange interpolation. SIAM Review, 46(3):501–517, 2004.
116

[11] B. J. Bichon, M. S. Eldred, L. P. Swiler, S. Mahadevan, and J. M. McFarland. Multimodal reliability
assessment for complex engineering applications using efficient global optimization. In Proceedings of the
48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (9th AIAA
Non-Deterministic Approaches Conference), number AIAA-2007-1946, Honolulu, HI, April 2007. 1395

[12] B. J. Bichon, M. S. Eldred, L. P. Swiler, S. Mahadevan, and J. M. McFarland. Efficient global reliability
analysis for nonlinear implicit performance functions. AIAA Journal, 46(10):2459–2468, 2008. 1395

[13] K. Breitung. Asymptotic approximation for multinormal integrals. J. Eng. Mech., ASCE, 110(3):357–366,
1984. 1364

[14] R. H. Byrd, R. B. Schnabel, and G. A. Schultz. Parallel quasi-newton methods for unconstrained optimiza-
tion. Mathematical Programming, 42:273–306, 1988. 190

[15] K. J. Chang, R. T. Haftka, G. L. Giles, and P.-J. Kao. Sensitivity-based scaling for approximating structural
response. J. Aircraft, 30:283–288, 1993. 1547, 1571

[16] A. R. Conn, N. I. M. Gould, and P. L. Toint. Trust-Region Methods. MPS-SIAM Series on Optimization,
SIAM-MPS, Philadelphia, 2000. 244, 245, 246, 247

[17] A. Der Kiureghian and P. L. Liu. Structural reliability under incomplete information. J. Eng. Mech., ASCE,
112(EM-1):85–104, 1986. 115

[18] Q. Du, V. Faber, and M. Gunzburger. Centroidal voronoi tessellations: Applications and algorithms. SIAM
Review, 41:637–676, 1999. 1322

[19] J. E. Eddy and K. Lewis. Effective generation of pareto sets using genetic programming. In Proceedings of
ASME Design Engineering Technical Conference, 2001. 135

[20] A. S. El-Bakry, R. A. Tapia, T. Tsuchiya, and Y. Zhang. On the formulation and theory of the newton interior-
point method for nonlinear programming. Journal of Optimization Theory and Applications, 89:507–541,
1996. 432, 450, 469, 488

[21] M. S. Eldred, H. Agarwal, V. M. Perez, S. F. Wojtkiewicz, Jr., and J. E. Renaud. Investigation of reliability
method formulations in DAKOTA/UQ. Structure & Infrastructure Engineering: Maintenance, Management,
Life-Cycle Design & Performance, 3(3):199–213, 2007. 112

[22] M. S. Eldred and B. J. Bichon. Second-order reliability formulations in DAKOTA/UQ. In Proceedings of
the 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, number
AIAA-2006-1828, Newport, RI, May 1–4 2006. 1364

[23] M. S. Eldred and D. M. Dunlavy. Formulations for surrogate-based optimization with data fit, multifidelity,
and reduced-order models. In Proceedings of the 11th AIAA/ISSMO Multidisciplinary Analysis and Op-
timization Conference, number AIAA-2006-7117, Portsmouth, VA, September 6–8 2006. 230, 240, 241,
242

[24] M. S. Eldred, A. A. Giunta, and S. S. Collis. Second-order corrections for surrogate-based optimization with
model hierarchies. In Proceedings of the 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization
Conference, Albany, NY,, Aug. 30–Sept. 1, 2004. AIAA Paper 2004-4457. 1364, 1546, 1547, 1570, 1571

BIBLIOGRAPHY 1883

[25] G. M. Fadel, M. F. Riley, and J.-F. M. Barthelemy. Two point exponential approximation method for struc-
tural optimization. Structural Optimization, 2(2):117–124, 1990. 1563

[26] R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL: A Modeling Language for Mathematical Programming,
2nd ed. Duxbury Press/Brooks/Cole Publishing Co., Pacific Grove, CA, 2003. For small examples, e.g.,
at most 300 variables, a student version of AMPL suffices; see http://www.ampl.com/DOWNLOADS.
1739

[27] J. H. Friedman. Multivariate adaptive regression splines. Annals of Statistics, 19(1):1–141, March 1991.
1503

[28] J. Gablonsky. Direct version 2.0 userguide technical report. Technical Report CRSC-TR01-08, North Car-
olina State University, Center for Research in Scientific Computation, Raleigh, NC, 2001. 721

[29] D. M. Gay. Hooking your solver to AMPL. Technical Report Technical Report 97-4-06, Bell Lab-
oratories, Murray Hill, NJ, 1997. Available online as http://www.ampl.com/REFS/HOOKING/
index.html and http://www.ampl.com/REFS/hooking2.pdf and http://www.ampl.
com/REFS/hooking2.ps.gz. 1737, 1739

[30] D. M. Gay. Specifying and reading program input with NIDR. Technical Report SAND2008-2261P, Sandia
National Laboratories, 2008. Available as http://dakota.sandia.gov/papers/nidr08.pdf.
21

[31] R. Ghanem and J. R. Red-Horse. Propagation of probabilistic uncertainty in complex physical systems using
a stochastic finite element technique. Physica D, 133:137–144, 1999. 112, 116

[32] R. G. Ghanem and P. D. Spanos. Stochastic Finite Elements: A Spectral Approach. Springer-Verlag, New
York, 1991. 112, 116

[33] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. User’s guide for NPSOL (Version 4.0): A Fortran
package for nonlinear programming. Technical Report TR SOL-86-2, System Optimization Laboratory,
Stanford University, Stanford, CA, 1986. 136, 368, 381, 394

[34] P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic Press, San Diego, CA, 1981.
20, 120

[35] A. A. Giunta. Use of data sampling, surrogate models, and numerical optimization in engineering design.
In Proc. 40th AIAA Aerospace Science Meeting and Exhibit, number AIAA-2002-0538, Reno, NV, January
2002. 1548, 1572

[36] A. A. Giunta, L. P. Swiler, S. L Brown, M. S. Eldred, M. D. Richards, and E. C. Cyr. The surfpack soft-
ware library for surrogate modeling of sparse, irregularly spaced multidimensional data. In Proceedings of
the 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, number AIAA-2006-7049,
Portsmouth, VA, 2006. 1486

[37] G. A. Gray and T. G. Kolda. Algorithm 856: APPSPACK 4.0: Asynchronous parallel pattern search for
derivative-free optimization. ACM Transactions on Mathematical Software, 32(3):485–507, September
2006. 135, 513

[38] M. Gunburger and J. Burkardt. Uniformity measures for point samples in hypercubes, 2004. Available on
John Burkardt’s web site: http://www.csit.fsu.edu/˜burkardt/. 1314, 1324, 1435

[39] Heikki Haario, Marko Laine, Antonietta Mira, and Eero Saksman. Dram: Efficient adaptive mcmc. Statistics
and Computing, 16:339–354, 2006. 1221, 1253

http://www.ampl.com/REFS/HOOKING/index.html
http://www.ampl.com/REFS/HOOKING/index.html
http://www.ampl.com/REFS/hooking2.pdf
http://www.ampl.com/REFS/hooking2.ps.gz
http://www.ampl.com/REFS/hooking2.ps.gz
http://dakota.sandia.gov/papers/nidr08.pdf
http://www.csit.fsu.edu/~burkardt/

1884 BIBLIOGRAPHY

[40] R. T. Haftka. Combining global and local approximations. AIAA Journal, 29(9):1523–1525, 1991. 1546,
1570

[41] R. T. Haftka and Z. Gurdal. Elements of Structural Optimization. Kluwer, Boston, 1992. 120

[42] A. Haldar and S. Mahadevan. Probability, Reliability, and Statistical Methods in Engineering Design. Wiley,
New York, 2000. 112, 1361, 1693

[43] J. H. Halton. On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional
integrals. Numerische Mathematik, 2:84–90, 1960. 1329, 1432, 1433

[44] J. H. Halton and G. B. Smith. Algorithm 247: Radical-inverse quasi-random point sequence. Communica-
tions of the ACM, 7:701–702, 1964. 1329, 1432, 1433

[45] W. E. Hart, A. A. Giunta, A. G. Salinger, and B. G. van Bloemen Waanders. An overview of the adaptive
pattern search algorithm and its application to engineering optimization problems. In Proceedings of the
McMaster Optimization Conference: Theory and Applications, Hamilton, Ontario, Canada, 2001. 638, 644

[46] J. C. Helton and F. J. Davis. Sampling-based methods for uncertainty and sensitivity analysis. Technical
Report SAND99-2240, Sandia National Laboratories, Albuquerque, NM, 2000. 111, 114

[47] J. C. Helton and W. L. Oberkampf. Special issue of reliability engineering and system safety: Issue on
alternative representations of epistemic uncertainty, Jul–Sep 2004. 118

[48] D. Higdon, J. Gattiker, B. Williams, and M. Rightley. Computer model calibration using high-dimensional
output. Journal of the American Statistical Association, 103(482):570–583, 2008. 1238

[49] N. J. Higham. The numerical stability of barycentric lagrange interpolation. IMA Journal of Numerical
Analysis, 24(4):547–556, 2004. 116

[50] M. Hohenbichler and R. Rackwitz. Improvement of second-order reliability estimates by importance sam-
pling. J. Eng. Mech., ASCE, 114(12):2195–2199, 1988. 1364

[51] H.P. Hong. Simple approximations for improving second-order reliability estimates. J. Eng. Mech., ASCE,
125(5):592–595, 1999. 1364

[52] R. L. Iman and W. J. Conover. A distribution-free approach to inducing rank correlation among input
variables. Communications in Statistics: Simulation and Computation, B11(3):311–334, 1982. 1693

[53] R. L. Iman and M. J Shortencarier. A Fortran 77 program and user’s guide for the generation of latin
hypercube samples for use with computer models. Technical Report NUREG/CR-3624, SAND83-2365,
Sandia National Laboratories, Albuquerque, NM, 1984. 111, 114

[54] D. Jones, M. Schonlau, and W. Welch. Efficient global optimization of expensive black-box functions.
Journal of Global Optimization, 13:455–492, 1998. 732

[55] M. C. Kennedy and A. O’Hagan. Bayesian calibration of computer models. Journal of the Royal Statistical
Society, 63:425–464, 2001. 1238

[56] W. A. Klimke. Uncertainty Modeling using Fuzzy Arithmetic and Sparse Grids. PhD thesis, Universität
Stuttgart, Stuttgart, Germany, 2005. 116

[57] R. M. Lewis and S. N. Nash. A multigrid approach to the optimization of systems governed by differential
equations. In Proceedings of the 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis
and Optimization, number AIAA-2000-4890, Long Beach, CA, Sep 2000. 1546, 1547, 1570, 1571

BIBLIOGRAPHY 1885

[58] J. M. McFarland. Uncertainty Analysis for Computer Simulations through Validation and Calibra-
tion. PhD thesis, Vanderbilt University, Nashville, Tennesssee, 2008. available for download at
http://etd.library.vanderbilt.edu/ETD-db/available/etd-03282008-125137/. 736, 1093, 1111, 1149, 1167,
1196, 1278, 1398, 1489

[59] M. D. McKay, R. J. Beckman, and W. J. Conover. A comparison of three methods for selecting values of
input variables in the analysis of output from a computer code. Technometrics, 21(2):239–245, 1979. 111,
114

[60] J. C. Meza, R. A. Oliva, P. D. Hough, and P. J. Williams. OPT++: an object oriented toolkit for nonlinear
optimization. ACM Transactions on Mathematical Software, 33(2), 2007. 136

[61] J. More and D. Thuente. Line search algorithms with guaranteed sufficient decrease. ACM Transactions on
Mathematical Software, 20(3):286–307, 1994. 428, 429, 430, 431, 447, 448, 449, 466, 467, 468, 484, 485,
486, 487

[62] M. D. Morris. Factorial sampling plans for preliminary computational experiments. Technometrics,
33(2):161–174, 1991. 1334

[63] R. H. Myers and D. C. Montgomery. Response Surface Methodology: Process and Product Optimization
Using Designed Experiments. John Wiley & Sons, Inc., New York, 1995. 1517

[64] A. Nealen. A short-as-possible introduction to the least squares, weighted least squares, and moving least
squares methods for scattered data approximation and interpolation. Technical report, Discrete Geometric
Modeling Group, Technishe Universitaet, Berlin, Germany, 2004. 1506

[65] J. Nocedal and Wright S. J. Numerical Optimization. Springer Series in Operations Research. Springer,
New York, 1999. 120

[66] W. .L. Oberkampf and J. C. Helton. Evidence theory for engineering applications. Technical Report
SAND2003-3559P, Sandia National Laboratories, Albuquerque, NM, 2003. 118

[67] M. J. L. Orr. Introduction to radial basis function networks. Technical report, University of Edinburgh,
Edinburgh, Scotland, 1996. 1513

[68] V. M. Pérez, J. E. Renaud, and L. T. Watson. An interior-point sequential approximation optimization
methodology. Structural and Multidisciplinary Optimization, 27(5):360–370, July 2004. 248, 249, 250

[69] T. D. Plantenga. HOPSPACK 2.0 user manual. Technical Report SAND2009-6265, Sandia National Labo-
ratories, 2009. 135

[70] E. Prudencio and S. H. Cheung. Parallel adaptive multilevel sampling algorithms for the bayesian analysis of
mathematical models. International Journal for Uncertainty Quantification, 2:215–237, 2012. 1224, 1257

[71] D. G. Robinson and C. Atcitty. Comparison of quasi- and pseudo-monte carlo sampling for reliability and
uncertainty analysis. In Proceedings of the AIAA Probabilistic Methods Conference, number AIAA99-1589,
St. Louis, MO, 1999. 1439

[72] M. Rosenblatt. Remarks on a multivariate transformation. Annals of Mathematical Statistics, 23(3):470–472,
1952. 115

[73] A. Saltelli, S. Tarantola, F. Campolongo, and M. Ratto. Sensitivity Analysis in Practice: A Guide to Assessing
Scientific Models. John Wiley & Sons, 2004. 829, 890, 936, 1315, 1326, 1335, 1436

1886 BIBLIOGRAPHY

[74] K. Schittkowski. NLPQLP: A fortran implementation of a sequential quadratic programming algorithm with
distributed and non-monotone line search – user’s guide. Technical report, Department of Mathematics,
University of Bayreuth, Bayreuth, Germany, 2004. 135

[75] G. D. Sjaardema. APREPRO: An algebraic preprocessor for parameterizing finite element analyses. Tech-
nical Report SAND92-2291, Sandia National Laboratories, Albuquerque, NM, 1992. 1747, 1758

[76] R. Srinivasan. Importance Sampling. Springer-Verlag, 2002. 960

[77] A. Stroud. Approximate Calculation of Multiple Integrals. Prentice Hall, 1971. 773

[78] L. P. Swiler and N. J. West. Importance sampling: Promises and limitations. In Proceedings of the 12th
AIAA Non-Deterministic Approaches Conference, number AIAA-2010-2850, 2010. 961

[79] G. Tang, L. P. Swiler, and M. S Eldred. Using stochastic expansion methods in evidence theory for mixed
aleatory-epistemic uncertainty quantification. In Proceedings of the 51st AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics, and Materials Conference (12th AIAA Non-Deterministic Approaches con-
ference), Orlando, FL, April 12-15, 2010. AIAA Paper 2010-XXXX. 112

[80] R. A. Tapia and M. Argaez. Global convergence of a primal-dual interior-point newton method for nonlinear
programming using a modified augmented lagrangian function. (In Preparation). 433, 451, 470, 489

[81] C. H. Tong. The PSUADE software library. Web site, 2005. http://www.llnl.gov/CASC/
uncertainty_quantification/#psuade. 137

[82] R. J. Vanderbei and D. F. Shanno. An interior-point algorithm for nonconvex nonlinear programming.
Computational Optimization and Applications, 13:231–259, 1999. 433, 451, 470, 489

[83] G. N. Vanderplaats. CONMIN – a FORTRAN program for constrained function minimization. Technical
Report TM X-62282, NASA, 1973. See also Addendum to Technical Memorandum, 1978. 133, 344

[84] G. N. Vanderplaats. Numerical Optimization Techniques for Engineering Design: With Applications.
McGraw-Hill, New York, 1984. 120

[85] Vanderplaats Research and Development, Inc., Colorado Springs, CO. DOT Users Manual, Version 4.20,
1995. 134, 309

[86] J. A. Vrugt, C. J. F. ter Braak, C. G. H. Diks, B. A. Robinson, J. M. Hyman, and D. Higdon. Accelerat-
ing markov chain monte carlo simulation by self-adaptive differential evolution with randomized subspace
sampling. International Journal of Nonlinear Scientific Numerical Simulation, 10(3), 2009. 1190, 1271

[87] V. G. Weirs, J. R. Kamm, L. P. Swiler, M. Ratto, S. Tarantola, B. M. Adams, W. J. Rider, and M. S Eldred.
Sensitivity analysis techniques applied to a system of hyperbolic conservation laws. Reliability Engineering
and System Safety, 107:157–170, 2012. 829, 891, 936, 1315, 1326, 1436

[88] S. J. Wright. Primal-Dual Interior-Point Methods. SIAM, 1997. 434, 452, 471, 490

[89] G. D. Wyss and K. H. Jorgensen. A user’s guide to LHS: Sandia’s Latin hypercube sampling software.
Technical Report SAND98-0210, Sandia National Laboratories, Albuquerque, NM, 1998. 1625, 1629,
1662, 1682

[90] D. Xiu. Numerical integration formulas of degree two. Applied Numerical Mathematics, 58:1515–1520,
2008. 773

[91] S. Xu and R. V. Grandhi. Effective two-point function approximation for design optimization. AIAA J.,
36(12):2269–2275, 1998. 1364, 1562, 1563

http://www.llnl.gov/CASC/uncertainty_quantification/#psuade
http://www.llnl.gov/CASC/uncertainty_quantification/#psuade

BIBLIOGRAPHY 1887

[92] D. C. Zimmerman. Genetic algorithms for navigating expensive and complex design spaces, September
1996. Final Report for Sandia National Laboratories contract AO-7736 CA 02. 1509

	Main Page
	How to Use this Manual

	Running Dakota
	Usage
	Examples
	Execution Phases
	Restarting Dakota Studies
	The Dakota Restart Utility

	Test Problems
	Textbook
	Rosenbrock

	Dakota Input Specification
	Dakota NIDR
	Input Spec Overview
	Sample Input Files
	Input Spec Summary

	Topics Area
	admin
	dakota_IO
	dakota_concepts
	models
	variables
	responses
	interface
	methods
	advanced_topics
	packages

	Keywords Area
	environment
	method
	model
	variables
	interface
	responses

	Bibliographic References

