SAND2014-5015
Unlimited Release
July 2014
Updated May 8, 2015

Dakota, A Multilevel Parallel Object-Oriented Framework for
Design Optimization, Parameter Estimation, Uncertainty

Quantification, and Sensitivity Analysis:
Version 6.2 Reference Manual

Brian M. Adams, Mohamed S. Ebeida, Michael S. Eldred, John D. Jakeman,
Laura P. Swiler, J. Adam Stephens, Dena M. Vigil, Timothy M. Wildey
Optimization and Uncertainty Quantification Department

William J. Bohnhoff
Radiation Transport Department

Keith R. Dalbey
Mission Analysis and Simulation Department

John P. Eddy
System Readiness and Sustainment Technologies Department

Kenneth T. Hu
Validation and Uncertainty Quantification Department

Lara E. Bauman, Patricia D. Hough
Quantitative Modeling and Analysis Department

Sandia National Laboratories
P.O. Box 5800
Albuquerque, New Mexico 87185

Abstract

The Dakota (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible
and extensible interface between simulation codes and iterative analysis methods. Dakota contains algorithms
for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliabil-
ity, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitiv-
ity/variance analysis with design of experiments and parameter study methods. These capabilities may be used
on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer
nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement
abstractions of the key components required for iterative systems analyses, the Dakota toolkit provides a flexible
and extensible problem-solving environment for design and performance analysis of computational models on
high performance computers.

This report serves as a reference manual for the commands specification for the Dakota software, providing
input overviews, option descriptions, and example specifications.

Contents

1 Main Page 7
1.1 HowtoUsethisManual i e e 7
2 Running Dakota 9
2.1 Usage e 9
22 Exampleso e e 10
2.3 Execution Phases e e e e e e e 10
2.4 Restarting Dakota Studies 11
2.5 The Dakota Restart Utility i e e e e e e e 12
3 Test Problems 17
3.1 Textbook e e e e e 17
3.2 Rosenbrock e e e e e 20
4 Dakota Input Specification 21
4.1 Dakota NIDR e e e 21
4.2 TInput Spec OVEIVIEW o ot ittt e e e e 21
43 SampleInputFiles e 23
4.4 Input SPec SUMMATY v v v v v et e e e e e e e e e e e e e e e e e e e 27
5 Topics Area 69
5.0 admin ... L e e e e e e e 69
5.2 dakota IO e e e e e e 70
5.3 dakota_Concepts e e e e e e e e e e e e e e 80
54 models e e e e 97
5.5 variables L e e e e e 100
5.6 TESPOMSES . v v v v v e 106
5.7 Anterface L. e e e e e e 107
5.8 methods L e e e e e 109
59 advanced_topiCs e e e e 127
5.0 packageso e 131
6 Keywords Area 143
6.1 environment L L e e e e e e e e e e 144
6.2 method e 176
6.3 model e e e e e 1473
6.4 variables e e 1587
6.5 Interface L. e e e e e e e 1735

6 CONTENTS

6.0 TESPOMSES . + v v v v e 1786

Bibliographic References 1879

Chapter 1
Main Page

The Dakota (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible, ex-
tensible interface between analysis codes and iteration methods.

Author

Brian M. Adams, Lara E. Bauman, William J. Bohnhoff, Keith R. Dalbey, John P. Eddy, Mohamed S.
Ebeida, Michael S. Eldred, Patricia D. Hough, Kenneth T. Hu, John D. Jakeman, Laura P. Swiler, J. Adam
Stephens, Dena M. Vigil, Timothy M. Wildey

The Reference Manual documents all the input keywords that can appear in a Dakota input file to configure a
Dakota study. Its organization closely mirrors the structure of dakota. input.summary. For more informa-
tion see Dakota Input Specification. For information on software structure, refer to the Developers Manual [3],
and for a tour of Dakota features and capabilities, including a tutorial, refer to the User’s Manual (Adams et al.,
2010) [4].

1.1 How to Use this Manual

e To learn how to run Dakota from the command line, see Running Dakota
e To learn to how to restart Dakota studies, see Restarting Dakota Studies
e To learn about the Dakota restart utility, see The Dakota Restart Utility

To find more information about a specific keyword
1. Use the search box at the top right (currently only finds keyword names)
2. Browse the Keywords tree on the left navigation pane
3. Look at the Dakota Input Specification
4. Navigate through the keyword pages, starting from the Keywords Area
To find more information about a Dakota related topic
1. Browse the Topics Area on the left navigation pane
2. Navigate through the topics pages, starting from the Topics Area

A small number of examples are included (see Sample Input Files) along with a description of the test prob-
lems (see Test Problems).
A bibliography for the Reference Manual is provided in Bibliographic References

CHAPTER 1. MAIN PAGE

Chapter 2

Running Dakota

The Dakota executable file is named dakota (dakota.exe on Windows) and is most commonly run from a
terminal or command prompt.

2.1 Usage

If the dakota command is entered at the command prompt without any arguments, a usage message similar to
the following appears:

usage: dakota [options and <args>]
-help (Print this summary)
-version (Print Dakota version number)
—input <$val> (REQUIRED Dakota input file $val)
—output <$val> (Redirect Dakota standard output to file $val)
—error <$val> (Redirect Dakota standard error to file S$Sval)
-parser <$val> (Parsing technology: nidr[strict][:dumpfile])
-no_input_echo (Do not echo Dakota input file)
—check (Perform input checks)

-pre_run [$val] (Perform pre-run (variables generation) phase)
-run [$val] (Perform run (model evaluation) phase)
-post_run [$val] (Perform post-run (final results) phase)

-read_restart [$val] (Read an existing Dakota restart file $val)
-stop_restart <$val> (Stop restart file processing at evaluation $val)
-write_restart [$val] (Write a new Dakota restart file S$Sval)

Of these command line options, only input is required, and the —input switch can be omitted if the input
file name is the final item appearing on the command line (see Examples); all other command-line inputs are
optional.

e help prints the usage message above.
e version prints version information for the executable.

e check invokes a dry-run mode in which the input file is processed and checked for errors, but the study is
not performed.

e input provides the name of the Dakota input file.

e output and error options provide file names for redirection of the Dakota standard output (stdout) and
standard error (stderr), respectively.

10 CHAPTER 2. RUNNING DAKOTA

e The parser option is for debugging and will not be further described here.

e By default, Dakota will echo the input file to the output stream, but no_input_echo can override this
behavior.

e read.restart and write_restart commands provide the names of restart databases to read from
and write to, respectively.

e stop_restart command limits the number of function evaluations read from the restart database (the
default is all the evaluations) for those cases in which some evaluations were erroneous or corrupted. Restart
management is an important technique for retaining data from expensive engineering applications.

e —pre_run, —run, and -post_run instruct Dakota to run one or more execution phases, excluding others.
The commands must be followed by filenames as described in Execution Phases.

Command line switches can be abbreviated so long as the abbreviation is unique, so the following are valid,
unambiguous specifications: —-h, -v, -c, -1, -0, —e, —s, —w, —re, —pr, —ru, and —po and can be used in place
of the longer forms of the command line options.

For information on restarting Dakota, see Restarting Dakota Studies and The Dakota Restart Utility.

2.2 Examples

To run Dakota with a particular input file, the following syntax can be used:
dakota —-i dakota.in

or more simply
dakota dakota.in

This will echo the standard output (stdout) and standard error (stderr) messages to the terminal. To redirect
stdout and stderr to separate files, the —o and —e command line options may be used:

dakota -i dakota.in -o dakota.out -e dakota.err
or
dakota -o dakota.out -e dakota.err dakota.in

Alternatively, any of a variety of Unix redirection variants can be used. Refer to[7] for more information on
Unix redirection. The simplest of these redirects stdout to another file:

dakota dakota.in > dakota.out

2.3 Execution Phases

Dakota has three execution phases: pre-run, run, and post-run.

e pre-run can be used to generate variable sets
e run (core run) invokes the simulation to evaluate variables, producing responses

e post—-run accepts variable/response sets and analyzes the results (for example, calculate correlations
from a set of samples). Currently only two modes are supported and only for sampling, parameter study,
and DACE methods:

(1) pre-run only with optional tabular output of variables:
dakota -i dakota.in -pre_run [::myvariables.dat]
(2) post-run only with required tabular input of variables/responses:

dakota -i dakota.in -post_run myvarsresponses.dat::

2.4. RESTARTING DAKOTA STUDIES 11

2.4 Restarting Dakota Studies

Dakota is often used to solve problems that require repeatedly running computationally expensive simulation
codes. In some cases you may want to repeat an optimization study, but with a tighter final convergence tolerance.
This would be costly if the entire optimization analysis had to be repeated. Interruptions imposed by computer us-
age policies, power outages, and system failures could also result in costly delays. However, Dakota automatically
records the variable and response data from all function evaluations so that new executions of Dakota can pick up
where previous executions left off. The Dakota restart file (dakota . rst by default) archives the tabulated inter-
face evaluations in a binary format. The primary restart commands at the command line are ~read_restart,
-write_restart, and -stop_restart.

2.4.1 Writing Restart Files

To write a restart file using a particular name, the ~-write_restart command line input (may be abbreviated
as —w) is used:

dakota -i dakota.in -write_restart my_restart_file

If no -write_restart specification is used, then Dakota will still write a restart file, but using the default
name dakota. rst instead of a user-specified name.

To turn restart recording off, the user may use the restart_file keyword, in the interface block. This can
increase execution speed and reduce disk storage requirements, but at the expense of a loss in the ability to recover
and continue a run that terminates prematurely. This option is not recommended when function evaluations are
costly or prone to failure. Please note that using the deactivate restart_file specification will result in a
zero length restart file with the default name dakota.rst, which can overwrite an exiting file.

2.4.2 Using Restart Files

To restart Dakota from a restart file, the ~-read_restart command line input (may be abbreviated as —r) is
used:

dakota -i dakota.in -read_restart my_restart_file

If no ~read_restart specification is used, then Dakota will not read restart information from any file (i.e.,

the default is no restart processing).

To read in only a portion of a restart file, the —stop_restart control (may be abbreviated as —s) is used to
specify the number of entries to be read from the database. Note that this integer value corresponds to the restart
record processing counter (as can be seen when using the print utility (see The Dakota Restart Utility) which
may differ from the evaluation numbers used in the previous run if, for example, any duplicates were detected
(since these duplicates are not recorded in the restart file). In the case of a —~stop_restart specification, it is
usually desirable to specify a new restart file using —~-write_restart so as to remove the records of erroneous
or corrupted function evaluations. For example, to read in the first 50 evaluations from dakota.rst:

dakota -i dakota.in -r dakota.rst -s 50 -w dakota_new.rst

The dakota_new. rst file will contain the 50 processed evaluations from dakota.rst as well as any
new evaluations. All evaluations following the 50*" in dakota . rst have been removed from the latest restart
record.

2.4.3 Appending to a Restart File

If the -write_restart and —read_restart specifications identify the same file (including the case where
-write_restart is not specified and ~read_restart identifies dakota.rst), then new evaluations will
be appended to the existing restart file.

12 CHAPTER 2. RUNNING DAKOTA

2.4.4 Working with multiple Restart Files

If the -write_restart and —~read_restart specifications identify different files, then the evaluations read
from the file identified by —~read_restart are first written to the ~write_restart file. Any new evalua-
tions are then appended to the ~-write_restart file. In this way, restart operations can be chained together
indefinitely with the assurance that all of the relevant evaluations are present in the latest restart file.

2.4.5 How it Works

Dakota’s restart algorithm relies on its duplicate detection capabilities. Processing a restart file populates the list of
function evaluations that have been performed. Then, when the study is restarted, it is started from the beginning
(not a warm start) and many of the function evaluations requested by the iterator are intercepted by the duplicate
detection code. This approach has the primary advantage of restoring the complete state of the iteration (including
the ability to correctly detect subsequent duplicates) for all methods/iterators without the need for iterator-specific
restart code. However, the possibility exists for numerical round-off error to cause a divergence between the
evaluations performed in the previous and restarted studies. This has been rare in practice.

2.5 The Dakota Restart Utility

The Dakota restart utility program provides a variety of facilities for managing restart files from Dakota execu-
tions. The executable program name is dakota_restart_util and it has the following options, as shown by
the usage message returned when executing the utility without any options:

Usage:
dakota_restart_util command <argl> [<arg2> <arg3> ...] —--options
dakota_restart_util print <restart_file>
dakota_restart_util to_neutral <restart_file> <neutral_file>
dakota_restart_util from _neutral <neutral file> <restart_file>

dakota_restart_util to_tabular <restart_file> <text_file> [--custom_annotated [header] [eval_id]
dakota_restart_util remove <double> <old_restart_file> <new_restart_file>
dakota_restart_util remove_ids <int_1> ... <int_n> <old_restart_file> <new_restart_file>
dakota_restart_util cat <restart_file 1> ... <restart_file n> <new_restart_file>
options:
——help show dakota_restart_util help message

-—-custom_annotated arg tabular file options: header, eval_id, interface_id

Several of these functions involve format conversions. In particular, the binary format used for restart files can
be converted to ASCII text and printed to the screen, converted to and from a neutral file format, or converted to
a tabular format for importing into 3rd-party graphics programs. In addition, a restart file with corrupted data can
be repaired by value or id, and multiple restart files can be combined to create a master database.

2.5.1 Print Command

The print option is useful to show contents of a restart file, since the binary format is not convenient for direct
inspection. The restart data is printed in full precision, so that exact matching of points is possible for restarted
runs or corrupted data removals. For example, the following command

dakota_restart_util print
dakota.rst

results in output similar to the following:

Parameters:
1.8000000000000000e+00 intake_dia

[interface_1i

2.5. THE DAKOTA RESTART UTILITY

1.

Active response data:
Active set vector = { 3
-2.
-4.
-4.
1.

-4.3644298963447897e-
1.3855136437818300e-
0.0000000000000000e+00
0.0000000000000000e+00

0000000000000000e+00

333}

4355973813420619e+00
7428486677140930e-01
5000000000000001e-01
3971143170299741e-01

flatness

obj_fn

nln_ineqg con_1
nln_ineqg con_2
nln_ineqg con_3

01 1.4999999999999999%9e-01] obj_fn gradient
01 0.0000000000000000e+00] nln_ineqg con_1 gradient

Restart record 2 (evaluation id 2)
Parameters:
2.1640000000000001e+00
1.7169994018008317e+00

Active response data:
Active set vector = { 3
-2.
6.
-3.
8.

...<snip>...

Restart file processing

-4.3644298963447897e-
2.9814239699997572e+01
0.0000000000000000e+00
0.0000000000000000e+00

333}

4869127192988878e+00
9256958799989843e-01
4245008972987528e-01
7142207937157910e-03

1.4999999999999999%9e-01] nln_ineqg_con_2 gradient
-1.9485571585149869e-01] nln_ineq_con_3 gradient

intake_dia
flatness

obj_fn

nln_ineqg con_1
nln_ineqg con_2
nln_ineq con_3

01 1.4999999999999999e-01] obj_fn gradient

0.0000000000000000e+00] nln_ineg con_1 gradient
1.4999999999999999%9e-01] nln_ineqg _con_2 gradient
-1.6998301774282701e-01] nln_ineqg_con_3 gradient

completed: 11 evaluations retrieved.

2.5.2 Neutral File Format

A Dakota restart file can be converted to a neutral file format using a command like the following:

dakota_restart_util to_neutral dakota.rst dakota.neu

which results in a report similar to the following:

Writing neutral file dakota.neu
completed: 11 evaluations retrieved.

Restart file processing

Similarly, a neutral file can be returned to binary format using a command like the following:

dakota_restart_util from_neutral dakota.neu dakota.rst

which results in a report similar to the following:

Reading neutral file dakota.neu
Writing new restart file dakota.rst
completed: 11 evaluations retrieved.

Neutral file processing

13

The contents of the generated neutral file are similar to the following (from the first two records for the

Cylinder example in[4]).

6 7 2 1.8000000000000000e+00 intake_dia 1.0000000000000000e+00 flatness 0 0 0 O

NULL 4 2 1 03 33 31 2 obj_fn nln_ineg con_1 nln_ineqg con_2 nln_ineg con_3
—2.4355973813420619e+00 -4.7428486677140930e-01 -4.5000000000000001e-01
1.3971143170299741e-01 -4.3644298963447897e-01 1.4999999999999999%e-01

1.3855136437818300e-01

0.0000000000000000e+00 0.0000000000000000e+00

14 CHAPTER 2. RUNNING DAKOTA

1.499999999999999%9e-01 0.0000000000000000e+00 -1.9485571585149869%e-01 1
6 7 2 2.1640000000000001e+00 intake_dia 1.7169994018008317e+00 flatness 0 0 0 O
NULL 4 2 1 0 3 3 3 31 2 obj_fn nln_ineq _con_1 nln_ineqg con_2 nln_ineqg_con_3
-2.4869127192988878e+00 6.9256958799989843e~-01 —-3.4245008972987528e-01
.7142207937157910e-03 -4.3644298963447897e-01 1.4999999999999999%e-01
.9814239699997572e+01 0.0000000000000000e+00 0.0000000000000000e+00
.4999999999999999%9e-01 0.0000000000000000e+00 -1.6998301774282701e-01 2

=N o

This format is not intended for direct viewing (porint should be used for this purpose). Rather, the neutral
file capability has been used in the past for managing portability of restart data across platforms (recent use of
more portable binary formats has largely eliminated this need) or for advanced repair of restart records (in cases
where the remove command was insufficient).

2.5.3 Tabular Format

Conversion of a binary restart file to a tabular format enables convenient import of this data into 3rd-party post-
processing tools such as Matlab, TECplot, Excel, etc. This facility is nearly identical to the output activated by
the tabular_data keyword in the Dakota input file specification, but with two important differences:

1. No function evaluations are suppressed as they are with tabular_data (i.e., any internal finite difference
evaluations are included).

2. The conversion can be performed later, i.e., for Dakota runs executed previously.
An example command for converting a restart file to tabular format is:
dakota_restart_util to_tabular dakota.rst dakota.m
which results in a report similar to the following:

Writing tabular text file dakota.m
Restart file processing completed: 10 evaluations tabulated.

The contents of the generated tabular file are similar to the following (from the example in the Restart section
of[4]). Note that while evaluations resulting from numerical derivative offsets would be reported (as described
above), derivatives returned as part of the evaluations are not reported (since they do not readily fit within a
compact tabular format):

%$eval_id interface x1 x2 obj_fn nln_ineq _con_1 nln_ineq _con_2
1 NO_1ID 0.9 1.1 0.0002 0.26 0.76
2 NO_1ID 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 NO_ID 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
4 NO_ID 0.9 1.10011 0.0002004407265 0.259945 0.7602420121
5 NO_ID 0.9 1.09989 0.0001995607255 0.260055 0.7597580121
6 NO_1ID 0.58256179 0.4772224441 0.1050555937 0.1007670171 -0.06353963386
7 NO_ID 0.5826200462 0.4772224441 0.1050386469 0.1008348962 -0.06356876195
8 NO_ID 0.5825035339 0.4772224441 0.1050725476 0.1006991449 -0.06351050577
9 NO_ID 0.58256179 0.4772701663 0.1050283245 0.100743156 -0.06349408333
10 NO_1ID 0.58256179 0.4771747219 0.1050828704 0.1007908783 -0.06358517983

Controlling tabular format: The command-line option ——custom_annotated gives control of headers
in the resulting tabular file. It supports options

e header: include %-commented header row with labels
e eval_id: include leading column with evaluation ID

e interface_id: include leading column with interface ID

2.5. THE DAKOTA RESTART UTILITY 15
For example, to recover Dakota 6.0 tabular format, which contained a header row, leading column with evaluation
ID, but no interface ID:

dakota_restart_util to_tabular dakota.rst dakota.m —--custom_annotated header eval_id

Resulting in

$eval_id x1 x2 obj_fn nln_ineqg con_1 nln_ineqg con_2
1 0.9 1.1 0.0002 0.26 0.76
2 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 0.89991 1.1 0.0002003604863 0.2598380081 0.760045

2.5.4 Concatenation of Multiple Restart Files

In some instances, it is useful to combine restart files into a single master function evaluation database. For
example, when constructing a data fit surrogate model, data from previous studies can be pulled in and reused to
create a combined data set for the surrogate fit. An example command for concatenating multiple restart files is:

dakota_restart_util cat dakota.rst.l dakota.rst.2 dakota.rst.3 dakota.rst.all
which results in a report similar to the following:

Writing new restart file dakota.rst.all

dakota.rst.l processing completed: 10 evaluations retrieved.
dakota.rst.2 processing completed: 110 evaluations retrieved.
dakota.rst.3 processing completed: 65 evaluations retrieved.

The dakota.rst.all database now contains 185 evaluations and can be read in for use in a subsequent
Dakota study using the —~read_restart option to the dakota executable.

2.5.5 Removal of Corrupted Data

On occasion, a simulation or computer system failure may cause a corruption of the Dakota restart file. For
example, a simulation crash may result in failure of a post-processor to retrieve meaningful data. If 0’s (or other
erroneous data) are returned from the user’s analysis_driver, then this bad data will get recorded in the
restart file. If there is a clear demarcation of where corruption initiated (typical in a process with feedback, such
as gradient-based optimization), then use of the —stop_restart option for the dakota executable can be
effective in continuing the study from the point immediately prior to the introduction of bad data. If, however,
there are interspersed corruptions throughout the restart database (typical in a process without feedback, such as

sampling), then the remove and remove_ids options of dakota_restart_util can be useful.
An example of the command syntax for the remove option is:

dakota_restart_util remove 2.e-04 dakota.rst dakota.rst.repaired
which results in a report similar to the following:

Writing new restart file dakota.rst.repaired
Restart repair completed: 65 evaluations retrieved, 2 removed, 63 saved.

where any evaluations in dakota. rst having an active response function value that matches 2 .e-04 within

machine precision are discarded when creating dakota.rst.repaired.
An example of the command syntax for the remove_ids option is:

dakota_restart_util remove_ids 12 15 23 44 57 dakota.rst dakota.rst.repaired
which results in a report similar to the following:

Writing new restart file dakota.rst.repaired
Restart repair completed: 65 evaluations retrieved, 5 removed, 60 saved.

16 CHAPTER 2. RUNNING DAKOTA

where evaluation ids 12, 15, 23, 44, and 57 have been discarded when creating dakota.rst.repaired.
An important detail is that, unlike the —stop_restart option which operates on restart record numbers, the
remove_ids option operates on evaluation ids. Thus, removal is not necessarily based on the order of appearance
in the restart file. This distinction is important when removing restart records for a run that contained either
asynchronous or duplicate evaluations, since the restart insertion order and evaluation ids may not correspond in
these cases (asynchronous evaluations have ids assigned in the order of job creation but are inserted in the restart
file in the order of job completion, and duplicate evaluations are not recorded which introduces offsets between
evaluation id and record number). This can also be important if removing records from a concatenated restart file,
since the same evaluation id could appear more than once. In this case, all evaluation records with ids matching
the remove_ids list will be removed.

If neither of these removal options is sufficient to handle a particular restart repair need, then the fallback
position is to resort to direct editing of a neutral file to perform the necessary modifications.

Chapter 3

Test Problems

This page contains additional information about two test problems that are used in Dakota examples throughout
the Dakota manuals Textbook and Rosenbrock.

Many of these examples are also used as code verification tests. The examples are run periodically and the
results are checked against known solutions. This ensures that the algorithms are correctly implemented.

Additional test problems are described in the User’s Manual.

3.1 Textbook

The two-variable version of the “textbook” test problem provides a nonlinearly constrained optimization test case.
It is formulated as:

minimize f= (x;—1)*+ (zp —1)*
o
2
x
gp=13— 75 <0

0.5 <z, <58
—29<29<29

subject to g1 = w? — <0 (textbookform)

Contours of this test problem are illustrated in the next two figures.

17

18 CHAPTER 3. TEST PROBLEMS

SOV
N

WL

n
=

X2

(L= textbook
constraint g1<0
----- constraint g2<0

-3 -2 -1 0 1 2 3 4
X1

Figure 3.1: Contours of the textbook problem on the [-3,4] x [-3,4] domain. The feasible region lies at the
intersection of the two constraints g_1 (solid) and g_2 (dashed).

[

o
[

1
0.

o
a

0.2 1T \\\ ‘u\\v‘\‘\ \
I
\\\\\\“\\\\\\\‘\\\\)\\(‘\\\\\\\\\‘
op \

T
i\
i\ \\\

X2

\ constraint g1<0
""" constraint g2<0

-1 -0.5

X1

Figure 3.2: Contours of the textbook problem zoomed into an area containing the constrained optimum point (X _-
1,x.2) = (0.5,0.5). The feasible region lies at the intersection of the two constraints g_1 (solid) and g_2 (dashed).

For the textbook test problem, the unconstrained minimum occurs at (x1, z2) = (1, 1). However, the inclusion
of the constraints moves the minimum to (21, z2) = (0.5, 0.5). Equation textbookform presents the 2-dimensional

3.1. TEXTBOOK 19

form of the textbook problem. An extended formulation is stated as

minimize f= Z(xl —1)!
i=1

subject to g1 = :c% — <0 (tbe)

1\3‘[\?

g2 = a3 — 2
y—g2_ 2L
2 9

0.5 <z <58
—29<2,<29

<0

where n is the number of design variables. The objective function is designed to accommodate an arbitrary
number of design variables in order to allow flexible testing of a variety of data sets. Contour plots for the n = 2
case have been shown previously.
For the optimization problem given in Equation tbe, the unconstrained solution
(num_nonlinear_inequality_constraints setto zero) for two design variables is:

rr = 1.0

To = 1.0
with

= 00

The solution for the optimization problem constrained by g; \ (num_.nonlinear_inequality_constraints
set to one) is:

1 = 0.763
o = 1.16
with
o= 0.00388
g7 = 0.0 (active)

The solution for the optimization problem constrained by ¢g; and g2\ (num_nonlinear_inequality -
constraints setto two) is:

rz1 = 0.500
o = 0.500
with
= 0125
g7 = 0.0 (active)
g5 = 0.0 (active)

Note that as constraints are added, the design freedom is restricted (the additional constraints are active at the
solution) and an increase in the optimal objective function is observed.

20 CHAPTER 3. TEST PROBLEMS

3.2 Rosenbrock

The Rosenbrock function[34] is a well-known test problem for optimization algorithms. The standard formulation
includes two design variables, and computes a single objective function. This problem can also be posed as a
least-squares optimization problem with two residuals to be minimzed because the objective function is the sum
of squared terms.

Standard Formulation

The standard two-dimensional formulation can be stated as

minimize f=100(zy — %)%+ (1 — 1)? (rosenstd)

Surface and contour plots for this function are shown in the Dakota User’s Manual.
The optimal solution is:

rr = 1.0

o = 1.0
with

f* = 00

A Least-Squares Optimization Formulation
This test problem may also be used to exercise least-squares solution methods by recasting the standard prob-

lem formulation into:

minimize f=(f1)%+ (f2)? (rosenls)
where
fi = 10(zp — 22) (rosenrl)
and
fa=1-—1x1 (rosenr2)

are residual terms.

The included analysis driver can handle both formulations. In the Dakota/test directory, the rosenbrock
executable (compiled from Dakota_Source/test/rosenbrock. cpp) checks the number of response func-
tions passed in the parameters file and returns either an objective function (as computed from Equation rosenstd)
for use with optimization methods or two least squares terms (as computed from Equations rosenr]1 -rosenr2) for
use with least squares methods. Both cases support analytic gradients of the function set with respect to the design
variables. See the User’s Manual for examples of both cases (search for Rosenbrock).

Chapter 4

Dakota Input Specification

4.1 Dakota NIDR

Valid Dakota input is dictated governed by the NIDR[30] input specification file, dakota . input .nspec. This
file is used by a code generator to create parsing system components that are compiled into Dakota. Therefore,
dakota.input.nspec and its derived summary, dakota.input.summary, are the definitive source for input syntax,
capability options, and optional and required capability sub-parameters for any given Dakota version.

Beginning users may find dakota.input.summary overwhelming or confusing and will likely derive more ben-
efit from adapting example input files to a particular problem. Some examples can be found here: Sample Input
Files. Advanced users can master the many input specification possibilities by understanding the structure of the
input specification file.

4.2 Input Spec Overview

Refer to the dakota.input.summary file, in Input Spec Summary, for current input specifications.

e The summary describes every keyword including:

Whether it is required or optional

Whether it takes ARGUMENTS (always required) Additional notes about ARGUMENTS can be found
here: Specifying Arguments.

Whether it has an ALTAS, or synonym

Which additional keywords can be specified to change its behavior
e Additional details and descriptions are described in Keywords Area

e For additional details on NIDR specification logic and rules, refer to[30] (Gay, 2008).

4.2.1 Common Specification Mistakes

Spelling mistakes and omission of required parameters are the most common errors. Some causes of errors are
more obscure:

e Documentation of new capability sometimes lags its availability in source and executables, especially stable
releases. When parsing errors occur that the documentation cannot explain, reference to the particular input
specification used in building the executable, which is installed alongside the executable, will often resolve
the errors.

21

22 CHAPTER 4. DAKOTA INPUT SPECIFICATION

e If you want to compare results with those obtained using an earlier version of Dakota (prior to 4.1), your
input file for the earlier version must use backslashes to indicate continuation lines for Dakota keywords.
For example, rather than

Comment about the following "responses" keyword...
responses,
objective_functions = 1
Comment within keyword "responses"
analytic_gradients
Another comment within keyword "responses"
no_hessians

you would need to write

Comment about the following "responses" keyword...

responses, \
objective_functions = 1 \
Comment within keyword "responses" \
analytic_gradients \

Another comment within keyword "responses" \

no_hessians

with no white space (blanks or tabs) after the \ character.

In most cases, the NIDR system provides error messages that help the user isolate errors in Dakota input files.

4.2.2 Specifying Arguments

Some keywords, such as those providing bounds on variables, have an associated list of values or strings, referred
to as arguments.
When the same value should be repeated several times in a row, you can use the notation Nxvalue instead of

repeating the value N times.
For example

lower_bounds -2.0 -2.0 -2.0
upper_bounds 2.0 2.0 2.0

could also be written

lower_bounds 3%-2.0
upper_bounds 3% 2.0

(with optional spaces around the x*).
Another possible abbreviation is for sequences: L:S:U (with optional spaces around the :) is expanded to L

L+S L+2%S ... U, and L:U (with no second colon) is treated as L:1:U.

For example, in one of the test examples distributed with Dakota (test case 2 of test/dakota_ug_—
textbook_sop_lhs.in),

histogram point = 2

abscissas = 50. 60. 70. 80. 90.
30. 40. 50. 60. 70.
10 20 30 20 10
10 20 30 20 10

counts

could also be written

histogram point = 2

abscissas 50 : 10 : 90
30 : 10 : 70
10:10:30 20 10
10:10:30 20 10

counts

4.3. SAMPLE INPUT FILES 23

Count and sequence abbreviations can be used together. For example

response_levels
0.0 0.1 0.2
0.0 0.1 0.2

o o |
w W
o o
NS
o o
oo
o o
ENEN
o o
S5
o o
© ®
o o
© ©
o
oo

can be abbreviated

response_levels =
2x0.0:0.1:1.0

4.3 Sample Input Files

A Dakota input file is a collection of fields from the dakota.input.summary file that describe the problem to be
solved by Dakota. Several examples follow.
Sample 1: Optimization
The following sample input file shows single-method optimization of the Textbook Example (see Textbook)
using DOT’s modified method of feasible directions. A similar file is available as Dakota/examples/users/textbook—
_opt_conmin.in.

Dakota Input File: textbook_opt_conmin.in
environment
graphics
tabular_data
tabular_data_file = ’textbook_opt_conmin.dat’

method
dot_mmfd #DOT performs better but may not be available
conmin_mfd

max_iterations = 50
convergence_tolerance = le-4
variables
continuous_design = 2
initial point 0.9 1.1
upper_bounds 5.8 2.9
lower_bounds 0.5 -2.9
descriptors rx1" k2’
interface
direct
analysis_driver = "text_book’
responses
objective_functions = 1
nonlinear_inequality_constraints = 2

numerical_gradients
method_source dakota
interval_type central
fd_gradient_step_size = l.e-4
no_hessians

Sample 2: Least Squares (Calibration)

The following sample input file shows a nonlinear least squares (calibration) solution of the Rosenbrock Exam-
ple (see Rosenbrock) using the NL2SOL method. A similar file is available as Dakota/examples/users/rosen—
_optnls.in

Dakota Input File: rosen_opt_nls.in
environment

24

graphics
tabular_data
tabular_data_file = ’'rosen_opt_nls.dat’

method
max_iterations = 100
convergence_tolerance = le-4
nl2sol

model
single

variables
continuous_design = 2
initial point -1.2 1.0

lower_bounds -2.0 -2.0
upper_bounds 2.0 2.0
descriptors rx1’ "x2"

interface

analysis_driver = ’rosenbrock’
direct

responses

calibration_terms = 2

analytic_gradients
no_hessians

Sample 3: Nondeterministic Analysis

CHAPTER 4. DAKOTA INPUT SPECIFICATION

The following sample input file shows Latin Hypercube Monte Carlo sampling using the Textbook Example
(see Textbook). A similar file is available as Dakota/test/dakota_ug textbook_lhs.in.

method,
sampling,
samples = 100 seed = 1
complementary distribution

response_levels = 3.6e+11l 4.0e+1l1 4.4e+11

6.0e+04 6.5e+04 7.0e+04
3.5e+05 4.0e+05 4.5e+05
sample_type lhs

variables,
normal_uncertain = 2
means = 248.89, 593.33
std_deviations = 12.4, 29.7
descriptors = 'TFln’ ’'TF2n’
uniform_uncertain = 2
lower_bounds = 199.3, 474.63
upper_bounds = 298.5, 712.
descriptors = 'TFlu’ ’'TF2u’
weibull uncertain = 2
alphas = 12., 30.
betas = 250., 590.
descriptors = '"TFlw’ 'TF2w’
histogram_bin_uncertain = 2
num_pairs = 3 4
abscissas =58 10 .1 .2 .3 .4
counts =17 21 0 12 24 12 O
descriptors = 'TF1lh’ ’TF2h’
histogram_point_uncertain = 1
num_pairs = 2

abscissas = 3 4

4.3. SAMPLE INPUT FILES 25

counts =11
descriptors = ’'TF3h’

interface,
fork asynch evaluation_concurrency = 5
analysis_driver = ’'text_book’
responses,
response_functions = 3

no_gradients
no_hessians

Sample 4: Parameter Study

The following sample input file shows a 1-D vector parameter study using the Textbook Example (see Text-
book). It makes use of the default environment and model specifications, so they can be omitted. A similar file is
available in the test directory as Dakota/examples/users/rosen_ps_vector.in.

Dakota Input File: rosen_ps_vector.in
environment
graphics
tabular_data
tabular_data_file = ’'rosen_ps_vector.dat’

method
vector_parameter_study
final_point = 1.1 1.3
num_steps = 10

variables
continuous_design = 2
initial_point -0.3 0.2

descriptors rx1’ "x2"
interface
analysis_driver = ’rosenbrock’
direct
responses
objective_functions =1

no_gradients
no_hessians

Sample 5: Hybrid Strategy

The following sample input file shows a hybrid environment using three methods. It employs a genetic algo-
rithm, pattern search, and full Newton gradient-based optimization in succession to solve the Textbook Example
(see Textbook). A similar file is available as Dakota/examples/users/textbook_hybrid_strat.in.

environment
graphics
hybrid sequential
method_list = ’PS’ ’'PS2’ ’'NLP’

method

id_method = ’"PS’

model_pointer = "ML’
coliny_pattern_search stochastic
seed = 1234
initial_delta = 0.
threshold_delta =
solution_accuracy = 1l.e-10

e

26

exploratory_moves basic_pattern
#verbose output

method
id_method = ’"PS2’
model_pointer = 'M1’
max_function_evaluations = 10
coliny_pattern_search stochastic
seed = 1234
initial_delta = 0.1
threshold_delta = 1.e-4
solution_accuracy = 1.e-10
exploratory_moves basic_pattern
#verbose output

method
id_method = ’'NLP’
model_pointer = "M2’
optpp_newton
gradient_tolerance = l.e-12
convergence_tolerance = l.e-15
#verbose output

model
id_model = ’'M1’
single
variables_pointer = 'V1’
interface_pointer = 'I1’
responses_pointer = ’'R1’

model
id_model = ’'M2’
single
variables_pointer = V1’
interface_pointer = 'I1’
responses_pointer = ’'R2’

variables
id_variables = ’'V1/
continuous_design
initial_point O
upper_bounds 5.
lower_bounds 0
descriptors ’'x

interface
id_interface = "I1’
direct
analysis_driver= ’text_book’

responses
id_responses = ’'R1’
objective_functions = 1

no_gradients
no_hessians

responses
id_responses = ’"R2’
objective_functions = 1

analytic_gradients
analytic_hessians

CHAPTER 4. DAKOTA INPUT SPECIFICATION

4.4. INPUT SPEC SUMMARY 27

Additional example input files, as well as the corresponding output and graphics, are provided in the Tutorial
chapter of the Users Manual [4] (Adams et al., 2010).

4.4 Input Spec Summary

This file is derived automatically from dakota.input.nspec, which is used in the generation of parser system files
that are compiled into the Dakota executable. Therefore, these files are the definitive source for input syntax,
capability options, and associated data inputs. Refer to the Developers Manual information on how to modify the
input specification and propagate the changes through the parsing system.

Key features of the input specification and the associated user input files include:

¢ In the input specification, required individual specifications simply appear, optional individual and group
specifications are enclosed in [], required group specifications are enclosed in (), and either-or relationships
are denoted by the | symbol. These symbols only appear in dakota.input.nspec; they must not appear in
actual user input files.

e Keyword specifications (i.e., environment, method, model, variables, interface,and responses)
begin with the keyword possibly preceded by white space (blanks, tabs, and newlines) both in the input
specifications and in user input files. For readability, keyword specifications may be spread across several
lines. Earlier versions of Dakota (prior to 4.1) required a backslash character (\) at the ends of intermediate
lines of a keyword. While such backslashes are still accepted, they are no longer required.

e Some of the keyword components within the input specification indicate that the user must supply INTE—
GER, REAL, STRING, INTEGERLIST, REALLIST, or STRINGLIST data as part of the specification. In
a user input file, the "=" is optional, data in a LIST can be separated by commas or whitespace, and the
STRING data are enclosed in single or double quotes (e.g., ’ text _book’ or ’text_book™).

¢ In user input files, input is largely order-independent (except for entries in lists of data), case insensitive,
and white-space insensitive. Although the order of input shown in the Sample Input Files generally follows
the order of options in the input specification, this is not required.

¢ In user input files, specifications may be abbreviated so long as the abbreviation is unique. For example,
the npsol_sqgp specification within the method keyword could be abbreviated as npsol, but dot_sgp
should not be abbreviated as dot since this would be ambiguous with other DOT method specifications.

¢ In both the input specification and user input files, comments are preceded by #.

o ALIAS refers to synonymous keywords, which often exist for backwards compatability. Users are encour-
aged to use the most current keyword.

KEYWORDO1 environment
[check]
[output_file STRING]
[error_file STRING]
[read_restart STRING
[stop_restart INTEGER >= 0]
1
write_restart STRING]
pre_run
[input STRING]
[output STRING
[annotated
|

(custom_annotated

28 CHAPTER 4. DAKOTA INPUT SPECIFICATION

[header]
[eval_id]
[interface_id]
]
I
(freeform
1
]
[run
[input STRING]
[output STRING]
]
[post_run
[input STRING
[annotated
|
(custom_annotated
[header]
[eval_id]
[interface_id]
]
\
(freeform
]
[output STRING]
]
[graphics]
tabular_data ALIAS tabular_graphics_data
[tabular_data_file ALIAS tabular_graphics_file STRING]
[annotated
|
(custom_annotated
[header]
[eval_id]
[interface_id]
]

|
(freeform
]
[output_precision INTEGER >= 0]
results_output
[results_output_file STRING]
]
[top_method_pointer ALIAS method_pointer STRING]

KEYWORD12 method
[id_method STRING]
[output
debug
| verbose
| normal
| quiet
| silent
]
max_iterations INTEGER >= 0]
max_function_evaluations INTEGER >= 0]
speculative]
convergence_tolerance REAL]
constraint_tolerance REAL]
scaling]
final_solutions INTEGER >= 0]
hybrid

4.4. INPUT SPEC SUMMARY

(sequential ALIAS uncoupled
(method_name_list STRINGLIST
[model_pointer_list STRING]
)
| method_pointer_list STRINGLIST
)

embedded ALIAS coupled

(global_method_name STRING
[global_model_pointer STRING]
)

| global_method_pointer STRING

(local_method_name STRING
[local_model_pointer STRING]
)

| local_method_pointer STRING

[local_search_probability REAL]

collaborative
(method_name_list STRINGLIST
[model_pointer_list STRING]
)
| method_pointer_list STRINGLIST
)
[iterator_servers INTEGER > 0]
iterator_scheduling
master
| peer
1
[processors_per_iterator INTEGER > 0]

|
(multi_start
(method_name STRING
[model_pointer STRING]
)
method_pointer STRING
[random_starts INTEGER
[seed INTEGER]
]
[starting_points REALLIST]
iterator_servers INTEGER > 0]
[iterator_scheduling
master
| peer
]

[processors_per_iterator INTEGER > 0]

|
(pareto_set

(method_name ALIAS opt_method_name STRING
[model_pointer ALIAS opt_model_pointer STRING]
)
method_pointer ALIAS opt_method_pointer STRING
random_weight_sets INTEGER
[seed INTEGER]
]
weight_sets ALIAS multi_objective_weight_sets REALLIST
iterator_servers INTEGER > 0]
iterator_scheduling
master

]

29

30

(
)

CHAPTER 4. DAKOTA INPUT SPECIFICATION

| peer
]
processors_per_iterator INTEGER > 0]

(surrogate_based_local
method_pointer ALIAS approx_method_pointer STRING

method_name ALIAS approx_method_name STRING

model_pointer ALIAS approx_model_pointer STRING

[
[
[

soft_convergence_limit INTEGER]
truth_surrogate_bypass]
trust_region

[initial_size REAL]

[minimum_size REAL]

[contract_threshold REAL]

[expand_threshold REAL]

[contraction_factor REAL]

[expansion_factor REAL]

]

approx_subproblem
original_primary

| single_objective

| augmented_lagrangian_objective
| lagrangian_objective
original_constraints

| linearized_constraints
| no_constraints

]

merit_function

penalty merit

| adaptive_penalty_merit
| lagrangian_merit

| augmented_lagrangian_merit
]

acceptance_logic
tr_ratio

| filter

]

constraint_relax
homotopy

]

surrogate_based_global
method_pointer ALIAS approx_method_pointer STRING

method_name ALIAS approx_method_name STRING

model_pointer ALIAS approx_model_pointer STRING

[
)

replace_points]

dot_frcg

linear_inequality_constraint_matrix REALLIST]
linear_inequality_lower_bounds REALLIST]
linear_inequality_upper_bounds REALLIST]
linear_inequality_scale_types STRINGLIST]
linear_inequality_scales REALLIST]
linear_equality_constraint_matrix REALLIST]
linear_equality_targets REALLIST]
linear_equality_scale_types STRINGLIST]
linear_equality_scales REALLIST]
model_pointer STRING]

4.4. INPUT SPEC SUMMARY

| dot_mmfd

| dot_bfgs

| dot_slp

| dot_sgp

|

(dot

frcg

| mmfd

| bfgs

| slp

| sgp

[linear_inequality_constraint_matrix REALLIST]
[linear_inequality_lower_bounds REALLIST]
[linear_inequality_upper_bounds REALLIST]
[linear_inequality_scale_types STRINGLIST]
[linear_inequality_scales REALLIST]

[linear_equality_constraint_matrix REALLIST]
[linear_equality_targets REALLIST]

[linear_equality_scale_types STRINGLIST]

[linear_equality_scales REALLIST]

[model_pointer STRING]

)

conmin_frcg
[linear_inequality_constraint_matrix REALLIST]
[linear_inequality_lower_bounds REALLIST]

[linear_inequality_upper_bounds REALLIST]

[linear_inequality_scale_types STRINGLIST]

[linear_inequality_scales REALLIST]

[linear_equality_constraint_matrix REALLIST]

[linear_equality_targets REALLIST]

[linear_equality_scale_types STRINGLIST]

[linear_equality_scales REALLIST]

[model_pointer STRING]

)

| conmin_mfd

(conmin
frcg
| mfd
[linear_inequality_constraint_matrix REALLIST]
[linear_inequality_lower_bounds REALLIST]
[linear_inequality_upper_bounds REALLIST]
[linear_inequality_scale_types STRINGLIST]
[linear_inequality_scales REALLIST]
[linear_equality_constraint_matrix REALLIST]
[linear_equality_targets REALLIST]
[linear_equality_scale_types STRINGLIST]
[linear_equality_scales REALLIST]
[model_pointer STRING]
)

(dl_solver STRING
[linear_inequality_constraint_matrix REALLIST]
[linear_inequality_lower_bounds REALLIST]
[linear_inequality_upper_bounds REALLIST]
[linear_inequality_scale_types STRINGLIST]
[linear_inequality_scales REALLIST]
[linear_equality_constraint_matrix REALLIST]
[linear_equality_targets REALLIST]
[linear_equality_scale_types STRINGLIST]
[linear_equality_scales REALLIST]

CHAPTER 4. DAKOTA INPUT SPECIFICATION

[model_pointer STRING]
)

(npsol_sgp

verify_level INTEGER]

function_precision REAL]
linesearch_tolerance REAL]
linear_inequality_constraint_matrix REALLIST]
linear_inequality_lower_bounds REALLIST]
linear_inequality_upper_bounds REALLIST]
linear_inequality_scale_types STRINGLIST]
linear_inequality_scales REALLIST]
linear_equality_constraint_matrix REALLIST]
linear_equality_targets REALLIST]
linear_equality_scale_types STRINGLIST]
linear_equality_scales REALLIST]
model_pointer STRING]

)
| nlssol_sgp

(stanford
npsol
| nlssol
[verify_ level INTEGER]
[function_precision REAL]
[linesearch_tolerance REAL]
[linear_inequality_constraint_matrix REALLIST]
[linear_inequality_lower_bounds REALLIST]
[linear_inequality_upper_bounds REALLIST]
[linear_inequality_scale_types STRINGLIST]
[linear_inequality_scales REALLIST]
[linear_equality_constraint_matrix REALLIST]
[linear_equality_targets REALLIST]
[linear_equality_scale_types STRINGLIST]
[linear_equality_scales REALLIST]
[model_pointer STRING]
)

nlpgl_sgp
[linear_inequality_constraint_matrix REALLIST]
[linear_inequality_lower_bounds REALLIST]
[linear_inequality_upper_bounds REALLIST]
[linear_inequality_scale_types STRINGLIST]
[linear_inequality_scales REALLIST]
[linear_equality_constraint_matrix REALLIST]
[linear_equality_targets REALLIST]
[linear_equality_scale_types STRINGLIST]
[linear_equality_scales REALLIST]
[model_pointer STRING]

)
|
(optpp_cg
max_step REAL]
gradient_tolerance REAL]
linear_inequality_constraint_matrix REALLIST]
linear_inequality_lower_bounds REALLIST]
linear_inequality_upper_bounds REALLIST]
linear_inequality_scale_types STRINGLIST]
linear_inequality_scales REALLIST]
linear_equality_constraint_matrix REALLIST]
linear_equality_targets REALLIST]
linear_equality_scale_types STRINGLIST]

4.4. INPUT SPEC SUMMARY

[

[

)
\

linear_equality_scales REALLIST]
model_pointer STRING]

(optpp_g_newton

\
\
[

optpp_fd_newton

optpp_g_newton

optpp_newton

search_method

value_based_line_search

| gradient_based_line_search

| trust_region

| tr_pds

1

merit_function

el_bakry

| argaez_tapia

| van_shanno

]

steplength_to_boundary REAL]
centering_parameter REAL]

max_step REAL]

gradient_tolerance REAL]
linear_inequality_constraint_matrix REALLIST]
linear_inequality_lower_bounds REALLIST]
linear_inequality_upper_bounds REALLIST]
linear_inequality_scale_types STRINGLIST]
linear_inequality_scales REALLIST]
linear_equality_constraint_matrix REALLIST]
linear_equality_targets REALLIST]
linear_equality_scale_types STRINGLIST]
linear_equality_scales REALLIST]
model_pointer STRING]

(optpp_pds

search_scheme_size INTEGER]
linear_inequality_constraint_matrix REALLIST]
linear_inequality_lower_bounds REALLIST]
linear_inequality_upper_bounds REALLIST]
linear_inequality_scale_types STRINGLIST]
linear_inequality_scales REALLIST]
linear_equality_constraint_matrix REALLIST]
linear_equality_targets REALLIST]
linear_equality_scale_types STRINGLIST]
linear_equality_scales REALLIST]
model_pointer STRING]

(asynch_pattern_search ALIAS coliny_apps

[

[
[
[
[

initial_delta REAL]
contraction_factor REAL]
threshold_delta REAL]
solution_target ALIAS solution_accuracy REAL]
synchronization

blocking

| nonblocking

]

merit_function

merit_max

| merit_max_smooth

| meritl

33

CHAPTER 4. DAKOTA INPUT SPECIFICATION

| meritl_smooth

| merit2

| merit2_smooth

| merit2_squared

]

constraint_penalty REAL]

smoothing_factor REAL]
linear_inequality_constraint_matrix REALLIST]
linear_inequality_lower_bounds REALLIST]
linear_inequality_upper_bounds REALLIST]
linear_inequality_scale_types STRINGLIST]
linear_inequality_scales REALLIST]
linear_equality_constraint_matrix REALLIST]
linear_equality_targets REALLIST]
linear_equality_scale_types STRINGLIST]
linear_equality_scales REALLIST]
model_pointer STRING]

|
(mesh_adaptive_search

[function_precision REAL]
seed INTEGER > 0]
history_file STRING]
display_format STRING]
variable_neighborhood_search REAL]
neighbor_order INTEGER > 0]
display_all_evaluations]
linear_inequality_constraint_matrix REALLIST]
linear_inequality_lower_bounds REALLIST]
linear_inequality_upper_bounds REALLIST]
linear_inequality_scale_types STRINGLIST]
linear_inequality_scales REALLIST]
linear_equality_constraint_matrix REALLIST]
linear_equality_targets REALLIST]
linear_equality_scale_types STRINGLIST]
linear_equality_scales REALLIST]
model_pointer STRING]

|
(moga
[fitness_type
layer_rank
| domination_count
]
[replacement_type
elitist
| roulette_wheel
| unique_roulette_wheel
I
(below_limit REAL
[shrinkage_fraction ALIAS shrinkage_percentage REAL]
)
1
[niching_type
radial REALLIST
| distance REALLIST
|
(max_designs REALLIST
[num_designs INTEGER >= 2]
)
]

[convergence_type

4.4. INPUT SPEC SUMMARY

metric_tracker
[percent_change REAL]
[num_generations INTEGER >= 0]
]
postprocessor_type
orthogonal_distance REALLIST
1
population_size INTEGER >= 0]
log_file STRING]
print_each_pop]
initialization_type
simple_random
| unique_random
| flat_file STRING
]
crossover_type
multi_point_binary INTEGER
| multi_point_parameterized_binary INTEGER
| multi_point_real INTEGER
|
(shuffle_random
[num_parents INTEGER > 0]
[num_offspring INTEGER > 0]
)
[crossover_rate REAL]
]
[mutation_type
bit_random
| replace_uniform
|
(offset_normal
| offset_cauchy
| offset_uniform
[mutation_scale REAL]
)
[mutation_rate REAL]
1
seed INTEGER > 0]
linear_inequality_constraint_matrix REALLIST]
linear_inequality_lower_bounds REALLIST]
linear_inequality_upper_bounds REALLIST]
linear_inequality_scale_types STRINGLIST]
linear_inequality_scales REALLIST]
linear_equality_constraint_matrix REALLIST]
linear_equality_targets REALLIST]
linear_equality_scale_types STRINGLIST]
linear_equality_scales REALLIST]
model_pointer STRING]

|
(soga
[fitness_type
merit_function
[constraint_penalty REAL]
1
[replacement_type
elitist
| favor_feasible
| roulette_wheel
| unique_roulette_wheel
]

[convergence_type

35

36

CHAPTER 4. DAKOTA INPUT SPECIFICATION

(best_fitness_tracker
[percent_change REAL]
[num_generations INTEGER >= 0]
)
I
(average_fitness_tracker
[percent_change REAL]
[num_generations INTEGER >= 0]
)
]
population_size INTEGER >= 0]
log_file STRING]
print_each_pop]
initialization_type
simple_random
| unique_random
| flat_file STRING
]
[crossover_type
multi_point_binary INTEGER
| multi_point_parameterized_binary INTEGER
| multi_point_real INTEGER
I
(shuffle_random
[num_parents INTEGER > 0]
[num_offspring INTEGER > 0]
)
[crossover_rate REAL]
]
mutation_type
bit_random
| replace_uniform

(offset_normal

| offset_cauchy

| offset_uniform

[mutation_scale REAL]

)
[mutation_rate REAL]
]
seed INTEGER > 0]
linear_inequality_constraint_matrix REALLIST]
linear_inequality_lower_bounds REALLIST]
linear_inequality_upper_bounds REALLIST]
linear_inequality_scale_types STRINGLIST]
linear_inequality_scales REALLIST]
linear_equality_constraint_matrix REALLIST]
linear_equality_targets REALLIST]
linear_equality_scale_types STRINGLIST]
linear_equality_scales REALLIST]
model_pointer STRING]

\

(coliny_pattern_search
constant_penalty]
no_expansion]
expand_after_success INTEGER]
pattern_basis

coordinate

simplex

[
[
[
[

]

[stochastic]

4.4. INPUT SPEC SUMMARY

[total_pattern_size INTEGER]
[exploratory_moves

multi_step

| adaptive_pattern

| basic_pattern

]
[synchronization
blocking
| nonblocking
]
contraction_factor REAL]
constraint_penalty REAL]
initial_delta REAL]
threshold_delta REAL]
solution_target ALIAS solution_accuracy REAL]
seed INTEGER > 0]
show_misc_options]
misc_options STRINGLIST]
model_pointer STRING]

(coliny_solis_wets
contract_after_failure INTEGER]
no_expansion]
expand_after_success INTEGER]
constant_penalty]
contraction_factor REAL]
constraint_penalty REAL]
initial_delta REAL]
threshold_delta REAL]
solution_target ALIAS solution_accuracy REAL]
seed INTEGER > 0]
show_misc_options]

misc_options STRINGLIST]
model_pointer STRING]

(coliny_cobyla
[initial_delta REAL]
[threshold_delta REAL]
[solution_target ALIAS solution_accuracy REAL]
[seed INTEGER > 0]
[show_misc_options]
[misc_options STRINGLIST]
[model_pointer STRING]
)

(coliny_direct

[division
major_dimension
| all_dimensions
]
global_balance_parameter REAL]
local_balance_parameter REAL]
max_boxsize_limit REAL]
min_boxsize_limit REAL]
constraint_penalty REAL]
solution_target ALIAS solution_accuracy REAL]
seed INTEGER > 0]
show_misc_options]
misc_options STRINGLIST]
model_pointer STRING]

38

(coliny_ea

[
[

population_size INTEGER > 0

initialization_type
simple_random

| unique_random

| flat_file STRING
]

fitness_type
linear_rank

| merit_function

]

replacement_type
random INTEGER

| chc INTEGER

| elitist INTEGER

[new_solutions_generated INTEGER]

]
crossover_rate REAL
crossover_type
two_point
| blend
| uniform
]
mutation_rate REAL]
mutation_type
replace_uniform
\
(offset_normal

| offset_cauchy

offset_uniform

|
[mutation_scale REAL
[mutation_range INTEGER]

)
[non_adaptive]

]

]

]

constraint_penalty REAL]
solution_target ALIAS solution_accuracy REAL]

seed INTEGER > 0]
show_misc_options]

misc_options STRINGLIST
model_pointer STRING]

(coliny_beta

beta_solver_name STRING

[
[
[
[
[

)

]

]

CHAPTER 4. DAKOTA INPUT SPECIFICATION

solution_target ALIAS solution_accuracy REAL]

seed INTEGER > 0]
show_misc_options]

misc_options STRINGLIST
model_pointer STRING]

(nl2sol
function_precision REAL]

[
[
[
[
[
[
[

absolute_conv_tol REAL

x_conv_tol REAL]

]

singular_conv_tol REAL]

singular_radius REAL]

false_conv_tol REAL

initial_trust_radius REAL

]

]

]

4.4. INPUT SPEC SUMMARY

[covariance INTEGER]

[regression_diagnostics]
[model_pointer STRING]

)

(nonlinear_cg
[misc_options STRINGLIST]
[model_pointer STRING]
)

(ncsu_direct
[solution_target ALIAS solution_accuracy REAL]
[min_boxsize_limit REAL]
[volume_boxsize_limit REAL]
[model_pointer STRING]
)

(genie_opt_darts
| genie_direct
[seed INTEGER > 0]
[model_pointer STRING]
)

(efficient_global
[gaussian_process ALIAS kriging
surfpack
| dakota
]
use_derivatives]
[import_points_file STRING
[annotated
I
(custom_annotated
[header]
[eval_id]
[interface_id]

]

\
(freeform
[active_only 1]
]
[export_points_file STRING
[annotated
I
(custom_annotated
[header]
[eval_id]
[interface_id]
]
|
(freeform
]
[seed INTEGER > 0]
model_pointer STRING]

|
(polynomial_chaos ALIAS nond_polynomial_chaos
[p_refinement
uniform
I
(dimension_adaptive
sobol

39

40

]

| decay
| generalized

)

askey
wiener]
quadrature_order INTEGERLIST

(

(
\
)

dimension_preference REALLIST]
nested
non_nested]

sparse_grid_level INTEGERLIST

[
\
(
[
[
)

restricted

unrestricted]
dimension_preference REALLIST]
nested

non_nested]

cubature_integrand INTEGER

expansion_order INTEGERLIST

[

dimension_preference REALLIST]
basis_type

tensor_product

| total_order

|

(adapted

advancements INTEGER]
soft_convergence_limit INTEGER]

1

collocation_points INTEGERLIST
| collocation_ratio REAL
[ratio_order REAL]

[(least_squares

[svd

| equality_constrained]
)
|
(

orthogonal_matching_pursuit ALIAS omp
noise_tolerance REALLIST]

| basis_pursuit ALIAS bp

|

(basis_pursuit_denoising ALIAS bpdn
noise_tolerance REALLIST]

|
(least_angle_regression ALIAS lars
noise_tolerance REALLIST]

|

(least_absolute_shrinkage ALIAS lasso
noise_tolerance REALLIST]

12_penalty REAL]

cross_validation]

use_derivatives]

tensor_grid]

reuse_points ALIAS reuse_samples]

CHAPTER 4. DAKOTA INPUT SPECIFICATION

4.4. INPUT SPEC SUMMARY

(expansion_samples INTEGERLIST
[reuse_points ALIAS reuse_samples]
[incremental_lhs]
)

[import_points_file STRING

[annotated

|

(custom_annotated

header]

eval_id]

interface_id]

|
(freeform

[active_only]
]

orthogonal_least_interpolation ALIAS least_interpolation ALIAS oli
collocation_points INTEGERLIST

[cross_validation]

[tensor_grid INTEGERLIST]

[reuse_points ALIAS reuse_samples]
[import_points_file STRING

[annotated

|

(custom_annotated

header]

eval_id]

interface_id]

|
(freeform

[active_only]
]

)
import_expansion_file STRING
[variance_based_decomp
[interaction_order INTEGER > 0]
[drop_tolerance REAL]
]
diagonal_covariance
full_covariance]
normalized]
sample_type
lhs
| random
]
[probability_refinement ALIAS sample_refinement
import
| adapt_import
| mm_adapt_import
[refinement_samples INTEGER]
1
[export_points_file STRING
[annotated
|
(custom_annotated
[header]
[eval_id]
[interface_id]

41

42 CHAPTER 4. DAKOTA INPUT SPECIFICATION

\
(freeform
]
export_expansion_file STRING]
fixed_seed]
reliability_levels REALLIST
[num_reliability_levels INTEGERLIST]
]
[response_levels REALLIST
[num_response_levels INTEGERLIST]
[compute
probabilities
| reliabilities
| gen_reliabilities
[system
series
| parallel
]

1
[distribution
cumulative
| complementary
]
[probability_ levels REALLIST
[num_probability_levels INTEGERLIST]
]
[gen_reliability_levels REALLIST
[num_gen_reliability_levels INTEGERLIST]
]
[rng
mt19937
| rnum2
]
samples INTEGER]
seed INTEGER > 0]
model_pointer STRING]

|
(stoch_collocation ALIAS nond_stoch_collocation
[(p_refinement
uniform
|
(dimension_adaptive
sobol
| generalized

)

(h_refinement
uniform
I
(dimension_adaptive
sobol
| generalized
)
| local_adaptive
]
[piecewise
askey
wiener]

4.4. INPUT SPEC SUMMARY

quadrature_order INTEGERLIST
|
(sparse_grid_level INTEGERLIST
[restricted
| unrestricted]
[nodal
| hierarchical]
)
dimension_preference REALLIST]
use_derivatives]
nested
non_nested]
variance_based_decomp
[interaction_order INTEGER > 0]
[drop_tolerance REAL]
]
diagonal_covariance
full_covariance]
sample_type
lhs
| random
]
probability_refinement ALIAS sample_refinement
import
| adapt_import
| mm_adapt_import
[refinement_samples INTEGER]
]
export_points_file STRING
[annotated
|
(custom_annotated
[header]
[eval_id]
[interface_id]

]

I
(freeform
]
fixed_seed]
reliability_levels REALLIST
[num_reliability_levels INTEGERLIST]
]
[response_levels REALLIST
[num_response_levels INTEGERLIST]
[compute
probabilities
| reliabilities
| gen_reliabilities
[system
series
| parallel
1

1
[distribution
cumulative
| complementary
]
[probability_ levels REALLIST
[num_probability_levels INTEGERLIST]
1

44

\
(

CHAPTER 4. DAKOTA INPUT SPECIFICATION

gen_reliability_levels REALLIST

[num_gen_reliability_levels INTEGERLIST]
]

rng

mt19937

| rnum2

1

samples INTEGER]

seed INTEGER > 0]

model_pointer STRING]

sampling ALIAS nond_sampling

[

sample_type
random
| lhs
|
(incremental_lhs
| incremental_random
previous_samples INTEGER
)
]
variance_based_decomp
[drop_tolerance REAL]
]
backfill]
fixed_seed]
reliability_levels REALLIST
[num_reliability_levels INTEGERLIST]
1
response_levels REALLIST
[num_response_levels INTEGERLIST]
[compute
probabilities
| reliabilities
| gen_reliabilities
[system
series
| parallel
]

]

distribution

cumulative

| complementary

1

probability_levels REALLIST

[num_probability_levels INTEGERLIST]
]

gen_reliability_levels REALLIST

[num_gen_reliability_levels INTEGERLIST]
]

rng

mt19937

| rnum2

]

samples INTEGER]

seed INTEGER > 0]

model_pointer STRING]

(importance_sampling ALIAS nond_importance_sampling

4.4. INPUT SPEC SUMMARY

import
| adapt_import
| mm_adapt_import
[refinement_samples INTEGER]
[response_levels REALLIST
[num_response_levels INTEGERLIST]
[compute
probabilities
| gen_reliabilities
[system
series
| parallel
]

]
[distribution
cumulative
| complementary
]
[probability_levels REALLIST
[num_probability_levels INTEGERLIST]
]
[gen_reliability_levels REALLIST
[num_gen_reliability_ levels INTEGERLIST]
]
[rng
mt19937
| rnum2
]
samples INTEGER]
seed INTEGER > 0]
[model_pointer STRING]

|
(gpais ALIAS gaussian_process_adaptive_importance_sampling
[emulator_samples INTEGER]
[import_points_file STRING
[annotated
I
(custom_annotated
[header]
[eval_id]
[interface_id]
]
\
(freeform
[active_only 1]
]
[export_points_file STRING
[annotated
I
(custom_annotated
[header]
[eval_id]
[interface_id]
]
|
(freeform
]
[response_levels REALLIST
[num_response_levels INTEGERLIST]
[compute

45

46 CHAPTER 4. DAKOTA INPUT SPECIFICATION

probabilities
| gen_reliabilities
[system

series

| parallel

]

]

distribution

cumulative

| complementary

]

[probability_levels REALLIST
[num_probability_levels INTEGERLIST]
]

[gen_reliability_levels REALLIST
[num_gen_reliability_levels INTEGERLIST]
]

[rng

mt19937

| rnum?2

]

samples INTEGER]

seed INTEGER > 0]

model_pointer STRING]

|

(adaptive_sampling ALIAS nond_adaptive_sampling
[emulator_samples INTEGER]
[fitness_metric

predicted_variance

| distance

| gradient

]

batch_selection

naive

| distance_penalty

| topology

| constant_liar

]

[batch_size INTEGER]

import_points_file STRING

[annotated

I

(custom_annotated
[header]
[eval_id]
[interface_id]

]

\

(freeform

[active_only 1]

]

[export_points_file STRING

[annotated

\

(custom_annotated
[header]
[eval_id]
[interface_id]

]

4.4. INPUT SPEC SUMMARY

(freeform
]
[response_levels REALLIST
[num_response_levels INTEGERLIST]
[compute
probabilities
| gen_reliabilities
[system

series

| parallel

]

]
[misc_options STRINGLIST]
[distribution
cumulative
| complementary
]
[probability_levels REALLIST
[num_probability_levels INTEGERLIST]
1
[gen_reliability_levels REALLIST
[num_gen_reliability_levels INTEGERLIST]
]
[rng
mt19937
| rnum2
]
samples INTEGER]
seed INTEGER > 0]
model_pointer STRING]

\
(pof_darts ALIAS nond_pof_darts
[lipschitz
local
| global
]
[emulator_samples INTEGER]
[response_levels REALLIST
[num_response_levels INTEGERLIST]
[compute
probabilities
| gen_reliabilities
[system
series
| parallel
]

]
[distribution
cumulative
| complementary
]
[probability_levels REALLIST
[num_probability_levels INTEGERLIST]
]
[gen_reliability_levels REALLIST
[num_gen_reliability_ levels INTEGERLIST]
1
[rng
mt19937

47

CHAPTER 4. DAKOTA INPUT SPECIFICATION

| rnum2
]
[samples INTEGER]
[seed INTEGER > 0]
[model_pointer STRING]
)
|
(efficient_subspace ALIAS nond_efficient_subspace
[emulator_samples INTEGER]
[batch_size INTEGER]
[distribution
cumulative
| complementary
1
[probability_levels REALLIST
[num_probability_levels INTEGERLIST]
]
[gen_reliability_levels REALLIST
[num_gen_reliability_levels INTEGERLIST]
]
[rng
mt19937
| rnum2
]
samples INTEGER]
seed INTEGER > 0]
model_pointer STRING]

|
(global_evidence ALIAS nond_global_evidence
[sbo
| ego
[gaussian_process ALIAS kriging
surfpack
| dakota
]
use_derivatives]
[import_points_file STRING
[annotated
|
(custom_annotated
header]
eval_id]
interface_id]

|

(freeform

[active_only]

]
[export_points_file STRING
[annotated
|
(custom_annotated
header]
eval_id]
interface_id]

(freeform

4.4. INPUT SPEC SUMMARY

| lhs]
[response_levels REALLIST
[num_response_levels INTEGERLIST]
[compute
probabilities
| gen_reliabilities
[system
series
| parallel
]

]
[distribution
cumulative
| complementary
]
[probability_levels REALLIST
[num_probability_levels INTEGERLIST]
]
[gen_reliability_levels REALLIST
[num_gen_reliability_levels INTEGERLIST]
]
[rng
mt19937
| rnum2
]
[samples INTEGER]
seed INTEGER > 0]
[model_pointer STRING]

|
(global_interval_est ALIAS nond_global_interval_est
[sbo
| ego
[gaussian_process ALIAS kriging
surfpack
| dakota
]
[use_derivatives]
[import_points_file STRING
[annotated
|
(custom_annotated
header]
eval_id]
interface_id]

|

(freeform

[active_only]

]
[export_points_file STRING
[annotated
|
(custom_annotated
header]
eval_id]
interface_id]

|
(freeform

1

49

50 CHAPTER 4. DAKOTA INPUT SPECIFICATION

]
| ea
| lhs]
[rng
mt19937
| rnum2
]
samples INTEGER]
seed INTEGER > 0]
model_pointer STRING]

|
(bayes_calibration ALIAS nond_bayes_calibration
(queso
[emulator
(gaussian_process ALIAS kriging
surfpack
| dakota
[emulator_samples INTEGER]
[posterior_adaptive]
[import_points_file STRING
[annotated
|
(custom_annotated
[header]
[eval_id]
[interface_id]

]

|
(freeform

[active_only]
]

[export_points_file STRING
[annotated
|
(custom_annotated
[header]
[eval_id]
[interface_id]

]

(freeform

|
(pce
sparse_grid_level INTEGERLIST
|
(expansion_order INTEGERLIST
collocation_ratio REAL
[posterior_adaptive]

)

|
(sc
sparse_grid_level INTEGERLIST
)
[use_derivatives]
]
[logit_transform]
[dram
| delayed_rejection

4.4. INPUT SPEC SUMMARY

| adaptive_metropolis
| metropolis_hastings
| multilevel]
[rng
mt19937
| rnum2
]
[proposal_covariance
(derivatives
[proposal_updates INTEGER]

| prior
|
(values REALLIST
diagonal
| matrix
)

|

(filename STRING
diagonal
| matrix

)

gpmsa
emulator_samples INTEGER

[import_points_file STRING
[annotated

|

(custom_annotated

header]

eval_id]

interface_id]

|
(freeform

[active_only]
]

[export_points_file STRING
[annotated

|

(custom_annotated

header]

eval_id]

interface_id]

|

(freeform

]

dram
delayed_rejection
adaptive_metropolis
metropolis_hastings
multilevel]

rng

mt19937

| rnum2

]
[proposal_covariance

(derivatives

[proposal_updates INTEGER]

52

[
(

| prior
|
(values REALLIST

diagonal

[
)

matrix

|
(filename STRING

diagonal

[
)

matrix

dream

[
(
[
[
[
[

chains INTEGER >= 3
num_cr INTEGER >= 1

crossover_chain_pairs INTEGER >= 0
gr_threshold REAL > 0.0
jump_step INTEGER >= 0

emulator

(gaussian_process ALIAS kriging

surfpack

[
[
[

[export_points_file STRING

sparse_grid_level INTEGERLIST

(expansion_order INTEGERLIST
collocation_ratio REAL

dakota

emulator_samples INTEGER]

posterior_adaptive]

import_points_file STRING

[annotated

|

(custom_annotated
[header]

[eval_id]

[interface_id]

]

|
(freeform

[active_only]
]

[annotated

|

(custom_annotated
[header]
[eval_id]
[interface_id]

]
(freeform
|

(pce

[posterior_adaptive

]
]

]

CHAPTER 4. DAKOTA INPUT SPECIFICATION

4.4. INPUT SPEC SUMMARY

sparse_grid_level INTEGERLIST
)

[use_derivatives]

]
)
standardized_space]
likelihood_scale REAL]
calibrate_sigma]
samples INTEGER]
seed INTEGER > 0]
model_pointer STRING]

(dace

grid

| random
oas
lhs
oa_lhs
box_behnken
central_composite
main_effects]
quality_metrics]
variance_based_decomp
[drop_tolerance REAL]
]
fixed_seed]
symbols INTEGER]
samples INTEGER]
seed INTEGER > 0]
model_pointer STRING]

(fsu_cvt
[latinize]
[quality_metrics]
[variance_based_decomp
[drop_tolerance REAL]
]
[fixed_seed]
trial_type
grid
| halton
| random
]
num_trials INTEGER]
samples INTEGER]
seed INTEGER > 0]
model_pointer STRING]

psuade_moat

[partitions INTEGERLIST]
[samples INTEGER]

[seed INTEGER > 0]

[model _pointer STRING]

)

|

(local_evidence ALIAS nond_local_evidence
[sap

| nip]

[response_levels REALLIST

53

54 CHAPTER 4. DAKOTA INPUT SPECIFICATION

[num_response_levels INTEGERLIST]
[compute
probabilities
| gen_reliabilities
[system
series
| parallel
]

]
[probability_levels REALLIST
[num_probability_levels INTEGERLIST]
]
[gen_reliability_levels REALLIST
[num_gen_reliability_levels INTEGERLIST]
]
[distribution
cumulative
| complementary
]
[model_pointer STRING]

|
(local_interval_est ALIAS nond_local_interval_est

[sagp

| nip]

[model_pointer STRING]

)
|
(local_reliability ALIAS nond_local_reliability

[mpp_search

x_taylor_mean
| u_taylor_mean

| x_taylor_mpp
| u_taylor_mpp
| x_two_point
| u_two_point
| no_approx
[sap
| nip]
[integration

first_order

| second_order

[probability_refinement ALIAS sample_refinement
import
| adapt_import
| mm_adapt_import
[refinement_samples INTEGER]
[seed INTEGER > 0]
]

]

[response_levels REALLIST
[num_response_levels INTEGERLIST]
[compute

probabilities
| reliabilities
| gen_reliabilities
[system
series
| parallel
1

4.4. INPUT SPEC SUMMARY

]
[reliability_levels REALLIST
[num_reliability_levels INTEGERLIST]
]
[distribution
cumulative
| complementary
]
[probability_ levels REALLIST
[num_probability_levels INTEGERLIST]
]
[gen_reliability_levels REALLIST
[num_gen_reliability_levels INTEGERLIST]
]
[model_pointer STRING]

(global_reliability ALIAS nond_global_reliability
x_gaussian_process ALIAS x_kriging
| u_gaussian_process ALIAS u_kriging
[surfpack
| dakota]
[import_points_file STRING
[annotated
I
(custom_annotated
[header]
[eval_id]
[interface_id]
]
|
(freeform
[active_only 1]
]
[export_points_file STRING
[annotated
\
(custom_annotated
[header]
[eval_id]
[interface_id]
]
I
(freeform
1
[use_derivatives]
seed INTEGER > 0]
rng
mt19937
| rnum2
]
[response_levels REALLIST
[num_response_levels INTEGERLIST]
[compute
probabilities
| gen_reliabilities
[system
series
| parallel
]

55

56 CHAPTER 4. DAKOTA INPUT SPECIFICATION

]
[distribution
cumulative
| complementary
]
[probability_levels REALLIST
[num_probability_levels INTEGERLIST]
]
gen_reliability_levels REALLIST
[num_gen_reliability_levels INTEGERLIST]
]
model_pointer STRING]

(fsu_quasi_mc

halton

| hammersley

[latinize]

[quality_metrics]

[variance_based_decomp
[drop_tolerance REAL]
]
samples INTEGER]
fixed_sequence]
sequence_start INTEGERLIST]
sequence_leap INTEGERLIST]
prime_base INTEGERLIST]
model_pointer STRING]

vector_parameter_study
final_point REALLIST

| step_vector REALLIST
num_steps INTEGER

[model_pointer STRING]
)

list_parameter_study
list_of_points REALLIST
|
(import_points_file STRING
[annotated
|
(custom_annotated
[header]
[eval_id 1
[interface_id]
]
I
(freeform
[active_only 1]
)
[model_pointer STRING]
)

centered_parameter_study

step_vector REALLIST

steps_per_variable ALIAS deltas_per_variable INTEGERLIST
[model_pointer STRING]

)

\

(multidim_parameter_study

4.4. INPUT SPEC SUMMARY

partitions INTEGERLIST
[model_pointer STRING]
)
|
(richardson_extrap
estimate_order
| converge_order
converge_qgoi
refinement_rate REAL]
model_pointer STRING]

KEYWORD model

[id_model STRING]

[variables_pointer STRING]

[responses_pointer STRING]

[hierarchical_tagging]

(single
[interface_pointer STRING]
)

(surrogate
[id_surrogates INTEGERLIST]
(global
(gaussian_process ALIAS kriging
(dakota
[point_selection]
[trend
constant
| linear
| reduced_quadratic

1

|
(surfpack
[trend
constant
| linear
| reduced_quadratic
| quadratic
]
[optimization_method STRING]
[max_trials INTEGER > 0]
[nugget REAL > 0
| find_nugget INTEGER]
[correlation_lengths REALLIST]
[export_model_file STRING]
)

|
(mars
[max_bases INTEGER]
[interpolation
linear
| cubic
]
[export_model_file STRING]
)
|
(moving_least_squares
[poly_order INTEGER]
[weight_function INTEGER]

57

58

CHAPTER 4. DAKOTA INPUT SPECIFICATION

[export_model_file STRING]

)
\
(neural_network

[max_nodes ALIAS nodes INTEGER]
range REAL]
random_weight INTEGER]
export_model_file STRING]

I
(radial_basis

[bases INTEGER]
max_pts INTEGER]
min_partition INTEGER]
max_subsets INTEGER]
export_model_file STRING]

|
(polynomial
linear
| quadratic
| cubic
[export_model_file STRING]
)
[piecewise_decomposition
[cell_type STRING]
[support_layers INTEGER]
[discontinuity_detection
jump_threshold REAL
| gradient_threshold REAL
]
1
total_points INTEGER
minimum_points
recommended_points]
dace_method_pointer STRING
actual_model_pointer STRING]
reuse_points ALIAS reuse_samples
all
| region
| none
]
[import_points_file ALIAS samples_file STRING
[annotated
|
(custom_annotated
[header]
[eval_id]
[
]

interface_id]

|

(freeform

[active_only]

]
[export_points_file STRING
[annotated
|
(custom_annotated
header]
eval_id]
interface_id]

4.4. INPUT SPEC SUMMARY

|
(freeform
]
use_derivatives]
[correction
zeroth_order
| first_order
| second_order
additive
| multiplicative
| combined
]
[metrics ALIAS diagnostics STRINGLIST
[cross_validation
[folds INTEGER
| percent REAL]

[press |
]
[challenge_points_file STRING
[annotated
|
(custom_annotated
header]
eval_id]
interface_id]

freeform
active_only]

multipoint

tana

actual_model_pointer STRING
)

local

taylor_series
actual_model_pointer STRING
)

hierarchical
low_fidelity_model_pointer STRING
high_fidelity_model_pointer STRING
(correction

zeroth_order

| first_order

| second_order

additive

| multiplicative

| combined

)

|
(nested
[optional_interface_pointer STRING
[optional_interface_responses_pointer STRING]
]
(sub_method_pointer STRING

60 CHAPTER 4. DAKOTA INPUT SPECIFICATION

[iterator_servers INTEGER > 0]

[iterator_scheduling

master

| peer

]

processors_per_iterator INTEGER > 0]
primary_variable_mapping STRINGLIST]
secondary_variable_mapping STRINGLIST]
primary_response_mapping REALLIST]
secondary_response_mapping REALLIST]

KEYWORD12 variables
[id_variables STRING]
[active
all
| design
uncertain
aleatory
epistemic
state

| relaxed]

[continuous_design INTEGER > 0
initial_point ALIAS cdv_initial_point REALLIST]
lower_bounds ALIAS cdv_lower_bounds REALLIST]
upper_bounds ALIAS cdv_upper_bounds REALLIST]
scale_types ALIAS cdv_scale_types STRINGLIST]
scales ALIAS cdv_scales REALLIST]
descriptors ALIAS cdv_descriptors STRINGLIST]

initial_point ALIAS ddv_initial_point INTEGERLIST]
lower_bounds ALIAS ddv_lower_bounds INTEGERLIST]
upper_bounds ALIAS ddv_upper_bounds INTEGERLIST]
descriptors ALIAS ddv_descriptors STRINGLIST]

iscrete_design_set
integer INTEGER > 0
[elements_per_variable ALIAS num_set_values INTEGERLIST]
elements ALIAS set_values INTEGERLIST
[categorical STRINGLIST
[adjacency_matrix INTEGERLIST]
1
[initial_point INTEGERLIST]
[descriptors STRINGLIST]
]
[string INTEGER > 0
[elements_per_variable ALIAS num_set_values INTEGERLIST]
elements ALIAS set_values STRINGLIST
[adjacency_matrix INTEGERLIST]
[initial_point STRINGLIST]
[descriptors STRINGLIST]
]
[real INTEGER > O
[elements_per_variable ALIAS num_set_values INTEGERLIST]
elements ALIAS set_values REALLIST
[categorical STRINGLIST
[adjacency_matrix INTEGERLIST]
]

[
[
[
[
[
[
]
[discrete_design_range INTEGER > 0
[
[
[
[
]
d
[

4.4. INPUT SPEC SUMMARY

[initial_point REALLIST]

[descriptors STRINGLIST]

]
1
normal_uncertain INTEGER > 0
means ALIAS nuv_means REALLIST
std_deviations ALIAS nuv_std_deviations REALLIST
lower_bounds ALIAS nuv_lower_bounds REALLIST]
upper_bounds ALIAS nuv_upper_bounds REALLIST]
initial_point REALLIST]
descriptors ALIAS nuv_descriptors STRINGLIST]

ognormal_uncertain INTEGER > 0
lambdas ALIAS lnuv_lambdas REALLIST
zetas ALIAS lnuv_zetas REALLIST
)

[
[
[
[
]
1
(

means ALIAS lnuv_means REALLIST

std_deviations ALIAS lnuv_std_deviations REALLIST
| error_factors ALIAS lnuv_error_factors REALLIST
)

[lower_bounds ALIAS lnuv_lower_bounds REALLIST]

[upper_bounds ALIAS lnuv_upper_bounds REALLIST]

[initial_point REALLIST]

[descriptors ALIAS lnuv_descriptors STRINGLIST]

1

uniform_uncertain INTEGER > 0

lower_bounds ALIAS uuv_lower_bounds REALLIST
upper_bounds ALIAS uuv_upper_bounds REALLIST

[initial_point REALLIST]

[descriptors ALIAS uuv_descriptors STRINGLIST]
1

loguniform uncertain INTEGER > 0

lower_bounds ALIAS luuv_lower_bounds REALLIST
upper_bounds ALIAS luuv_upper_bounds REALLIST

[initial_point REALLIST]

[descriptors ALIAS luuv_descriptors STRINGLIST]
]

triangular_uncertain INTEGER > 0

modes ALIAS tuv_modes REALLIST

lower_bounds ALIAS tuv_lower_bounds REALLIST
upper_bounds ALIAS tuv_upper_bounds REALLIST

[initial_point REALLIST]

[descriptors ALIAS tuv_descriptors STRINGLIST]
]

exponential_uncertain INTEGER > 0

betas ALIAS euv_betas REALLIST

[initial_point REALLIST]

[descriptors ALIAS euv_descriptors STRINGLIST]
1

beta_uncertain INTEGER > 0

alphas ALIAS buv_alphas REALLIST

betas ALIAS buv_betas REALLIST

lower_bounds ALIAS buv_lower_bounds REALLIST
upper_bounds ALIAS buv_upper_bounds REALLIST

[initial_point REALLIST]

[descriptors ALIAS buv_descriptors STRINGLIST]
]

gamma_uncertain INTEGER > 0

alphas ALIAS gauv_alphas REALLIST

betas ALIAS gauv_petas REALLIST

[initial_point REALLIST]

61

62

[descriptors ALIAS gauv_des
1

gumbel_uncertain INTEGER > 0
alphas ALIAS guuv_alphas REA
betas ALIAS guuv_betas REALL
[initial_point REALLIST]

[descriptors ALIAS guuv_des
]

frechet_uncertain INTEGER >
alphas ALIAS fuv_alphas REAL
betas ALIAS fuv_betas REALLI
[initial_point REALLIST]

[descriptors ALIAS fuv_desc
]

weibull_uncertain INTEGER >
alphas ALIAS wuv_alphas REAL
betas ALIAS wuv_betas REALLI
[initial_point REALLIST]

[descriptors ALIAS wuv_desc
]

histogram_bin_uncertain INTE
[pairs_per_variable ALIAS n
abscissas ALIAS huv_bin_absc
ordinates ALIAS huv_bin_ordi
| counts ALIAS huv_bin_count
[initial_point REALLIST]

CHAPTER 4. DAKOTA INPUT SPECIFICATION

criptors STRINGLIST]

LLIST
IST

criptors STRINGLIST]

0
LIST
ST

riptors STRINGLIST]

0
LIST
ST

riptors STRINGLIST]

GER > 0

um_pairs INTEGERLIST]
issas REALLIST

nates REALLIST

s REALLIST

[descriptors ALIAS huv_bin_descriptors STRINGLIST]

]
poisson_uncertain INTEGER >
lambdas REALLIST
[initial_point INTEGERLIST
[descriptors STRINGLIST]
]
binomial_uncertain INTEGER >
probability_per_ trial ALIAS
num_trials INTEGERLIST
[initial_point INTEGERLIST
[descriptors STRINGLIST]
]
negative_binomial_uncertain
probability_per_trial ALIAS
num_trials INTEGERLIST
[initial_point INTEGERLIST
[descriptors STRINGLIST]
]
geometric_uncertain INTEGER
probability_per_trial ALIAS
[initial_point INTEGERLIST
[descriptors STRINGLIST]
1
hypergeometric_uncertain INT
total_population INTEGERLIST
selected_population INTEGERL
num_drawn INTEGERLIST
[initial_point INTEGERLIST
[descriptors STRINGLIST]
1
histogram_point_uncertain
[integer INTEGER > 0
[pairs_per_variable ALIAS
abscissas INTEGERLIST
counts REALLIST

0

]

0
prob_per_trial REALLIST

INTEGER > 0
prob_per_trial REALLIST

> 0

prob_per_trial REALLIST
1

EGER > 0

IST

]

num_pairs INTEGERLIST]

4.4. INPUT SPEC SUMMARY 63

[initial_point INTEGERLIST]
[descriptors STRINGLIST]
]
[string INTEGER > 0
[pairs_per_variable ALIAS num_pairs INTEGERLIST]
abscissas STRINGLIST
counts REALLIST
[initial_point STRINGLIST]
[descriptors STRINGLIST]
]
[real INTEGER > O
[pairs_per_variable ALIAS num_pairs INTEGERLIST]
abscissas REALLIST
counts REALLIST
[initial_point REALLIST]
[descriptors STRINGLIST]
]
1
[uncertain_correlation_matrix REALLIST]
[continuous_interval_uncertain ALIAS interval_uncertain INTEGER > 0
[num_intervals ALIAS iuv_num_intervals INTEGERLIST]
[interval_probabilities ALIAS interval_probs ALIAS iuv_interval_probs REALLIST]
lower_bounds REALLIST
upper_bounds REALLIST
[initial_point REALLIST]
[descriptors ALIAS iuv_descriptors STRINGLIST]
1
[discrete_interval_uncertain ALIAS discrete_uncertain_range INTEGER > 0
[num_intervals INTEGERLIST]
[interval_probabilities ALIAS interval_probs ALIAS range_probabilities ALIAS range_probs REALLIST]
lower_bounds INTEGERLIST
upper_bounds INTEGERLIST
[initial_point INTEGERLIST]
[descriptors STRINGLIST]
]
[discrete_uncertain_set
[integer INTEGER > 0
[elements_per_variable ALIAS num_set_values INTEGERLIST]
elements ALIAS set_values INTEGERLIST
[set_probabilities ALIAS set_probs REALLIST]
[categorical STRINGLIST]
[initial_point INTEGERLIST]
[descriptors STRINGLIST]
]

[string INTEGER > 0
[elements_per_variable ALIAS num_set_values INTEGERLIST]
elements ALIAS set_values STRINGLIST
[set_probabilities ALIAS set_probs REALLIST]
[initial_point STRINGLIST]
[descriptors STRINGLIST]
]
[real INTEGER > O
[elements_per_variable ALIAS num_set_values INTEGERLIST]
elements ALIAS set_values REALLIST
[set_probabilities ALIAS set_probs REALLIST]
[categorical STRINGLIST]
[initial_point REALLIST]
[descriptors STRINGLIST]
]

]
[continuous_state INTEGER > 0
[initial_state ALIAS csv_initial_state REALLIST]

64 CHAPTER 4. DAKOTA INPUT SPECIFICATION

lower_bounds ALIAS csv_lower_bounds REALLIST]
upper_bounds ALIAS csv_upper_bounds REALLIST]
descriptors ALIAS csv_descriptors STRINGLIST]

[
[
[
1
discrete_state_range INTEGER > 0

[initial_state ALIAS dsv_initial_state INTEGERLIST]
[lower_bounds ALIAS dsv_lower_bounds INTEGERLIST]

[upper_bounds ALIAS dsv_upper_bounds INTEGERLIST]

[descriptors ALIAS dsv_descriptors STRINGLIST]

]
d
[

iscrete_state_set
integer INTEGER > 0
[elements_per_variable ALIAS num_set_values INTEGERLIST]
elements ALIAS set_values INTEGERLIST
[categorical STRINGLIST]
[initial_state INTEGERLIST]
[descriptors STRINGLIST]
]
string INTEGER > 0
[elements_per_variable ALIAS num_set_values INTEGERLIST]
elements ALIAS set_values STRINGLIST
[initial_state STRINGLIST]
[descriptors STRINGLIST]
]
[real INTEGER > 0
[elements_per_variable ALIAS num_set_values INTEGERLIST]
elements ALIAS set_values REALLIST
[categorical STRINGLIST]
[initial_state REALLIST]
[descriptors STRINGLIST]
]

KEYWORD12 interface
[id_interface STRING]
[algebraic_mappings STRING]
[analysis_drivers STRINGLIST
[analysis_components STRINGLIST]
[input_filter STRING]
[output_filter STRING]
(system
| fork
parameters_file STRING]
results_file STRING]
allow_existing_results]
verbatim]
aprepro ALIAS dprepro]
file_tag 1
file_save]
work_directory
named STRING]
directory_tag ALIAS dir_tag]
directory_save ALIAS dir_save]
link_files STRINGLIST]
copy_files STRINGLIST]
replace]

(direct

[processors_per_analysis INTEGER > 0]
)

4.4. INPUT SPEC SUMMARY 65

matlab

|
|
(python
[numpy]
)
| scilab
| grid
[failure_capture
abort
| retry INTEGER
| recover REALLIST
| continuation
]
[deactivate
[active_set_vector]
[evaluation_cache]
[strict_cache_equality
[cache_tolerance REAL]
]

[restart_file]

]
[asynchronous
[evaluation_concurrency INTEGER > 0]
[local_evaluation_scheduling
dynamic
| static
]
[analysis_concurrency INTEGER > 0]
]
evaluation_servers INTEGER > 0]
[evaluation_scheduling
master
|
(peer
dynamic
| static
)
]
[processors_per_evaluation INTEGER > 0]
[analysis_servers INTEGER > 0]
[analysis_scheduling
master
| peer

]

KEYWORD12 responses

[id_responses STRING]

[descriptors ALIAS response_descriptors STRINGLIST]

(objective_functions ALIAS num_objective_functions INTEGER >= 0

[sense STRINGLIST]

primary_scale_types ALIAS objective_function_scale_types STRINGLIST]
primary_scales ALIAS objective_function_scales REALLIST]
weights ALIAS multi_objective_weights REALLIST]
nonlinear_inequality_constraints ALIAS num_nonlinear_inequality_constraints INTEGER >= 0
[lower_bounds ALIAS nonlinear_inequality_lower_bounds REALLIST]
[upper_bounds ALIAS nonlinear_inequality_upper_bounds REALLIST]
[scale_types ALIAS nonlinear_inequality_scale_types STRINGLIST]
[
1

[
[
[
[

scales ALIAS nonlinear_inequality_scales REALLIST]

[nonlinear_equality_constraints ALIAS num_nonlinear_equality_constraints INTEGER >= 0
[targets ALIAS nonlinear_equality_targets REALLIST]

66

[
[

CHAPTER 4. DAKOTA INPUT SPECIFICATION

[scale_types ALIAS nonlinear_equality_scale_types STRINGLIST]
[scales ALIAS nonlinear_equality_scales REALLIST]
]

scalar_objectives ALIAS num_scalar_objectives INTEGER >= 0]
field _objectives ALIAS num_field objectives INTEGER >= 0
lengths INTEGERLIST

[num_coordinates_per_field INTEGERLIST]

[coordinate_list REALLIST

| coordinate_data_file STRING]

]

(calibration_terms ALIAS least_squares_terms ALIAS num_least_squares_terms INTEGER >= 0

[
[

scalar_calibration_terms INTEGER >= 0]
field_calibration_terms INTEGER >= 0
lengths INTEGERLIST
[num_coordinates_per_field INTEGERLIST]
[coordinate_list REALLIST
| coordinate_data_file STRING]
]
primary_scale_types ALIAS calibration_term_scale_types ALIAS least_squares_term_scale_types STRINGLIST
primary_scales ALIAS calibration_term_scales ALIAS least_squares_term_scales REALLIST]
weights ALIAS calibration_weights ALIAS least_squares_weights REALLIST]
(calibration_data
[num_experiments INTEGER >= 0]
[num_config_variables INTEGER >= 0]
[variance_type STRINGLIST]
[scalar_data_file STRING
[annotated
|
(custom_annotated
[header]
[exp_id]
]
I
(freeform
1
[interpolate]
[read_field_coordinates]

)

calibration_data_file ALIAS least_squares_data_file STRING
[annotated
I
(custom_annotated
[header]
[exp_id]
]

I
(freeform

[num_experiments INTEGER >= 0]

[num_config_variables INTEGER >= 0]
[variance_type STRINGLIST]

]

nonlinear_inequality_constraints ALIAS num_nonlinear_inequality_constraints INTEGER >= 0
[lower_bounds ALIAS nonlinear_inequality_lower_bounds REALLIST]

[upper_bounds ALIAS nonlinear_inequality_upper_bounds REALLIST]

[scale_types ALIAS nonlinear_ inequality_scale_types STRINGLIST]

[scales ALIAS nonlinear_inequality_scales REALLIST]

1

nonlinear_equality_constraints ALIAS num_nonlinear_equality_constraints INTEGER >= 0
[targets ALIAS nonlinear_equality_targets REALLIST]

]

4.4. INPUT SPEC SUMMARY

[scale_types ALIAS nonlinear_equality_scale_types STRINGLIST]
[scales ALIAS nonlinear_equality_scales REALLIST]
]

|
(response_functions ALIAS num_response_functions INTEGER >= 0
[scalar_responses ALIAS num_scalar_responses INTEGER >= 0]
[field_responses ALIAS num_field_ responses INTEGER >= 0
lengths INTEGERLIST
[num_coordinates_per_field INTEGERLIST]
[coordinate_list REALLIST
| coordinate_data_file STRING]
]

)
no_gradients
| analytic_gradients
|
(mixed_gradients
id_numerical_gradients INTEGERLIST
id_analytic_gradients INTEGERLIST
[method_source]
[(dakota
[ignore_bounds]
[relative
| absolute
| bounds]
)
| vendor]
[interval_type]
[forward
| central]
[fd_step_size ALIAS fd_gradient_step_size REALLIST]

(numerical_gradients
[method_source]
[(dakota
[ignore_bounds]
[relative
| absolute
| bounds]
)
| vendor]
[interval_type]
[forward
| central]
[fd_step_size ALIAS fd_gradient_step_size REALLIST]
)
no_hessians
|
(numerical_hessians
[fd_step_size ALIAS fd_hessian_step_size REALLIST]
[relative
| absolute
| bounds]
[forward
| central]
)

(quasi_hessians
(bfgs
[damped]

67

68

\
\
(

[
)

)

CHAPTER 4. DAKOTA INPUT SPECIFICATION

srl

analytic_hessians

mixed_hessians
id_numerical_hessians INTEGERLIST

[

[
[
[
[
\
[

[
]

fd_step_size ALIAS fd_hessian_step_size REALLIST]

relative

absolute

bounds]

forward

central]

id_gquasi_hessians INTEGERLIST
(bfgs

\
]

[damped]
)

srl

id_analytic_hessians INTEGERLIST]

Chapter 5

Topics Area

This page introduces the user to the topics used to organize keywords.
e admin
e dakota_IO
e dakota_concepts
e models
e variables
e responses
e interface
e methods
e advanced_topics

e packages

5.1 admin

Description

This is only for management while ref man is under construction

Related Topics
e empty
e problem

e not_yet_reviewed

69

70 CHAPTER 5. TOPICS AREA

Related Keywords
5.1.1 empty

Description

This topic tracks the keywords which do not have content in the reference manual

Related Topics
Related Keywords
5.1.2 problem

Description

empty

Related Topics
Related Keywords
5.1.3 not_yet reviewed

Description

Not yet reviewed.

Related Topics
Related Keywords

5.2 dakota 10

Description

Keywords and Concepts relating inputs to Dakota and outputs from Dakota

Related Topics

o dakota_inputs
e dakota_output

o file_formats

Related Keywords

e crror_file : Base filename for error redirection
e output_file : Base filename for output redirection

e input : Base filename for post-run mode data input

5.2. DAKOTA_IO 71

output : Base filename for post-run mode data output

input : Base filename for pre-run mode data input

output : Base filename for pre-run mode data output

read_restart : Base filename for restart file read

stop_restart : Evaluation ID number at which to stop reading restart file
input : Base filename for run mode data input

output : Base filename for run mode data output

write_restart : Base filename for restart file write

5.2.1 dakota_inputs

Description

empty

Related Topics

block

data_import_capabilities

Related Keywords
5.2.2 block

Description

A block is the highest level of keyword organization in Dakota. There are currently 6 blocks in the Dakota input

spec:

Related Topics

block_identifier

block_pointer

Related Keywords

environment : Top-level settings for Dakota execution

interface : Specifies how function evaluations will be performed in order to map the variables into the
responses.

method : Begins Dakota method selection and behavioral settings.
model : Specifies how variables are mapped into a set of responses
responses : Description of the model output data returned to Dakota upon evaluation of an interface.

variables : Specifies the parameter set to be iterated by a particular method.

72

block_identifier

Description

empty

Related Topics

Related Keywords

e id_interface : Name the interface block; helpful when there are multiple

e id_method : Name the method block; helpful when there are multiple

CHAPTER 5. TOPICS AREA

e id_model : Give the model block an identifying name, in case of multiple model blocks

e id_responses : Name the response block, helpful when there are multiple

block_pointer

Description

See block_pointer for details about pointers.

Related Topics

Related Keywords

top_method_pointer : Identify which method leads the Dakota study

model_pointer

model_pointer

model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :

model_pointer :

: Identifier for model block to be used by a method
: Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method

Identifier for model block to be used by a method

5.2. DAKOTA_IO

model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model _pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :

model _pointer :

Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method

Identifier for model block to be used by a method

model_pointer_list : Associate models with method names

method_pointer_list : Pointers to methods to execute sequantially or collaboratively

global_model_pointer : Pointer to model used by global method

global_method_pointer : Pointer to global method

local_model_pointer : Pointer to model used by local method

local_method_pointer : Pointer to local method

model_pointer_list : Associate models with method names

method_pointer_list : Pointers to methods to execute sequantially or collaboratively
model_pointer :
model_pointer :
model_pointer :
model_pointer :

model_pointer :

Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method

Identifier for model block to be used by a method

73

74

model_pointer :
model_pointer :

model_pointer :

method_pointer :

model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model _pointer :

model_pointer :

method_pointer :

model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
method_pointer
model_pointer :

method_pointer

Identifier for model block to be used by a method
Identifier for model block to be used by a method

Identifier for model block to be used by a method

Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method

Identifier for model block to be used by a method

Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
: Pointer to sub-method to apply to surrogate

Identifier for model block to be used by a method

: Pointer to sub-method to apply to surrogate

CHAPTER 5. TOPICS AREA

Pointer to sub-method to run from each starting point

Pointer to optimization or least-squares sub-method

5.2. DAKOTA_IO

model_pointer : Identifier for model block to be used by a method

model_pointer : Identifier for model block to be used by a method

optional_interface_pointer : Pointer to interface that provides non-nested responses
optional_interface_responses_pointer : Pointer to responses block that defines non-nested responses
sub_method_pointer : The sub_method_pointer specifies the method block for the sub-iterator
responses_pointer : Specify which reponses block will be used by this model block
interface_pointer : Interface block pointer for the single model type

dace_method_pointer : Specify a method to gather training data

high_fidelity_model_pointer : Pointer to high fidelity model

low_fidelity_model_pointer : Pointer to low fidelity model

actual_model_pointer : Pointer to specify a ”truth” model, from which to construct a surrogate
actual_model_pointer : Pointer to specify a ”truth” model, from which to construct a surrogate
variables_pointer : Specify which variables block will be included with this model block

id_variables : Name the variables block; helpful when there are multiple

5.2.3 data_import_capabilities

Description

empty

Related Topics

Related Keywords
5.2.4 dakota output

Description

empty

Related Topics
Related Keywords

graphics : Display a 2D graphics window of variables and responses
output_precision : Control the output precision

results_output : (Experimental) Write a summary file containing the final results
results_output_file : The base file name of the results file

tabular_data : Write a tabular results file with variable and response history

75

76 CHAPTER 5. TOPICS AREA

e tabular_data_file : File name for tabular data output

e output : Control how much method information is written to the screen and output file

5.2.5 file_formats

Description

See sections “Inputs to Dakota” and ”Outputs from Dakota” in the Dakota User’s Manual[4].

Related Topics

Related Keywords
e annotated : Selects annotated tabular file format
e custom_annotated : Selects custom-annotated tabular file format
e freeform : Selects freeform file format
e annotated : Selects annotated tabular file format
e custom_annotated : Selects custom-annotated tabular file format
e freeform : Selects freeform file format
e annotated : Selects annotated tabular file format
e custom_annotated : Selects custom-annotated tabular file format
e freeform : Selects freeform file format
e aprepro : Write parameters files in APREPRO syntax
e aprepro : Write parameters files in APREPRO syntax
e annotated : Selects annotated tabular file format
e custom_annotated : Selects custom-annotated tabular file format
e freeform : Selects freeform file format
e active_only : Import only active variables from tabular data file
e annotated : Selects annotated tabular file format
e custom_annotated : Selects custom-annotated tabular file format
e freeform : Selects freeform file format
e annotated : Selects annotated tabular file format
e custom_annotated : Selects custom-annotated tabular file format
o freeform : Selects freeform file format

e active_only : Import only active variables from tabular data file

5.2. DAKOTA_IO

annotated : Selects annotated tabular file format
custom_annotated : Selects custom-annotated tabular file format
freeform : Selects freeform file format

annotated : Selects annotated tabular file format
custom_annotated : Selects custom-annotated tabular file format
freeform : Selects freeform file format

active_only : Import only active variables from tabular data file
annotated : Selects annotated tabular file format
custom_annotated : Selects custom-annotated tabular file format
freeform : Selects freeform file format

annotated : Selects annotated tabular file format
custom_annotated : Selects custom-annotated tabular file format
freeform : Selects freeform file format

active_only : Import only active variables from tabular data file
annotated : Selects annotated tabular file format
custom_annotated : Selects custom-annotated tabular file format
freeform : Selects freeform file format

annotated : Selects annotated tabular file format
custom_annotated : Selects custom-annotated tabular file format
freeform : Selects freeform file format

active_only : Import only active variables from tabular data file
annotated : Selects annotated tabular file format
custom_annotated : Selects custom-annotated tabular file format
freeform : Selects freeform file format

annotated : Selects annotated tabular file format
custom_annotated : Selects custom-annotated tabular file format
freeform : Selects freeform file format

active_only : Import only active variables from tabular data file
annotated : Selects annotated tabular file format

custom_annotated : Selects custom-annotated tabular file format

77

78

freeform : Selects freeform file format

annotated : Selects annotated tabular file format
custom_annotated : Selects custom-annotated tabular file format
freeform : Selects freeform file format

active_only : Import only active variables from tabular data file
annotated : Selects annotated tabular file format
custom_annotated : Selects custom-annotated tabular file format
freeform : Selects freeform file format

annotated : Selects annotated tabular file format
custom_annotated : Selects custom-annotated tabular file format
freeform : Selects freeform file format

active_only : Import only active variables from tabular data file
annotated : Selects annotated tabular file format
custom_annotated : Selects custom-annotated tabular file format
freeform : Selects freeform file format

annotated : Selects annotated tabular file format
custom_annotated : Selects custom-annotated tabular file format
freeform : Selects freeform file format

active_only : Import only active variables from tabular data file
annotated : Selects annotated tabular file format
custom_annotated : Selects custom-annotated tabular file format
freeform : Selects freeform file format

annotated : Selects annotated tabular file format
custom_annotated : Selects custom-annotated tabular file format
freeform : Selects freeform file format

active_only : Import only active variables from tabular data file
annotated : Selects annotated tabular file format
custom_annotated : Selects custom-annotated tabular file format
freeform : Selects freeform file format

annotated : Selects annotated tabular file format

CHAPTER 5. TOPICS AREA

5.2. DAKOTA_IO

custom_annotated : Selects custom-annotated tabular file format
freeform : Selects freeform file format

active_only : Import only active variables from tabular data file
annotated : Selects annotated tabular file format
custom_annotated : Selects custom-annotated tabular file format
freeform : Selects freeform file format

active_only : Import only active variables from tabular data file
annotated : Selects annotated tabular file format
custom_annotated : Selects custom-annotated tabular file format
freeform : Selects freeform file format

active_only : Import only active variables from tabular data file
annotated : Selects annotated tabular file format
custom_annotated : Selects custom-annotated tabular file format
freeform : Selects freeform file format

annotated : Selects annotated tabular file format
custom_annotated : Selects custom-annotated tabular file format
freeform : Selects freeform file format

active_only : Import only active variables from tabular data file
annotated : Selects annotated tabular file format
custom_annotated : Selects custom-annotated tabular file format
freeform : Selects freeform file format

annotated : Selects annotated tabular file format
custom_annotated : Selects custom-annotated tabular file format
freeform : Selects freeform file format

active_only : Import only active variables from tabular data file
annotated : Selects annotated tabular file format
custom_annotated : Selects custom-annotated tabular file format
freeform : Selects freeform file format

annotated : Selects annotated tabular file format

custom_annotated : Selects custom-annotated tabular file format

79

80 CHAPTER 5. TOPICS AREA

o freeform : Selects freeform file format

e active_only : Import only active variables from tabular data file

e annotated : Selects annotated tabular file format

e custom_annotated : Selects custom-annotated tabular file format

o freeform : Selects freeform file format

e annotated : Selects annotated tabular file format for experiment data

e custom_annotated : Selects custom-annotated tabular file format for experiment data
o freeform : Selects free-form tabular file format for experiment data

e annotated : Selects annotated tabular file format for experiment data

e custom_annotated : Selects custom-annotated tabular file format for experiment data

o freeform : Selects free-form tabular file format for experiment data

5.3 dakota_concepts

Description

Miscallaneous concepts related to Dakota operation

Related Topics
e method_independent_controls
e block

e strategies

command_line_options

restarts

e pointers

Related Keywords
5.3.1 method independent_controls

Description

The <method independent controls> are those controls which are valid for a variety of methods. In
some cases, these controls are abstractions which may have slightly different implementations from one method
to the next. While each of these controls is not valid for every method, the controls are valid for enough methods
that it was reasonable to consolidate the specifications.

Related Topics

e linear_constraints

5.3. DAKOTA_CONCEPTS

Related Keywords

81

e constraint_tolerance : The maximum allowable value of constraint violation still considered to be feasible

5.3.2

convergence_tolerance : Stopping criterion based on convergence of the objective function
final _solutions : Number of designs returned as the best solutions

id_method : Name the method block; helpful when there are multiple
max_function_evaluations : Stopping criteria based on number of function evaluations
max_iterations : Stopping criteria based on number of iterations

output : Control how much method information is written to the screen and output file
scaling : Turn on scaling for variables, responses, and constraints

speculative : Compute speculative gradients

linear_constraints

Description

Many methods use linear equality or inequality constraints.

Related Topics
Related Keywords

linear_equality_constraint_matrix : Define coefficients of the linear equalities
linear_equality_scale_types : Specify how each linear equality constraint is scaled
linear_equality _scales : Define the characteristic values to scale linear equalities
linear_equality_targets : Define target values for the linear equality constraints
linear_inequality _constraint_matrix : Define coefficients of the linear inequality constraints
linear_inequality _lower_bounds : Define lower bounds for the linear inequality constraint
linear_inequality _scale_types : Specify how each linear inequality constraint is scaled
linear_inequality_scales : Define the characteristic values to scale linear inequalities
linear_inequality _upper_bounds : Define upper bounds for the linear inequality constraint
linear_equality_constraint_matrix : Define coefficients of the linear equalities
linear_equality_scale_types : Specify how each linear equality constraint is scaled
linear_equality_scales : Define the characteristic values to scale linear equalities
linear_equality _targets : Define target values for the linear equality constraints

linear_inequality_constraint_matrix : Define coefficients of the linear inequality constraints

82

CHAPTER 5. TOPICS AREA

linear_inequality lower_bounds : Define lower bounds for the linear inequality constraint
linear_inequality _scale_types : Specify how each linear inequality constraint is scaled
linear_inequality _scales : Define the characteristic values to scale linear inequalities
linear_inequality _upper_bounds : Define upper bounds for the linear inequality constraint
linear_equality_constraint_matrix : Define coefficients of the linear equalities
linear_equality_scale_types : Specify how each linear equality constraint is scaled
linear_equality_scales : Define the characteristic values to scale linear equalities
linear_equality_targets : Define target values for the linear equality constraints
linear_inequality _constraint_matrix : Define coefficients of the linear inequality constraints
linear_inequality lower_bounds : Define lower bounds for the linear inequality constraint
linear_inequality_scale_types : Specify how each linear inequality constraint is scaled
linear_inequality_scales : Define the characteristic values to scale linear inequalities
linear_inequality _upper_bounds : Define upper bounds for the linear inequality constraint
linear_equality_constraint_matrix : Define coefficients of the linear equalities
linear_equality_scale_types : Specify how each linear equality constraint is scaled
linear_equality _scales : Define the characteristic values to scale linear equalities
linear_equality _targets : Define target values for the linear equality constraints
linear_inequality_constraint_matrix : Define coefficients of the linear inequality constraints
linear_inequality lower_bounds : Define lower bounds for the linear inequality constraint
linear_inequality_scale_types : Specify how each linear inequality constraint is scaled
linear_inequality_scales : Define the characteristic values to scale linear inequalities
linear_inequality _upper_bounds : Define upper bounds for the linear inequality constraint
linear_equality_constraint_matrix : Define coefficients of the linear equalities
linear_equality_scale_types : Specify how each linear equality constraint is scaled
linear_equality_scales : Define the characteristic values to scale linear equalities
linear_equality_targets : Define target values for the linear equality constraints
linear_inequality constraint_matrix : Define coefficients of the linear inequality constraints
linear_inequality_lower_bounds : Define lower bounds for the linear inequality constraint
linear_inequality _scale_types : Specify how each linear inequality constraint is scaled

linear_inequality_scales : Define the characteristic values to scale linear inequalities

5.3. DAKOTA_CONCEPTS

linear_inequality _upper_bounds : Define upper bounds for the linear inequality constraint
linear_equality_constraint_matrix : Define coefficients of the linear equalities
linear_equality_scale_types : Specify how each linear equality constraint is scaled
linear_equality_scales : Define the characteristic values to scale linear equalities
linear_equality _targets : Define target values for the linear equality constraints
linear_inequality_constraint_matrix : Define coefficients of the linear inequality constraints
linear_inequality lower_bounds : Define lower bounds for the linear inequality constraint
linear_inequality_scale_types : Specify how each linear inequality constraint is scaled
linear_inequality_scales : Define the characteristic values to scale linear inequalities
linear_inequality _upper_bounds : Define upper bounds for the linear inequality constraint
linear_equality_constraint_matrix : Define coefficients of the linear equalities
linear_equality_scale_types : Specify how each linear equality constraint is scaled
linear_equality_scales : Define the characteristic values to scale linear equalities
linear_equality_targets : Define target values for the linear equality constraints
linear_inequality _constraint_matrix : Define coefficients of the linear inequality constraints
linear_inequality_lower_bounds : Define lower bounds for the linear inequality constraint
linear_inequality _scale_types : Specify how each linear inequality constraint is scaled
linear_inequality_scales : Define the characteristic values to scale linear inequalities
linear_inequality _upper_bounds : Define upper bounds for the linear inequality constraint
linear_equality_constraint_matrix : Define coefficients of the linear equalities
linear_equality_scale_types : Specify how each linear equality constraint is scaled
linear_equality_scales : Define the characteristic values to scale linear equalities
linear_equality_targets : Define target values for the linear equality constraints
linear_inequality constraint_matrix : Define coefficients of the linear inequality constraints
linear_inequality lower_bounds : Define lower bounds for the linear inequality constraint
linear_inequality _scale_types : Specify how each linear inequality constraint is scaled
linear_inequality _scales : Define the characteristic values to scale linear inequalities
linear_inequality _upper_bounds : Define upper bounds for the linear inequality constraint
linear_equality_constraint_matrix : Define coefficients of the linear equalities

linear_equality_scale_types : Specify how each linear equality constraint is scaled

83

84

CHAPTER 5. TOPICS AREA

linear_equality_scales : Define the characteristic values to scale linear equalities
linear_equality_targets : Define target values for the linear equality constraints
linear_inequality constraint_matrix : Define coefficients of the linear inequality constraints
linear_inequality lower_bounds : Define lower bounds for the linear inequality constraint
linear_inequality _scale_types : Specify how each linear inequality constraint is scaled
linear_inequality_scales : Define the characteristic values to scale linear inequalities
linear_inequality _upper_bounds : Define upper bounds for the linear inequality constraint
linear_equality_constraint_matrix : Define coefficients of the linear equalities
linear_equality_scale_types : Specify how each linear equality constraint is scaled
linear_equality_scales : Define the characteristic values to scale linear equalities
linear_equality_targets : Define target values for the linear equality constraints
linear_inequality _constraint_matrix : Define coefficients of the linear inequality constraints
linear_inequality lower_bounds : Define lower bounds for the linear inequality constraint
linear_inequality _scale_types : Specify how each linear inequality constraint is scaled
linear_inequality _scales : Define the characteristic values to scale linear inequalities
linear_inequality_upper_bounds : Define upper bounds for the linear inequality constraint
linear_equality_constraint_matrix : Define coefficients of the linear equalities
linear_equality_scale_types : Specify how each linear equality constraint is scaled
linear_equality_scales : Define the characteristic values to scale linear equalities
linear_equality_targets : Define target values for the linear equality constraints
linear_inequality constraint_matrix : Define coefficients of the linear inequality constraints
linear_inequality lower_bounds : Define lower bounds for the linear inequality constraint
linear_inequality_scale_types : Specify how each linear inequality constraint is scaled
linear_inequality_scales : Define the characteristic values to scale linear inequalities
linear_inequality _upper_bounds : Define upper bounds for the linear inequality constraint
linear_equality_constraint_matrix : Define coefficients of the linear equalities
linear_equality_scale_types : Specify how each linear equality constraint is scaled
linear_equality _scales : Define the characteristic values to scale linear equalities
linear_equality _targets : Define target values for the linear equality constraints

linear_inequality_constraint_matrix : Define coefficients of the linear inequality constraints

5.3. DAKOTA_CONCEPTS

linear_inequality lower_bounds : Define lower bounds for the linear inequality constraint
linear_inequality _scale_types : Specify how each linear inequality constraint is scaled
linear_inequality _scales : Define the characteristic values to scale linear inequalities
linear_inequality _upper_bounds : Define upper bounds for the linear inequality constraint
linear_equality_constraint_matrix : Define coefficients of the linear equalities
linear_equality_scale_types : Specify how each linear equality constraint is scaled
linear_equality_scales : Define the characteristic values to scale linear equalities
linear_equality_targets : Define target values for the linear equality constraints
linear_inequality _constraint_matrix : Define coefficients of the linear inequality constraints
linear_inequality lower_bounds : Define lower bounds for the linear inequality constraint
linear_inequality_scale_types : Specify how each linear inequality constraint is scaled
linear_inequality_scales : Define the characteristic values to scale linear inequalities
linear_inequality _upper_bounds : Define upper bounds for the linear inequality constraint
linear_equality_constraint_matrix : Define coefficients of the linear equalities
linear_equality_scale_types : Specify how each linear equality constraint is scaled
linear_equality _scales : Define the characteristic values to scale linear equalities
linear_equality _targets : Define target values for the linear equality constraints
linear_inequality_constraint_matrix : Define coefficients of the linear inequality constraints
linear_inequality lower_bounds : Define lower bounds for the linear inequality constraint
linear_inequality_scale_types : Specify how each linear inequality constraint is scaled
linear_inequality_scales : Define the characteristic values to scale linear inequalities
linear_inequality _upper_bounds : Define upper bounds for the linear inequality constraint
linear_equality_constraint_matrix : Define coefficients of the linear equalities
linear_equality_scale_types : Specify how each linear equality constraint is scaled
linear_equality_scales : Define the characteristic values to scale linear equalities
linear_equality_targets : Define target values for the linear equality constraints
linear_inequality constraint_matrix : Define coefficients of the linear inequality constraints
linear_inequality_lower_bounds : Define lower bounds for the linear inequality constraint
linear_inequality _scale_types : Specify how each linear inequality constraint is scaled

linear_inequality_scales : Define the characteristic values to scale linear inequalities

85

86

CHAPTER 5. TOPICS AREA

linear_inequality _upper_bounds : Define upper bounds for the linear inequality constraint
linear_equality_constraint_matrix : Define coefficients of the linear equalities
linear_equality_scale_types : Specify how each linear equality constraint is scaled
linear_equality_scales : Define the characteristic values to scale linear equalities
linear_equality _targets : Define target values for the linear equality constraints
linear_inequality _constraint_matrix : Define coefficients of the linear inequality constraints
linear_inequality lower_bounds : Define lower bounds for the linear inequality constraint
linear_inequality_scale_types : Specify how each linear inequality constraint is scaled
linear_inequality_scales : Define the characteristic values to scale linear inequalities
linear_inequality _upper_bounds : Define upper bounds for the linear inequality constraint
linear_equality_constraint_matrix : Define coefficients of the linear equalities
linear_equality_scale_types : Specify how each linear equality constraint is scaled
linear_equality_scales : Define the characteristic values to scale linear equalities
linear_equality_targets : Define target values for the linear equality constraints
linear_inequality constraint_matrix : Define coefficients of the linear inequality constraints
linear_inequality_lower_bounds : Define lower bounds for the linear inequality constraint
linear_inequality _scale_types : Specify how each linear inequality constraint is scaled
linear_inequality_scales : Define the characteristic values to scale linear inequalities
linear_inequality _upper_bounds : Define upper bounds for the linear inequality constraint
linear_equality_constraint_matrix : Define coefficients of the linear equalities
linear_equality_scale_types : Specify how each linear equality constraint is scaled
linear_equality_scales : Define the characteristic values to scale linear equalities
linear_equality_targets : Define target values for the linear equality constraints
linear_inequality _constraint_matrix : Define coefficients of the linear inequality constraints
linear_inequality lower_bounds : Define lower bounds for the linear inequality constraint
linear_inequality _scale_types : Specify how each linear inequality constraint is scaled
linear_inequality _scales : Define the characteristic values to scale linear inequalities
linear_inequality _upper_bounds : Define upper bounds for the linear inequality constraint
linear_equality_constraint_matrix : Define coefficients of the linear equalities

linear_equality_scale_types : Specify how each linear equality constraint is scaled

5.3. DAKOTA_CONCEPTS

linear_equality_scales : Define the characteristic values to scale linear equalities
linear_equality_targets : Define target values for the linear equality constraints
linear_inequality constraint_matrix : Define coefficients of the linear inequality constraints
linear_inequality lower_bounds : Define lower bounds for the linear inequality constraint
linear_inequality _scale_types : Specify how each linear inequality constraint is scaled
linear_inequality_scales : Define the characteristic values to scale linear inequalities
linear_inequality _upper_bounds : Define upper bounds for the linear inequality constraint
linear_equality_constraint_matrix : Define coefficients of the linear equalities
linear_equality_scale_types : Specify how each linear equality constraint is scaled
linear_equality_scales : Define the characteristic values to scale linear equalities
linear_equality_targets : Define target values for the linear equality constraints
linear_inequality _constraint_matrix : Define coefficients of the linear inequality constraints
linear_inequality lower_bounds : Define lower bounds for the linear inequality constraint
linear_inequality _scale_types : Specify how each linear inequality constraint is scaled
linear_inequality_scales : Define the characteristic values to scale linear inequalities
linear_inequality_upper_bounds : Define upper bounds for the linear inequality constraint
linear_equality_constraint_matrix : Define coefficients of the linear equalities
linear_equality_scale_types : Specify how each linear equality constraint is scaled
linear_equality_scales : Define the characteristic values to scale linear equalities
linear_equality_targets : Define target values for the linear equality constraints
linear_inequality constraint_matrix : Define coefficients of the linear inequality constraints
linear_inequality lower_bounds : Define lower bounds for the linear inequality constraint
linear_inequality_scale_types : Specify how each linear inequality constraint is scaled
linear_inequality_scales : Define the characteristic values to scale linear inequalities
linear_inequality _upper_bounds : Define upper bounds for the linear inequality constraint
linear_equality_constraint_matrix : Define coefficients of the linear equalities
linear_equality_scale_types : Specify how each linear equality constraint is scaled
linear_equality _scales : Define the characteristic values to scale linear equalities
linear_equality _targets : Define target values for the linear equality constraints

linear_inequality_constraint_matrix : Define coefficients of the linear inequality constraints

87

88 CHAPTER 5. TOPICS AREA

e linear_inequality_lower_bounds : Define lower bounds for the linear inequality constraint
e linear_inequality_scale_types : Specify how each linear inequality constraint is scaled

e linear_inequality_scales : Define the characteristic values to scale linear inequalities

e linear_inequality_upper_bounds : Define upper bounds for the linear inequality constraint
e linear_equality_constraint_matrix : Define coefficients of the linear equalities

e linear_equality_scale_types : Specify how each linear equality constraint is scaled

e linear_equality_scales : Define the characteristic values to scale linear equalities

e linear_equality_targets : Define target values for the linear equality constraints

e linear_inequality_constraint_matrix : Define coefficients of the linear inequality constraints
e linear_inequality_lower_bounds : Define lower bounds for the linear inequality constraint
e linear_inequality_scale_types : Specify how each linear inequality constraint is scaled

e linear_inequality_scales : Define the characteristic values to scale linear inequalities

e linear_inequality_upper_bounds : Define upper bounds for the linear inequality constraint
e linear_equality_constraint_matrix : Define coefficients of the linear equalities

e linear_equality_scale_types : Specify how each linear equality constraint is scaled

e linear_equality_scales : Define the characteristic values to scale linear equalities

e linear_equality_targets : Define target values for the linear equality constraints

e linear_inequality_constraint_matrix : Define coefficients of the linear inequality constraints
e linear_inequality_lower_bounds : Define lower bounds for the linear inequality constraint
e linear_inequality_scale_types : Specify how each linear inequality constraint is scaled

e linear_inequality_scales : Define the characteristic values to scale linear inequalities

e linear_inequality_upper_bounds : Define upper bounds for the linear inequality constraint

5.3.3 block

Description

A block is the highest level of keyword organization in Dakota. There are currently 6 blocks in the Dakota input
spec:

Related Topics

e block_identifier

e block_pointer

5.3. DAKOTA_CONCEPTS 89

Related Keywords
e environment : Top-level settings for Dakota execution

e interface : Specifies how function evaluations will be performed in order to map the variables into the
responses.

e method : Begins Dakota method selection and behavioral settings.
e model : Specifies how variables are mapped into a set of responses
e responses : Description of the model output data returned to Dakota upon evaluation of an interface.

e variables : Specifies the parameter set to be iterated by a particular method.

block_identifier

Description

empty

Related Topics
Related Keywords
e id_interface : Name the interface block; helpful when there are multiple
e id_method : Name the method block; helpful when there are multiple
e id_model : Give the model block an identifying name, in case of multiple model blocks

e id_responses : Name the response block, helpful when there are multiple

block_pointer

Description

See block_pointer for details about pointers.

Related Topics
Related Keywords
e top_method_pointer : Identify which method leads the Dakota study
e model_pointer : Identifier for model block to be used by a method
e model_pointer : Identifier for model block to be used by a method
e model_pointer : Identifier for model block to be used by a method
e model_pointer : Identifier for model block to be used by a method
e model_pointer : Identifier for model block to be used by a method

e model_pointer : Identifier for model block to be used by a method

90

model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model _pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :

model_pointer :

model_pointer

Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method

: Identifier for model block to be used by a method

model_pointer_list : Associate models with method names

CHAPTER 5. TOPICS AREA

method_pointer_list : Pointers to methods to execute sequantially or collaboratively

global_model_pointer : Pointer to model used by global method

global_method_pointer : Pointer to global method

local_model_pointer : Pointer to model used by local method

5.3. DAKOTA_CONCEPTS

local_method_pointer : Pointer to local method

model_pointer_list : Associate models with method names

method_pointer_list : Pointers to methods to execute sequantially or collaboratively

model_pointer :
model_pointer :
model _pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :

model_pointer :

method_pointer :

model_pointer :
model_pointer :
model_pointer :
model_pointer :
model _pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :

model_pointer :

method_pointer :

model_pointer :
model_pointer :

model_pointer :

Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method

Identifier for model block to be used by a method

Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method

Identifier for model block to be used by a method

Identifier for model block to be used by a method
Identifier for model block to be used by a method

Identifier for model block to be used by a method

Pointer to sub-method to run from each starting point

Pointer to optimization or least-squares sub-method

91

92 CHAPTER 5. TOPICS AREA

e model_pointer : Identifier for model block to be used by a method

e model_pointer : Identifier for model block to be used by a method

e model_pointer : Identifier for model block to be used by a method

e model_pointer : Identifier for model block to be used by a method

e model_pointer : Identifier for model block to be used by a method

e method_pointer : Pointer to sub-method to apply to surrogate

e model_pointer : Identifier for model block to be used by a method

e method_pointer : Pointer to sub-method to apply to surrogate

e model_pointer : Identifier for model block to be used by a method

e model_pointer : Identifier for model block to be used by a method

e optional_interface_pointer : Pointer to interface that provides non-nested responses

e optional_interface_responses_pointer : Pointer to responses block that defines non-nested responses
e sub_method_pointer : The sub_-method_pointer specifies the method block for the sub-iterator
e responses_pointer : Specify which reponses block will be used by this model block

e interface_pointer : Interface block pointer for the single model type

e dace_method_pointer : Specify a method to gather training data

e high fidelity_model_pointer : Pointer to high fidelity model

e low_fidelity_model_pointer : Pointer to low fidelity model

e actual_model_pointer : Pointer to specify a “’truth” model, from which to construct a surrogate
e actual_model_pointer : Pointer to specify a “’truth” model, from which to construct a surrogate
e variables_pointer : Specify which variables block will be included with this model block

e id_variables : Name the variables block; helpful when there are multiple

5.3.4 strategies

Description

empty

Related Topics

e advanced_strategies

5.3. DAKOTA_CONCEPTS 93

Related Keywords
5.3.5 advanced strategies

Description

empty

Related Topics
Related Keywords
5.3.6 command line options

Description

empty

Related Topics
Related Keywords

e check : Invoke Dakota in input check mode

e error_file : Base filename for error redirection

e output_file : Base filename for output redirection

e post_run : Invoke Dakota with post-run mode active
e pre_run : Invoke Dakota with pre-run mode active

e read_restart : Base filename for restart file read

e run : Invoke Dakota with run mode active

e write_restart : Base filename for restart file write

5.3.7 restarts

Description

empty

Related Topics
Related Keywords
5.3.8 pointers

Description

For all pointer specifications, if a pointer string is specified and no corresponding id string is available, Dakota
will exit with an error message.

If the pointer is optional and no pointer string is specified, then the last specification parsed will be used.

It is appropriate to omit optional cross-referencing whenever the relationships are unambiguous due to the
presence of only one specification.

94

Related Topics

block_pointer

e objective_function_pointer

Related Keywords
5.3.9 block_pointer

Description

See block_pointer for details about pointers.

Related Topics
Related Keywords

top_method_pointer : Identify which method leads the Dakota study
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :

model_pointer :

Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method

Identifier for model block to be used by a method

CHAPTER 5. TOPICS AREA

5.3. DAKOTA_CONCEPTS

model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model _pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :

model_pointer :

Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method

Identifier for model block to be used by a method

model_pointer_list : Associate models with method names

method_pointer_list : Pointers to methods to execute sequantially or collaboratively

global_model_pointer : Pointer to model used by global method

global_method_pointer : Pointer to global method

local_model_pointer : Pointer to model used by local method

local_method_pointer : Pointer to local method

model_pointer_list : Associate models with method names

method_pointer_list : Pointers to methods to execute sequantially or collaboratively
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
method_pointer : Pointer to sub-method to run from each starting point

model_pointer :

Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method

Identifier for model block to be used by a method

Identifier for model block to be used by a method

95

96

model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :

method_pointer :

model_pointer

model_pointer :
model _pointer :
model_pointer :
model_pointer :
model_pointer :

model_pointer :

model_pointer

Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method

Identifier for model block to be used by a method

: Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method

: Identifier for model block to be used by a method

method_pointer : Pointer to sub-method to apply to surrogate

model_pointer

: Identifier for model block to be used by a method

method_pointer : Pointer to sub-method to apply to surrogate

model_pointer

model_pointer

: Identifier for model block to be used by a method

: Identifier for model block to be used by a method

Pointer to optimization or least-squares sub-method

CHAPTER 5. TOPICS AREA

optional_interface_pointer : Pointer to interface that provides non-nested responses

optional_interface_responses_pointer : Pointer to responses block that defines non-nested responses

sub_method_pointer : The sub_method_pointer specifies the method block for the sub-iterator

5.4. MODELS

responses_pointer : Specify which reponses block will be used by this model block
interface_pointer : Interface block pointer for the single model type

dace_method_pointer : Specify a method to gather training data

high_fidelity_model_pointer : Pointer to high fidelity model

low_fidelity_model_pointer : Pointer to low fidelity model

actual_model_pointer : Pointer to specify a "truth” model, from which to construct a surrogate
actual_model_pointer : Pointer to specify a ”truth” model, from which to construct a surrogate
variables_pointer : Specify which variables block will be included with this model block

id_variables : Name the variables block; helpful when there are multiple

5.3.10 objective function_pointer

Description

See block_pointer for details about pointers.

Related Topics

Related Keywords

5.4

id_analytic_gradients : Identify which analytical gradient corresponds to which response
id_numerical_gradients : Identify which numerical gradient corresponds to which response
id_analytic_hessians : Identify which analytical Hessian corresponds to which response
id_numerical_hessians : Identify which numerical-Hessian corresponds to which response

id_quasi_hessians : Identify which quasi-Hessian corresponds to which response

models

Description

Keywords and Concepts relating to the mode 1 block

Related Topics

surrogate_models
recast_models
multifidelity_models
reduced_order_models
nested_models

advanced_model_recursion

97

98

Related Keywords

54.1

surrogate_models

Description

empty

Related Topics

surrogate_based_optimization_methods

Related Keywords

5.4.2

point_selection : Enable greedy selection of well-spaced build points
export_model_file : Export surrogate to Surfpack model file
export_model file : Export surrogate to Surfpack model file
metrics : Compute surrogate quality metrics
cross_validation : Perform k-fold cross validation
export_model_file : Export surrogate to Surfpack model file
export_model_file : Export surrogate to Surfpack model file
max_nodes : Maximum number of hidden layer nodes
random_weight : (Inactive) Random weight control

range : Range for neural network random weights
export_model file : Export surrogate to Surfpack model file
bases : Initial number of radial basis functions
export_model_file : Export surrogate to Surfpack model file
max_pts : Maximum number of RBF CVT points
max_subsets : Number of trial RBF subsets

min_partition : (Inactive) Minimum RBF partition

reuse_points : Surrogate model training data reuse control

surrogate_based_optimization_methods

Description

empty

CHAPTER 5. TOPICS AREA

5.4. MODELS

Related Topics

Related Keywords
e cfficient_global : Global Surrogate Based Optimization, a.k.a. EGO
e surrogate_based_global : Global Surrogate Based Optimization

e surrogate_based_local : Local Surrogate Based Optimization

5.4.3 recast_models

Description

empty

Related Topics
Related Keywords
5.4.4 multifidelity_models

Description

empty

Related Topics
Related Keywords
5.4.5 reduced order_models

Description

empty

Related Topics
Related Keywords
5.4.6 nested_models

Description

empty

Related Topics
Related Keywords
5.4.7 advanced_model _recursion

Description

empty

100

Related Topics

e hybrid_and_recursions_logic

Related Keywords

hybrid_and_recursions_logic

Description

empty
Related Topics
Related Keywords

5.5 variables

Description

Keywords and concepts relating to the variables block

Related Topics

e variable_domain

e variable_type

Related Keywords
5.5.1 variable_domain

Description

Dakota variables can be grouped by their valid domains.

1. Mixed: continuous and discrete variables are treated separately

CHAPTER 5. TOPICS AREA

2. Relaxed: noncategorical discrete variables are relaxed and treated as continuous variables (categorical vari-

ables are non-relaxable and remain discrete)

Refer to mixed and relaxed for additional information.

Related Topics

e continuous_variables

e discrete_variables

5.5. VARIABLES 101

Related Keywords
5.5.2 continuous_variables

Description

This page collects information related to the topic of continuous design, uncertain, and state variables.

Related Topics
Related Keywords

e beta_uncertain : Aleatory uncertain variable - beta

e continuous_design : Continuous design variables; each defined by a real interval
e continuous_interval uncertain : Epistemic uncertain variable - values from one or more continuous intervals
e continuous_state : Continuous state variables

e exponential_uncertain : Aleatory uncertain variable - exponential

e frechet_uncertain : Aleatory uncertain variable - Frechet

e gamma_uncertain : Aleatory uncertain variable - gamma

e gumbel_uncertain : Aleatory uncertain variable - gumbel

e histogram_bin_uncertain : Aleatory uncertain variable - continuous histogram

e lognormal_uncertain : Aleatory uncertain variable - lognormal

e loguniform_uncertain : Aleatory uncertain variable - loguniform

e normal_uncertain : Aleatory uncertain variable - normal (Gaussian)

e triangular_uncertain : Aleatory uncertain variable - triangular

e uniform_uncertain : Aleatory uncertain variable - uniform

e weibull_uncertain : Aleatory uncertain variable - Weibull

5.5.3 discrete_variables

Description

This page discusses discrete design, uncertain, and state variables (which have di screte in their keyword name)
as they have similar specifications. These include:

1. Integer ranges
2. Sets of integers
3. Sets of reals

4. Sets of strings and each is described below.

102 CHAPTER 5. TOPICS AREA

In addition, some aleatory uncertain variables, e.g., binomial_uncertain, are discrete integer-valued random
variables specified using parameters. These are described on their individual keyword pages.

Sets

Sets of integers, reals, and strings have similar specifications, though different value types.

The variables are specified using three keywords:

e Variable declaration keyword - specifies the number of variables being defined

e elements_per_variable - alist of positive integers specifying how many set members each variable
admits

— Length = # of variables
e clements - alist of the permissible integer values in ALL sets, concatenated together.

— Length =sum of elements_per_variable, or an integer multiple of number of variables
— The order is very important here.
— The list is partitioned according to the values of elements_per_variable, and each partition is

assigned to a variable.

e The ordering of elements_per_variable, and the partitions of elements must match the strings
from descriptors

For string variables, each string element value must be quoted and may contain alphanumeric, dash, under-
score, and colon. White space, quote characters, and backslash/metacharacters are not permitted.

Examples are given on the pages:

o discrete design set integer

discrete design set real

discrete design set string

discrete uncertain set integer

discrete uncertain set real

discrete uncertain set string

Range

For discrete variables defined by range(s), the 1ower_bounds and upper_bounds restrict the permisible
values. For design variables, this constrains the feasible design space and is frequently used to prevent nonphysical
designs. This is a discrete interval variable that may take any integer value within bounds (e.g., [1, 4], allowing
values of 1, 2, 3, or 4). For some variable types, each variable is can be defined by multiple ranges.

Examples are given on the pages:

e discrete_interval _uncertain

5.5. VARIABLES 103

Related Topics

Related Keywords

binomial_uncertain : Aleatory uncertain discrete variable - binomial
discrete_design_range : Discrete design variables; each defined by an integer interval
discrete_design_set : Set-valued discrete design variables

integer : Integer-valued discrete design variables

real : Real-valued discrete design variables

string : String-valued discrete design set variables

discrete_interval _uncertain : Epistemic uncertain variable - values from one or more discrete intervals
discrete _state_range : Discrete state variables; each defined by an integer interval
discrete_state_set : Set-valued discrete state variables

integer : Discrete state variables, each defined by a set of permissible integers

real : Discrete state variables, each defined by a set of permissible real numbers

string : String-valued discrete state set variables

discrete_uncertain_set : Set-valued discrete uncertain variables

integer : Discrete, epistemic uncertain variable - integers within a set

real : Discrete, epistemic uncertain variable - real numbers within a set

string : Discrete, epistemic uncertain variable - strings within a set
geometric_uncertain : Aleatory uncertain discrete variable - geometric
histogram_point_uncertain : Aleatory uncertain variable - discrete histogram
hypergeometric_uncertain : Aleatory uncertain discrete variable - hypergeometric
negative_binomial _uncertain : Aleatory uncertain discrete variable - negative binomial

poisson_uncertain : Aleatory uncertain discrete variable - Poisson

5.5.4 variable_type

Description

Dakota variables can be grouped by their type, includingall, design,uncertain,aleatory,epistemic,
or state. There are certain situations where the user may want to explicitly control the subset of variables that is
considered active for a certain Dakota method, and override the default alignments between methods and variable
types. Refer to active for additional information.

104 CHAPTER 5. TOPICS AREA

Related Topics

e design_variables
e aleatory_uncertain_variables
e epistemic_uncertain_variables

e state_variables

Related Keywords
5.5.5 design_variables

Description
Design variables are those variables which are modified for the purposes of computing an optimal design.

The most common type of design variables encountered in engineering applications are of the continuous type.
These variables may assume any real value within their bounds. All but a handful of the optimization algorithms
in Dakota support continuous design variables exclusively.

Related Topics
Related Keywords

e continuous_design : Continuous design variables; each defined by a real interval

e discrete_design_range : Discrete design variables; each defined by an integer interval

discrete_design_set : Set-valued discrete design variables

integer : Integer-valued discrete design variables

real : Real-valued discrete design variables

string : String-valued discrete design set variables

5.5.6 aleatory uncertain_variables

Description
Aleatory uncertainty is also known as inherent variability, irreducible uncertainty, or randomness.

Aleatory uncertainty is predominantly charaterized using probability theory. This is the only option imple-
mented in Dakota.

Related Topics
Related Keywords

e beta_uncertain : Aleatory uncertain variable - beta
e binomial uncertain : Aleatory uncertain discrete variable - binomial

e exponential uncertain : Aleatory uncertain variable - exponential

5.5. VARIABLES 105

frechet_uncertain : Aleatory uncertain variable - Frechet

gamma_uncertain : Aleatory uncertain variable - gamma

geometric_uncertain : Aleatory uncertain discrete variable - geometric
gumbel_uncertain : Aleatory uncertain variable - gumbel

histogram _bin_uncertain : Aleatory uncertain variable - continuous histogram
histogram_point_uncertain : Aleatory uncertain variable - discrete histogram
hypergeometric_uncertain : Aleatory uncertain discrete variable - hypergeometric
lognormal_uncertain : Aleatory uncertain variable - lognormal
loguniform_uncertain : Aleatory uncertain variable - loguniform
negative_binomial _uncertain : Aleatory uncertain discrete variable - negative binomial
normal_uncertain : Aleatory uncertain variable - normal (Gaussian)
poisson_uncertain : Aleatory uncertain discrete variable - Poisson
triangular_uncertain : Aleatory uncertain variable - triangular

uniform_uncertain : Aleatory uncertain variable - uniform

weibull_uncertain : Aleatory uncertain variable - Weibull

5.5.7 epistemic_uncertain_variables

Description

Epistemic uncertainty is uncertainty due to lack of knowledge.

In Dakota, epistemic uncertainty is characterized by interval analysis or the Dempster-Shafer theory of evi-
dence.

Note that epistemic uncertainty can also be modeled with probability density functions - similarly to aleatory
uncertainty Dakota does not support this capability.

Related Topics

Related Keywords

continuous_interval _uncertain : Epistemic uncertain variable - values from one or more continuous intervals
discrete_interval _uncertain : Epistemic uncertain variable - values from one or more discrete intervals
discrete_uncertain_set : Set-valued discrete uncertain variables

integer : Discrete, epistemic uncertain variable - integers within a set

real : Discrete, epistemic uncertain variable - real numbers within a set

string : Discrete, epistemic uncertain variable - strings within a set

106 CHAPTER 5. TOPICS AREA

5.5.8 state_variables

Description

State variables provide a convenient mechanism for managing additional model parameterizations such as mesh
density, simulation convergence tolerances, and time step controls.

Only parameter studies and design of experiments methods will iterate on state variables.

The initial_state is used as the only value for the state variable for all other methods, unless active
state is invoked.

If a method iterates on a state variable, the variable is treated as a design variable with the given bounds, or as
a uniform uncertain variable with the given bounds.

If the state variable is defined only by its bounds, and the method does NOT iterate on state variables, then the
initial_state must be inferred.

Related Topics
Related Keywords

e continuous_state : Continuous state variables

discrete_state_range : Discrete state variables; each defined by an integer interval

e discrete_state_set : Set-valued discrete state variables

integer : Discrete state variables, each defined by a set of permissible integers

e real : Discrete state variables, each defined by a set of permissible real numbers

string : String-valued discrete state set variables

5.6 responses

Description

Keywords and concepts relating to the responses block

Related Topics

e response_types

Related Keywords
5.6.1 response_types
Description
The specification must be one of three types:
1. objective and constraint functions
2. calibration (least squares) terms and constraint functions

3. a generic response functions specification.

5.7. INTERFACE 107

These correspond to (a) optimization, (b) deterministic (least squares) or stochastic (Bayesian) inversion, and
(c) general-purpose analyzer methods such as parameter studies, DACE, and UQ methods, respectively. Refer to
responses for additional details and examples.

Related Topics
Related Keywords

5.7 interface

Description

Keywords and Concepts relating to the interface block, which is used to connect Dakota to external analysis
codes (simulations, etc.)

Related Topics

e simulation_file_management
e workflow_management

e advanced_simulation_interfaces

Related Keywords
5.7.1 simulation_file_ management

Description

empty

Related Topics
Related Keywords
5.7.2 workflow_management

Description

empty

Related Topics
Related Keywords
5.7.3 advanced_simulation_interfaces

Description

empty

108

CHAPTER 5. TOPICS AREA

Related Topics

simulation_failure

concurrency_and_parallelism

Related Keywords

simulation_failure

Description

empty

Related Topics

Related Keywords

concurrency_and_parallelism

Description

empty

Related Topics

Related Keywords

processors_per_analysis : Specify the number of processors per analysis when Dakota is run in parallel
analysis_scheduling : Specify the scheduling of concurrent analyses when Dakota is run in parallel
master : Specify a dedicated master partition for parallel analysis scheduling

peer : Specify a peer partition for parallel analysis scheduling

analysis_servers : Specify the number of analysis servers when Dakota is run in parallel

asynchronous : Specify analysis driver concurrency, when Dakota is run in serial
analysis_concurrency : Limit the number of analysis drivers within an evaluation that Dakota will schedule
evaluation_concurrency : Determine how many concurrent evaluations Dakota will schedule
local_evaluation_scheduling : Control how local asynchronous jobs are scheduled

master : Specify a dedicated master partition for parallel evaluation scheduling

peer : Specify a peer partition for parallel evaluation scheduling

dynamic : Specify dynamic scheduling in a peer partition when Dakota is run in parallel.

static : Specify static scheduling in a peer partition when Dakota is run in parallel.

evaluation_servers : Specify the number of evaluation servers when Dakota is run in parallel

processors_per_evaluation : Specify the number of processors per evaluation server when Dakota is run in
parallel

5.8. METHODS 109

e iterator_scheduling : Specify the scheduling of concurrent iterators when Dakota is run in parallel

e master : Specify a dedicated master partition for parallel iterator scheduling

e peer : Specify a peer partition for parallel iterator scheduling

e iterator_servers : Specify the number of iterator servers when Dakota is run in parallel

e processors_per_iterator : Specify the number of processors per iterator server when Dakota is run in parallel
e iterator_scheduling : Specify the scheduling of concurrent iterators when Dakota is run in parallel

e master : Specify a dedicated master partition for parallel iterator scheduling

e peer : Specify a peer partition for parallel iterator scheduling

e iterator_servers : Specify the number of iterator servers when Dakota is run in parallel

e processors_per-iterator : Specify the number of processors per iterator server when Dakota is run in parallel
o iterator_scheduling : Specify the scheduling of concurrent iterators when Dakota is run in parallel

e master : Specify a dedicated master partition for parallel iterator scheduling

e peer : Specify a peer partition for parallel iterator scheduling

e iterator_servers : Specify the number of iterator servers when Dakota is run in parallel

e processors_per_iterator : Specify the number of processors per iterator server when Dakota is run in parallel
e iterator_scheduling : Specify the scheduling of concurrent iterators when Dakota is run in parallel

e master : Specify a dedicated master partition for parallel iterator scheduling

e peer : Specify a peer partition for parallel iterator scheduling

e iterator_servers : Specify the number of iterator servers when Dakota is run in parallel

e processors_per_iterator : Specify the number of processors per iterator server when Dakota is run in parallel

5.8 methods

Description

Keywords and Concepts relating to the method block, including discussion of the different methods and algo-
rithms availabe in Dakota

Related Topics

e parameter_studies
e sensitivity_analysis_and_design_of_experiments
e uncertainty_quantification

e optimization_and_calibration

110 CHAPTER 5. TOPICS AREA

Related Keywords
5.8.1 parameter_studies

Description

Parameter studies employ deterministic designs to explore the effect of parametric changes within simulation
models, yielding one form of sensitivity analysis. They can help assess simulation characteristics such as smooth-
ness, multi-modality, robustness, and nonlinearity, which affect the choice of algorithms and controls in follow-on
optimization and UQ studies.

Dakota’s parameter study methods compute response data sets at a selection of points in the parameter space.
These points may be specified as a vector, a list, a set of centered vectors, or a multi-dimensional grid. Capability
overviews and examples of the different types of parameter studies are provided in the Users Manual [4].

With the exception of output verbosity (a setting of silent will suppress some parameter study diagnostic
output), Dakota’s parameter study methods do not make use of the method independent controls. Therefore, the
parameter study documentation which follows is limited to the method dependent controls for the vector, list,
centered, and multidimensional parameter study methods.

Related Topics

Related Keywords
e centered_parameter_study : Samples variables along points moving out from a center point
o list_parameter_study : Samples variables as a specified values
e multidim_parameter_study : Samples variables on full factorial grid of study points

e partitions : Samples variables on full factorial grid of study points

e vector_parameter_study : Samples variables along a user-defined vector

5.8.2 sensitivity_analysis_and_design_of _experiments

Description

empty

Related Topics
e design_and_analysis_of_computer_experiments

e sampling

Related Keywords
5.8.3 design_and_analysis_of_computer_experiments

Description

Design and Analysis of Computer Experiments (DACE) methods compute response data sets at a selection of
points in the parameter space. Three libraries are provided for performing these studies: DDACE, FSUDace,
and PSUADE. The design of experiments methods do not currently make use of any of the method independent
controls.

5.8. METHODS 111

Related Topics
Related Keywords

e dace : Design and Analysis of Computer Experiments

fsu_cvt : Design of Computer Experiments - Centroidal Voronoi Tessellation

e fsu_quasi_mc : Design of Computer Experiments - Quasi-Monte Carlo sampling

hammersley : Use Hammersley sequences

e psuade_moat : Morris One-at-a-Time

5.8.4 sampling

Description

Sampling techniques are selected using the sampling method selection. This method generates sets of samples
according to the probability distributions of the uncertain variables and maps them into corresponding sets of
response functions, where the number of samples is specified by the samples integer specification. Means,
standard deviations, coefficients of variation (COVs), and 95% confidence intervals are computed for the response
functions. Probabilities and reliabilities may be computed for response_levels specifications, and response
levels may be computed for either probability_levels or reliability_levels specifications (refer
to the Method Commands chapter in the Dakota Reference Manual[5] for additional information).

Currently, traditional Monte Carlo (MC) and Latin hypercube sampling (LHS) are supported by Dakota and
are chosen by specifying sample_type as randomor 1Lhs. In Monte Carlo sampling, the samples are selected
randomly according to the user-specified probability distributions. Latin hypercube sampling is a stratified sam-
pling technique for which the range of each uncertain variable is divided into N, segments of equal probability,
where IV is the number of samples requested. The relative lengths of the segments are determined by the nature
of the specified probability distribution (e.g., uniform has segments of equal width, normal has small segments
near the mean and larger segments in the tails). For each of the uncertain variables, a sample is selected randomly
from each of these equal probability segments. These Ny values for each of the individual parameters are then
combined in a shuffling operation to create a set of N, parameter vectors with a specified correlation structure.
A feature of the resulting sample set is that every row and column in the hypercube of partitions has exactly one
sample. Since the total number of samples is exactly equal to the number of partitions used for each uncertain
variable, an arbitrary number of desired samples is easily accommodated (as compared to less flexible approaches
in which the total number of samples is a product or exponential function of the number of intervals for each
variable, i.e., many classical design of experiments methods).

Advantages of sampling-based methods include their relatively simple implementation and their independence
from the scientific disciplines involved in the analysis. The main drawback of these techniques is the large number
of function evaluations needed to generate converged statistics, which can render such an analysis computationally
very expensive, if not intractable, for real-world engineering applications. LHS techniques, in general, require
fewer samples than traditional Monte Carlo for the same accuracy in statistics, but they still can be prohibitively
expensive. For further information on the method and its relationship to other sampling techniques, one is referred
to the works by McKay, et al.[59], Iman and Shortencarier[53], and Helton and Davis[46]. Note that under certain
separability conditions associated with the function to be sampled, Latin hypercube sampling provides a more
accurate estimate of the mean value than does random sampling. That is, given an equal number of samples, the
LHS estimate of the mean will have less variance than the mean value obtained through random sampling.

112 CHAPTER 5. TOPICS AREA

Related Topics
Related Keywords

e importance_sampling : Importance sampling

e sampling : Randomly samples variables according to their distributions

5.8.5 uncertainty_quantification

Description

Dakota provides a variety of methods for propagating both aleatory and epistemic uncertainty.

At a high level, uncertainty quantification (UQ) or nondeterministic analysis is the process of characteriz-
ing input uncertainties, forward propagating these uncertainties through a computational model, and performing
statistical or interval assessments on the resulting responses. This process determines the effect of uncertainties
and assumptions on model outputs or results. In Dakota, uncertainty quantification methods specifically focus on
the forward propagation part of the process, where probabilistic or interval information on parametric inputs are
mapped through the computational model to assess statistics or intervals on outputs. For an overview of these
approaches for engineering applications, consult[42].

UQ is related to sensitivity analysis in that the common goal is to gain an understanding of how variations in
the parameters affect the response functions of the engineering design problem. However, for UQ, some or all
of the components of the parameter vector, are considered to be uncertain as specified by particular probability
distributions (e.g., normal, exponential, extreme value), or other uncertainty structures. By assigning specific
distributional structure to the inputs, distributional structure for the outputs (i.e, response statistics) can be inferred.
This migrates from an analysis that is more {qualitative} in nature, in the case of sensitivity analysis, to an analysis
that is more rigorously {quantitative}.

UQ methods are often distinguished by their ability to propagate aleatory or epistemic input uncertainty char-
acterizations, where aleatory uncertainties are irreducible variabilities inherent in nature and epistemic uncertain-
ties are reducible uncertainties resulting from a lack of knowledge. Since sufficient data is generally available
for aleatory uncertainties, probabilistic methods are commonly used for computing response distribution statistics
based on input probability distribution specifications. Conversely, for epistemic uncertainties, any use of proba-
bility distributions is based on subjective knowledge rather than objective data, and we may alternatively explore
nonprobabilistic methods based on interval specifications.

Dakota contains capabilities for performing nondeterministic analysis with both types of input uncertainty.
These UQ methods have been developed by Sandia Labs, in conjunction with collaborators in academia[3 1],[32],[

The aleatory UQ methods in Dakota include various sampling-based approaches (e.g., Monte Carlo and Latin
Hypercube sampling), local and global reliability methods, and stochastic expansion (polynomial chaos expan-
sions and stochastic collocation) approaches. The epistemic UQ methods include local and global interval analysis
and Dempster-Shafer evidence theory. These are summarized below and then described in more depth in subse-
quent sections of this chapter. Dakota additionally supports mixed aleatory/epistemic UQ via interval-valued
probability, second-order probability, and Dempster-Shafer theory of evidence. These involve advanced model
recursions and are described in Section.

Dakota contains capabilities for performing nondeterministic analysis with both types of input uncertainty.
These UQ methods have been developed by Sandia Labs, in conjunction with collaborators in academia[3 1],[32],[

The aleatory UQ methods in Dakota include various sampling-based approaches (e.g., Monte Carlo and Latin
Hypercube sampling), local and global reliability methods, and stochastic expansion (polynomial chaos expan-
sions and stochastic collocation) approaches. The epistemic UQ methods include local and global interval analysis
and Dempster-Shafer evidence theory. These are summarized below and then described in more depth in subse-
quent sections of this chapter. Dakota additionally supports mixed aleatory/epistemic UQ via interval-valued

5.8. METHODS 113

probability, second-order probability, and Dempster-Shafer theory of evidence. These involve advanced model
recursions and are described in Section.

The choice of uncertainty quantification method depends on how the input uncertainty is characterized, the
computational budget, and the desired output accuracy. The recommendations for UQ methods are summarized
in Tableand are discussed in the remainder of the section.

TODO: Put table in Doxygen if still needed

Related Topics
e aleatory_uncertainty_quantification_methods
e epistemic_uncertainty quantification_methods

e variable_support

Related Keywords

e adaptive_sampling : (Experimental) Build a GP surrogate and refine it adaptively
e cfficient_subspace : (Experimental) efficient subspace method (ESM)

e global_interval_est : Interval analysis using global optimization methods

e global_reliability : Global reliability methods

e gpais : Gaussian Process Adaptive Importance Sampling

e importance_sampling : Importance sampling

e local_interval_est : Interval analysis using local optimization

e local_reliability : Local reliability method

e mpp_search : Specify which MPP search option to use

e pof_darts : Probability-of-Failure (POF) darts is a novel method for estimating the probability of failure
based on random sphere-packing.

e sampling : Randomly samples variables according to their distributions

5.8.6 aleatory uncertainty_quantification_methods

Description

Aleatory uncertainty is also known as inherent variability, irreducible uncertainty, or randomness.
Aleatory uncertainty is typically charaterized using probability theory.

Related Topics
e sampling
e reliability_methods

e stochastic_expansion_methods

114 CHAPTER 5. TOPICS AREA

Related Keywords

e importance_sampling : Importance sampling

sampling
Description

Sampling techniques are selected using the sampling method selection. This method generates sets of samples
according to the probability distributions of the uncertain variables and maps them into corresponding sets of
response functions, where the number of samples is specified by the samples integer specification. Means,
standard deviations, coefficients of variation (COVs), and 95% confidence intervals are computed for the response
functions. Probabilities and reliabilities may be computed for response_levels specifications, and response
levels may be computed for either probability_levels or reliability_levels specifications (refer
to the Method Commands chapter in the Dakota Reference Manual[5] for additional information).

Currently, traditional Monte Carlo (MC) and Latin hypercube sampling (LHS) are supported by Dakota and
are chosen by specifying sample_type as randomor Lhs. In Monte Carlo sampling, the samples are selected
randomly according to the user-specified probability distributions. Latin hypercube sampling is a stratified sam-
pling technique for which the range of each uncertain variable is divided into IN; segments of equal probability,
where IV is the number of samples requested. The relative lengths of the segments are determined by the nature
of the specified probability distribution (e.g., uniform has segments of equal width, normal has small segments
near the mean and larger segments in the tails). For each of the uncertain variables, a sample is selected randomly
from each of these equal probability segments. These N, values for each of the individual parameters are then
combined in a shuffling operation to create a set of N, parameter vectors with a specified correlation structure.
A feature of the resulting sample set is that every row and column in the hypercube of partitions has exactly one
sample. Since the total number of samples is exactly equal to the number of partitions used for each uncertain
variable, an arbitrary number of desired samples is easily accommodated (as compared to less flexible approaches
in which the total number of samples is a product or exponential function of the number of intervals for each
variable, i.e., many classical design of experiments methods).

Advantages of sampling-based methods include their relatively simple implementation and their independence
from the scientific disciplines involved in the analysis. The main drawback of these techniques is the large number
of function evaluations needed to generate converged statistics, which can render such an analysis computationally
very expensive, if not intractable, for real-world engineering applications. LHS techniques, in general, require
fewer samples than traditional Monte Carlo for the same accuracy in statistics, but they still can be prohibitively
expensive. For further information on the method and its relationship to other sampling techniques, one is referred
to the works by McKay, et al.[59], Iman and Shortencarier[53], and Helton and Davis[46]. Note that under certain
separability conditions associated with the function to be sampled, Latin hypercube sampling provides a more
accurate estimate of the mean value than does random sampling. That is, given an equal number of samples, the
LHS estimate of the mean will have less variance than the mean value obtained through random sampling.

Related Topics

Related Keywords

e importance_sampling : Importance sampling

e sampling : Randomly samples variables according to their distributions

5.8. METHODS 115

reliability_methods

Description

Reliability methods provide an alternative approach to uncertainty quantification which can be less computa-
tionally demanding than sampling techniques. Reliability methods for uncertainty quantification are based on
probabilistic approaches that compute approximate response function distribution statistics based on specified un-
certain variable distributions. These response statistics include response mean, response standard deviation, and
cumulative or complementary cumulative distribution functions (CDF/CCDF). These methods are often more ef-
ficient at computing statistics in the tails of the response distributions (events with low probability) than sampling
based approaches since the number of samples required to resolve a low probability can be prohibitive.

The methods all answer the fundamental question: “Given a set of uncertain input variables, X, and a scalar
response function, g, what is the probability that the response function is below or above a certain level, 27’ The
former can be written as P[g(X) < z] = F,;(Z) where F,,(Z) is the cumulative distribution function (CDF) of the
uncertain response g(X) over a set of response levels. The latter can be written as P[g(X) > Z| and defines the
complementary cumulative distribution function (CCDF).

This probability calculation involves a multi-dimensional integral over an irregularly shaped domain of inter-
est, D, where g(X) < z as displayed in Figure figUQO5 for the case of two variables. The reliability methods
all involve the transformation of the user-specified uncertain variables, X, with probability density function,
p(z1,z2), which can be non-normal and correlated, to a space of independent Gaussian random variables, u,
possessing a mean value of zero and unit variance (i.e., standard normal variables). The region of interest, D, is
also mapped to the transformed space to yield, Dy, , where g(U) < z as shown in Figure figUQ06. The Nataf
transformation[| 7], which is identical to the Rosenblatt transformation[72] in the case of independent random
variables, is used in Dakota to accomplish this mapping. This transformation is performed to make the probability
calculation more tractable. In the transformed space, probability contours are circular in nature as shown in Figure
figUQO6 unlike in the original uncertain variable space, Figure figUQO0S5 . Also, the multi-dimensional integrals
can be approximated by simple functions of a single parameter, (3, called the reliability index. [is the minimum
Euclidean distance from the origin in the transformed space to the response surface. This point is also known as
the most probable point (MPP) of failure. Note, however, the methodology is equally applicable for generic func-
tions, not simply those corresponding to failure criteria; this nomenclature is due to the origin of these methods
within the disciplines of structural safety and reliability. Note that there are local and global reliability methods.
The majority of the methods available are local, meaning that a local optimization formulation is used to locate
one MPP. In contrast, global methods can find multiple MPPs if they exist.

Related Topics

Related Keywords
e global_reliability : Global reliability methods

e u_gaussian_process : Create GP surrogate in u-space

e x_gaussian_process : Create GP surrogate in x-space

e local reliability : Local reliability method

e mpp_search : Specify which MPP search option to use
e integration : Integration approach

e first_order : First-order integration scheme

116 CHAPTER 5. TOPICS AREA

e probability_refinement : Allow refinement of probability and generalized reliability results using impor-
tance sampling

e second_order : Second-order integration scheme

e no_approx : Perform MPP search on original response functions (use no approximation)

e u_taylor_mean : Form Taylor series approximation in ~u-space” at variable means

e u_taylor_mpp : U-space Taylor series approximation with iterative updates

e u_two_point : Predict MPP using Two-point Adaptive Nonlinear Approximation in ’u-space”
e x_taylor_mean : Form Taylor series approximation in ’x-space” at variable means

e x_taylor_mpp : X-space Taylor series approximation with iterative updates

e x_two_point : Predict MPP using Two-point Adaptive Nonlinear Approximation in ’x-space”

e probability_refinement : Allow refinement of probability and generalized reliability results using impor-
tance sampling

e probability_refinement : Allow refinement of probability and generalized reliability results using impor-
tance sampling

stochastic_expansion_methods

Description

The development of these techniques mirrors that of deterministic finite element analysis utilizing the notions of
projection, orthogonality, and weak convergence[3 |],[32]. Rather than estimating point probabilities, they form an
approximation to the functional relationship between response functions and their random inputs, which provides
a more complete uncertainty representation for use in multi-code simulations. Expansion methods include polyno-
mial chaos expansions (PCE), which employ multivariate orthogonal polynomials that are tailored to representing
particular input probability distributions, and stochastic collocation (SC), which employs multivariate interpola-
tion polynomials. For PCE, expansion coefficients may be evaluated using a spectral projection approach (based
on sampling, tensor-product quadrature, Smolyak sparse grid, or cubature methods for numerical integration) or a
regression approach (least squares or compressive sensing). For SC, interpolants are formed over tensor-product
or sparse grids and may be local or global, value-based or gradient-enhanced, and nodal or hierarchical. In global
value-based cases (Lagrange polynomials), the barycentric formulation is used[10],[56],[49] to improve numeri-
cal efficiency and stability. Both sets of methods provide analytic response moments and variance-based metrics;
however, CDF/CCDF probabilities are evaluated numerically by sampling on the expansion.

Related Topics
Related Keywords
5.8.7 epistemic_uncertainty_quantification_methods

Description

Epistemic uncertainty is uncertainty due to lack of knowledge.

In Dakota, epistemic uncertainty analysis is performed using interval analysis or Dempster-Shafer theory of
evidence.

Note that epistemic uncertainty can also be modeled probabilistically. It would be more accurate to call this
class of method, non-probabilistic uncertainty quantification, but the name persists for historical reasons.

5.8. METHODS 117

Related Topics

e interval_estimation

e cvidence_theory

Related Keywords

e global_evidence : Evidence theory with evidence measures computed with global optimization methods
e global_interval_est : Interval analysis using global optimization methods
e local_evidence : Evidence theory with evidence measures computed with local optimization methods

e local_interval est : Interval analysis using local optimization

interval_estimation

Description

In interval analysis, one assumes that nothing is known about an epistemic uncertain variable except that its value
lies somewhere within an interval. In this situation, it is NOT assumed that the value has a uniform probability
of occuring within the interval. Instead, the interpretation is that any value within the interval is a possible value
or a potential realization of that variable. In interval analysis, the uncertainty quantification problem is one of
determining the resulting bounds on the output (defining the output interval) given interval bounds on the inputs.
Again, any output response that falls within the output interval is a possible output with no frequency information
assigned to it.

We have the capability to perform interval analysis using either global_interval_est or local_—
interval_est. In the global approach, one uses either a global optimization method or a sampling method to
assess the bounds. global_interval_est allows the user to specify either 1hs, which performs Latin Hyper-
cube Sampling and takes the minimum and maximum of the samples as the bounds (no optimization is performed)
or ego. In the case of ego, the efficient global optimization method is used to calculate bounds. The ego method
is described in Section . If the problem is amenable to local optimization methods (e.g. can provide derivatives
or use finite difference method to calculate derivatives), then one can use local methods to calculate these bounds.
local_interval_est allows the user to specify either sgp which is sequential quadratic programming, or
nip which is a nonlinear interior point method.

Note that when performing interval analysis, it is necessary to define interval uncertain variables as described
in Section . For interval analysis, one must define only one interval per input variable, in contrast with Dempster-
Shafer evidence theory, where an input can have several possible intervals. Interval analysis can be considered a
special case of Dempster-Shafer evidence theory where each input is defined by one input interval with a basic
probability assignment of one. In Dakota, however, the methods are separate and semantic differences exist in
the output presentation. If you are performing a pure interval analysis, we recommend using either global_—
interval_est or local_interval_est instead of global_evidence or local _evidence, for rea-
sons of simplicity. An example of interval estimation is found in the Dakota/examples/users/cantilever—
_ug_global_interval.in, and also in Section .

Note that we have kept separate implementations of interval analysis and Dempster-Shafer evidence the-
ory because our users often want to couple interval analysis on an outer loop’’ with an aleatory,
probabilistic analysis on aninner loop” for nested, second-order probability calculations. See Sec-
tion for additional details on these nested approaches. These interval methods can also be used as the outer loop
within an interval-valued probability analysis for propagating mixed aleatory and epistemic uncertainty — refer to
Section for additional details.

118 CHAPTER 5. TOPICS AREA

Interval analysis is often used to model epistemic uncertainty. In interval analysis, the uncertainty quantifica-
tion problem is one of determining the resulting bounds on the output (defining the output interval) given interval
bounds on the inputs.

We can do interval analysis using either %global_interval_est or local_interval_est. In the
global approach, one uses either a global optimization method or a sampling method to assess the bounds, whereas
the local method uses gradient information in a derivative-based optimization approach.

An example of interval estimation is shown in Figure , with example results in Figure . This example is
a demonstration of calculating interval bounds for three outputs of the cantilever beam problem. The cantilever
beam problem is described in detail in Section . Given input intervals of [1,10] on beam width and beam thickness,

we can see that the interval estimate of beam weight is approximately [1,100].
:examples:interval_out

Min and Max estimated values for each response function:
weight: Min = 1.0000169352e+00 Max = 9.9999491948e+01

stress: Min = -9.7749994284e-01 Max = 2.1499428450e+01
displ: Min = -9.9315672724e-01 Max = 6.7429714485e+01
Related Topics

Related Keywords

e global_interval_est : Interval analysis using global optimization methods

e local_interval_est : Interval analysis using local optimization

evidence_theory

Description

This section discusses Dempster-Shafer evidence theory. In this approach, one does not assign a probability
distribution to each uncertain input variable. Rather, one divides each uncertain input variable into one or more
intervals. The input parameters are only known to occur within intervals: nothing more is assumed.

Each interval is defined by its upper and lower bounds, and a Basic Probability Assignment (BPA) associated
with that interval. The BPA represents a probability of that uncertain variable being located within that interval.

The intervals and BPAs are used to construct uncertainty measures on the outputs called “’belief” and “’plau-
sibility.” Belief represents the smallest possible probability that is consistent with the evidence, while plausibility
represents the largest possible probability that is consistent with the evidence. For more information about the
Dempster-Shafer theory of evidence, see [66] and[47].

Similar to the interval approaches, one may use global or local methods to determine plausbility and belief
measures for the outputs.

Usage Notes

Note that to calculate the plausibility and belief cumulative distribution functions, one has to look at all
combinations of intervals for the uncertain variables. Within each interval cell combination, the minimum and
maximum value of the objective function determine the belief and plausibility, respectively. In terms of imple-
mentation, global methods use LHS sampling or global optimization to calculate the minimum and maximum
values of the objective function within each interval cell, while local methods use gradient-based optimization
methods to calculate these minima and maxima.

Finally, note that many non-deterministic keywords apply to the evidence methods, but one needs to be careful
about the interpretation and translate probabilistic measures to epistemic ones. For example, if the user specifies
distribution of type complementary, a complementary plausibility and belief function will be generated for the

5.8. METHODS 119

evidence methods (as opposed to a complementary distribution function in the sampling case). If the user spec-
ifies a set of responses levels, both the belief and plausibility will be calculated for each response level. Likewise,
if the user specifies a probability level, the probability level will be interpreted both as a belief and plausibility,
and response levels corresponding to the belief and plausibility levels will be calculated. Finally, if generalized re-
liability levels are specified, either as inputs (gen_reliability_levels) or outputs (response_levels
with compute gen_reliabilities), then these are directly converted to/from probability levels and the
same probability-based mappings described above are performed.

Related Topics
Related Keywords

e global_evidence : Evidence theory with evidence measures computed with global optimization methods

e local_evidence : Evidence theory with evidence measures computed with local optimization methods

5.8.8 variable_support

Description

Different nondeterministic methods have differing support for uncertain variable distributions. Tables 5.37, 5.38,
and 5.39 summarize the uncertain variables that are available for use by the different methods, where a ”-” indi-
cates that the distribution is not supported by the method, a ”U” means the uncertain input variables of this type
must be uncorrelated, a ”’C” denotes that correlations are supported involving uncertain input variables of this
type, and an ”A” means the appropriate variables must be specified as active in the variables specification block.
For example, if one wants to support sampling or a stochastic expansion method over both continuous uncertain
and continuous state variables, the specification act ive all must be listed in the variables specification block.
Additional notes include:

e we have four variants for stochastic expansions (SE), listed as Wiener, Askey, Extended, and Piecewise
which draw from different sets of basis polynomials. The term stochastic expansion indicates polynomial
chaos and stochastic collocation collectively, although the Piecewise option is only currently supported for
stochastic collocation. Refer to polynomial_chaos and stoch_collocation for additional information on these
three options.

e methods supporting the epistemic interval distributions have differing approaches: sampling andthe 1hs
option of global_interval_est model the interval basic probability assignments (BPAs) as continu-
ous histogram bin distributions for purposes of generating samples; local_interval_est and the ego
option of global_interval_est ignore the BPA details and models these variables as simple bounded
regions defined by the cell extremes; and 1local_evidence and global_evidence model the interval
specifications as true BPAs.

Related Topics
Related Keywords
5.8.9 optimization_and_calibration

Description

Optimization algorithms work to minimize (or maximize) an objective function, typically calculated by the user
simulation code, subject to constraints on design variables and responses. Available approaches in Dakota include

120 CHAPTER 5. TOPICS AREA

well-tested, proven gradient-based, derivative-free local, and global methods for use in science and engineering
design applications. Dakota also offers more advanced algorithms, e.g., to manage multi-objective optimization or
perform surrogate-based minimization. This chapter summarizes optimization problem formulation, standard al-
gorithms available in Dakota (mostly through included third-party libraries, see Section 6.5 of[4]), some advanced
capabilities, and offers usage guidelines.

Optimization Formulations

This section provides a basic introduction to the mathematical formulation of optimization, problems. The primary
goal of this section is to introduce terms relating to these topics, and is not intended to be a description of theory
or numerical algorithms. For further details, consult[8] ,[34],[41],[65], and [84].

A general optimization problem is formulated as follows:

minimize: f(x)
x € R"
subject to: gr <gx) <gu
h(x) = hy (5.1
ar <Ax<ay
A.x = a

Xp <x <Xy

where vector and matrix terms are marked in bold typeface. In this formulation, x = [z1,22,...,2,] is an
n-dimensional vector of real-valued design variables or design parameters. The n-dimensional vectors, x;, and
Xy, are the lower and upper bounds, respectively, on the design parameters. These bounds define the allowable
values for the elements of x, and the set of all allowable values is termed the design space or the parameter space.
A design point or a sample point is a particular set of values within the parameter space.

The optimization goal is to minimize the objective function, f(x), while satisfying the constraints. Constraints
can be categorized as either linear or nonlinear and as either inequality or equality. The nonlinear inequality
constraints}, g(x), are “2-sided,” in that they have both lower and upper bounds, g, and gy, respectively. The
nonlinear equality constraints, h(x), have target values specified by h;. The linear inequality constraints create
a linear system A;x, where A; is the coefficient matrix for the linear system. These constraints are also 2-sided
as they have lower and upper bounds, a;, and ay, respectively. The linear equality constraints create a linear
system A .x, where A, is the coefficient matrix for the linear system and a; are the target values. The constraints
partition the parameter space into feasible and infeasible regions. A design point is said to be feasible if and only
if it satisfies all of the constraints. Correspondingly, a design point is said to be infeasible if it violates one or
more of the constraints.

Many different methods exist to solve the optimization problem given in Section 6.1 of[4], all of which iterate
on x in some manner. That is, an initial value for each parameter in x is chosen, the response quantities, f(x),
g(x), h(x), are computed, often by running a simulation, and some algorithm is applied to generate a new x that
will either reduce the objective function, reduce the amount of infeasibility, or both. To facilitate a general presen-
tation of these methods, three criteria will be used in the following discussion to differentiate them: optimization
problem type, search goal, and search method.

The optimization problem type can be characterized both by the types of constraints present in the problem
and by the linearity or nonlinearity of the objective and constraint functions. For constraint categorization, a hi-
erarchy of complexity exists for optimization algorithms, ranging from simple bound constraints, through linear
constraints, to full nonlinear constraints. By the nature of this increasing complexity, optimization problem cat-
egorizations are inclusive of all constraint types up to a particular level of complexity. That is, an unconstrained

5.8. METHODS 121

problem has no constraints, a bound-constrained problem has only lower and upper bounds on the design pa-
rameters, a linearly-constrained problem has both linear and bound constraints, and a nonlinearly-constrained
problem may contain the full range of nonlinear, linear, and bound constraints. If all of the linear and nonlinear
constraints are equality constraints, then this is referred to as an equality-constrained problem, and if all of the
linear and nonlinear constraints are inequality constraints, then this is referred to as an inequality-constrained
problem. Further categorizations can be made based on the linearity of the objective and constraint functions. A
problem where the objective function and all constraints are linear is called a linear programming (LP) problem.
These types of problems commonly arise in scheduling, logistics, and resource allocation applications. Likewise,
a problem where at least some of the objective and constraint functions are nonlinear is called a nonlinear pro-
gramming (NLP) problem. These NLP problems predominate in engineering applications and are the primary
focus of Dakota.

The search goal refers to the ultimate objective of the optimization algorithm, i.e., either global or local
optimization. In global optimization, the goal is to find the design point that gives the lowest feasible objective
function value over the entire parameter space. In contrast, in local optimization, the goal is to find a design point
that is lowest relative to a “nearby” region of the parameter space. In almost all cases, global optimization will be
more computationally expensive than local optimization. Thus, the user must choose an optimization algorithm
with an appropriate search scope that best fits the problem goals and the computational budget.

The search method refers to the approach taken in the optimization algorithm to locate a new design point
that has a lower objective function or is more feasible than the current design point. The search method can be
classified as either gradient-based or nongradient-based. In a gradient-based algorithm, gradients of the response
functions are computed to find the direction of improvement. Gradient-based optimization is the search method
that underlies many efficient local optimization methods. However, a drawback to this approach is that gradients
can be computationally expensive, inaccurate, or even nonexistent. In such situations, nongradient-based search
methods may be useful. There are numerous approaches to nongradient-based optimization. Some of the more
well known of these include pattern search methods (nongradient-based local techniques) and genetic algorithms
(nongradient-based global techniques).

Because of the computational cost of running simulation models, surrogate-based optimization (SBO) meth-
ods are often used to reduce the number of actual simulation runs. In SBO, a surrogate or approximate model is
constructed based on a limited number of simulation runs. The optimization is then performed on the surrogate
model. Dakota has an extensive framework for managing a variety of local, multipoint, global, and hierarchical
surrogates for use in optimization. Finally, sometimes there are multiple objectives that one may want to optimize
simultaneously instead of a single scalar objective. In this case, one may employ multi-objective methods that are
described in Section 6.3.1 of[4].

This overview of optimization approaches underscores that no single optimization method or algorithm works
best for all types of optimization problems. Section 6.4 of[4] offers guidelines for choosing a Dakota optimization
algorithm best matched to your specific optimization problem.

Constraint Considerations Dakota’s input commands permit the user to specify two-sided nonlinear inequality
constraints of the form gz, < g;(x) < gu,, as well as nonlinear equality constraints of the form h;(x) = hy,.
Some optimizers (e.g., npsol., optpp-, soga, and moga methods) can handle these constraint forms di-
rectly, whereas other optimizers (e.g., asynch_pattern_search, dot_, and conmin_, mesh_adaptive-
_search) require Dakota to perform an internal conversion of all constraints to one-sided inequality constraints
of the form g;(x) < 0. In the latter case, the two-sided inequality constraints are treated as g;(x) — gy, < 0
and gz, — gi(x) < 0 and the equality constraints are treated as h;(x) — h;; < 0 and hy;, — hj(x) < 0. The
situation is similar for linear constraints: asynch_pattern_search, npsol_, optpp., soga, and moga
methods support them directly, whereas dot_ and conmin_ methods do not. For linear inequalities of the form
ar, < alx < ay, and linear equalities of the form alx = ag,;, the nonlinear constraint arrays in dot_ and
conmin_ methods are further augmented to include alx — ay, < 0 and az, — alx < 0 in the inequality

case and aiTx —a; < 0and ay; — aiTx < 0 in the equality case. Awareness of these constraint augmenta-

122 CHAPTER 5. TOPICS AREA

tion procedures can be important for understanding the diagnostic data returned from the dot_ and conmin_
methods. Other optimizers fall somewhere in between. n1pgl_ methods support nonlinear equality constraints
hj(x) = 0 and nonlinear one-sided inequalities g;(x) > 0, but does not natively support linear constraints. Con-
straint mappings are used with NLPQL for both linear and nonlinear cases. Most col iny._ methods now support
two-sided nonlinear inequality constraints and nonlinear constraints with targets, but do not natively support linear
constraints.

When gradient and Hessian information is used in the optimization, derivative components are most com-
monly computed with respect to the active continuous variables, which in this case are the continuous design
variables. This differs from parameter study methods (for which all continuous variables are active) and from
nondeterministic analysis methods (for which the uncertain variables are active). Refer to Chapter 11 of[4] for
additional information on derivative components and active continuous variables.

Optimizing with Dakota: Choosing a Method

This section summarizes the optimization methods available in Dakota. We group them according to search
method and search goal and establish their relevance to types of problems. For a summary of this discussion, see
Section 6.4 of[4].

Gradient-Based Local Methods Gradient-based optimizers are best suited for efficient navigation to a local
minimum in the vicinity of the initial point. They are not intended to find global optima in nonconvex design
spaces. For global optimization methods, see Section 6.2.3 of[4]. Gradient-based optimization methods are
highly efficient, with the best convergence rates of all of the local optimization methods, and are the methods of
choice when the problem is smooth, unimodal, and well-behaved. However, these methods can be among the least
robust when a problem exhibits nonsmooth, discontinuous, or multimodal behavior. The derivative-free methods
described in Section 6.2.2 of[4] are more appropriate for problems with these characteristics.

Gradient accuracy is a critical factor for gradient-based optimizers, as inaccurate derivatives will often lead to
failures in the search or pre-mature termination of the method. Analytic gradients and Hessians are ideal but often
unavailable. If analytic gradient and Hessian information can be provided by an application code, a full Newton
method will achieve quadratic convergence rates near the solution. If only gradient information is available and
the Hessian information is approximated from an accumulation of gradient data, the superlinear convergence rates
can be obtained. It is most often the case for engineering applications, however, that a finite difference method
will be used by the optimization algorithm to estimate gradient values. Dakota allows the user to select the step
size for these calculations, as well as choose between forward-difference and central-difference algorithms. The
finite difference step size should be selected as small as possible, to allow for local accuracy and convergence, but
not so small that the steps are “in the noise.” This requires an assessment of the local smoothness of the response
functions using, for example, a parameter study method. Central differencing will generally produce more reliable
gradients than forward differencing but at roughly twice the expense.

Gradient-based methods for nonlinear optimization problems can be described as iterative processes in which
a sequence of subproblems, usually which involve an approximation to the full nonlinear problem, are solved until
the solution converges to a local optimum of the full problem. The optimization methods available in Dakota fall
into several categories, each of which is characterized by the nature of the subproblems solved at each iteration.

Related Topics
e local_optimization_methods
e global_optimization_methods

e bayesian_calibration

e nonlinear_least_squares

5.8. METHODS
e advanced_optimization

Related Keywords

e dl_solver : (Experimental) Dynamically-loaded solver

5.8.10 local_optimization_methods

Description

empty

Related Topics

e unconstrained
e constrained

e sequential_quadratic_programming

Related Keywords

e coliny_cobyla : Constrained Optimization BY Linear Approximations (COBYLA)

e nlpql_sqp : Sequential Quadratic Program

e nonlinear_cg : (Experimental) nonlinear conjugate gradient optimization

e npsol_sqp : Sequential Quadratic Program

e optpp-cg : A conjugate gradient optimization method

o optpp_fd_newton : Finite Difference Newton optimization method

e optpp-g-newton : Newton method based least-squares calbration

e optpp_newton : Newton method based optimization

e optpp_g-newton : Quasi-Newton optimization method

unconstrained

Description

empty

Related Topics
Related Keywords

constrained

Description

empty

123

124 CHAPTER 5. TOPICS AREA

Related Topics

Related Keywords
e coliny_cobyla : Constrained Optimization BY Linear Approximations (COBYLA)

sequential_quadratic_programming

Description

Sequential Quadratic Programming (SQP) algorithms are a class of mathematical programming problems used to
solve nonlinear optimization problems with nonlinera constraints. These methods are a generalization of Newton’s
method: each iteration involves minimizing a quadratic model of the problem. These subproblems are formulated
as minimizing a quadratic approximation of the Lagrangian subject to linearized constraints. Only gradient infor-
mation is required; Hessians are approximated by low-rank updates defined by the step taken at each iteration. It
is important to note that while the solution found by an SQP method will respect the constraints, the intermediate
iterates may not. SQP methods available in Dakota are dot_sqgp, nlpgl_sqgp, nlssol_sgp, and npsol_—
sgp. The particular implementation in n1pgl_sqgp uses a variant with distributed and non-monotone line search.
Thus, this variant is designed to be more robust in the presence of inaccurate or noisy gradients common in many
engineering applications.
Related Topics
Related Keywords

e nlpql_sqp : Sequential Quadratic Program

e nlssol_sqp : Sequential Quadratic Program for nonlinear least squares

e npsol_sqp : Sequential Quadratic Program

5.8.11 global_optimization_methods

Description

empty

Related Topics

Related Keywords
e asynch_pattern_search : Pattern search, derivative free optimization method
e coliny_direct : DIviding RECTangles method
e coliny_ea : Evolutionary Algorithm
e coliny_pattern_search : Pattern search, derivative free optimization method
o cfficient_global : Global Surrogate Based Optimization, a.k.a. EGO
e ncsu_direct : DIviding RECTangles method

e soga : Single-objective Genetic Algorithm (a.k.a Evolutionary Algorithm)

5.8. METHODS 125

5.8.12 Dbayesian_calibration

Description

See the discussion of Bayesian Calibration in the Dakota User’s Manual [4].

Related Topics
Related Keywords
e bayes_calibration : Bayesian calibration
e dream : DREAM (DiffeRential Evolution Adaptive Metropolis)
e chains : Number of chains in DREAM
e crossover_chain_pairs : Number of chains used in crossover.
e gr_threshold : Convergence tolerance for the Gelman-Rubin statistic
e jump_step : Number of generations a long jump step is taken
e num_cr : Number of candidate points for each crossover.

e gpmsa : (Experimental) Gaussian Process Models for Simulation Analysis (GPMSA) Markov Chain Monte
Carlo algorithm with Gaussian Process Surrogate

e adaptive_metropolis : Use the Adaptive Metropolis MCMC algorithm

e delayed_rejection : Use the Delayed Rejection MCMC algorithm

e dram : Use the DRAM MCMC algorithm

e metropolis_hastings : Use the Metropolis-Hastings MCMC algorithm

e multilevel : Use the multilevel MCMC algorithm.

e proposal_covariance : Defines the technique used to generate the MCMC proposal covariance.
o derivatives : Uses derivatives to inform the MCMC proposal covariance.

e prior : Uses the covariance of the prior distributions to define the MCMC proposal covariance.
e queso : Markov Chain Monte Carlo algorithms from the QUESO package

e adaptive_metropolis : Use the Adaptive Metropolis MCMC algorithm

e delayed_rejection : Use the Delayed Rejection MCMC algorithm

e dram : Use the DRAM MCMC algorithm

e metropolis_hastings : Use the Metropolis-Hastings MCMC algorithm

e multilevel : Use the multilevel MCMC algorithm.

e proposal_covariance : Defines the technique used to generate the MCMC proposal covariance.
e derivatives : Uses derivatives to inform the MCMC proposal covariance.

e prior : Uses the covariance of the prior distributions to define the MCMC proposal covariance.

126 CHAPTER 5. TOPICS AREA

5.8.13 nonlinear least_squares

Description

Dakota’s least squares branch currently contains three methods for solving nonlinear least squares problems:

e NL2SOL, a trust-region method that adaptively chooses between two Hessian approximations (Gauss--
Newton and Gauss-Newton plus a quasi-Newton approximation to the rest of the Hessian)

e NLSSOL, a sequential quadratic programming (SQP) approach that is from the same algorithm family as
NPSOL

e Gauss-Newton, which supplies the Gauss-Newton Hessian approximation to the full-Newton optimizers
from OPT++.

The important difference of these algorithms from general-purpose optimization methods is that the response set
is defined by calibration terms (e.g. separate terms for each residual), rather than an objective function. Thus, a
finer granularity of data is used by least squares solvers as compared to that used by optimizers. This allows the
exploitation of the special structure provided by a sum of squares objective function.

Related Topics
Related Keywords

e nl2sol : Trust-region method for nonlinear least squares

e nlssol_sqp : Sequential Quadratic Program for nonlinear least squares

5.8.14 advanced optimization

Description

empty

Related Topics

e scaling
e multiobjective_methods

e surrogate_based_optimization_methods

Related Keywords
scaling
Description

empty

5.9. ADVANCED_TOPICS

Related Topics
Related Keywords

multiobjective_methods

Description

empty

Related Topics
Related Keywords

surrogate_based_optimization_methods

Description

empty

Related Topics

Related Keywords
o cfficient_global : Global Surrogate Based Optimization, a.k.a. EGO

e surrogate_based_global : Global Surrogate Based Optimization

e surrogate_based_local : Local Surrogate Based Optimization

5.9 advanced topics

Description

Advanced Dakota capabilities

Related Topics
e advanced_strategies
e advanced_model_recursion
e advanced_simulation_interfaces

e advanced_optimization

Related Keywords
5.9.1 advanced_strategies

Description

empty

127

128

Related Topics
Related Keywords
5.9.2 advanced model recursion

Description

empty

Related Topics

e hybrid_and_recursions_logic

Related Keywords

hybrid_and_recursions_logic

Description

empty

Related Topics
Related Keywords
5.9.3 advanced_simulation_interfaces

Description

empty

Related Topics
e simulation_failure

e concurrency_and_parallelism

Related Keywords

simulation_failure

Description

empty

Related Topics
Related Keywords
concurrency_and_parallelism

Description

empty

CHAPTER 5. TOPICS AREA

5.9. ADVANCED_TOPICS 129

Related Topics
Related Keywords

processors_per_analysis : Specify the number of processors per analysis when Dakota is run in parallel
analysis_scheduling : Specify the scheduling of concurrent analyses when Dakota is run in parallel
master : Specify a dedicated master partition for parallel analysis scheduling

peer : Specify a peer partition for parallel analysis scheduling

analysis_servers : Specify the number of analysis servers when Dakota is run in parallel

asynchronous : Specify analysis driver concurrency, when Dakota is run in serial
analysis_concurrency : Limit the number of analysis drivers within an evaluation that Dakota will schedule
evaluation_concurrency : Determine how many concurrent evaluations Dakota will schedule
local_evaluation_scheduling : Control how local asynchronous jobs are scheduled

master : Specify a dedicated master partition for parallel evaluation scheduling

peer : Specify a peer partition for parallel evaluation scheduling

dynamic : Specify dynamic scheduling in a peer partition when Dakota is run in parallel.

static : Specify static scheduling in a peer partition when Dakota is run in parallel.

evaluation_servers : Specify the number of evaluation servers when Dakota is run in parallel

processors_per_evaluation : Specify the number of processors per evaluation server when Dakota is run in
parallel

iterator_scheduling : Specify the scheduling of concurrent iterators when Dakota is run in parallel

master : Specify a dedicated master partition for parallel iterator scheduling

peer : Specify a peer partition for parallel iterator scheduling

iterator_servers : Specify the number of iterator servers when Dakota is run in parallel
processors_per_iterator : Specify the number of processors per iterator server when Dakota is run in parallel
iterator_scheduling : Specify the scheduling of concurrent iterators when Dakota is run in parallel

master : Specify a dedicated master partition for parallel iterator scheduling

peer : Specify a peer partition for parallel iterator scheduling

iterator_servers : Specify the number of iterator servers when Dakota is run in parallel
processors_per_iterator : Specify the number of processors per iterator server when Dakota is run in parallel
iterator_scheduling : Specify the scheduling of concurrent iterators when Dakota is run in parallel

master : Specify a dedicated master partition for parallel iterator scheduling

peer : Specify a peer partition for parallel iterator scheduling

130 CHAPTER 5. TOPICS AREA

e iterator_servers : Specify the number of iterator servers when Dakota is run in parallel

e processors_per_iterator : Specify the number of processors per iterator server when Dakota is run in parallel
e iterator_scheduling : Specify the scheduling of concurrent iterators when Dakota is run in parallel

e master : Specify a dedicated master partition for parallel iterator scheduling

e peer : Specify a peer partition for parallel iterator scheduling

e iterator_servers : Specify the number of iterator servers when Dakota is run in parallel

e processors_per_iterator : Specify the number of processors per iterator server when Dakota is run in parallel

5.9.4 advanced optimization

Description

empty

Related Topics
e scaling
e multiobjective_methods

e surrogate_based_optimization_methods

Related Keywords

scaling

Description

empty

Related Topics
Related Keywords

multiobjective_methods

Description

empty

Related Topics

Related Keywords
surrogate_based_optimization_methods
Description

empty

5.10. PACKAGES 131

Related Topics

Related Keywords
o cfficient_global : Global Surrogate Based Optimization, a.k.a. EGO
e surrogate_based_global : Global Surrogate Based Optimization

e surrogate_based_local : Local Surrogate Based Optimization

5.10 packages

Description

This topic organizes information about the different software packages (libraries) that are integrated into Dakota

Related Topics
e package_coliny
e package_conmin
e package_ddace
e package_dot
e package fsudace
e package_hopspack
e package_jega
e package_nlpql
e package npsol
e package_optpp
e package_psuade
e package_queso

e package_scolib

Related Keywords
5.10.1 package_coliny

Description

SCOLIB (formerly known as COLINY) is a collection of nongradient-based optimizers that support the Common
Optimization Library INterface (COLIN). SCOLIB optimizers currently include coliny_cobyla, coliny—
_direct,coliny_ea,coliny pattern_searchandcoliny_solis wets. (Yes, the input spec still has
“coliny” prepended to the method name.) Additional SCOLIB information is available from https://software. -
sandia.gov/trac/acro.

https://software.sandia.gov/trac/acro
https://software.sandia.gov/trac/acro

132 CHAPTER 5. TOPICS AREA

SCOLIB solvers now support bound constraints and general nonlinear constraints. Supported nonlinear con-
straints include both equality and two-sided inequality constraints. SCOLIB solvers do not yet support linear
constraints. Most SCOLIB optimizers treat constraints with a simple penalty scheme that adds constraint_—
penalty times the sum of squares of the constraint violations to the objective function. Specific exceptions to
this method for handling constraint violations are noted below. (The default value of constraint _penalty
is 1000.0, except for methods that dynamically adapt their constraint penalty, for which the default value is 1.0.)

The method independent controls for max_iterations and max_function_evaluations limit the
number of major iterations and the number of function evaluations that can be performed during a SCOLIB opti-
mization, respectively. The convergence_tolerance control defines the threshold value on relative change
in the objective function that indicates convergence. The output verbosity specification controls the amount
of information generated by SCOLIB: the silent, quiet, and normal settings correspond to minimal re-
porting from SCOLIB, whereas the verbose setting corresponds to a higher level of information, and debug
outputs method initialization and a variety of internal SCOLIB diagnostics. The majority of SCOLIB’s meth-
ods perform independent function evaluations that can directly take advantage of Dakota’s parallel capabilities.
Only coliny_solis_wets, coliny_cobyla, and certain configurations of coliny pattern_search
are inherently serial. The parallel methods automatically utilize parallel logic when the Dakota configuration
supports parallelism. Lastly, neither speculative gradients nor linear constraints are currently supported with
SCOLIB.

Some SCOLIB methods exploit parallelism through the use of Dakota’s concurrent function evaluations. The
nature of the algorithms, however, limits the amount of concurrency that can be exploited. The maximum amount
of evaluation concurrency that can be leveraged by the various methods is as follows:

e COBYLA: one

e DIRECT: twice the number of variables

Evolutionary Algorithms: size of the population

Pattern Search: size of the search pattern

e Solis-Wets: one

All SCOLIB methods support the show_misc_options optional specification which results in a dump of all the
allowable method inputs. Note that the information provided by this command refers to optimizer parameters that
are internal to SCOLIB, and which may differ from corresponding parameters used by the Dakota interface. The
misc_options optional specification provides a means for inputing additional settings supported by the SCOLI-
B methods but which are not currently mapped through the Dakota input specification. Care must be taken in using
this specification; they should only be employed by users familiar with the full range of parameter specifications
available directly from SCOLIB and understand any differences that exist between those specifications and the
ones available through Dakota.

Each of the SCOLIB methods supports the solution_target control, which defines a convergence crite-
rion in which the optimizer will terminate if it finds an objective function value lower than the specified target.

Related Topics
Related Keywords

e coliny_beta : (Experimental) Coliny beta solver
e coliny_cobyla : Constrained Optimization BY Linear Approximations (COBYLA)

e coliny_direct : DIviding RECTangles method

5.10. PACKAGES 133

e coliny_ea : Evolutionary Algorithm
e coliny_pattern_search : Pattern search, derivative free optimization method

e coliny_solis_wets : Simple greedy local search method

5.10.2 package conmin

Description

The CONMIN library[83] is a public domain library of nonlinear programming optimizers, specifically the
Fletcher-Reeves conjugate gradient (Dakota’s conmin_frcg method) method for unconstrained optimization,
and the method of feasible directions (Dakota’s conmin_mfd method) for constrained optimization. As CONM-
IN was a predecessor to the DOT commercial library, the algorithm controls are very similar.

Related Topics
Related Keywords

e conmin : Access to methods in the CONMIN library
e frcg : A conjugate gradient optimization method

e mfd : Method of feasible directions

5.10.3 package ddace

Description

The Distributed Design and Analysis of Computer Experiments (DDACE) library provides the following DA-
CE techniques: grid sampling (grid), pure random sampling (random), orthogonal array sampling (oas),
latin hypercube sampling (1hs), orthogonal array latin hypercube sampling (oa_lhs), Box-Behnken (box_—
behnken), and central composite design (central_composite).

It is worth noting that there is some overlap in sampling techniques with those available from the nonde-
terministic branch. The current distinction is that the nondeterministic branch methods are designed to sample
within a variety of probability distributions for uncertain variables, whereas the design of experiments methods
treat all variables as having uniform distributions. As such, the design of experiments methods are well-suited
for performing parametric studies and for generating data sets used in building global approximations, but are not
currently suited for assessing the effect of uncertainties characterized with probability distribution. If a design of
experiments over both design/state variables (treated as uniform) and uncertain variables (with probability distri-
butions) is desired, then sampling can support this with active all specified in the Variables specification
block.

Related Topics
Related Keywords

e dace : Design and Analysis of Computer Experiments

134 CHAPTER 5. TOPICS AREA

5.10.4 package dot

Description

The DOT library [85] contains nonlinear programming optimizers, specifically the Broyden-Fletcher-Goldfarb--
Shanno (Dakota’s dot _bfgs method) and Fletcher-Reeves conjugate gradient (Dakota’s dot_frcg method)
methods for unconstrained optimization, and the modified method of feasible directions (Dakota’s dot_mmfd
method), sequential linear programming (Dakota’s dot_s1p method), and sequential quadratic programming
(Dakota’s dot _sgp method) methods for constrained optimization.

Related Topics
Related Keywords

e dot: Access to methods in the DOT package

e bfgs: A conjugate gradient optimization method
e frcg : A conjugate gradient optimization method
e mmfd : Method of feasible directions

e slp : Sequential Linear Programming

e sqp : Sequential Quadratic Program

5.10.5 package fsudace

Description

The Florida State University Design and Analysis of Computer Experiments (FSUDace) library provides the
following DACE techniques: quasi-Monte Carlo sampling (fsu_quasi_mc) based on the Halton sequence
(halton) or the Hammersley sequence (hammersley), and Centroidal Voronoi Tessellation (fsu_cvt).

Related Topics
Related Keywords

e quality_metrics : Calculate metrics to assess the quality of quasi-Monte Carlo samples
e fsu_cvt: Design of Computer Experiments - Centroidal Voronoi Tessellation

e quality_metrics : Calculate metrics to assess the quality of quasi-Monte Carlo samples
e halton : Generate samples from a Halton sequence

e fsu_quasi_mc : Design of Computer Experiments - Quasi-Monte Carlo sampling

e halton : Generate samples from a Halton sequence

e hammersley : Use Hammersley sequences

e quality_metrics : Calculate metrics to assess the quality of quasi-Monte Carlo samples

5.10. PACKAGES 135

5.10.6 package_hopspack

Description

The HOPSPACK software [69] contains the asynchronous parallel pattern search (APPS) algorithm [37]. It can
handle unconstrained problems as well as those with bound constraints, linear constraints, and general nonlinear
constraints.

HOPSPACK is available to the public under the GNU LGPL and the source code is included with Dakota. HO-
PSPACK-specific software documentation is available from https://software.sandia.gov/trac/hopspack.

Related Topics
Related Keywords

e asynch_pattern_search : Pattern search, derivative free optimization method

5.10.7 package jega
Description

The JEGA library[| 9] contains two global optimization methods. The first is a Multi-objective Genetic Algorithm
(MOGA) which performs Pareto optimization. The second is a Single-objective Genetic Algorithm (SOGA)
which performs optimization on a single objective function. Both methods support general constraints and a
mixture of real and discrete variables. The JEGA library was written by John Eddy, currently a member of the
technical staff in the System Readiness and Sustainment Technologies department at Sandia National Laboratories
in Albuquerque. These algorithms are accessed as moga and soga within Dakota.

Related Topics
Related Keywords

e moga : Multi-objective Genetic Algorithm (a.k.a Evolutionary Algorithm)

e soga : Single-objective Genetic Algorithm (a.k.a Evolutionary Algorithm)

5.10.8 package nlpql

Description

The NLPQL library is a commercially-licensed library containing a sequential quadratic programming (SQP) op-
timizer, specified as Dakota’s n1pgl_sqgp method, for constrained optimization. The particular implementation
used is NLPQLP [74], a variant with distributed and non-monotone line search.

Related Topics
Related Keywords

e nlpql_sqp : Sequential Quadratic Program

https://software.sandia.gov/trac/hopspack

136 CHAPTER 5. TOPICS AREA

5.10.9 package npsol

Description

The NPSOL library[33] contains a sequential quadratic programming (SQP) implementation (the npsol_sqp
method). SQP is a nonlinear programming optimizer for constrained minimization.

Related Topics
Related Keywords

e npsol_sqp : Sequential Quadratic Program

5.10.10 package_optpp

Description

The OPT++ library[60] contains primarily gradient-based nonlinear programming optimizers for unconstrained,
bound-constrained, and nonlinearly constrained minimization: Polak-Ribiere conjugate gradient (Dakota’s optpp—
_cg method), quasi-Newton (Dakota’s optpp_g_newt on method), finite difference Newton (Dakota’s optpp—
_fd_newton method), and full Newton (Dakota’s opt pp_newt on method).

The conjugate gradient method is strictly unconstrained, and each of the Newton-based methods are auto-
matically bound to the appropriate OPT++ algorithm based on the user constraint specification (unconstrained,
bound-constrained, or generally-constrained). In the generally-constrained case, the Newton methods use a non-
linear interior-point approach to manage the constraints. The library also contains a direct search algorithm, PDS
(parallel direct search, Dakota’s opt pp_pds method), which supports bound constraints.

Method Independent Controls

These are specified directly under the method block.

1. max_iterations

2. max_function_evaluations
3. convergence_tolerance

4. output

5. speculative

Concurrency

OPT++’s gradient-based methods are not parallel algorithms and cannot directly take advantage of concurrent
function evaluations. However, if numerical _gradients with method_source dakota is specified, a
parallel Dakota configuration can utilize concurrent evaluations for the finite difference gradient computations.

Constraints

Linear constraint specifications are supported by each of the Newton methods (optpp-newton, optpp-g-
_newton, optpp_fd_newton, and optpp_g_newton)

optpp_cg must be unconstrained

optpp-pds can be, at most, bound-constrained.

5.10. PACKAGES 137

Related Topics

Related Keywords
e optpp-cg : A conjugate gradient optimization method
e optpp_fd_newton : Finite Difference Newton optimization method
e optpp_g_newton : Newton method based least-squares calbration
e optpp-newton : Newton method based optimization
e optpp_pds : Simplex-based derivative free optimization method

e optpp_g-newton : Quasi-Newton optimization method

5.10.11 package_psuade

Description

The Problem Solving Environment for Uncertainty Analysis and Design Exploration (PSUADE) is a Lawrence
Livermore National Laboratory tool for metamodeling, sensitivity analysis, uncertainty quantification, and opti-
mization. Its features include non-intrusive and parallel function evaluations, sampling and analysis methods, an
integrated design and analysis framework, global optimization, numerical integration, response surfaces (MARS
and higher order regressions), graphical output with Pgplot or Matlab, and fault tolerance [81].

Related Topics
Related Keywords

e psuade_moat : Morris One-at-a-Time

5.10.12 package_queso

Description

QUESO stands for Quantification of Uncertainty for Estimation, Simulation, and Optimization. It supports
Bayesian calibration methods. It is developed at The University of Texas at Austin.

Related Topics

Related Keywords

e bayes_calibration : Bayesian calibration

e gpmsa : (Experimental) Gaussian Process Models for Simulation Analysis (GPMSA) Markov Chain Monte
Carlo algorithm with Gaussian Process Surrogate

e queso : Markov Chain Monte Carlo algorithms from the QUESO package

138 CHAPTER 5. TOPICS AREA

5.10.13 package_scolib

Description

SCOLIB (formerly known as COLINY) is a collection of nongradient-based optimizers that support the Common
Optimization Library INterface (COLIN). SCOLIB optimizers currently include coliny_cobyla, coliny—
_direct,coliny_ea,coliny pattern_searchandcoliny_solis_wets. (Yes, the input spec still has
“coliny” prepended to the method name.) Additional SCOLIB information is available from https://software. -
sandia.gov/trac/acro.

SCOLIB solvers now support bound constraints and general nonlinear constraints. Supported nonlinear con-
straints include both equality and two-sided inequality constraints. SCOLIB solvers do not yet support linear
constraints. Most SCOLIB optimizers treat constraints with a simple penalty scheme that adds constraint_—
penalty times the sum of squares of the constraint violations to the objective function. Specific exceptions to
this method for handling constraint violations are noted below. (The default value of constraint penalty
is 1000.0, except for methods that dynamically adapt their constraint penalty, for which the default value is 1.0.)

The method independent controls for max_iterations and max_function_evaluations limit the
number of major iterations and the number of function evaluations that can be performed during a SCOLIB opti-
mization, respectively. The convergence_tolerance control defines the threshold value on relative change
in the objective function that indicates convergence. The output verbosity specification controls the amount
of information generated by SCOLIB: the silent, quiet, and normal settings correspond to minimal re-
porting from SCOLIB, whereas the verbose setting corresponds to a higher level of information, and debug
outputs method initialization and a variety of internal SCOLIB diagnostics. The majority of SCOLIB’s meth-
ods perform independent function evaluations that can directly take advantage of Dakota’s parallel capabilities.
Only coliny_solis_wets, coliny_cobyla, and certain configurations of coliny pattern_search
are inherently serial. The parallel methods automatically utilize parallel logic when the Dakota configuration
supports parallelism. Lastly, neither speculative gradients nor linear constraints are currently supported with
SCOLIB.

Some SCOLIB methods exploit parallelism through the use of Dakota’s concurrent function evaluations. The
nature of the algorithms, however, limits the amount of concurrency that can be exploited. The maximum amount
of evaluation concurrency that can be leveraged by the various methods is as follows:

e COBYLA: one

e DIRECT: twice the number of variables

Evolutionary Algorithms: size of the population

Pattern Search: size of the search pattern

Solis-Wets: one

All SCOLIB methods support the show_misc_options optional specification which results in a dump of all the
allowable method inputs. Note that the information provided by this command refers to optimizer parameters that
are internal to SCOLIB, and which may differ from corresponding parameters used by the Dakota interface. The
misc_options optional specification provides a means for inputing additional settings supported by the SCOLI-
B methods but which are not currently mapped through the Dakota input specification. Care must be taken in using
this specification; they should only be employed by users familiar with the full range of parameter specifications
available directly from SCOLIB and understand any differences that exist between those specifications and the
ones available through Dakota.

Each of the SCOLIB methods supports the solution_target control, which defines a convergence crite-
rion in which the optimizer will terminate if it finds an objective function value lower than the specified target.

https://software.sandia.gov/trac/acro
https://software.sandia.gov/trac/acro

5.10.

PACKAGES

Related Topics
Related Keywords

coliny_beta : (Experimental) Coliny beta solver

coliny_cobyla : Constrained Optimization BY Linear Approximations (COBYLA)
coliny_direct : DIviding RECTangles method

coliny_ea : Evolutionary Algorithm

coliny_pattern_search : Pattern search, derivative free optimization method

coliny_solis_wets : Simple greedy local search method

139

140 CHAPTER 5. TOPICS AREA

Dis- Sam- | Local Ex- Local Local
tribu- | pling | Reli- | Global| Wiener] Askey | tended| Piece- | Inter- | Global| Evi- Global
tion abil- Reli- SE SE SE wise val Inter- | dence | Evi-
Type ity abil- SE val dence
ity
Nor- C C C C C C - - - - -
mal
C U U U U U U - - - -
Bounded
Nor-
mal
Log- C C C C C U - - - - -
nor-
mal
C U U U U U U - - - -
Bounded
Log-
nor-
mal
Uni- C C C C U U U - - - -
form
Logu- | C U U U U U U - - - -
ni-
form
Trian- | C U U U U U U - - - -
gular
Expo- | C C C C U U - - - - -
nen-
tial
Beta C U U U U U U - - - -
C C C C U U - - - - -
Gamma
Gum- | C C C C C U - - - - -
bel
C C C C C U - - - - -
Frechet
C C C C C U - - - - -
Weibull|
Con- C U U U U U U - - - -
tinu-
ous
His-
togram
Bin

Table 5.1: Summary of Distribution Types supported by Nondeterministic Methods, Part I (Continuous Aleatory
Types)

5.10. PACKAGES 141

Dis- Sam- | Local Ex- Local Local
tribu- | pling | Reli- | Global| Wiener] Askey | tended| Piece- | Inter- | Global| Evi- Global
tion abil- Reli- SE SE SE wise val Inter- | dence | Evi-
Type ity abil- SE val dence
ity
Pois- C - - - - - - - - - -
son
Bino- | C - - - - - - - - - -
mial
Nega- | C - - - - - - - - - -
tive
Bino-
mial
Geo- C - - - - - - - - - -
met-
ric
Hy- C - - - - - - - - - -
per-
geo-
met-
ric
Dis- C - - - - - - - - - -
crete
His-
togram
Point

Table 5.2: Summary of Distribution Types supported by Nondeterministic Methods, Part II (Discrete Aleatory
Types)

142 CHAPTER 5. TOPICS AREA

Dis- Sam- | Local Ex- Local Local
tribu- | pling | Reli- | Global| Wiener] Askey | tended| Piece- | Inter- | Global| Evi- Global
tion abil- Reli- SE SE SE wise val Inter- | dence | Evi-

Type ity abil- SE val dence
ity
Inter- | U - UA UA UA UA UA U U U U
val
Con- U,A - UA UA UA UA UA - - - -
tinu-
ous
De-
sign
Dis- UA - - - - - - - - - -
crete
De-

sign
Range,
Int

Set,

Real
Set

Con- UA - UA UA UA UA UA - - - -
tinu-
ous
State
Dis- UA - - - - - - - - - -
crete
State
Range,
Int

Set,

Real
Set

Table 5.3: Summary of Distribution Types supported by Nondeterministic Methods, Part III (Epistemic, Design,
and State Types)

Chapter 6

Keywords Area

This page lists the six blocks. From here, you can navigate to every keyword.
e environment
e method
e model
e variables
e interface
e responses

Introduction to Dakota Keywords

In Dakota, the environment manages execution modes and I/O streams and defines the top-level iterator. Gen-
erally speaking, an iterator contains a model and a model contains a set of variables, an interface, and a set of
responses. An iterator repeatedly operates on the model to map the variables into responses using the interface.
Each of these six components (environment, method, model, variables, interface, and responses) are separate
specifications in the user’s input file, and as a whole, determine the study to be performed during an execution of
the Dakota software.

A Dakota execution is limited to a single environment, but may involve multiple methods and multiple models.
In particular, advanced iterators (i.e., meta- and component-based iterators) and advanced models (i.e., nested and
surrogate models) may specialize to include recursions with additional sub-iterators and sub-models. Since each
model may contain its own variables, interface, and responses, there may be multiple specifications of the method,
model, variables, interface, and responses sections.

Keyword Pages

Every Dakota keyword has its own page in this manual. The page describes:

e Whether the keyword takes ARGUMENTS, and the data type Additional notes about ARGUMENTS can be
found here: Specifying Arguments.

Whether it has an ALIAS

Which additional keywords can be specified to change its behavior

Which of these additional keywords are required or optional

e Additional information about how to use the keyword in an input file

143

144

6.1 environment
o Keywords Area
e environment

Top-level settings for Dakota execution

Topics
This keyword is related to the topics:

e block

Specification

Alias: none
Argument(s): none
Default: no environment

Optional

Optional

Optional

Optional

Optional

Optional

Optional

CHAPTER 6. KEYWORDS AREA

6.1. ENVIRONMENT 145

Optional

Optional

Optional

Optional

Optional

Optional

Description

The environment section in a Dakota input file is optional. It specifies the top-level solution environment, op-
tionally including run modes, output controls, and identification of the primary iterative method (t op-method-
_pointer). The output-related keywords address graphics, generation of tabular and results data, and precision
of numerical output.

Run Mode Defaults

Dakota run phases include check, pre_run, run, and post_run. The default behavior is to pre_run,
run, and post_run, though any or all of these may be specified to select specific run phases. Specifying check
will cause Dakota to exit before any selected run modes.

6.1.1 check
o Keywords Area
e environment
e check

Invoke Dakota in input check mode

Topics
This keyword is related to the topics:

e command_line_options

146 CHAPTER 6. KEYWORDS AREA

Specification

Alias: none
Argument(s): none
Default: no check; proceed to run

Description

When specified, Dakota input will be parsed and the problem instantiated. Dakota will exit reporting whether any
errors were found.

6.1.2 output file

e Keywords Area
e environment

e output file

Base filename for output redirection

Topics
This keyword is related to the topics:
e dakota_IO

e command_line_options

Specification

Alias: none
Argument(s): STRING
Default: output to console, not file

Description

Specify a base filename to which Dakota output will be directed. Output will (necessarily) be redirected after the
input file is parsed. This option is overridden by any command-line -output option.

Default Behavior

Output to console (screen).

6.1.3 error_file

e Keywords Area
e environment

e error_file

Base filename for error redirection

6.1. ENVIRONMENT 147

Topics
This keyword is related to the topics:

e dakota_IO

e command_line_options

Specification

Alias: none
Argument(s): STRING
Default: errors to console, not file

Description
Specify a base filename to which Dakota errors will be directed. Errors will (necessarily) be redirected after the
input file is parsed. This option is overridden by any command-line -error option.
Default Behavior
Errors to console (screen).
6.1.4 read_ restart
e Keywords Area

e environment

e read_restart

Base filename for restart file read

Topics
This keyword is related to the topics:

e dakota_IO

e command_line_options

Specification

Alias: none
Argument(s): STRING
Default: no restart read

Required/- Description of Dakota Keyword Dakota Keyword

Optional Group Description

Optional stop_restart Evaluation ID
number at which to
stop reading restart
file

148

Description

CHAPTER 6. KEYWORDS AREA

Specify a base filename for the restart file Dakota should read. This option is overridden by any command-line

-read_restart option.
Default Behavior
No restart file is read.

stop_restart

e Keywords Area
e environment
e read_restart

e stop._restart

Evaluation ID number at which to stop reading restart file

Topics
This keyword is related to the topics:

e dakota_IO

Specification

Alias: none
Argument(s): INTEGER
Default: read all records

Description

This option is overridden by any command-line -stop_restart option.

6.1.5 write_restart

e Keywords Area
e environment

e write_restart

Base filename for restart file write

Topics
This keyword is related to the topics:

e dakota_IO

e command_line_options

6.1. ENVIRONMENT 149

Specification

Alias: none
Argument(s): STRING
Default: dakota.rst

Description

Specify a base filename for the restart file Dakota should write. This option is overridden by any command-line
-write_restart option.

6.1.6 pre_run

e Keywords Area
e environment

e pre_run

Invoke Dakota with pre-run mode active

Topics
This keyword is related to the topics:

e command_line_options

Specification

Alias: none
Argument(s): none
Default: pre-run, run, post-run all executed

Required/- Description of Dakota Keyword | Dakota Keyword

Optional Group Description

Optional input Base filename for
pre-run mode data
input

Optional output Base filename for
pre-run mode data
output

Description

When specified, Dakota execution will include the pre-run mode, which sets up methods and often generates
parameter sets to evaluate. This mode is currently useful for parameter study, DACE, and Monte Carlo sampling
methods.

Default Behavior

When no run modes are specified, Dakota will perform pre-run, run, and post-run phases.

150

input
o Keywords Area
e environment
e pre_run
e input

Base filename for pre-run mode data input

Topics
This keyword is related to the topics:

e dakota_IO

Specification

Alias: none
Argument(s): STRING
Default: no pre-run specific input read

Description

CHAPTER 6. KEYWORDS AREA

(For future expansion; not currently used by any methods.) Specify a base filename from which Dakota will read
any pre-run input data. This option is overridden by any command-line -pre_run arguments.

output
o Keywords Area
e environment
e pre_run

e output

Base filename for pre-run mode data output

Topics
This keyword is related to the topics:

e dakota_IO

Specification

Alias: none
Argument(s): STRING
Default: no pre-run specific output written

6.1. ENVIRONMENT 151

Required/- Description of Dakota Keyword | Dakota Keyword
Optional Group Description
annotated Selects annotated

Optional(Choose tabular format

One) (Group 1) tabular file format

custom_annotated Selects
custom-annotated
tabular file format

freeform Selects freeform
file format

Description

Specify a base filename to which Dakota will write any pre-run output data (typically parameter sets to be evalu-
ated). This option is overridden by any command-line -pre_run arguments.

Usage Tips

Dakota exports tabular data in one of three formats:

e annotated (default)

e custom_annotated

o freeform

annotated
e Keywords Area

environment

pre_run

output
e annotated

Selects annotated tabular file format

Topics
This keyword is related to the topics:

o file_formats

Specification

Alias: none
Argument(s): none
Default: annotated format

152 CHAPTER 6. KEYWORDS AREA

Description

An annotated tabular file is a whitespace-separated text file with one leading header row of comments/column la-
bels. Each subsequent row contains an evaluation ID and interface ID, followed by data for variables, or variables
followed by responses, depending on context.

Default Behavior

By default, Dakota imports and exports tabular files in annotated format. The annotated keyword can be
used to explicitly specify this.

Usage Tips

o To specify pre-Dakota 6.1 tabular format, which did not include interface_id, specify custom_annotated
header eval_id

e Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

e When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

e Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the f ree form option.

Examples

Export an annotated top-level tabular data file containing a header row, leading eval_id and interface_id columns,
and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’

annotated
Resulting tabular file:
$eval_id interface x1 X2 obj_fn nln_ineqg_con_1 nln_ineq _con_2
1 NO_ID 0.9 1.1 0.0002 0.26 0.76
2 NO_ID 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 NO_ID 0.89991 1.1 0.0002003604863 0.2598380081 0.760045

custom_annotated
e Keywords Area
e cnvironment
e pre_run
e output
e custom_annotated

Selects custom-annotated tabular file format

Topics
This keyword is related to the topics:

o file_formats

6.1. ENVIRONMENT 153

Specification

Alias: none
Argument(s): none
Default: annotated format

Required/- Description of Dakota Keyword | Dakota Keyword
Optional Group Description
Optional header Enable header row
in
custom-annotated
tabular file
Optional eval_id Enable evaluation

ID column in
custom-annotated
tabular file

Optional interface_id Enable interface
ID column in
custom-annotated
tabular file

Description

A custom-annotated tabular file is a whitespace-separated text file typically containing row data for variables, or
variables followed by responses, though the format is used for other tabular exports/imports as well. Custom-
annotated allows user options for whether header row, eval_id column, and interface_id column appear
in the tabular file, thus bridging freeform and (fully) annotated.

Default Behavior

The annotated format is the default for tabular export/import. To control which header row and columns
are in the input/output, specify custom_annotated, followed by options, in the relevant export/import context.

Usage Tips

e Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

e When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

e Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the f ree form option.

Examples

Export a custom-annotated tabular file in Dakota 6.0 format, which contained only header and eval _id (no interface-
_id), and data for variables and responses. Input file fragment:

environment
tabular_data
tabular_data_file = ’dakota_summary.dat’
custom_annotated header eval_id

Resulting tabular file:

154 CHAPTER 6. KEYWORDS AREA

%eval_id x1 x2 obj_fn nln_ineqg _con_1 nln_ineqg con_2

1 0.9 1.1 0.0002 0.26 0.76

2 0.90009 1.1 0.0001996404857 0.2601620081 0.759955

3 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
header

e Keywords Area

e environment

e pre_run

e output

e custom_annotated
e header

Enable header row in custom-annotated tabular file

Specification

Alias: none
Argument(s): none
Default: no header

Description

See description of parent custom_annotated

eval_id

e Keywords Area
e environment

e pre_run

e output

e custom_annotated
e eval.id

Enable evaluation ID column in custom-annotated tabular file

Specification

Alias: none
Argument(s): none
Default: no eval_id column

6.1. ENVIRONMENT

Description

See description of parent custom_annotated

interface_id

o Keywords Area

e environment

e pre_run

e output

e custom_annotated

e interface_id

Enable interface ID column in custom-annotated tabular file

Specification
Alias: none
Argument(s): none
Default: no interface_id column

Description

See description of parent custom_annotated

freeform
e Keywords Area
e environment
e pre_run
e output

freeform

Selects freeform file format

Topics
This keyword is related to the topics:

o file_formats

Specification

Alias: none
Argument(s): none
Default: annotated format

155

156 CHAPTER 6. KEYWORDS AREA

Description

A freeform tabular file is whitespace-separated text file with no leading header row and no leading columns. Most
commonly, each row contains data for variables, or variables followed by responses, though the format is used for
other tabular exports/imports as well.

Default Behavior

The annotated format is the default for tabular export/import. To change this behavior, specify freeform
in the relevant export/import context.

Usage Tips

e Prior to October 2011, calibration and surrogate data files were free-form format. They now default to
annotated format, though freeform remains an option.

e When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

e In freeform, the num_rows x num_cols total data entries may be separated with any whitespace including
spaces, tabs, and newlines. In this format, vectors may therefore appear as a single row or single column
(or mixture; entries will populate the vector in order).

e Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the f ree form option.

Examples
Export a freeform tabular file containing only data for variables and responses. Input file fragment:
environment
tabular_data
tabular_data_file = ’dakota_summary.dat’
freeform
Resulting tabular file:
0.9 1.1 0.0002 0.26 0.76
0.90009 1.1 0.0001996404857 0.2601620081 0.759955
0.89991 1.1 0.0002003604863 0.2598380081 0.760045
6.1.7 run

e Keywords Area
e environment
e run

Invoke Dakota with run mode active

Topics
This keyword is related to the topics:

e command_line_options

Specification

Alias: none
Argument(s): none
Default: pre-run, run, post-run all executed

6.1. ENVIRONMENT 157
Required/- Description of Dakota Keyword | Dakota Keyword
Optional Group Description
Optional input Base filename for
run mode data
input
Optional output Base filename for
run mode data
output

Description

When specified, Dakota execution will include the run mode, which invokes interfaces to map parameters to

responses.
Default Behavior

When no run modes are specified, Dakota will perform pre-run, run, and post-run phases.

input
e Keywords Area
e environment
e run
e input

Base filename for run mode data input

Topics
This keyword is related to the topics:

e dakota_IO

Specification

Alias: none
Argument(s): STRING
Default: no run specific input read

Description

(For future expansion; not currently used by any methods.) Specify a base filename from which Dakota will
read any run input data, such as parameter sets to evaluate. This option is overridden by any command-line -run
arguments.

158

output
o Keywords Area
e environment
e run

e output

Base filename for run mode data output

Topics
This keyword is related to the topics:

e dakota_IO

Specification

Alias: none
Argument(s): STRING
Default: no run specific output written

Description

CHAPTER 6. KEYWORDS AREA

(For future expansion; not currently used by any methods.) Specify a base filename to which Dakota will write
any run output data (typically parameter, response pairs). This option is overridden by any command-line -run

arguments.

6.1.8 post_run

e Keywords Area
e environment

e post_run

Invoke Dakota with post-run mode active

Topics
This keyword is related to the topics:

e command_line_options

Specification

Alias: none
Argument(s): none
Default: pre-run, run, post-run all executed

6.1. ENVIRONMENT 159

Optional

Optional

Description
When specified, Dakota execution will include the post-run mode, which analyzes parameter/response data sets
and computes final results.. This mode is currently useful for parameter study, DACE, and Monte Carlo sampling
methods.

Default Behavior

When no run modes are specified, Dakota will perform pre-run, run, and post-run phases.
input

o Keywords Area

e environment

e post_run

e input

Base filename for post-run mode data input

Topics
This keyword is related to the topics:

e dakota_IO

Specification

Alias: none
Argument(s): STRING
Default: no post-run specific input read

160 CHAPTER 6. KEYWORDS AREA

custom_annotated Selects
custom-annotated
tabular file format

freeform Selects freeform
file format

Description
Specify a base filename from which Dakota will read any post-run input data, such as parameter/response data on
which to calulate final statistics. This option is overridden by any command-line -post_run arguments.

Usage Tips

Dakota imports tabular data in one of three formats:

e annotated (default)

e custom_annotated

o freeform

annotated
e Keywords Area

e environment

post_run
e input

annotated

Selects annotated tabular file format

Topics
This keyword is related to the topics:

o file_formats

Specification

Alias: none
Argument(s): none
Default: annotated format

6.1. ENVIRONMENT 161

Description

An annotated tabular file is a whitespace-separated text file with one leading header row of comments/column la-
bels. Each subsequent row contains an evaluation ID and interface ID, followed by data for variables, or variables
followed by responses, depending on context.

Default Behavior

By default, Dakota imports and exports tabular files in annotated format. The annotated keyword can be
used to explicitly specify this.

Usage Tips

To specify pre-Dakota 6.1 tabular format, which did not include interface_id, specify custom_annotated
header eval_id

Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though free form remains an option.

When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples

Export an annotated top-level tabular data file containing a header row, leading eval_id and interface_id columns,
and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’

annotated
Resulting tabular file:
$eval_id interface x1 X2 obj_fn nln_ineqg_con_1 nln_ineq _con_2
1 NO_ID 0.9 1.1 0.0002 0.26 0.76
2 NO_ID 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 NO_ID 0.89991 1.1 0.0002003604863 0.2598380081 0.760045

custom_annotated

e Keywords Area

e environment

e post_run

e input

e custom_annotated

Selects custom-annotated tabular file format

Topics

This keyword is related to the topics:

o file_formats

162 CHAPTER 6. KEYWORDS AREA

Specification

Alias: none
Argument(s): none
Default: annotated format

Required/- Description of Dakota Keyword | Dakota Keyword
Optional Group Description
Optional header Enable header row
in
custom-annotated
tabular file
Optional eval_id Enable evaluation

ID column in
custom-annotated
tabular file

Optional interface_id Enable interface
ID column in
custom-annotated
tabular file

Description

A custom-annotated tabular file is a whitespace-separated text file typically containing row data for variables, or
variables followed by responses, though the format is used for other tabular exports/imports as well. Custom-
annotated allows user options for whether header row, eval_id column, and interface_id column appear
in the tabular file, thus bridging freeform and (fully) annotated.

Default Behavior

The annotated format is the default for tabular export/import. To control which header row and columns
are in the input/output, specify custom_annotated, followed by options, in the relevant export/import context.

Usage Tips

e Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

e When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

e Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the f ree form option.

Examples

Export a custom-annotated tabular file in Dakota 6.0 format, which contained only header and eval _id (no interface-
_id), and data for variables and responses. Input file fragment:

environment
tabular_data
tabular_data_file = ’dakota_summary.dat’
custom_annotated header eval_id

Resulting tabular file:

6.1. ENVIRONMENT 163

%eval_id x1 x2 obj_fn nln_ineqg _con_1 nln_ineqg con_2
1 0.9 1.1 0.0002 0.26 0.76
2 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 0.89991 1.1 0.0002003604863 0.2598380081 0.760045

header

e Keywords Area

e environment

e post_run

e input

e custom_annotated
e header

Enable header row in custom-annotated tabular file

Specification

Alias: none
Argument(s): none
Default: no header

Description

See description of parent custom_annotated

eval_id

e Keywords Area
e environment

® post_run

e input

custom_annotated

e eval.id

Enable evaluation ID column in custom-annotated tabular file

Specification

Alias: none
Argument(s): none
Default: no eval_id column

164

Description

See description of parent custom_annotated

interface_id

o Keywords Area

e environment

e post_run

e input

e custom_annotated

e interface_id

Enable interface ID column in custom-annotated tabular file

Specification

Alias: none
Argument(s): none
Default: no interface_id column

Description

See description of parent custom_annotated

freeform
e Keywords Area
e environment
e post_run
e input

freeform

Selects freeform file format

Topics
This keyword is related to the topics:

o file_formats

Specification

Alias: none
Argument(s): none
Default: annotated format

CHAPTER 6. KEYWORDS AREA

6.1. ENVIRONMENT 165

Description

A freeform tabular file is whitespace-separated text file with no leading header row and no leading columns. Most
commonly, each row contains data for variables, or variables followed by responses, though the format is used for
other tabular exports/imports as well.

Default Behavior

The annotated format is the default for tabular export/import. To change this behavior, specify freeform
in the relevant export/import context.

Usage Tips

e Prior to October 2011, calibration and surrogate data files were free-form format. They now default to
annotated format, though freeform remains an option.

e When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

e In freeform, the num_rows x num_cols total data entries may be separated with any whitespace including
spaces, tabs, and newlines. In this format, vectors may therefore appear as a single row or single column
(or mixture; entries will populate the vector in order).

e Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the f ree form option.

Examples

Export a freeform tabular file containing only data for variables and responses. Input file fragment:

environment
tabular_data
tabular_data_file = ’"dakota_summary.dat’
freeform
Resulting tabular file:
0.9 1.1 0.0002 0.26 0.76
0.90009 1.1 0.0001996404857 0.2601620081 0.759955
0.89991 1.1 0.0002003604863 0.2598380081 0.760045
output

o Keywords Area
e environment
e post_run

e output

Base filename for post-run mode data output

Topics
This keyword is related to the topics:

e dakota_IO

166 CHAPTER 6. KEYWORDS AREA

Specification

Alias: none
Argument(s): STRING
Default: no post-run specific output written

Description

(For future expansion; not currently used by any methods.) Specify a base filename to which Dakota will write
any post-run output data. This option is overridden by any command-line -post_run arguments.

6.1.9 graphics

e Keywords Area
e environment
e graphics

Display a 2D graphics window of variables and responses

Topics
This keyword is related to the topics:

e dakota_output

Specification

Alias: none
Argument(s): none
Default: graphics off

Description

For most studies, the graphics flag activates a 2D graphics window containing history plots for the variables
and response functions in the study. This window is updated in an event loop with approximately a 2 second cycle
time. Some study types such as surrogate-based optimization or local reliability specialize the use of the graphics
window.

There is no dependence between the graphics flag and the tabular_data flag; they may be used inde-
pendently or concurrently.

See Also

These keywords may also be of interest:

e tabular_data

6.1. ENVIRONMENT 167

6.1.10 tabular_data
e Keywords Area
e environment

e tabular_data

Write a tabular results file with variable and response history

Topics
This keyword is related to the topics:

e dakota_output

Specification

Alias: tabular_graphics_data
Argument(s): none
Default: no tabular data output

Required/- Description of Dakota Keyword | Dakota Keyword
Optional Group Description
Optional tabular_data_file File name for
tabular data output
Optional(Choose tabular format annotated Selects annotated
tabular file format
One) (Group 1)

custom_annotated

Selects
custom-annotated
tabular file format

freeform

Selects freeform
file format

Description

Specifying the tabular_data flag writes to a data file the same variable and response function history data
plotted when using the graphics flag. Within the generated data file, the variables and response functions
appear as columns and each function evaluation provides a new table row. This capability is most useful for
post-processing of Dakota results with third-party graphics tools such as MatLab, Excel, Tecplot, etc.

There is no dependence between the graphics flag and the tabular_data flag; they may be used inde-
pendently or concurrently.

Dakota exports tabular data in one of three formats:

e annotated (default)
e custom_annotated

e freeform

168 CHAPTER 6. KEYWORDS AREA

See Also

These keywords may also be of interest:

e graphics

tabular_data_file

e Keywords Area
e environment
e tabular_data

e tabular_data_file

File name for tabular data output

Topics
This keyword is related to the topics:

e dakota_output

Specification

Alias: tabular_graphics_file
Argument(s): STRING
Default: dakota_tabular.dat

Description

Specifies a name to use for the tabular data file, overriding the default dakota_tabular.dat.

annotated

o Keywords Area
e environment
e tabular_data

e annotated

Selects annotated tabular file format
Topics
This keyword is related to the topics:

o file_formats

6.1. ENVIRONMENT 169

Specification

Alias: none
Argument(s): none
Default: annotated format

Description

An annotated tabular file is a whitespace-separated text file with one leading header row of comments/column la-
bels. Each subsequent row contains an evaluation ID and interface ID, followed by data for variables, or variables
followed by responses, depending on context.

Default Behavior

By default, Dakota imports and exports tabular files in annotated format. The annotated keyword can be
used to explicitly specify this.

Usage Tips

e To specify pre-Dakota 6.1 tabular format, which did not include interface_id, specify custom_annotated
header eval_id

e Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

e When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

e Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the free form option.

Examples

Export an annotated top-level tabular data file containing a header row, leading eval_id and interface_id columns,
and data for variables and responses. Input file fragment:

environment
tabular_data

tabular_data_file = ’dakota_summary.dat’

annotated
Resulting tabular file:
$eval_id interface x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 NO_ID 0.9 1.1 0.0002 0.26 0.76
2 NO_ID 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 NO_ID 0.89991 1.1 0.0002003604863 0.2598380081 0.760045

custom_annotated

e Keywords Area
e environment
e tabular_data

e custom_annotated

Selects custom-annotated tabular file format

170 CHAPTER 6. KEYWORDS AREA

Topics
This keyword is related to the topics:

o file_formats

Specification

Alias: none
Argument(s): none
Default: annotated format

Required/- Description of Dakota Keyword | Dakota Keyword
Optional Group Description
Optional header Enable header row
in
custom-annotated
tabular file
Optional eval_id Enable evaluation

ID column in
custom-annotated
tabular file

Optional interface_id Enable interface
ID column in
custom-annotated
tabular file

Description

A custom-annotated tabular file is a whitespace-separated text file typically containing row data for variables, or
variables followed by responses, though the format is used for other tabular exports/imports as well. Custom-
annotated allows user options for whether header row, eval_id column, and interface_id column appear
in the tabular file, thus bridging freeform and (fully) annotated.

Default Behavior

The annotated format is the default for tabular export/import. To control which header row and columns
are in the input/output, specify custom_annotated, followed by options, in the relevant export/import context.

Usage Tips

e Prior to October 2011, calibration and surrogate data files were in free-form format. They now default to
annotated format, though freeform remains an option.

e When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

e Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the f ree form option.

Examples

Export a custom-annotated tabular file in Dakota 6.0 format, which contained only header and eval _id (no interface-
_id), and data for variables and responses. Input file fragment:

6.1. ENVIRONMENT 171

environment
tabular_data
tabular_data_file = ’"dakota_summary.dat’
custom_annotated header eval_id

Resulting tabular file:

%eval_id x1 %2 obj_fn nln_ineqg _con_1 nln_ineqg con_2
1 0.9 1.1 0.0002 0.26 0.76
2 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
header

o Keywords Area
e environment

tabular_data

custom_annotated

e header

Enable header row in custom-annotated tabular file

Specification

Alias: none
Argument(s): none
Default: no header

Description

See description of parent custom_annotated

eval_id
e Keywords Area
e environment

tabular_data

custom_annotated

e eval.id

Enable evaluation ID column in custom-annotated tabular file

Specification

Alias: none
Argument(s): none
Default: no eval_id column

172 CHAPTER 6. KEYWORDS AREA

Description

See description of parent custom_annotated

interface_id
e Keywords Area
e environment
e tabular_data
e custom_annotated
e interface_id

Enable interface ID column in custom-annotated tabular file

Specification

Alias: none
Argument(s): none
Default: no interface_id column

Description

See description of parent custom_annotated

freeform

e Keywords Area
e environment
e tabular_data

e freeform

Selects freeform file format

Topics
This keyword is related to the topics:

o file_formats

Specification

Alias: none
Argument(s): none
Default: annotated format

6.1. ENVIRONMENT 173

Description

A freeform tabular file is whitespace-separated text file with no leading header row and no leading columns. Most
commonly, each row contains data for variables, or variables followed by responses, though the format is used for
other tabular exports/imports as well.

Default Behavior

The annotated format is the default for tabular export/import. To change this behavior, specify freeform
in the relevant export/import context.

Usage Tips

e Prior to October 2011, calibration and surrogate data files were free-form format. They now default to
annotated format, though freeform remains an option.

e When importing tabular data, a warning will be generated if a specific number of data are expected, but
extra is found and an error generated when there is insufficient data.

e In freeform, the num_rows x num_cols total data entries may be separated with any whitespace including
spaces, tabs, and newlines. In this format, vectors may therefore appear as a single row or single column
(or mixture; entries will populate the vector in order).

e Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the freeform option.

Examples

Export a freeform tabular file containing only data for variables and responses. Input file fragment:

environment
tabular_data
tabular_data_file = ’dakota_summary.dat’
freeform
Resulting tabular file:
0.9 1.1 0.0002 0.26 0.76
0.90009 1.1 0.0001996404857 0.2601620081 0.759955
0.89991 1.1 0.0002003604863 0.2598380081 0.760045

6.1.11 output_precision

e Keywords Area
e environment

e output_precision

Control the output precision

Topics
This keyword is related to the topics:

e dakota_output

174 CHAPTER 6. KEYWORDS AREA

Specification

Alias: none
Argument(s): INTEGER
Default: 10

Description

The precision of numeric output precision can be set dwith output_precision, with an upper limit of 16.
When not specified, most Dakota output will default to a precision of 10, though filesystem interfaces and pre-run
output use higher precision for accuracy and better results reproducibility.

6.1.12 results_output

e Keywords Area
e environment

e results_output

(Experimental) Write a summary file containing the final results

Topics
This keyword is related to the topics:

e dakota_output

Specification

Alias: none
Argument(s): none
Default: no results output

Required/- Description of Dakota Keyword | Dakota Keyword
Optional Group Description
Optional results_output_file The base file name

of the results file

Description

Final results from a Dakota study can be output to dakota_results.txt by specifying results_output (optionally
specifying an alternate file name with results_output_filename). The current experimental text file format
is hierarchical and a precursor to planned output to structured text formats such as XML or YAML, and binary
formats such as HDF5. The contents, organization, and format of results files are all under active development
and are subject to change.

6.1. ENVIRONMENT 175

results_output _file

e Keywords Area
e environment
e results_output

e results_output_file

The base file name of the results file

Topics
This keyword is related to the topics:

e dakota_output

Specification

Alias: none
Argument(s): STRING
Default: dakota_results.txt

Description

Default file name is dakota_results.txt

6.1.13 top_method_pointer

e Keywords Area
e environment

e top_method_pointer

Identify which method leads the Dakota study

Topics
This keyword is related to the topics:

e block_pointer

Specification

Alias: method_pointer
Argument(s): STRING
Default: see discussion

176 CHAPTER 6. KEYWORDS AREA

Description

An optional top_method_pointer specification may be used to point to a particular method specification that
will lead the Dakota analysis. The associated string must be a method identifier specified via id_method. If t op—
_method_pointer is not used, then it will be inferred as decribed below (no top_method_pointer within
an environment specification is treated the same as no environment specification).

Default Behavior

The top_method_pointer keyword is typically used in Dakota studies consisting of more than one method
block to clearly indicate which is the leading method. This method provides the starting point for the iteration.
The corresponding method specification may recurse with additional sub-method pointers in the case of “meta-
iteration” (see method) or may specify a single method without recursion. Either case will ultimately result in
identification of one or more model specifications using model_pointer, which again may or may not involve
further recursion (see nested and surrogate for recursion cases). Each of the model specifications identify the
variables and responses specifications (using variables_pointer and responses_pointer) that are used to build the
model, and depending on the type of model, may also identify an interface specification (for example, using
interface_pointer). If one of these specifications does not provide an optional pointer, then that component will be
constructed using the last specification parsed.

When the environment block is omitted, the top level method will be inferred as follows: When a single
method is specified, there is no ambiguity and the sole method will be the top method. When multiple methods are
specified, the top level method will be deduced from the hierarchical relationships implied by method pointers. If
this inference is not well defined (e.g., there are multiple method specifications without any pointer relationship),
then the default behavior is to employ the last method specification parsed.

Examples
Specify that the optimization method is the outermost method in an optimization under uncertainty study
environment
top_method_pointer ’OPTIMIZATION_METHOD’
method

id_method ’UQ_METHOD’
method
id_method "OPTIMIZATION_METHOD’

See Also

These keywords may also be of interest:

e id_method

6.2 method

o Keywords Area
e method

Begins Dakota method selection and behavioral settings.

Topics

This keyword is related to the topics:
e block

6.2. METHOD 177

Specification

Alias: none
Argument(s): none

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Optional

178

Optional

Required(Choose
One)

Group 1

CHAPTER 6.

final _solutions

hybrid

KEYWORDS AREA

Number of designs
returned as the best
solutions

Strategy in which a
set of methods
synergistically
seek an optimal
design

multi_start

Multi-Start
Optimization
Method

pareto_set

Pareto set
optimization

surrogate_based_-
local

Local Surrogate
Based
Optimization

surrogate_based_-
global

Global Surrogate
Based
Optimization

dot_frcg

A conjugate
gradient
optimization
method

dot_mmfd

Method of feasible
directions

dot_bfgs

A conjugate
gradient
optimization
method

dot_slp

Sequential Linear
Programming

dot_sqp

Sequential
Quadratic Program

dot

Access to methods
in the DOT
package

conmin_frcg

A conjugate
gradient
optimization
method

conmin_mfd

Method of feasible
directions

conmin

Access to methods
in the CONMIN
library

6.2. METHOD

179

dl_solver

(Experimental)
Dynamically-
loaded

solver

npsol_sqp

Sequential
Quadratic Program

nlssol_sqp

Sequential
Quadratic Program
for nonlinear least
squares

stanford

Select methods
from the Stanford
package

nlpql_sqp

Sequential
Quadratic Program

optpp-cg

A conjugate
gradient
optimization
method

optpp-q-newton

Quasi-Newton
optimization
method

optpp_fd_newton

Finite Difference
Newton
optimization
method

optpp-g-newton

Newton method
based least-squares
calbration

optpp_newton Newton method
based optimization
optpp-pds Simplex-based

derivative free
optimization
method

asynch_pattern_-
search

Pattern search,
derivative free
optimization
method

mesh_adaptive._-
search

Finds optimal
variable values
using adaptive
mesh-based search

180

CHAPTER 6.

KEYWORDS AREA

moga

Multi-objective
Genetic Algorithm
(a.k.a Evolutionary
Algorithm)

soga

Single-objective
Genetic Algorithm
(a.k.a Evolutionary
Algorithm)

coliny_pattern._-
search

Pattern search,
derivative free
optimization
method

coliny_solis_wets

Simple greedy
local search
method

coliny_cobyla

Constrained
Optimization BY
Linear
Approximations
(COBYLA)

coliny _direct

Dlviding
RECTangles
method

coliny_ea

Evolutionary
Algorithm

coliny_beta

(Experimental)
Coliny beta solver

nl2sol

Trust-region
method for
nonlinear least
squares

nonlinear_cg

(Experimental)
nonlinear
conjugate gradient
optimization

ncsu_direct

Dlviding
RECTangles
method

genie_opt_darts

Voronoi-based
high-dimensional
global Lipschitzian
optimization

6.2. METHOD

181

genie_direct

Classical
high-dimensional
global Lipschitzian
optimization
Classical
high-dimensional
global Lipschitzian
optimization

efficient_global

Global Surrogate
Based
Optimization,
ak.a. EGO

polynomial_chaos

Uncertainty
quantification
using polynomial
chaos expansions

stoch_collocation

Uncertainty
quantification with
stochastic
collocation

sampling

Randomly samples
variables according
to their
distributions

importance._-
sampling

Importance
sampling

gpais

Gaussian Process
Adaptive
Importance
Sampling

adaptive_sampling

(Experimental)
Build a GP
surrogate and
refine it adaptively

pof_darts

Probability-of--
Failure (POF) darts
is a novel method
for estimating the
probability of
failure based on
random
sphere-packing.

182

CHAPTER 6. KEYWORDS AREA

efficient_subspace

(Experimental)
efficient subspace
method (ESM)

global_evidence

Evidence theory
with evidence
measures
computed with
global optimization
methods

global_interval_est

Interval analysis
using global
optimization
methods

bayes_calibration

Bayesian
calibration

dace

Design and
Analysis of
Computer
Experiments

fsu_cvt

Design of
Computer
Experiments -
Centroidal Voronoi
Tessellation

psuade_moat

Morris
One-at-a-Time

local_evidence

Evidence theory
with evidence
measures
computed with
local optimization
methods

local_interval_est

Interval analysis
using local
optimization

local _reliability

Local reliability
method

global _reliability

Global reliability
methods

fsu_quasi_mc

Design of
Computer
Experiments -
Quasi-Monte Carlo
sampling

6.2. METHOD 183

vector_parameter_- | Samples variables
study along a
user-defined vector

list_parameter_- Samples variables

study as a specified
values

centered_- Samples variables

parameter_study along points

moving out from a
center point

multidim_- Samples variables
parameter_study on full factorial
grid of study points

richardson_extrap Estimate order of
convergence of a
response as model
fidelity increases

Description

The method keyword signifies the start of a block in the Dakota input file. Said block contains the various
keywords necessary to specify a method and to control its behavior.

Method Block Requirements

At least one method block must appear in the Dakota input file. Multiple met hod blocks may be needed to
fully define advanced analysis approaches.

Each method block must specify one method and, optionally, any associated keywords that govern the be-
havior of the method.

The Methods

Each method block must select one method.

Starting with Dakota v6.0, the methods are grouped into two types: standard methods and multi-component
methods.

The standard methods are stand-alone and self-contained in the sense that they only require a model to perform
a study. They do not call other methods. While methods such as polynomial_chaos and efficient-
_global internally utilize multiple iterator and surrogate model components, these components are generally
hidden from user control due to restrictions on modularity; thus, these methods are stand-alone.

The multi-component group of methods provides a higher level “meta-algorithm” that points to other methods
and models that support sub-iteration. For example, in a sequential hybrid method, the hybrid method specifi-
cation must identify a list of subordinate methods, and the “meta-algorithm” executes these methods in sequence
and transfers information between them. Surrogate-based minimizers provide another example in that they point
both to other methods (e.g. what optimization method is used to solve the approximate subproblem) as well as to
models (e.g. what type of surrogate model is employed). Multi-component methods generally provide some level
of ’plug and play” modularity, through their flexible support of a variety of method and model selections.

Component-Based Iterator Commands

Component-based iterator specifications include hybrid, multi-start, pareto set, surrogate-based local, surrogate-
based global, and branch and bound methods. Whereas a standard iterator specification only needs an optional
model pointer string (specified with model_pointer), component-based iterator specifications can include

184 CHAPTER 6. KEYWORDS AREA

method pointer, method name, and model pointer specifications in order to define the components employed in
the “meta-iteration.” In particular, these specifications identify one or more methods (by pointer or by name) to
specify the subordinate iterators that will be used in the top-level algorithm. Identifying a sub-iterator by name
instead of by pointer is a lightweight option that relaxes the need for a separate method specification for the sub-
iterator; however, a model pointer may be required in this case to provide the specification connectivity normally
supported by the method pointer. Refer to these individual method descriptions for specific requirements for these
advanced methods.

Method Independent Controls

In addition to the method, there are 10 optional keywords, which are referred to as method independent
controls. These controls are valid for enough methods that it was reasonable to pull them out of the method
dependent blocks and consolidate the specifications, however, they are NOT universally respected by all methods.

Examples

Several examples follow. The first example shows a minimal specification for an optimization method.

method
dot_sqgp

This example uses all of the defaults for this method.
A more sophisticated example would be

method,
id_method = ’'NLP1’
dot_sqgp
max_iterations = 50
convergence_tolerance = le-4
output verbose
model_pointer = 'M1’

This example demonstrates the use of identifiers and pointers as well as some method independent and method
dependent controls for the sequential quadratic programming (SQP) algorithm from the DOT library. The max—
_iterations, convergence_tolerance, and output settings are method independent controls, in that

they are defined for a variety of methods (see dot for usage of these controls).
The next example shows a specification for a least squares method.

method
optpp_g_newton
max_iterations = 10
convergence_tolerance = 1l.e-8
search_method trust_region
gradient_tolerance = l.e-6

Some of the same method independent controls are present along with several method dependent controls (search-

_method and gradient_tolerance) which are only meaningful for OPT++ methods (see package_optpp).
The next example shows a specification for a nondeterministic method with several method dependent controls
(refer to sampling).

method
sampling
samples = 100
seed = 12345
sample_type lhs
response_levels = 1000. 500.

The last example shows a specification for a parameter study method where, again, each of the controls are
method dependent (refer to vector_parameter_study).

method
vector_parameter_study
step_vector = 1. 1. 1.
num_steps = 10

6.2. METHOD 185

6.2.1 id_method
o Keywords Area
e method

e id_method

Name the method block; helpful when there are multiple

Topics
This keyword is related to the topics:
e block_identifier

e method_independent_controls

Specification
Alias: none

Argument(s): STRING

Default: strategy use of last method parsed
Description
The method identifier string is supplied with id_method and is used to provide a unique identifier string for
use with environment or meta-iterator specifications (refer to environment). It is appropriate to omit a method
identifier string if only one method is included in the input file, since the single method to use is unambiguous in
this case.
6.2.2 output

e Keywords Area

e method

e output

Control how much method information is written to the screen and output file

Topics
This keyword is related to the topics:
e dakota_output

e method_independent_controls

Specification

Alias: none
Argument(s): none
Default: normal

186 CHAPTER 6. KEYWORDS AREA
Required/- Description of Dakota Keyword | Dakota Keyword
Optional Group Description

debug Level 5 of 5 -

. maximum
Required(Choose | output level verbose Level 4 of 5 - more
One) (Group 1)

than normal
normal Level 3 of 5 -
default
quiet Level 2 of 5 - less
than normal
silent Level 1 of 5 -
minimum

Description

Choose from a total of five output levels during the course of a Dakota study. If there is no user specification for
output verbosity, then the default setting is normal.

Specific mappings are as follows:

e silent (i.e., really quiet): silent iterators, silent model, silent interface, quiet approximation, quiet file

operations

e quiet: quiet iterators, quiet model, quiet interface, quiet approximation, quiet file operations

e normal: normal iterators, normal model, normal interface, quiet approximation, quiet file operations

e verbose: verbose iterators, normal model, verbose interface, verbose approximation, verbose file opera-

tions

e debug (i.e., really verbose): debug iterators, normal model, debug interface, verbose approximation, ver-

bose file operations

Note that iterators and interfaces utilize the full granularity in verbosity, whereas models, approximations, and file
operations do not. With respect to iterator verbosity, different iterators implement this control in slightly different
ways (as described below in the method independent controls descriptions for each iterator), however the meaning

1S consistent.

For models, interfaces, approximations, and file operations, quiet suppresses parameter and response set re-
porting and silent further suppresses function evaluation headers and scheduling output. Similarly, verbose
adds file management, approximation evaluation, and global approximation coefficient details, and debug further
adds diagnostics from nonblocking schedulers.

debug

e Keywords Area
e method
e output

e debug

Level 5 of 5 - maximum

6.2. METHOD

Specification

Alias: none
Argument(s): none

Description

This is described on output

verbose

e Keywords Area
e method
e output

e verbose

Level 4 of 5 - more than normal

Specification

Alias: none
Argument(s): none

Description

This is described on output

normal

e Keywords Area
e method
e output

e normal

Level 3 of 5 - default

Specification
Alias: none

Argument(s): none

Description

This is described on output

187

188

quiet
o Keywords Area
e method
e output
e uiet

Level 2 of 5 - less than normal

Specification

Alias: none
Argument(s): none

Description

This is described on output

silent

e Keywords Area
e method
e output

e silent

Level 1 of 5 - minimum

Specification

Alias: none
Argument(s): none

Description

This is described on output

6.2.3 max_iterations

e Keywords Area
e method

e max_iterations

Stopping criteria based on number of iterations

CHAPTER 6. KEYWORDS AREA

6.2. METHOD 189

Topics
This keyword is related to the topics:

e method_independent_controls

Specification

Alias: none

Argument(s): INTEGER

Default: 100 (exceptions: fsu_cvt, local reliability: 25; global_{reliability , interval_est, evidence} / efficient-
_global: 25x%n)

Description

The maximum number of iterations.
The default for max_iterations is 100.

See Also

These keywords may also be of interest:

e max_function_evaluations

6.2.4 max_function_evaluations
o Keywords Area
e method

e max_function_evaluations

Stopping criteria based on number of function evaluations

Topics
This keyword is related to the topics:

e method_independent_controls

Specification

Alias: none
Argument(s): INTEGER
Default: 1000

Description

The maximum number of function evaluations.
The default for max_function_evaluations is 1000.

190 CHAPTER 6. KEYWORDS AREA

See Also
These keywords may also be of interest:

e max_iterations

6.2.5 speculative

e Keywords Area
e method

e speculative

Compute speculative gradients

Topics
This keyword is related to the topics:

e method_independent_controls

Specification

Alias: none
Argument(s): none
Default: no speculation

Description

When performing gradient-based optimization in parallel, speculative gradients can be selected to address
the load imbalance that can occur between gradient evaluation and line search phases. In a typical gradient-based
optimization, the line search phase consists primarily of evaluating the objective function and any constraints at a
trial point, and then testing the trial point for a sufficient decrease in the objective function value and/or constraint
violation. If a sufficient decrease is not observed, then one or more additional trial points may be attempted
sequentially. However, if the trial point is accepted then the line search phase is complete and the gradient
evaluation phase begins. By speculating that the gradient information associated with a given line search trial point
will be used later, additional coarse grained parallelism can be introduced by computing the gradient information
(either by finite difference or analytically) in parallel, at the same time as the line search phase trial-point function
values. This balances the total amount of computation to be performed at each design point and allows for
efficient utilization of multiple processors. While the total amount of work performed will generally increase
(since some speculative gradients will not be used when a trial point is rejected in the line search phase), the run
time will usually decrease (since gradient evaluations needed at the start of each new optimization cycle were
already performed in parallel during the line search phase). Refer to [14] for additional details. The speculative
specification is implemented for the gradient-based optimizers in the DOT, CONMIN, and OPT++ libraries,
and it can be used with dakota numerical or analytic gradient selections in the responses specification (refer
to responses gradient section for information on these specifications). It should not be selected with vendor
numerical gradients since vendor internal finite difference algorithms have not been modified for this purpose.
In full-Newton approaches, the Hessian is also computed speculatively. NPSOL and NLSSOL do not support
speculative gradients, as their gradient-based line search in user-supplied gradient mode (dakota numerical or
analytic gradients) is a superior approach for load-balanced parallel execution.

6.2. METHOD 191

The speculative specification enables speculative computation of gradient and/or Hessian information,
where applicable, for parallel optimization studies. By speculating that the derivative information at the current
point will be used later, the complete data set (all available gradient/Hessian information) can be computed on
every function evaluation. While some of these computations will be wasted, the positive effects are a consis-
tent parallel load balance and usually shorter wall clock time. The speculative specification is applicable
only when parallelism in the gradient calculations can be exploited by Dakota (it will be ignored for vendor
numerical gradients).

6.2.6 convergence_tolerance
e Keywords Area
e method
e convergence_tolerance

Stopping criterion based on convergence of the objective function

Topics
This keyword is related to the topics:

e method_independent_controls

Specification

Alias: none
Argument(s): REAL
Default: 1.e-4

Description

The convergence_tolerance specification provides a real value for controlling the termination of iteration.
It is a relative convergence tolerance for the objective function; i.e., if the change in the objective function

between successive iterations divided by the previous objective function is less than the amount specified by

convergence_tolerance, then this convergence criterion is satisfied on the current iteration.

Therefore, permissible values are between 0 and 1, non-inclusive.

Behavior Varies by Package/Library

This control is used with optimization and least squares iterators (DOT, CONMIN, NPSOL, NLSSOL, OP-
T++, and SCOLIB) and is not used within the uncertainty quantification, design of experiments, or parameter
study iterator branches.

Since no progress may be made on one iteration followed by significant progress on a subsequent iteration,
some libraries require that the convergence tolerance be satisfied on two or more consecutive iterations prior to
termination of iteration.

Notes on each library:

e DOT: must be satisfied for two consecutive iterations

e NPSOL: defines an internal optimality tolerance which is used in evaluating if an iterate satisfies the first-
order Kuhn-Tucker conditions for a minimum. The magnitude of convergence_tolerance approx-
imately specifies the number of significant digits of accuracy desired in the final objective function (e.g.,
convergence_tolerance = 1.e-6 will result in approximately six digits of accuracy in the final
objective function).

192 CHAPTER 6. KEYWORDS AREA

e NL2SOL: See nl2sol

6.2.7 constraint_tolerance
e Keywords Area
e method

e constraint_tolerance

The maximum allowable value of constraint violation still considered to be feasible

Topics
This keyword is related to the topics:

e method_independent_controls

Specification

Alias: none
Argument(s): REAL
Default: Library default

Description

The constraint_tolerance specification determines the maximum allowable value of infeasibility that any
constraint in an optimization problem may possess and still be considered to be satisfied.

If a constraint function is greater than this value then it is considered to be violated by the optimization
algorithm. This specification gives some control over how tightly the constraints will be satisfied at convergence
of the algorithm. However, if the value is set too small the algorithm may terminate with one or more constraints
being violated.

This specification is currently meaningful for the NPSOL, NLSSOL, DOT and CONMIN constrained opti-
mizers.

Defaults

Defaults can vary depending on the method.

e DOT constrained optimizers: 0.003
e NPSOL: dependent upon the machine precision, typically on the order of 1.e-8 for double precision

computations

6.2.8 scaling

e Keywords Area
e method

e scaling

Turn on scaling for variables, responses, and constraints

6.2. METHOD 193

Topics
This keyword is related to the topics:

e method_independent_controls

Specification

Alias: none
Argument(s): none
Default: no scaling

Description

Some of the optimization and calibration methods support scaling of continuous design variables, objective func-
tions, calibration terms, and constraints. This is activated by by providing the scaling keyword. Discrete
variable scaling is not supported.

When scaling is enabled, variables, functions, gradients, Hessians, etc., are transformed such that the method
iterates in scaled variable space, whereas evaluations of the computational model as specified in the interface are
performed on the original problem scale. Therefore using scaling does not require rewriting the interface to the
simulation code.

Scaling also requires the specification of additional keywords which are found in the method, variables, and
responses blocks. When the scaling keyword is omitted, all _.scale_types and *_scales specifications
are ignored in the method, variables, and responses sections.

This page describes the usage of all scaling related keywords. The additional keywords come in pairs, one
pair for each set of quantities to be scaled. These quantities can be constraint equations, variables, or responses.

e axscales keyword, which gives characteristic values
e axscale_type keyword, which determines how to use the characteristic values

The pair of keywords both take argument(s), and the length of the arguments can either be zero, one, or equal to
the number of quantities to be scaled. If one argument is given, it will apply to all quantities in the set. See the
examples below.

Scale Types

There are four scale types:

1. none (default) - no scaling, value of *scales keyword is ignored
2. value - multiplicative scaling

3. auto - automatic scaling

First the quantity is scaled by the characteristic value, then automatic scaling will be attempted according
to the following scheme:

e two-sided bounds scaled into the interval [0,1];

e one-sided bound or targets are scaled by the characteristic value, moving the bound or target to 1 and
changing the sense of inequalities where necessary;

e no bounds or targets: no automatic scaling possible, therefore no scaling for this component
Automatic scaling is not available for objective functions nor calibration terms since they lack bound con-

straints. Futher, when automatically scaled, linear constraints are scaled by characteristic values only, not
affinely scaled into [0,1].

194 CHAPTER 6. KEYWORDS AREA

4. log - logarithmic scaling

First, any characteristic values from the optional *_scales specification are applied. Then logarithm base
10 scaling is applied.

Logarithmic scaling is not available for linear constraints.

When continuous design variables are log scaled, linear constraints are not allowed.

Scales

The *scales keywords are used to specify the characteristic values. These must be non-zero real numbers.
The numbers are used according to the corresponding *scale_type, as described above.

Depending on the scale type, the characteristic values may be required or optional.

e none, auto, log - optional
e value - required.

A warning is issued if scaling would result in division by a value smaller in magnitude than 1.0e10%DBL_MI—
N. User-provided values violating this lower bound are accepted unaltered, whereas for automatically calculated
scaling, the lower bound is enforced.

Examples
The two examples below are equivalent:

responses
objective_functions 3
sense "maximize"
primary_scale_types = "value"
primary_scales = 1 1 100

responses
objective_functions 3
sense "maximize"
primary_scale_types = "value" "value
primary_scales = 1 1 100

"ongalye"

6.2.9 final solutions
e Keywords Area
e method
o final_solutions

Number of designs returned as the best solutions

Topics
This keyword is related to the topics:

e method_independent_controls

Specification

Alias: none
Argument(s): INTEGER
Default: 1

6.2. METHOD

Description

195

The final_solutions controls the number of final solutions returned by the iterator as the best solutions.

For most optimizers, this is one, but some optimizers can produce multiple solutions (e.g. genetic algorithms).
When using a hybrid strategy, the number of final solutions dictates how many solutions are passed from

one method to another.

Examples

In the case of sampling methods, if one specifies 100 samples (for example) but also specifies final_solutions

=5, the five best solutions (in order of lowest response function value) are returned.

6.2.10 hybrid
e Keywords Area
e method

e hybrid

Strategy in which a set of methods synergistically seek an optimal design

Specification

Alias: none
Argument(s): none

Required/-
Optional

Required(Choose
One)

Description of
Group

Group 1

Dakota Keyword

sequential

Dakota Keyword
Description
Methods are run
one at a time, in
sequence

embedded

A subordinate
local method
provides periodic
refinements to a
top-level global
method

Optional

collaborative

iterator_servers

Multiple methods
run concurrently
and share
information
Specify the
number of iterator
servers when
Dakota is run in
parallel

196 CHAPTER 6. KEYWORDS AREA

Optional

Optional

Description

In a hybrid minimization method (hybrid), a set of methods synergistically seek an optimal design. The rela-
tionships among the methods are categorized as:

e collaborative
e embedded
e sequential

The goal in each case is to exploit the strengths of different optimization and nonlinear least squares algorithms
at different stages of the minimization process. Global + local hybrids (e.g., genetic algorithms combined with
nonlinear programming) are a common example in which the desire for identification of a global optimum is
balanced with the need for efficient navigation to a local optimum.
sequential

o Keywords Area

e method

e hybrid

e sequential

Methods are run one at a time, in sequence

Specification

Alias: uncoupled
Argument(s): none

6.2. METHOD 197

method_pointer_list | Pointers to
methods to execute
sequantially or
collaboratively

Description

In the sequential approach, methods are run one at a time, in sequence. The best solutions from one method
are used to initialize the next method.

The sequence of methods (i.e. iterators) to run are specified using either a method_pointer_list or a
method_-name_1list (with optional model_pointer_list). Any number of iterators may be specified.

Method switching is managed through the separate convergence controls of each method. The number of
solutions transferred between methods is specified by the particular method through its final_solutions method
control.

For example, if one sets up a two-level study with a first method that generates multiple solutions such as a
genetic algorithm, followed by a second method that is initialized only at a single point such as a gradient-based
algorithm, it is possible to take the multiple solutions generated by the first method and create several instances
of the second method, each one with a different initial starting point.

The logic governing the transfer of multiple solutions between methods is as follows:

e if one solution is returned from method A, then one solution is transferred to method B.

e If multiple solutions are returned from method A, and method B can accept multiple solutions as input
(for example, as a genetic algorithm population), then one instance of method B is initialized with multiple
solutions.

e If multiple solutions are returned from method A but method B only can accept one initial starting point,
then method B is run several times, each one with a separate starting point from the results of method A.

method_name list
e Keywords Area

e method

hybrid

sequential
e method_name_list

List of Dakota methods to sequentially or collaboratively run

Specification

Alias: none
Argument(s): STRINGLIST
Required/- Description of Dakota Keyword | Dakota Keyword
Optional Group Description

198 CHAPTER 6. KEYWORDS AREA

Optional model_pointer_list | Associate models
with method
names

Description

method_name_list specifies a list of Dakota methods (e.g. soga, conmin_frcg) that will be run by a hybrid
sequential or hybrid collaborative method. The methods are executed with default options. The
optional model _pointer_1ist may be used to associate a model with each method.

model_pointer _list

o Keywords Area
e method

e hybrid

e sequential

e method_name_list

e model_pointer_list

Associate models with method names

Topics
This keyword is related to the topics:

e block_pointer

Specification

Alias: none
Argument(s): STRING

Description

Using the optional keyword model _pointer_1ist, models can be assigned to methods specified in the met hod—
_name_list. Models are referred to by name (i.e. by their id_model labels). The length of the model_—
pointer_list must be either 1 or match the length of the method name_1ist. If the former, the same
model will be used for all methods, and if the latter, methods and models will be paired in the order that they
appear in the two lists.

method_pointer _list

e Keywords Area
e method

e hybrid

e sequential

e method_pointer_list

Pointers to methods to execute sequantially or collaboratively

6.2. METHOD 199

Topics
This keyword is related to the topics:

e block_pointer

Specification
Alias: none
Argument(s): STRINGLIST

Description
method_pointer_list specifies by name the methods that are to be executed by a hybrid sequential
or hybrid collaborative method. Its argument is a list of strings that refer to method blocks by name (i.e.
to their id_method labels).
embedded

o Keywords Area

e method

e hybrid

e embedded

A subordinate local method provides periodic refinements to a top-level global method

Specification

Alias: coupled
Argument(s): none

global_method_- Pointer to global
pointer method

200

CHAPTER 6.

KEYWORDS AREA

Optional

local_method_-
pointer

local _search_-
probability

Pointer to local
method
Probability of
executing local
searches

Description

In the embedded approach, a tightly-coupled hybrid is employed in which a subordinate local method provides

periodic refinements to a top-level global method.

Global and local method strings supplied with the global method pointer and local method_—
pointer specifications identify the two methods to be used. Alternatively, Dakota method names (e.g. ’soga’)
can be supplied using the global _method_name and local_method_name keywords, which each have op-
tional model pointer specifications. The local_search_probability setting is an optional specification for
supplying the probability (between 0.0 and 1.0) of employing local search to improve estimates within the global

search.

global_method_name
o Keywords Area
e method
e hybrid
e embedded
e global_method_name

Specify the global method by Dakota name

Specification

Alias: none
Argument(s): STRING

Required/- Description of
Optional Group
Optional

Dakota Keyword

global_model._-
pointer

Dakota Keyword
Description
Pointer to model
used by global
method

Description

global_method_name is used to specify the global method in a hybrid embedded optimization by Dakota
name (e.g. ’soga’). The name of the method is provided as a string. The method is executed with default options.

global_model_pointer
e Keywords Area
e method

e hybrid

6.2. METHOD 201

e embedded
e global_method_name
e global_model_pointer

Pointer to model used by global method

Topics
This keyword is related to the topics:

e block_pointer

Specification
Alias: none
Argument(s): STRING
Description
global model_pointer can be used to specify a model for use with the Dakota method named by the
global_method_name specification. The argument is a string that refers to the id_model label of the desired
model.
global_method_pointer
e Keywords Area
e method
e hybrid
e embedded

global_method_pointer

Pointer to global method

Topics
This keyword is related to the topics:

e block_pointer

Specification

Alias: none
Argument(s): STRING

Description

The global method_pointer identifies the method block to use as the global method ina hybrid embedded
optimization using its id_method label.

202

local_method_name

Specify the local method by Dakota name

Keywords Area
method

hybrid
embedded

local_method_name

CHAPTER 6. KEYWORDS AREA

Specification
Alias: none
Argument(s): STRING
Required/- Description of
Optional Group
Optional

Dakota Keyword

local_model _-
pointer

Dakota Keyword
Description
Pointer to model
used by local
method

Description

local method_name is used to specify the local method in a hybrid embedded optimization by Dakota
name (e.g. “conmin_mfd’). The name of the method is provided as a string. The method is executed with default
options.

local_model_pointer

Keywords Area
method

hybrid

embedded
local_method _name

local_model_pointer

Pointer to model used by local method

Topics

This keyword is related to the topics:

block_pointer

Specification

Alias: none
Argument(s): STRING

6.2. METHOD 203

Description

localmodel_pointer can be used to specify a model for use with the Dakota method named by the Local-
_method_name specification. The argument is a string that refers to the id_model label of the desired model.

local_method_pointer
e Keywords Area

e method

hybrid
embedded

e local_method_pointer

Pointer to local method

Topics
This keyword is related to the topics:

e block_pointer

Specification

Alias: none
Argument(s): STRING

Description

The local method_pointer identifies the method block to use as the local method in a hybrid embedded
optimization using its id_method

local_search_probability
e Keywords Area
e method
e hybrid

embedded

local_search_probability

Probability of executing local searches

Specification

Alias: none
Argument(s): REAL

204 CHAPTER 6. KEYWORDS AREA

Description

The local_search_probability setting is an optional specification for supplying the probability (between
0.0 and 1.0) of employing local search to improve estimates within the global search. Its default value is 0.1.

collaborative

e Keywords Area
e method

e hybrid

e collaborative

Multiple methods run concurrently and share information

Specification

Alias: none
Argument(s): none

Required/- Description of Dakota Keyword | Dakota Keyword

Optional Group Description

Required(Choose method_name_list List of Dakota
Group 1

One) methods to

sequentially or
collaboratively run
method_pointer_list | Pointers to
methods to execute
sequantially or
collaboratively

Description

In the collaborative approach, multiple methods work together and share solutions while executing concurrently.
A list of method strings specifies the pool of iterators to be used. Any number of iterators may be specified.
The method collaboration logic follows that of either the Agent-Based Optimization or HOPSPACK codes and is
currently under development and not available at this time.

method_name _list
e Keywords Area

e method

hybrid

collaborative

e method_name_list

List of Dakota methods to sequentially or collaboratively run

6.2. METHOD 205

Specification

Alias: none
Argument(s): STRINGLIST

206 CHAPTER 6. KEYWORDS AREA

Required/- Description of Dakota Keyword | Dakota Keyword

Optional Group Description

Optional model_pointer_list | Associate models
with method
names

Description

method_-name_list specifies a list of Dakota methods (e.g. soga, conmin_frcg) that will be run by a hybrid
sequential or hybrid collaborative method. The methods are executed with default options. The
optional model _pointer_list may be used to associate a model with each method.

model_pointer _list
o Keywords Area

e method

e hybrid

e collaborative

e method_name_list
e model_pointer_list

Associate models with method names

Topics
This keyword is related to the topics:

e block_pointer

Specification

Alias: none
Argument(s): STRING

Description

Using the optional keyword model _pointer_1ist, models can be assigned to methods specified in the met hod—
_name_list. Models are referred to by name (i.e. by their id_model labels). The length of the model_—
pointer_list must be either 1 or match the length of the method name_1ist. If the former, the same
model will be used for all methods, and if the latter, methods and models will be paired in the order that they
appear in the two lists.

6.2. METHOD 207

method_pointer _list

Keywords Area

method

hybrid

collaborative

method_pointer_list

Pointers to methods to execute sequantially or collaboratively

Topics
This keyword is related to the topics:

e block_pointer

Specification
Alias: none

Argument(s): STRINGLIST
Description

method pointer_list specifies by name the methods that are to be executed by a hybrid sequential
or hybrid collaborative method. Its argument is a list of strings that refer to method blocks by name (i.e.
to their id_method labels).

iterator_servers

e Keywords Area
e method
e hybrid
e iterator_servers

Specify the number of iterator servers when Dakota is run in parallel

Topics
This keyword is related to the topics:

e concurrency_and_parallelism

Specification

Alias: none
Argument(s): INTEGER

208 CHAPTER 6. KEYWORDS AREA

Description

An important feature for component-based iterators is that execution of sub-iterator runs may be performed con-
currently. The optional iterator_servers specification supports user override of the automatic parallel con-
figuration for the number of iterator servers. That is, if the automatic configuration is undesirable for some
reason, the user can enforce a desired number of partitions at the iterator parallelism level. Currently, hybrid,
multi_start, and pareto_set component-based iterators support concurrency in their sub-iterators. Refer
to ParallelLibrary and the Parallel Computing chapter of the Users Manual [4] for additional information.
iterator_scheduling

e Keywords Area

e method

e hybrid

e iterator_scheduling

Specify the scheduling of concurrent iterators when Dakota is run in parallel

Topics
This keyword is related to the topics:

e concurrency-and_parallelism

Specification

Alias: none
Argument(s): none

Required/- Description of Dakota Keyword Dakota Keyword
Optional Group Description
Required(Choose master Specify a

One) o | dedicated master

partition for
parallel iterator
scheduling
peer Specify a peer
partition for
parallel iterator
scheduling

Description

An important feature for component-based iterators is that execution of sub-iterator runs may be performed con-
currently. The optional iterator_scheduling specification supports user override of the automatic parallel
configuration for the number of iterator servers. That is, if the automatic configuration is undesirable for some
reason, the user can enforce a desired number of partitions at the iterator parallelism level. Currently, hybrid,
multi_start, and pareto_set component-based iterators support concurrency in their sub-iterators. Refer
to ParallelLibrary and the Parallel Computing chapter of the Users Manual [4] for additional information.

6.2. METHOD 209

master
e Keywords Area
e method
e hybrid
e iterator_scheduling
e master

Specify a dedicated master partition for parallel iterator scheduling

Topics
This keyword is related to the topics:

e concurrency_and_parallelism

Specification

Alias: none
Argument(s): none
Description

This option overrides the Dakota parallel automatic configuration, forcing the use of a dedicated master partition.
In a dedicated master partition, one processor (the “master”’) dynamically schedules work on the iterator servers.
This reduces the number of processors available to create servers by 1.

peer

Keywords Area

method

hybrid

iterator_scheduling
e peer

Specify a peer partition for parallel iterator scheduling

Topics
This keyword is related to the topics:

e concurrency-and_parallelism

Specification

Alias: none
Argument(s): none

210 CHAPTER 6. KEYWORDS AREA

Description
This option overrides the Dakota parallel automatic configuration, forcing the use of a peer partition. In a peer par-
tition, all processors are available to be assigned to iterator servers. Note that unlike the case of evaluation_—
scheduling, it is not possible to specify static or dynamic.
processors_per_iterator

e Keywords Area

e method

e hybrid

® DProcessors ,per,iterator

Specify the number of processors per iterator server when Dakota is run in parallel

Topics
This keyword is related to the topics:

e concurrency_and_parallelism

Specification

Alias: none
Argument(s): INTEGER

Description

An important feature for component-based iterators is that execution of sub-iterator runs may be performed con-
currently. The optional processors_per_iterator specification supports user override of the automatic
parallel configuration for the number of processors in each iterator server. That is, if the automatic configura-
tion is undesirable for some reason, the user can enforce a desired server size at the iterator parallelism level.
Currently, hybrid, multi_start, and pareto_set component-based iterators support concurrency in their
sub-iterators. Refer to ParallelLibrary and the Parallel Computing chapter of the Users Manual[4] for additional
information.

6.2.11 multi_start
e Keywords Area
e method

e multi_start

Multi-Start Optimization Method

Specification

Alias: none
Argument(s): none

6.2. METHOD 211

Required/- Description of Dakota Keyword Dakota Keyword
Optional Group Description
Required(Choose method_name Specify
One) Group 1 sub-method by
name
method_pointer Pointer to

sub-method to run
from each starting

point
Optional random_starts Number of random
starting points
Optional starting_points List of

user-specified
starting points
Optional iterator_servers Specify the
number of iterator
servers when
Dakota is run in
parallel

Optional iterator_scheduling | Specify the
scheduling of
concurrent iterators
when Dakota is run
in parallel
Optional processors_per_- Specify the

iterator number of
processors per
iterator server
when Dakota is run
in parallel

Description

In the multi-start iteration method (multi_start), a series of iterator runs are performed for different values
of parameters in the model. A common use is for multi-start optimization (i.e., different local optimization runs
from different starting points for the design variables), but the concept and the code are more general. Multi-start
iteration is implemented within the Metalterator branch of the Iterator hierarchy within the ConcurrentMeta-
Iterator class. Additional information on the multi-start algorithm is available in the Users Manual[4].

The multi_start meta-iterator must specify a sub-iterator using eitheramethod_pointer oramethod-
_name plus optional model _pointer. This iterator is responsible for completing a series of iterative analyses
from a set of different starting points. These starting points can be specified as follows: (1) using random_—
starts, for which the specified number of starting points are selected randomly within the variable bounds,
(2) using starting_points, in which the starting values are provided in a list, or (3) using both random_—
starts and starting_points, for which the combined set of points will be used. In aggregate, at least one
starting point must be specified. The most common example of a multi-start algorithm is multi-start optimization,
in which a series of optimizations are performed from different starting values for the design variables. This can
be an effective approach for problems with multiple minima.

212

method _name
o Keywords Area
e method
e multi_start

e method_name

Specify sub-method by name

CHAPTER 6. KEYWORDS AREA

Specification
Alias: none
Argument(s): STRING
Required/- Description of Dakota Keyword | Dakota Keyword
Optional Group Description
Optional model_pointer Identifier for
model block to be
used by a method
Description

The method_name keyword is used to specify a sub-method by Dakota method name (e.g. 'npsol_sqp’) rather
than block pointer. The method will be executed using its default settings. The optional model_pointer

specification can be used to associate a model block with the method.

model_pointer
e Keywords Area
e method
e multi_start
e method_name

e model_pointer

Identifier for model block to be used by a method

Topics

This keyword is related to the topics:

e block_pointer

Specification

Alias: none
Argument(s): STRING

Default: method use of last model parsed (or use of default model if none parsed)

6.2. METHOD 213

Description

The model_pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior

If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model
block in the Dakota input file that has a corresponding id_model with the same name.

Usage Tips

When doing advanced analyses that involve using multiple methods and multiple models, defining a mode1-
_pointer for each method is imperative.

See block_pointer for details about pointers.

Examples

environment
tabular_graphics_data
method_pointer = 'UQ’

method

id_method = "UQ’
model_pointer = ’SURR’
sampling,
samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 O.
0.1 0.

o NN
= O O
S oy O

sample_type lhs
distribution cumulative

model
id_model = ’SURR’
surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’'DACE’
model_pointer = 'DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = 'I1’

variables
uniform_uncertain
lower_bounds =
upper_bounds
descriptors

0. 0.
1. 1.
lel IXZI

interface
id_interface = "I1’
system asynch evaluation_concurrency = 5
analysis_driver = ’'text_book’

responses

214 CHAPTER 6. KEYWORDS AREA

response_functions = 3
no_gradients
no_hessians

method_pointer
e Keywords Area
e method
e multi_start

e method_pointer

Pointer to sub-method to run from each starting point

Topics
This keyword is related to the topics:

e block_pointer

Specification

Alias: none
Argument(s): STRING

Description

The method_pointer keyword is used to specify a pointer to the sub-method block that will be run from each
starting point.

random starts
e Keywords Area
e method
e multi_start

e random._starts

Number of random starting points

Specification

Alias: none
Argument(s): INTEGER
Required/- Description of Dakota Keyword | Dakota Keyword
Optional Group Description

6.2. METHOD 215

Optional seed Seed of the random
number generator

Description

The multi_start meta-iterator must specify a sub-iterator using either a method_pointer or a method-
_name plus optional model _pointer. This iterator is responsible for completing a series of iterative analyses
from a set of different starting points. These starting points can be specified as follows: (1) using random_—
starts, for which the specified number of starting points are selected randomly within the variable bounds,
(2) using starting_points, in which the starting values are provided in a list, or (3) using both random_—
starts and starting_points, for which the combined set of points will be used.

seed
o Keywords Area
e method
e multi_start
e random_starts
e sced

Seed of the random number generator

Specification

Alias: none
Argument(s): INTEGER
Default: system-generated (non-repeatable)

Description

The random seed control provides a mechanism for making a stochastic method repeatable. That is, the use of
the same random seed in identical studies will generate identical results.

Default Behavior

If not specified, the seed is randomly generated.

Expected Output

If seed is specified, a stochastic study will generate identical results when repeated using the same seed
value. Otherwise, results are not guaranteed to be the same.

Usage Tips

If a stochastic study was run without seed specified, and the user later wishes to repeat the study using the
same seed, the value of the seed used in the original study can be found in the output Dakota prints to the screen.
That value can then be added to the Dakota input file.

Examples
method
sampling
sample_type lhs
samples = 10

seed = 15347

216 CHAPTER 6. KEYWORDS AREA
starting_points

e Keywords Area

e method

e multi_start

e starting_points

List of user-specified starting points

Specification

Alias: none
Argument(s): REALLIST

Description

The multi_start meta-iterator must specify a sub-iterator using either a method_pointer or amethod-
_name plus optional model_pointer. This iterator is responsible for completing a series of iterative analyses
from a set of different starting points. These starting points can be specified as follows: (1) using random_—
starts, for which the specified number of starting points are selected randomly within the variable bounds,
(2) using starting_points, in which the starting values are provided in a list, or (3) using both random_—
starts and starting_points, for which the combined set of points will be used.

iterator_servers

e Keywords Area
e method
e multi_start

e iterator_servers

Specify the number of iterator servers when Dakota is run in parallel

Topics
This keyword is related to the topics:

e concurrency-and_parallelism

Specification

Alias: none
Argument(s): INTEGER

6.2. METHOD 217

Description

An important feature for component-based iterators is that execution of sub-iterator runs may be performed con-
currently. The optional iterator_servers specification supports user override of the automatic parallel con-
figuration for the number of iterator servers. That is, if the automatic configuration is undesirable for some
reason, the user can enforce a desired number of partitions at the iterator parallelism level. Currently, hybrid,
multi_start, and pareto_set component-based iterators support concurrency in their sub-iterators. Refer
to ParallelLibrary and the Parallel Computing chapter of the Users Manual [4] for additional information.

iterator_scheduling

e Keywords Area
e method
e multi_start

e iterator_scheduling

Specify the scheduling of concurrent iterators when Dakota is run in parallel

Topics
This keyword is related to the topics:

e concurrency-and_parallelism

Specification

Alias: none
Argument(s): none

Required/- Description of Dakota Keyword Dakota Keyword
Optional Group Description
Required(Choose master Specify a

One) o | dedicated master

partition for
parallel iterator
scheduling
peer Specify a peer
partition for
parallel iterator
scheduling

Description

An important feature for component-based iterators is that execution of sub-iterator runs may be performed con-
currently. The optional iterator_scheduling specification supports user override of the automatic parallel
configuration for the number of iterator servers. That is, if the automatic configuration is undesirable for some
reason, the user can enforce a desired number of partitions at the iterator parallelism level. Currently, hybrid,
multi_start, and pareto_set component-based iterators support concurrency in their sub-iterators. Refer
to ParallelLibrary and the Parallel Computing chapter of the Users Manual [4] for additional information.

218

CHAPTER 6. KEYWORDS AREA

master

Keywords Area
method

multi_start
iterator_scheduling

master

Specify a dedicated master partition for parallel iterator scheduling

Topics

This keyword is related to the topics:

concurrency_and_parallelism

Specification

Alias: none
Argument(s): none

Description

This option overrides the Dakota parallel automatic configuration, forcing the use of a dedicated master partition.
In a dedicated master partition, one processor (the “master”’) dynamically schedules work on the iterator servers.
This reduces the number of processors available to create servers by 1.

peer
[]
[]
[]
[]

Keywords Area
method

multi_start
iterator_scheduling

peer

Specify a peer partition for parallel iterator scheduling

Topics

This keyword is related to the topics:

concurrency_-and_parallelism

Specification

Alias: none
Argument(s): none

6.2. METHOD 219

Description

This option overrides the Dakota parallel automatic configuration, forcing the use of a peer partition. In a peer par-
tition, all processors are available to be assigned to iterator servers. Note that unlike the case of evaluation_—
scheduling, it is not possible to specify static or dynamic.

processors_per_iterator

e Keywords Area
e method
e multi_start

® DProcessors ,per,iterator

Specify the number of processors per iterator server when Dakota is run in parallel

Topics
This keyword is related to the topics:

e concurrency_and_parallelism

Specification

Alias: none
Argument(s): INTEGER

Description

An important feature for component-based iterators is that execution of sub-iterator runs may be performed con-
currently. The optional processors_per_iterator specification supports user override of the automatic
parallel configuration for the number of processors in each iterator server. That is, if the automatic configura-
tion is undesirable for some reason, the user can enforce a desired server size at the iterator parallelism level.
Currently, hybrid, multi_start, and pareto_set component-based iterators support concurrency in their
sub-iterators. Refer to ParallelLibrary and the Parallel Computing chapter of the Users Manual[4] for additional
information.

6.2.12 pareto_set
e Keywords Area
e method

e pareto_set

Pareto set optimization

Specification

Alias: none
Argument(s): none

220 CHAPTER 6. KEYWORDS AREA

Required/- Description of Dakota Keyword Dakota Keyword
Optional Group Description
Required(Choose method_name Specify
One) Group 1 sub-method by
name
method_pointer Pointer to

optimization or
least-squares

sub-method
Optional random_weight_- Number of random
sets weighting sets
Optional weight_sets List of

user-specified
weighting sets
Optional iterator_servers Specify the
number of iterator
servers when
Dakota is run in
parallel

Optional iterator_scheduling | Specify the
scheduling of
concurrent iterators
when Dakota is run
in parallel
Optional processors_per_- Specify the

iterator number of
processors per
iterator server
when Dakota is run
in parallel

Description

In the pareto set minimization method (pareto_set), a series of optimization or least squares calibration runs
are performed for different weightings applied to multiple objective functions. This set of optimal solutions
defines a ’Pareto set,” which is useful for investigating design trade-offs between competing objectives. The code
is similar enough to the multi_start technique that both algorithms are implemented in the same Concurrent-
Metalterator class.

The pareto_set specification must identify an optimization or least squares calibration method using either
amethod_pointer or a method_name plus optional model _pointer. This minimizer is responsible for
computing a set of optimal solutions from a set of response weightings (multi-objective weights or least squares
term weights). These weightings can be specified as follows: (1) using random_weight_sets, in which case
weightings are selected randomly within [0,1] bounds, (2) using weight_sets, in which the weighting sets are
specified in a list, or (3) using both random_weight_sets and weight_sets, for which the combined set
of weights will be used. In aggregate, at least one set of weights must be specified. The set of optimal solutions
is called the “pareto set,” which can provide valuable design trade-off information when there are competing
objectives.

6.2. METHOD 221
method _name
o Keywords Area
e method
e pareto_set
e method_name
Specify sub-method by name
Specification
Alias: opt_method_name
Argument(s): STRING
Required/- Description of Dakota Keyword | Dakota Keyword
Optional Group Description
Optional model_pointer Identifier for
model block to be
used by a method

Description

The method_name keyword is used to specify a sub-method by Dakota method name (e.g. 'npsol_sqp’) rather
than block pointer. The method will be executed using its default settings. The optional model_pointer
specification can be used to associate a model block with the method.

model_pointer

Keywords Area
e method

e pareto_set

e method_name

e model_pointer

Identifier for model block to be used by a method

Topics

This keyword is related to the topics:

e block_pointer

Specification

Alias: opt_model_pointer
Argument(s): STRING

Default: method use of last model parsed (or use of default model if none parsed)

222 CHAPTER 6. KEYWORDS AREA

Description

The model_pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior

If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model
block in the Dakota input file that has a corresponding id_model with the same name.

Usage Tips

When doing advanced analyses that involve using multiple methods and multiple models, defining a mode1—-
_pointer for each method is imperative.

See block_pointer for details about pointers.

Examples

environment
tabular_graphics_data
method_pointer = 'UQ’

method

id_method = "UQ’
model_pointer = ’SURR’
sampling,
samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 O.
0.1 0.

o NN
= O O
S oy O

sample_type lhs
distribution cumulative

model
id_model = ’SURR’
surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’'DACE’
model_pointer = 'DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = 'I1’

variables
uniform_uncertain =
lower_bounds = 0. 0.
upper_bounds = 1. 1.
descriptors rx1’ rx2’

interface
id_interface = "I1’
system asynch evaluation_concurrency = 5
analysis_driver = ’'text_book’

responses

6.2. METHOD 223

response_functions = 3
no_gradients
no_hessians

method_pointer

Keywords Area

method

e pareto_set

method_pointer

Pointer to optimization or least-squares sub-method

Topics
This keyword is related to the topics:

e block_pointer

Specification

Alias: opt_method_pointer
Argument(s): STRING

Description

The method-pointer keyword is used to specify a pointer to an optimization or least-squares sub-method that
is responsible for computing a set of optimal solutions for a set of response weightings.

random_weight_sets
e Keywords Area
e method
e pareto_set

e random_weight_sets

Number of random weighting sets

Specification

Alias: none
Argument(s): INTEGER
Required/- Description of Dakota Keyword | Dakota Keyword
Optional Group Description

224 CHAPTER 6. KEYWORDS AREA

Optional seed Seed of the random
number generator

Description

The pareto_set specification must identify an optimization or least squares calibration method using either
amethod_pointer or a method_name plus optional model _pointer. This minimizer is responsible for
computing a set of optimal solutions from a set of response weightings (multi-objective weights or least squares
term weights). These weightings can be specified as follows: (1) using random_weight_sets, in which case
weightings are selected randomly within [0,1] bounds, (2) using weight_sets, in which the weighting sets are
specified in a list, or (3) using both random_weight_sets and weight_sets, for which the combined set
of weights will be used. In aggregate, at least one set of weights must be specified. The set of optimal solutions
is called the “pareto set,” which can provide valuable design trade-off information when there are competing
objectives.

seed

Keywords Area
e method

e pareto_set

random_weight_sets
e seed

Seed of the random number generator

Specification

Alias: none
Argument(s): INTEGER
Default: system-generated (non-repeatable)

Description

The random seed control provides a mechanism for making a stochastic method repeatable. That is, the use of
the same random seed in identical studies will generate identical results.

Default Behavior

If not specified, the seed is randomly generated.

Expected Output

If seed is specified, a stochastic study will generate identical results when repeated using the same seed
value. Otherwise, results are not guaranteed to be the same.

Usage Tips

If a stochastic study was run without seed specified, and the user later wishes to repeat the study using the
same seed, the value of the seed used in the original study can be found in the output Dakota prints to the screen.
That value can then be added to the Dakota input file.

6.2. METHOD

Examples

method
sampling
sample_type lhs
samples = 10
seed = 15347

weight sets
e Keywords Area
e method
e parcto_set

e weight_sets

List of user-specified weighting sets

Specification

Alias: multi_objective_weight_sets
Argument(s): REALLIST

Description

225

The pareto_set specification must identify an optimization or least squares calibration method using either
amethod_pointer or a method_name plus optional model_pointer. This minimizer is responsible for
computing a set of optimal solutions from a set of response weightings (multi-objective weights or least squares
term weights). These weightings can be specified as follows: (1) using random_weight_sets, in which case
weightings are selected randomly within [0,1] bounds, (2) using weight_sets, in which the weighting sets are
specified in a list, or (3) using both random_weight_sets and weight_sets, for which the combined set
of weights will be used. In aggregate, at least one set of weights must be specified. The set of optimal solutions
is called the “pareto set,” which can provide valuable design trade-off information when there are competing

objectives.

iterator_servers

e Keywords Area
e method
e pareto_set

e iterator_servers

Specify the number of iterator servers when Dakota is run in parallel

Topics
This keyword is related to the topics:

e concurrency-and_parallelism

226 CHAPTER 6. KEYWORDS AREA

Specification

Alias: none
Argument(s): INTEGER

Description

An important feature for component-based iterators is that execution of sub-iterator runs may be performed con-
currently. The optional iterator_servers specification supports user override of the automatic parallel con-
figuration for the number of iterator servers. That is, if the automatic configuration is undesirable for some
reason, the user can enforce a desired number of partitions at the iterator parallelism level. Currently, hybrid,
multi_start, and pareto_set component-based iterators support concurrency in their sub-iterators. Refer
to ParallelLibrary and the Parallel Computing chapter of the Users Manual [4] for additional information.

iterator_scheduling

e Keywords Area
e method
e parecto_set

e iterator_scheduling

Specify the scheduling of concurrent iterators when Dakota is run in parallel

Topics
This keyword is related to the topics:

e concurrency-and_parallelism

Specification

Alias: none
Argument(s): none

Required/- Description of Dakota Keyword Dakota Keyword
Optional Group Description
Required(Choose master Specify a

One) Erory | dedicated master

partition for
parallel iterator
scheduling
peer Specify a peer
partition for
parallel iterator
scheduling

6.2. METHOD 227

Description

An important feature for component-based iterators is that execution of sub-iterator runs may be performed con-
currently. The optional iterator_scheduling specification supports user override of the automatic parallel
configuration for the number of iterator servers. That is, if the automatic configuration is undesirable for some
reason, the user can enforce a desired number of partitions at the iterator parallelism level. Currently, hybrid,
multi_start, and pareto_set component-based iterators support concurrency in their sub-iterators. Refer
to ParallelLibrary and the Parallel Computing chapter of the Users Manual [4] for additional information.

master
o Keywords Area
e method
e pareto_set
e iterator_scheduling
e master

Specify a dedicated master partition for parallel iterator scheduling

Topics
This keyword is related to the topics:

e concurrency-and_parallelism

Specification

Alias: none
Argument(s): none

Description

This option overrides the Dakota parallel automatic configuration, forcing the use of a dedicated master partition.
In a dedicated master partition, one processor (the “master””) dynamically schedules work on the iterator servers.
This reduces the number of processors available to create servers by 1.

peer
e Keywords Area
e method
e pareto_set
e iterator_scheduling
e peer

Specify a peer partition for parallel iterator scheduling

228 CHAPTER 6. KEYWORDS AREA

Topics
This keyword is related to the topics:

e concurrency-and_parallelism

Specification

Alias: none
Argument(s): none

Description

This option overrides the Dakota parallel automatic configuration, forcing the use of a peer partition. In a peer par-
tition, all processors are available to be assigned to iterator servers. Note that unlike the case of evaluation_—
scheduling, it is not possible to specify static or dynamic.

processors_per_iterator

e Keywords Area

e method

e pareto_set

e processors_per_iterator

Specify the number of processors per iterator server when Dakota is run in parallel

Topics
This keyword is related to the topics:

e concurrency-and_parallelism

Specification

Alias: none
Argument(s): INTEGER

Description

An important feature for component-based iterators is that execution of sub-iterator runs may be performed con-
currently. The optional processors_per_iterator specification supports user override of the automatic
parallel configuration for the number of processors in each iterator server. That is, if the automatic configura-
tion is undesirable for some reason, the user can enforce a desired server size at the iterator parallelism level.
Currently, hybrid, multi_start, and pareto_set component-based iterators support concurrency in their
sub-iterators. Refer to ParallelLibrary and the Parallel Computing chapter of the Users Manual[4] for additional
information.

6.2. METHOD

6.2.13 surrogate based local
o Keywords Area
e method

e surrogate_based_local

Local Surrogate Based Optimization

Topics
This keyword is related to the topics:

e surrogate_based_optimization_methods

Specification

Alias: none
Argument(s): none

Required

Optional

Optional

Optional

Optional

method_name

Specify
sub-method by
name

229

230 CHAPTER 6. KEYWORDS AREA

Optional merit_function Select type of
penalty or merit
function
Optional acceptance_logic Set criteria for
trusted surrogate
Optional constraint_relax Enable constraint
relaxation

Description

In surrogate-based optimization (SBO) and surrogate-based nonlinear least squares (SBNLS), minimization oc-
curs using a set of one or more approximations, defined from a surrogate model, that are built and periodically
updated using data from a “truth” model. The surrogate model can be a global data fit (e.g., regression or inter-
polation of data generated from a design of computer experiments), a multipoint approximation, a local Taylor
Series expansion, or a model hierarchy approximation (e.g., a low-fidelity simulation model), whereas the truth
model involves a high-fidelity simulation model. The goals of surrogate-based methods are to reduce the total
number of truth model simulations and, in the case of global data fit surrogates, to smooth noisy data with an
easily navigated analytic function.

In the surrogate-based local method, a trust region approach is used to manage the minimization process to
maintain acceptable accuracy between the surrogate model and the truth model (by limiting the range over which
the surrogate model is trusted). The process involves a sequence of minimizations performed on the surrogate
model and bounded by the trust region. At the end of each approximate minimization, the candidate optimum
point is validated using the truth model. If sufficient decrease has been obtained in the truth model, the trust region
is re-centered around the candidate optimum point and the trust region will either shrink, expand, or remain the
same size depending on the accuracy with which the surrogate model predicted the truth model decrease. If
sufficient decrease has not been attained, the trust region center is not updated and the entire trust region shrinks
by a user-specified factor. The cycle then repeats with the construction of a new surrogate model, a minimization,
and another test for sufficient decrease in the truth model. This cycle continues until convergence is attained.

Theory

For surrogate_based_local problems with nonlinear constraints, a number of algorithm formulations exist as
described in[23] and as summarized in the Advanced Examples section of the Models chapter of the Users
Manual[4].

See Also

These keywords may also be of interest:

e cfficient_global

e surrogate_based_global

method_pointer
e Keywords Area

e method

surrogate_based_local

method_pointer

Pointer to sub-method to apply to surrogate

6.2. METHOD 231

Topics
This keyword is related to the topics:

e block_pointer

Specification
Alias: approx_method_pointer

Argument(s): STRING

Description

The method_pointer keyword is used to specify a pointer to an optimization or least-squares sub-method to
apply to the surrogate model.

Any model_pointer identified in the sub-method specification is ignored. Instead, the parent method is
responsible for selecting a surrogate model using its model_pointer.

method_name

e Keywords Area
e method
e surrogate_based_local

e method_name

Specify sub-method by name

Specification

Alias: approx_method_name
Argument(s): STRING

Description

The method_name keyword is used to specify a sub-method by Dakota method name (e.g. 'npsol_sqp’) rather
than block pointer. The method will be executed using its default settings. The optional model pointer
specification can be used to associate a model block with the method.

model_pointer

o Keywords Area
e method
e surrogate_based_local

e model_pointer

Identifier for model block to be used by a method

232 CHAPTER 6. KEYWORDS AREA

Topics
This keyword is related to the topics:

e block_pointer

Specification

Alias: approx_model_pointer
Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

Description

The model_pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior

If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model
block in the Dakota input file that has a corresponding i d_model with the same name.

Usage Tips

When doing advanced analyses that involve using multiple methods and multiple models, defining a mode1-
_pointer for each method is imperative.

See block_pointer for details about pointers.

Examples

environment
tabular_graphics_data
method_pointer = 'UQ’

method

id_method = "UQ’
model_pointer = ' SURR’
sampling,
samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.
0.1 0.

o NN
= O O
o o o

sample_type lhs
distribution cumulative

model
id_model = ’SURR’
surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’'DACE’
model_pointer = 'DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single

6.2. METHOD 233

interface_pointer = ’'I1’

variables
uniform_uncertain =
lower_bounds = 0. 0.
upper_bounds 1.
descriptors = ’'x1’ ’'x2’

interface
id_interface = "I1’
system asynch evaluation_concurrency = 5
analysis_driver = ’'text_book’

responses
response_functions = 3
no_gradients
no_hessians

soft_convergence_limit

o Keywords Area
e method
e surrogate_based_local

e soft_convergence_limit

Limit number of iterations w/ little improvement

Specification

Alias: none
Argument(s): INTEGER
Default: 5

Description

soft_convergence_limit (a soft convergence control for the surrogate_based_local iterations which limits
the number of consecutive iterations with improvement less than the convergence tolerance)

truth_surrogate_bypass

e Keywords Area
e method
e surrogate_based_local

e truth_surrogate_bypass

Bypass lower level surrogates when performing truth verifications on a top level surrogate

234

Specification

Alias: none
Argument(s): none
Default: no bypass

Description

CHAPTER 6. KEYWORDS AREA

truth_surrogate bypass (a flag for bypassing all lower level surrogates when performing truth verifica-

tions on a top level surrogate).

trust_region
e Keywords Area
e method
e surrogate_based_local

e trust_region

Use trust region search method

Specification

Alias: none
Argument(s): none

Required/-
Optional

Description of
Group

Optional

Dakota Keyword

initial_size

Dakota Keyword
Description

Trust region initial
size (relative to
bounds)

Optional

Optional

minimum_size

contract_threshold

Trust region
minimum size
Shrink trust region
if trust region ratio
is below this value

Optional

Optional

Optional

expand_threshold

contraction_factor

expansion_factor

Expand trust
region if trust
region ratio is
above this value
Amount by which
step length is
rescaled

Trust region
expansion factor

Description

The trust_region optional group specification can be used to specify the initial size of the trust region (using
initial_size) relative to the total variable bounds, the minimum size of the trust region (using minimum_—
size), the contraction factor for the trust region size (using contraction_factor) used when the surrogate

6.2. METHOD 235

model is performing poorly, and the expansion factor for the trust region size (using expansion_factor) used
when the the surrogate model is performing well. Two additional commands are the trust region size contrac-
tion threshold (using contract_threshold) and the trust region size expansion threshold (using expand-
_threshold). These two commands are related to what is called the trust region ratio, which is the actual
decrease in the truth model divided by the predicted decrease in the truth model in the current trust region. The
command contract_threshold sets the minimum acceptable value for the trust region ratio, i.e., values
below this threshold cause the trust region to shrink for the next surrogate_based_local iteration. The command
expand_-threshold determines the trust region value above which the trust region will expand for the next
surrogate_based_local iteration.

initial_size
o Keywords Area
e method
e surrogate_based_local
e trust_region
e initial _size

Trust region initial size (relative to bounds)

Specification

Alias: none
Argument(s): REAL
Default: 0.4

Description

The trust_region optional group specification can be used to specify the initial size of the trust region (using
initial_size) relative to the total variable bounds, the minimum size of the trust region (using minimum_—
size), the contraction factor for the trust region size (using contraction_factor) used when the surrogate
model is performing poorly, and the expansion factor for the trust region size (using expansion_factor) used
when the the surrogate model is performing well. Two additional commands are the trust region size contrac-
tion threshold (using contract_threshold) and the trust region size expansion threshold (using expand-
_threshold). These two commands are related to what is called the trust region ratio, which is the actual de-
crease in the truth model divided by the predicted decrease in the truth model in the current trust region. The com-
mand contract_threshold sets the minimum acceptable value for the trust region ratio, i.e., values below
this threshold cause the trust region to shrink for the next SBL iteration. The command expand_threshold
determines the trust region value above which the trust region will expand for the next SBL iteration.

minimum_size
e Keywords Area
e method
e surrogate_based_local

e trust_region

236 CHAPTER 6. KEYWORDS AREA

e minimum_size

Trust region minimum size

Specification

Alias: none
Argument(s): REAL
Default: 1.e-6

Description

The trust_region optional group specification can be used to specify the initial size of the trust region (using
initial_size) relative to the total variable bounds, the minimum size of the trust region (using minimum_—
size), the contraction factor for the trust region size (using contraction_factor) used when the surrogate
model is performing poorly, and the expansion factor for the trust region size (using expansion_factor) used
when the the surrogate model is performing well. Two additional commands are the trust region size contrac-
tion threshold (using contract_threshold) and the trust region size expansion threshold (using expand-
_threshold). These two commands are related to what is called the trust region ratio, which is the actual de-
crease in the truth model divided by the predicted decrease in the truth model in the current trust region. The com-
mand contract_threshold sets the minimum acceptable value for the trust region ratio, i.e., values below
this threshold cause the trust region to shrink for the next SBL iteration. The command expand_threshold
determines the trust region value above which the trust region will expand for the next SBL iteration.

contract_threshold
e Keywords Area
e method
e surrogate_based_local
e trust_region
e contract_threshold

Shrink trust region if trust region ratio is below this value

Specification

Alias: none
Argument(s): REAL
Default: 0.25

Description

The trust_region optional group specification can be used to specify the initial size of the trust region (using
initial_size) relative to the total variable bounds, the minimum size of the trust region (using minimum_—
size), the contraction factor for the trust region size (using contraction_factor) used when the surrogate
model is performing poorly, and the expansion factor for the trust region size (using expansion_factor) used

6.2. METHOD 237

when the the surrogate model is performing well. Two additional commands are the trust region size contrac-
tion threshold (using contract_threshold) and the trust region size expansion threshold (using expand-—
_threshold). These two commands are related to what is called the trust region ratio, which is the actual de-
crease in the truth model divided by the predicted decrease in the truth model in the current trust region. The com-
mand contract_threshold sets the minimum acceptable value for the trust region ratio, i.e., values below
this threshold cause the trust region to shrink for the next SBL iteration. The command expand_threshold
determines the trust region value above which the trust region will expand for the next SBL iteration.

expand_threshold
e Keywords Area
e method
e surrogate_based_local
e trust_region
e expand_threshold

Expand trust region if trust region ratio is above this value

Specification

Alias: none
Argument(s): REAL
Default: 0.75

Description

The trust_region optional group specification can be used to specify the initial size of the trust region (using
initial_size) relative to the total variable bounds, the minimum size of the trust region (using minimum_—
s1ize), the contraction factor for the trust region size (using contraction_factor) used when the surrogate
model is performing poorly, and the expansion factor for the trust region size (using expansion_factor) used
when the the surrogate model is performing well. Two additional commands are the trust region size contrac-
tion threshold (using contract_threshold) and the trust region size expansion threshold (using expand-—
_threshold). These two commands are related to what is called the trust region ratio, which is the actual de-
crease in the truth model divided by the predicted decrease in the truth model in the current trust region. The com-
mand contract_threshold sets the minimum acceptable value for the trust region ratio, i.e., values below
this threshold cause the trust region to shrink for the next SBL iteration. The command expand_threshold
determines the trust region value above which the trust region will expand for the next SBL iteration.

contraction_factor
e Keywords Area

e method

surrogate_based_local
e trust_region
e contraction_factor

Amount by which step length is rescaled

238 CHAPTER 6. KEYWORDS AREA

Specification

Alias: none
Argument(s): REAL
Default: 0.25

Description

For pattern search methods, contraction_factor specifies the amount by which step length is rescaled after
unsuccesful iterates, must be strictly between 0 and 1.
For methods that can expand the step length, the expansion is 1/ contraction_factor

expansion_factor
e Keywords Area

e method

surrogate_based_local

trust_region
e expansion_factor

Trust region expansion factor

Specification

Alias: none
Argument(s): REAL
Default: 2.0

Description

The t rust_region optional group specification can be used to specify the initial size of the trust region (using
initial_size) relative to the total variable bounds, the minimum size of the trust region (using minimum_—
s1ize), the contraction factor for the trust region size (using contraction_factor) used when the surrogate
model is performing poorly, and the expansion factor for the trust region size (using expansion_factor) used
when the the surrogate model is performing well. Two additional commands are the trust region size contrac-
tion threshold (using contract_threshold) and the trust region size expansion threshold (using expand-
_threshold). These two commands are related to what is called the trust region ratio, which is the actual de-
crease in the truth model divided by the predicted decrease in the truth model in the current trust region. The com-
mand contract_threshold sets the minimum acceptable value for the trust region ratio, i.e., values below
this threshold cause the trust region to shrink for the next SBL iteration. The command expand_threshold
determines the trust region value above which the trust region will expand for the next SBL iteration.

approx_subproblem
o Keywords Area
e method

e surrogate_based_local

6.2. METHOD 239

e approx_subproblem

Identify functions to be included in surrogate merit function

Specification

Alias: none
Argument(s): none
Default: original_primary original_constraints

Required/- Description of Dakota Keyword | Dakota Keyword
Optional Group Description
. i original_primary COIlStI‘I:ICt .
Required(Choose . approximations of
One) formulation il ety
Chet) functions
single_objective Construct
approximation a
single objective
functions only
augmented_- Augmented
lagrangian - Lagrangian
objective approximate
subproblem
formulation
lagrangian - Lagrangian
objective approximate
subproblem
formulation
Required(Choose constrain.t original'_- Use the constraints
One) formulation c.onstr.alnts dlrect'ly '
(Group 2) linearized_- Use linearized
constraints approximations to
the constraints
no_constraints Don’t use
constraints

Description

First, the “primary” functions (that is, the objective functions or calibration terms) in the approximate subproblem
can be selected to be surrogates of the original primary functions (original_primary), a single objective func-
tion (single_objective) formed from the primary function surrogates, or either an augmented Lagrangian
merit function (augmented_lagrangian_objective) or a Lagrangian merit function (lLagrangian_—
objective) formed from the primary and secondary function surrogates. The former option may imply the
use of a nonlinear least squares method, a multiobjective optimization method, or a single objective optimiza-
tion method to solve the approximate subproblem, depending on the definition of the primary functions. The
latter three options all imply the use of a single objective optimization method regardless of primary function
definition. Second, the surrogate constraints in the approximate subproblem can be selected to be surrogates of
the original constraints (original_constraints) or linearized approximations to the surrogate constraints
(linearized_constraints), or constraints can be omitted from the subproblem (no_constraints).

240 CHAPTER 6. KEYWORDS AREA

original_primary
e Keywords Area
e method
e surrogate_based_local
e approx_subproblem
e original_primary

Construct approximations of all primary functions

Specification

Alias: none
Argument(s): none

Description

For SBL problems with nonlinear constraints, a number of algorithm formulations exist as described in[23] and
as summarized in the Advanced Examples section of the Models chapter of the Users Manual[4]. First, the
“primary” functions (that is, the objective functions or calibration terms) in the approximate subproblem can
be selected to be surrogates of the original primary functions (original_primary), a single objective func-
tion (single_objective) formed from the primary function surrogates, or either an augmented Lagrangian
merit function (augmented_lagrangian_objective) or a Lagrangian merit function (lagrangian_—
objective) formed from the primary and secondary function surrogates. The former option may imply the
use of a nonlinear least squares method, a multiobjective optimization method, or a single objective optimization
method to solve the approximate subproblem, depending on the definition of the primary functions. The latter
three options all imply the use of a single objective optimization method regardless of primary function definition.

single_objective
e Keywords Area
e method
e surrogate_based_local
e approx_subproblem
e single_objective

Construct approximation a single objective functions only

Specification

Alias: none
Argument(s): none

6.2. METHOD 241

Description

For SBL problems with nonlinear constraints, a number of algorithm formulations exist as described in[23] and
as summarized in the Advanced Examples section of the Models chapter of the Users Manual[4]. First, the
“primary” functions (that is, the objective functions or calibration terms) in the approximate subproblem can
be selected to be surrogates of the original primary functions (original_primary), a single objective func-
tion (single_objective) formed from the primary function surrogates, or either an augmented Lagrangian
merit function (augmented_lagrangian_objective) or a Lagrangian merit function (lLagrangian_—
objective) formed from the primary and secondary function surrogates. The former option may imply the
use of a nonlinear least squares method, a multiobjective optimization method, or a single objective optimization
method to solve the approximate subproblem, depending on the definition of the primary functions. The latter
three options all imply the use of a single objective optimization method regardless of primary function definition.

augmented_lagrangian_objective
e Keywords Area
e method
e surrogate_based_local
e approx_subproblem
e augmented_lagrangian_objective

Augmented Lagrangian approximate subproblem formulation

Specification

Alias: none
Argument(s): none

Description

For SBL problems with nonlinear constraints, a number of algorithm formulations exist as described in[23] and
as summarized in the Advanced Examples section of the Models chapter of the Users Manual[4]. First, the
“primary” functions (that is, the objective functions or calibration terms) in the approximate subproblem can
be selected to be surrogates of the original primary functions (original_primary), a single objective func-
tion (single_objective) formed from the primary function surrogates, or either an augmented Lagrangian
merit function (augmented_lagrangian_objective) or a Lagrangian merit function (lLagrangian_—
objective) formed from the primary and secondary function surrogates. The former option may imply the
use of a nonlinear least squares method, a multiobjective optimization method, or a single objective optimization
method to solve the approximate subproblem, depending on the definition of the primary functions. The latter
three options all imply the use of a single objective optimization method regardless of primary function definition.

lagrangian_objective
e Keywords Area
e method

e surrogate_based_local

242

e approx_subproblem

e lagrangian_objective

Lagrangian approximate subproblem formulation

Specification

Alias: none
Argument(s): none

Description

CHAPTER 6. KEYWORDS AREA

For SBL problems with nonlinear constraints, a number of algorithm formulations exist as described in[23] and
as summarized in the Advanced Examples section of the Models chapter of the Users Manual[4]. First, the
“primary” functions (that is, the objective functions or calibration terms) in the approximate subproblem can
be selected to be surrogates of the original primary functions (original primary), a single objective func-
tion (single_objective) formed from the primary function surrogates, or either an augmented Lagrangian
merit function (augmented_lagrangian_objective) or a Lagrangian merit function (Lagrangian_—
objective) formed from the primary and secondary function surrogates. The former option may imply the
use of a nonlinear least squares method, a multiobjective optimization method, or a single objective optimization
method to solve the approximate subproblem, depending on the definition of the primary functions. The latter
three options all imply the use of a single objective optimization method regardless of primary function definition.

original_constraints
e Keywords Area
e method
e surrogate_based_local
e approx_subproblem
e original_constraints
Use the constraints directly
Specification
Alias: none

Argument(s): none

Description

The surrogate constraints in the approximate subproblem can be selected to be surrogates of the original con-
straints (original_constraints) or linearized approximations to the surrogate constraints (Linearized-
_constraints), or constraints can be omitted from the subproblem (no_constraints).

6.2. METHOD 243

linearized_constraints
e Keywords Area

e method

surrogate_based_local

approx_subproblem
e linearized_constraints

Use linearized approximations to the constraints

Specification

Alias: none
Argument(s): none

Description

The surrogate constraints in the approximate subproblem can be selected to be surrogates of the original con-
straints (original_constraints) or linearized approximations to the surrogate constraints (Linearized-
_constraints), or constraints can be omitted from the subproblem (no_constraints).

no_constraints
e Keywords Area

method

surrogate_based_local
e approx_subproblem

no_constraints

Don’t use constraints

Specification

Alias: none
Argument(s): none

Description

The surrogate constraints in the approximate subproblem can be selected to be surrogates of the original con-
straints (original_constraints) or linearized approximations to the surrogate constraints (Linearized-
_constraints), or constraints can be omitted from the subproblem (no_constraints).

244 CHAPTER 6. KEYWORDS AREA

merit_function

e Keywords Area
e method
e surrogate_based_local

e merit_function

Select type of penalty or merit function

Specification

Alias: none
Argument(s): none
Default: augmented_lagrangian_merit

Required/- Description of Dakota Keyword | Dakota Keyword

Optional Group Description
penalty_merit Use penalty merit

Required(Choose | merit function function

One) (Group 1) adaptive_penalty_- | Use adaptive

merit

penalty merit
function

lagrangian_merit

Use first-order
Lagrangian merit
function

augmented_-
lagrangian_merit

Use combined
penalty and

zeroth-order
Lagrangian merit
function

Description

Following optimization of the approximate subproblem, the candidate iterate is evaluated using a merit function,
which can be selected to be a simple penalty function with penalty ramped by surrogate_based_local iteration
number (penalty_merit), an adaptive penalty function where the penalty ramping may be accelerated in or-
der to avoid rejecting good iterates which decrease the constraint violation (adaptive_penalty merit), a
Lagrangian merit function which employs first-order Lagrange multiplier updates (lagrangian_merit), or an
augmented Lagrangian merit function which employs both a penalty parameter and zeroth-order Lagrange mul-
tiplier updates (augmented-lagrangian-merit). When an augmented Lagrangian is selected for either the
subproblem objective or the merit function (or both), updating of penalties and multipliers follows the approach
described in[16].

penalty_merit
e Keywords Area
e method

e surrogate_based_local

6.2. METHOD 245

e merit_function
e penalty_merit

Use penalty merit function

Specification

Alias: none
Argument(s): none

Description

Second, the surrogate constraints in the approximate subproblem can be selected to be surrogates of the original
constraints (original_constraints)or linearized approximations to the surrogate constraints (Linearized-
_constraints), or constraints can be omitted from the subproblem (no_constraints). Following opti-
mization of the approximate subproblem, the candidate iterate is evaluated using a merit function, which can be
selected to be a simple penalty function with penalty ramped by SBL iteration number (penalty merit), an
adaptive penalty function where the penalty ramping may be accelerated in order to avoid rejecting good iter-
ates which decrease the constraint violation (adaptive_penalty merit), a Lagrangian merit function which
employs first-order Lagrange multiplier updates (lLagrangian_merit), or an augmented Lagrangian merit
function which employs both a penalty parameter and zeroth-order Lagrange multiplier updates (augmented-
_lagrangian_merit). When an augmented Lagrangian is selected for either the subproblem objective or the
merit function (or both), updating of penalties and multipliers follows the approach described in[16].

adaptive_penalty _merit
e Keywords Area
e method
e surrogate_based_local
e merit_function

e adaptive_penalty_merit

Use adaptive penalty merit function

Specification

Alias: none
Argument(s): none

Description

Second, the surrogate constraints in the approximate subproblem can be selected to be surrogates of the original
constraints (original_constraints)orlinearized approximations to the surrogate constraints (1 inearized-
_constraints), or constraints can be omitted from the subproblem (no_constraints). Following opti-
mization of the approximate subproblem, the candidate iterate is evaluated using a merit function, which can be
selected to be a simple penalty function with penalty ramped by SBL iteration number (penalty merit), an
adaptive penalty function where the penalty ramping may be accelerated in order to avoid rejecting good iter-
ates which decrease the constraint violation (adaptive_penalty_merit), a Lagrangian merit function which

246 CHAPTER 6. KEYWORDS AREA

employs first-order Lagrange multiplier updates (Lagrangian_merit), or an augmented Lagrangian merit
function which employs both a penalty parameter and zeroth-order Lagrange multiplier updates (augmented—
_lagrangian_merit). When an augmented Lagrangian is selected for either the subproblem objective or the
merit function (or both), updating of penalties and multipliers follows the approach described in[16].

lagrangian_merit
e Keywords Area
e method
e surrogate_based_local
e merit_function
e lagrangian_merit

Use first-order Lagrangian merit function

Specification

Alias: none
Argument(s): none

Description

Second, the surrogate constraints in the approximate subproblem can be selected to be surrogates of the original
constraints (original_constraints)or linearized approximations to the surrogate constraints (Linearized-
_constraints), or constraints can be omitted from the subproblem (no_constraints). Following opti-
mization of the approximate subproblem, the candidate iterate is evaluated using a merit function, which can be
selected to be a simple penalty function with penalty ramped by SBL iteration number (penalty merit), an
adaptive penalty function where the penalty ramping may be accelerated in order to avoid rejecting good iter-
ates which decrease the constraint violation (adaptive_penalty merit), a Lagrangian merit function which
employs first-order Lagrange multiplier updates (lLagrangian_merit), or an augmented Lagrangian merit
function which employs both a penalty parameter and zeroth-order Lagrange multiplier updates (augmented-
_lagrangian-merit). When an augmented Lagrangian is selected for either the subproblem objective or the
merit function (or both), updating of penalties and multipliers follows the approach described in[16].

augmented_lagrangian_merit
e Keywords Area
e method
e surrogate_based_local
e merit_function
e augmented_lagrangian_merit

Use combined penalty and zeroth-order Lagrangian merit function

6.2. METHOD 247

Specification

Alias: none
Argument(s): none

Description

Second, the surrogate constraints in the approximate subproblem can be selected to be surrogates of the original
constraints (original_constraints)or linearized approximations to the surrogate constraints (Linearized-
_constraints), or constraints can be omitted from the subproblem (no_constraints). Following opti-
mization of the approximate subproblem, the candidate iterate is evaluated using a merit function, which can be
selected to be a simple penalty function with penalty ramped by SBL iteration number (penalty merit), an
adaptive penalty function where the penalty ramping may be accelerated in order to avoid rejecting good iter-
ates which decrease the constraint violation (adaptive_penalty_merit), a Lagrangian merit function which
employs first-order Lagrange multiplier updates (Lagrangian_merit), or an augmented Lagrangian merit
function which employs both a penalty parameter and zeroth-order Lagrange multiplier updates (augmented-
_lagrangian_merit). When an augmented Lagrangian is selected for either the subproblem objective or the
merit function (or both), updating of penalties and multipliers follows the approach described in[16].

acceptance _logic
e Keywords Area
e method
e surrogate_based_local

e acceptance_logic

Set criteria for trusted surrogate

Specification

Alias: none
Argument(s): none
Default: filter

Required/- Description of Dakota Keyword | Dakota Keyword
Optional Group Description
Required(Choose | acceptance logic tr_ratio Surrogate-Based
One) (Group 1) Local iterate
acceptance logic
filter Surrogate-Based
Local iterate
acceptance logic

Description

Following calculation of the merit function for the new iterate, the iterate is accepted or rejected and the trust
region size is adjusted for the next surrogate_based_local iteration. Iterate acceptance is governed either by a trust
region ratio (tr_ratio) formed from the merit function values or by a filter method (fi1lter); however, trust
region resizing logic is currently based only on the trust region ratio. For infeasible iterates, constraint relaxation
can be used for balancing constraint satisfaction and progress made toward an optimum.

248 CHAPTER 6. KEYWORDS AREA

tr_ratio
e Keywords Area

method

surrogate_based_local
e acceptance_logic

tr_ratio

Surrogate-Based Local iterate acceptance logic

Specification

Alias: none
Argument(s): none

Description

Following calculation of the merit function for the new iterate, the iterate is accepted or rejected and the trust
region size is adjusted for the next SBL iteration. Iterate acceptance is governed either by a trust region ratio (t r—
_ratio) formed from the merit function values or by a filter method (£i1lter); however, trust region resizing
logic is currently based only on the trust region ratio. For infeasible iterates, constraint relaxation can be used for
balancing constraint satisfaction and progress made toward an optimum. The command constraint_relax
followed by a method name specifies the type of relaxation to be used. Currently, homotopy[68] is the only
available method for constraint relaxation, and this method is dependent on the presence of the NPSOL library
within the Dakota executable.

filter

Keywords Area

method

surrogate_based_local

acceptance_logic

filter

Surrogate-Based Local iterate acceptance logic

Specification

Alias: none
Argument(s): none

6.2. METHOD 249

Description

Following calculation of the merit function for the new iterate, the iterate is accepted or rejected and the trust
region size is adjusted for the next SBL iteration. Iterate acceptance is governed either by a trust region ratio (t r—
_ratio) formed from the merit function values or by a filter method (£i1lter); however, trust region resizing
logic is currently based only on the trust region ratio. For infeasible iterates, constraint relaxation can be used for
balancing constraint satisfaction and progress made toward an optimum. The command constraint_relax
followed by a method name specifies the type of relaxation to be used. Currently, homotopy[68] is the only
available method for constraint relaxation, and this method is dependent on the presence of the NPSOL library
within the Dakota executable.

constraint_relax
e Keywords Area
e method
e surrogate_based_local
e constraint_relax

Enable constraint relaxation

Specification

Alias: none
Argument(s): none
Default: no relaxation

Required/- Description of Dakota Keyword Dakota Keyword
Optional Group Description
Required homotopy Surrogate-Based

local constraint
relaxation method
for infeasible
iterates

Description
The command constraint_relax followed by a method name specifies the type of relaxation to be used.
Currently, homotopy [68] is the only available method for constraint relaxation, and this method is dependent
on the presence of the NPSOL library within the Dakota executable.
homotopy

e Keywords Area

e method

e surrogate_based_local

e constraint_relax

homotopy

Surrogate-Based local constraint relaxation method for infeasible iterates

250 CHAPTER 6. KEYWORDS AREA

Specification

Alias: none
Argument(s): none

Description

Currently, homot opy[68] is the only available method for constraint relaxation, and this method is dependent on
the presence of the NPSOL library within the Dakota executable.

6.2.14 surrogate_based_global

o Keywords Area
e method

e surrogate_based_global

Global Surrogate Based Optimization

Topics
This keyword is related to the topics:

e surrogate_based_optimization_methods

Specification

Alias: none
Argument(s): none

method_name Specify
sub-method by
name

Required

Optional

6.2. METHOD 251

Description

The surrogate based_global specification must identify:

e a sub-method, using either method_pointer or method_name

e model_pointer must be used to identify a surrogate model

surrogate_based_global works in an iterative scheme where optimization is performed on a global surro-
gate using the same bounds during each iteration.

o In one iteration, the optimal solutions of the surrogate model are found, and then a selected set of these
optimal surrogate solutions are passed to the next iteration.

e At the next iteration, these surrogate points are evaluated with the “truth” model, and then these points are
added back to the set of points upon which the next surrogate is constructed.

In this way, the optimization acts on a more accurate surrogate during each iteration, presumably driving to
optimality quickly.
Method Independent Controls

e max_iterations is used as a stopping critierion (see note below)

Notes
We have some cautionary notes before using the surrogate-based global method:

o This approach has no guarantee of convergence.

e One might first try a single minimization method coupled with a surrogate model prior to using the surrogate-
based global method. This is essentially equivalent to setting max_iterations to 1 and will allow one
to get a sense of what surrogate types are the most accurate to use for the problem.

e Also note that one can specify that surrogates be built for all primary functions and constraints or for only
a subset of these functions and constraints. This allows one to use a "truth” model directly for some of the
response functions, perhaps due to them being much less expensive than other functions.

e We initially recommend a small number of maximum iterations, such as 3-5, to get a sense of how the
optimization is evolving as the surrogate gets updated. If it appears to be changing significantly, then a
larger number (used in combination with restart) may be needed.

Theory

In surrogate-based optimization (SBO) and surrogate-based nonlinear least squares (SBNLS), minimization oc-
curs using a set of one or more approximations, defined from a surrogate model, that are built and periodically
updated using data from a “truth” model. The surrogate model can be a global data fit (e.g., regression or inter-
polation of data generated from a design of computer experiments), a multipoint approximation, a local Taylor
Series expansion, or a model hierarchy approximation (e.g., a low-fidelity simulation model), whereas the truth
model involves a high-fidelity simulation model. The goals of surrogate-based methods are to reduce the total
number of truth model simulations and, in the case of global data fit surrogates, to smooth noisy data with an
easily navigated analytic function.

It was originally designed for MOGA (a multi-objective genetic algorithm). Since genetic algorithms often
need thousands or tens of thousands of points to produce optimal or near-optimal solutions, the use of surrogates
can be helpful for reducing the truth model evaluations. Instead of creating one set of surrogates for the individual
objectives and running the optimization algorithm on the surrogate once, the idea is to select points along the
(surrogate) Pareto frontier, which can be used to supplement the existing points.

In this way, one does not need to use many points initially to get a very accurate surrogate. The surrogate
becomes more accurate as the iterations progress.

252

See Also
These keywords may also be of interest:
o ecfficient_global

e surrogate_based_local

method _pointer
e Keywords Area
e method
e surrogate_based_global

e method_pointer

Pointer to sub-method to apply to surrogate
Topics
This keyword is related to the topics:

e block_pointer

Specification

Alias: approx_method_pointer
Argument(s): STRING

Description

CHAPTER 6. KEYWORDS AREA

The method_pointer keyword is used to specify a pointer to an optimization or least-squares sub-method to

apply to the surrogate model.

Any model pointer identified in the sub-method specification is ignored. Instead, the parent method is

responsible for selecting a surrogate model using its model_pointer.

method _name
e Keywords Area
e method
e surrogate_based_global

e method_name

Specify sub-method by name

Specification

Alias: approx_method_name
Argument(s): STRING

6.2. METHOD 253

Description

The method_name keyword is used to specify a sub-method by Dakota method name (e.g. ’npsol_sqp’) rather
than block pointer. The method will be executed using its default settings. The optional model_pointer
specification can be used to associate a model block with the method.

model_pointer

o Keywords Area

e method

surrogate_based_global

e model_pointer

Identifier for model block to be used by a method

Topics
This keyword is related to the topics:

e block_pointer

Specification

Alias: approx_model_pointer
Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

Description

The model_pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior

If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model
block in the Dakota input file that has a corresponding id_model with the same name.

Usage Tips

When doing advanced analyses that involve using multiple methods and multiple models, defining a mode1-
_pointer for each method is imperative.

See block_pointer for details about pointers.

Examples
environment
tabular_graphics_data
method_pointer = 'UQ’
method
id_method = "UQ’
model_pointer = ’SURR’
sampling,
samples = 10

seed = 98765 rng rnum2

254 CHAPTER 6. KEYWORDS AREA

response_levels = 0.1 0.
0.1 0

o NN
= O O
o oy O

sample_type lhs
distribution cumulative

model
id_model = ’ SURR’
surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’'DACE’
model_pointer = ’'DACE_M’

sampling sample_type lhs
samples = 121 seed 5034 rng rnum2

model
id_model = ’'DACE_M’
single
interface_pointer = ’'I1’

variables
uniform_uncertain
lower_bounds =
upper_bounds
descriptors

I
= o
o

I
b
-
b
N

interface
id_interface = "I1’
system asynch evaluation_concurrency = 5
analysis_driver = ’'text_book’
responses
response_functions = 3

no_gradients
no_hessians

replace_points

e Keywords Area
e method
e surrogate_based_global

e replace_points

(Recommended) Replace points in the surrogate training set, instead of appending

Specification

Alias: none
Argument(s): none
Default: Points appended, not replaced

6.2. METHOD 255

Description

The user has the option of appending the optimal points from the surrogate model to the current set of truth
points or using the optimal points from the surrogate model to replace the optimal set of points from the previous
iteration. Although appending to the set is the default behavior, at this time we strongly recommend using the
option replace_points because it appears to be more accurate and robust.

6.2.15 dot frcg
o Keywords Area
e method

e dot_frcg

A conjugate gradient optimization method

Specification

Alias: none
Argument(s): none

Optional

Optional

Optional

Optional

Optional

Optional

256

CHAPTER 6.

KEYWORDS AREA

Optional linear_equality_- Define target
targets values for the
linear equality
constraints
Optional linear_equality_- Specify how each
scale_types linear equality
constraint is scaled
Optional linear_equality - Define the
scales characteristic
values to scale
linear equalities
Optional model_pointer Identifier for
model block to be
used by a method

Description

This is a duplicated keyword. Please use dot instead.

We here provide a caution regarding dot _frcg. In DOT Version 4.20, we have noticed inconsistent behavior
of this algorithm across different versions of Linux. Our best assessment is that it is due to different treatments of
uninitialized variables. As we do not know the intention of the code authors and maintaining DOT source code
is outside of the Dakota project scope, we have not made nor are we recommending any code changes to address
this. However, all users who use dot _frcgin DOT Version 4.20 should be aware that results may not be reliable.

See Also

These keywords may also be of interest:

o frcg

linear_inequality_constraint_matrix
e Keywords Area
e method
e dot_frcg
e linear_inequality_constraint_matrix

Define coefficients of the linear inequality constraints

Topics
This keyword is related to the topics:

e linear_constraints

Specification

Alias: none
Argument(s): REALLIST
Default: no linear inequality constraints

6.2. METHOD 257

Description
In the inequality case, the constraint matrix A provides coefficients for the variables in the two-sided formulation:
ap < Ar < ay

Where the bounds are optionally specified by 1inear_inequality_lower bounds, and linear -
inequality_upper_bounds. The bounds, if not specified, will default to -infinity, and 0O, respectively, re-
sulting in one-sided inequalities of the form

Az <0.0

linear_inequality_lower_bounds
e Keywords Area
e method
e dot _frcg
e linear_inequality_lower_bounds

Define lower bounds for the linear inequality constraint

Topics
This keyword is related to the topics:

e linear_constraints

Specification

Alias: none
Argument(s): REALLIST
Default: vector values = -infinity

Description
In the inequality case, the lower a; and upper a,, bounds provide constraint limits for the two-sided formulation:
ap < Ar < ay

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective_functions), the default linear inequality constraint
bounds are selected so that one-sided inequalities of the form

Az <0.0

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since ~-DBL_MAX < ~bigRealBoundSize).

258 CHAPTER 6. KEYWORDS AREA

linear_inequality_upper_bounds
o Keywords Area
e method
o dot_frcg

e linear_inequality_upper_bounds

Define upper bounds for the linear inequality constraint

Topics
This keyword is related to the topics:

e linear_constraints

Specification

Alias: none
Argument(s): REALLIST
Default: vector values =0 .

Description

In the inequality case, the lower a; and upper a,, bounds provide constraint limits for the two-sided formulation:
a < Az < ay

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective_functions), the default linear inequality constraint
bounds are selected so that one-sided inequalities of the form

Az <0.0

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since ~-DBL_MAX < —-bigRealBoundSize).

linear_inequality_scale_types

Keywords Area

method

dot_frcg
e linear_inequality_scale_types

Specify how each linear inequality constraint is scaled

6.2. METHOD 259

Topics
This keyword is related to the topics:

e linear_constraints

Specification

Alias: none
Argument(s): STRINGLIST
Default: vector values = ‘none’

Description

linear_inequality_scale_types provide strings specifying the scaling type for each linear inequality
constraint, in methods that support scaling.
An entry may be selected for each constraint. The options are:

e 'none’ -no scaling
e 'value’ - characteristic value if this is chosen, then 1inear_inequality_scales must be specified
e ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling
on continuous design variables x:
j_
s . Ty
Tm
we have the following system for linear inequality constraints
ar, < Az <ay

ap < A; (diag(za)z 4+ z0) < ay
ar, — Ajzo < Aydiag(zp)E < ay — Ajzo
ap < Aii < ay
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,

which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear_inequality_scales

o Keywords Area
e method
e dot_frcg

e linear_inequality_scales

Define the characteristic values to scale linear inequalities

260 CHAPTER 6. KEYWORDS AREA

Topics
This keyword is related to the topics:

e linear_constraints

Specification

Alias: none
Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

Description

Eachentry in 1inear_inequality_scales may be a user-specified, nonzero characteristic value to be used
in scaling each constraint.
Behavior depends on the choice of 1inear_inequality_scale_type:

e scale_type - behavior of 1inear_inequality_scales
e 'none’ -ignored

e 'value’ - required

e ’auto’ - optional

If a single real value is specified it will apply to all components of the constraint.
Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling
on continuous design variables x:

j J
o) —x
=270

B J
T
we have the following system for linear inequality constraints
ar, <Az <ay
ar, < A; (diag(za)T +20) < ay
ap — Ail‘o < Aidiag(xM)i <ay — Ai.%'o
ap < AiE <y
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].
linear_equality_constraint_matrix
e Keywords Area
e method
e dot_frcg

e linear_equality_constraint_matrix

Define coefficients of the linear equalities

6.2. METHOD 261

Topics
This keyword is related to the topics:

e linear_constraints

Specification

Alias: none
Argument(s): REALLIST
Default: no linear equality constraints

Description

In the equality case, the constraint matrix A provides coefficients for the variables on the left hand side of:

Ax = a4

linear_equality_targets

Keywords Area
e method
e dot _frcg

e linear_equality_targets

Define target values for the linear equality constraints

Topics
This keyword is related to the topics:

e linear_constraints

Specification

Alias: none
Argument(s): REALLIST
Default: vector values =0 .

Description

In the equality case, the targets a; provide the equality constraint right hand sides:

Ax = a4

If this is not specified, the defaults for the equality constraint targets enforce a value of 0. for each constraint:
Az =0.0

262 CHAPTER 6. KEYWORDS AREA

linear_equality_scale_types
e Keywords Area
e method
e dot_frcg

e linear_equality_scale_types

Specify how each linear equality constraint is scaled

Topics
This keyword is related to the topics:

e linear_constraints

Specification

Alias: none
Argument(s): STRINGLIST
Default: vector values = 'none’

Description

linear_equality_scale_types provide strings specifying the scaling type for each linear equality con-
straint, in methods that support scaling.
An entry may be selected for each constraint. The options are:

e 'none’ -no scaling
e 'value’ - characteristic value if this is chosen, then 1inear_equality_scales must be specified
e ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:

J_ el
€T Ty

J
Tpg

j]_

we have the following system for linear equality constraints
ap < Ayw < ay

ar, < A; (diag(zp)Z + 20) < ay
ar, — Aizo < Aidiag(zp)E < ay — Aizo
ar < A < ay
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,

which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

6.2. METHOD 263

linear_equality_scales

e Keywords Area
e method
e dot_frcg

e linear_equality_scales

Define the characteristic values to scale linear equalities

Topics
This keyword is related to the topics:

e linear_constraints

Specification

Alias: none
Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

Description

Eachentry in linear_equality_scales may be a user-specified, nonzero characteristic value to be used in
scaling each constraint.
See the scaling page for details on how to use this keyword.
Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:
. P
7 = — Q
Tm
we have the following system for linear inequality constraints

ar < Ajw < ay

ar < A; (diag(zy)T +20) < ay
ar, — Ajxzo < Aydiag(zpy)z < ay — Ajzo
ap < AiF < ay

and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

264 CHAPTER 6. KEYWORDS AREA

model_pointer
o Keywords Area
e method
e dot_frcg

e model_pointer

Identifier for model block to be used by a method

Topics
This keyword is related to the topics:

e block_pointer

Specification

Alias: none
Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

Description

The model_pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior

If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model
block in the Dakota input file that has a corresponding id_model with the same name.

Usage Tips

When doing advanced analyses that involve using multiple methods and multiple models, defining a mode1-
_pointer for each method is imperative.

See block_pointer for details about pointers.

Examples

environment
tabular_graphics_data
method_pointer = ’'UQ’

method
id_method = "UQ’
model_pointer = ’SURR’
sampling,
samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.
0.1 0.

o N DN
= O O
O oy O

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

6.2. METHOD

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’'DACE’
model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum?2

model
id_model = ’DACE_M’
single
interface_pointer = 'I1’

variables
uniform_uncertain
lower_bounds =
upper_bounds
descriptors

0. 0.
1. 1.
Il T x27

interface

id_interface = "I1’

system asynch evaluation_concurrency = 5

analysis_driver = ’'text_book’

responses

response_functions = 3

no_gradients

no_hessians

6.2.16 dot_mmfd
e Keywords Area
e method

e dot_mmfd

Method of feasible directions

Specification

Alias: none
Argument(s): none

265

Required/- Description of
Optional Group

Optional

Dakota Keyword

linear_inequality_-
constraint_matrix

Dakota Keyword
Description
Define coefficients
of the linear
inequality
constraints

266 CHAPTER 6. KEYWORDS AREA

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Description

This is a duplicated keyword. Please use dot instead.

See Also
These keywords may also be of interest:

o mmfd

linear_inequality_constraint_matrix
e Keywords Area
e method

o dot_mmfd

6.2. METHOD 267

e linear_inequality_constraint_matrix

Define coefficients of the linear inequality constraints

Topics
This keyword is related to the topics:

e linear_constraints

Specification
Alias: none
Argument(s): REALLIST
Default: no linear inequality constraints
Description
In the inequality case, the constraint matrix A provides coefficients for the variables in the two-sided formulation:

a; < Az < a,

Where the bounds are optionally specified by 1inear_inequality_lower_bounds, and linear_—
inequality_upper_bounds. The bounds, if not specified, will default to -infinity, and 0O, respectively, re-
sulting in one-sided inequalities of the form

Az <0.0

linear_inequality_lower_bounds
o Keywords Area
e method
e dot_mmfd

e linear_inequality_lower_bounds

Define lower bounds for the linear inequality constraint

Topics
This keyword is related to the topics:

e linear_constraints

Specification

Alias: none
Argument(s): REALLIST
Default: vector values = -infinity

268 CHAPTER 6. KEYWORDS AREA

Description
In the inequality case, the lower a; and upper a,, bounds provide constraint limits for the two-sided formulation:
a; < Az < ay

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective_functions), the default linear inequality constraint
bounds are selected so that one-sided inequalities of the form

Ax <0.0

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since ~-DBL_MAX < ~bigRealBoundSize).
linear_inequality_upper_bounds

e Keywords Area

e method

e dot_mmfd

e linear_inequality_upper_bounds

Define upper bounds for the linear inequality constraint

Topics
This keyword is related to the topics:

e linear_constraints

Specification

Alias: none
Argument(s): REALLIST
Default: vector values =0 .

Description
In the inequality case, the lower a; and upper a,, bounds provide constraint limits for the two-sided formulation:
a < Az < ay

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective_functions), the default linear inequality constraint
bounds are selected so that one-sided inequalities of the form

Az <0.0

6.2. METHOD 269

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since ~-DBL_MAX < -bigRealBoundSize).
linear_inequality_scale_types

o Keywords Area

e method

e dot_-mmfd

e linear_inequality_scale_types

Specify how each linear inequality constraint is scaled

Topics
This keyword is related to the topics:

e linear_constraints

Specification

Alias: none
Argument(s): STRINGLIST
Default: vector values = 'none’

Description

linear_inequality_scale_types provide strings specifying the scaling type for each linear inequality
constraint, in methods that support scaling.
An entry may be selected for each constraint. The options are:

e ’'none’ -no scaling
e 'value’ - characteristic value if this is chosen, then 1inear_inequality_scales must be specified
e ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling
on continuous design variables x:
J_
#="""0
J
Tp
we have the following system for linear inequality constraints
ar, < Ajw < ay

ap < A; (diag(zy)T + 20) < ay

270

and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

ar, — Airo < Aydiag(ra)® < ay — Airo

ap < A < ay

linear_inequality_scales

e Keywords Area

e method

e dot_mmfd

e linear_inequality_scales

Define the characteristic values to scale linear inequalities

Topics

This keyword is related to the topics:

e linear_constraints

Specification

Alias: none
Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

Description

Eachentry in 1inear_inequality_scales may be a user-specified, nonzero characteristic value to be used

in scaling each constraint.

Behavior depends on the choice of 1inear_inequality_scale_type:

If a single real value is specified it will apply to all components of the constraint.
Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling

scale_type - behavior of linear_inequality._scales
"none’ -ignored
"value’ -required

"auto’ - optional

on continuous design variables x:

J_d
. T -
PF="""0

J
Ty,

we have the following system for linear inequality constraints

ar, < Ajx < ay

CHAPTER 6. KEYWORDS AREA

6.2. METHOD 271

ar, < A; (diag(xar)T + 7o) < ay
ar, — Ajro < Aydiag(ra)® < ay — Airo
ap < Aii <ay

and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear_equality_constraint_matrix

Keywords Area

method

dot_mmfd

linear_equality_constraint_matrix

Define coefficients of the linear equalities

Topics
This keyword is related to the topics:

e linear_constraints

Specification

Alias: none
Argument(s): REALLIST
Default: no linear equality constraints

Description

In the equality case, the constraint matrix A provides coefficients for the variables on the left hand side of:

Ax = a;

linear_equality_targets
e Keywords Area
e method

dot_mmfd

e linear_equality_targets

Define target values for the linear equality constraints

272 CHAPTER 6. KEYWORDS AREA
Topics
This keyword is related to the topics:

e linear_constraints

Specification

Alias: none
Argument(s): REALLIST
Default: vector values =0 .

Description

In the equality case, the targets a; provide the equality constraint right hand sides:
Ax = a4

If this is not specified, the defaults for the equality constraint targets enforce a value of 0. for each constraint:
Ax =0.0

linear_equality_scale_types

e Keywords Area
e method
e dot_mmfd

e linear_equality_scale_types

Specify how each linear equality constraint is scaled

Topics
This keyword is related to the topics:

e linear_constraints

Specification

Alias: none
Argument(s): STRINGLIST
Default: vector values = 'none’

6.2. METHOD 273

Description

linear_equality_scale_types provide strings specifying the scaling type for each linear equality con-
straint, in methods that support scaling.
An entry may be selected for each constraint. The options are:

e 'none’ -no scaling
e 'value’ - characteristic value if this is chosen, then 1inear_equality_scales must be specified
e ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:

3
g=2"%0
J
LM
we have the following system for linear equality constraints
ar, < Az <ay
arg, S A, (dlag(xM)iz + CCO) S ay
ar, — Ajxzo < Aydiag(zp)z < ay — Ajzo
ar < At < ay
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,

which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear_equality_scales

o Keywords Area
e method
e dot_mmfd

e linear_equality_scales

Define the characteristic values to scale linear equalities

Topics
This keyword is related to the topics:

e linear_constraints

Specification

Alias: none
Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

274 CHAPTER 6. KEYWORDS AREA

Description

Each entry in 1inear_equality_scales may be a user-specified, nonzero characteristic value to be used in
scaling each constraint.

See the scaling page for details on how to use this keyword.

Scaling for linear constraints is applied after any continuous variable scaling.

For example, for variable scaling on continuous design variables x:

J_d
x) — 1z,
J
T

7] =

we have the following system for linear inequality constraints

ar < Az <ay

ay, < A; (diag(zpm)Z + z0) < ay
ar, — Ajzo < Aydiag(zp)z < ay — Ajzo
ap < Aii <ay
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,

which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

model_pointer

e Keywords Area
e method
e dot_mmfd

e model_pointer

Identifier for model block to be used by a method

Topics
This keyword is related to the topics:

e block_pointer

Specification

Alias: none
Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

6.2. METHOD 275

Description

The model_pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior

If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model
block in the Dakota input file that has a corresponding id_model with the same name.

Usage Tips

When doing advanced analyses that involve using multiple methods and multiple models, defining a mode1-
_pointer for each method is imperative.

See block_pointer for details about pointers.

Examples

environment
tabular_graphics_data
method_pointer = 'UQ’

method

id_method = "UQ’
model_pointer = ’SURR’
sampling,
samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 O.
0.1 0.

o NN
= O O
S oy O

sample_type lhs
distribution cumulative

model
id_model = ’SURR’
surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’'DACE’
model_pointer = 'DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum2

model
id_model = ’DACE_M’
single
interface_pointer = 'I1’

variables
uniform_uncertain
lower_bounds =
upper_bounds
descriptors

0. 0.
1. 1.
lel IXZI

interface
id_interface = "I1’
system asynch evaluation_concurrency = 5
analysis_driver = ’'text_book’

responses

276 CHAPTER 6. KEYWORDS AREA

response_functions = 3
no_gradients
no_hessians

6.2.17 dot_bfgs

e Keywords Area
e method

e dot_bfgs

A conjugate gradient optimization method

Specification

Alias: none
Argument(s): none

Optional

Optional

Optional

Optional

Optional

Optional

Optional

6.2. METHOD 277

Optional

Optional

Optional

Description

This is a duplicated keyword. Please use dot instead.

See Also

These keywords may also be of interest:

e Dbfgs

linear_inequality_constraint_matrix

e Keywords Area
e method
e dot_bfgs

e linear_inequality_constraint_matrix

Define coefficients of the linear inequality constraints

Topics
This keyword is related to the topics:

e linear_constraints

Specification

Alias: none
Argument(s): REALLIST
Default: no linear inequality constraints

278 CHAPTER 6. KEYWORDS AREA

Description
In the inequality case, the constraint matrix A provides coefficients for the variables in the two-sided formulation:
a; < Ar < ay

Where the bounds are optionally specified by 1inear_inequality_lower bounds, and linear -
inequality_upper_bounds. The bounds, if not specified, will default to -infinity, and 0O, respectively, re-
sulting in one-sided inequalities of the form

Az <0.0

linear_inequality_lower_bounds
e Keywords Area
e method
e dot_bfgs
e linear_inequality_lower_bounds

Define lower bounds for the linear inequality constraint

Topics
This keyword is related to the topics:

e linear_constraints

Specification

Alias: none
Argument(s): REALLIST
Default: vector values = -infinity

Description
In the inequality case, the lower a; and upper a,, bounds provide constraint limits for the two-sided formulation:
ap < Ar < ay

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective_functions), the default linear inequality constraint
bounds are selected so that one-sided inequalities of the form

Az <0.0

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since ~-DBL_MAX < ~bigRealBoundSize).

6.2. METHOD 279

linear_inequality_upper_bounds
o Keywords Area
e method
e dot_bfgs

e linear_inequality_upper_bounds

Define upper bounds for the linear inequality constraint

Topics
This keyword is related to the topics:

e linear_constraints

Specification

Alias: none
Argument(s): REALLIST
Default: vector values =0 .

Description
In the inequality case, the lower a; and upper a,, bounds provide constraint limits for the two-sided formulation:
a < Az < ay

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective_functions), the default linear inequality constraint
bounds are selected so that one-sided inequalities of the form

Az <0.0

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since ~-DBL_MAX < -bigRealBoundSize).
linear_inequality_scale_types

e Keywords Area

e method

e dot_bfgs

e linear_inequality_scale_types

Specify how each linear inequality constraint is scaled

280 CHAPTER 6. KEYWORDS AREA

Topics
This keyword is related to the topics:

e linear_constraints

Specification

Alias: none
Argument(s): STRINGLIST
Default: vector values = ‘none’

Description

linear_inequality_scale_types provide strings specifying the scaling type for each linear inequality
constraint, in methods that support scaling.
An entry may be selected for each constraint. The options are:

e 'none’ -no scaling
e 'value’ - characteristic value if this is chosen, then 1inear_inequality_scales must be specified
e ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling
on continuous design variables x:
j_
G . Ty
Tm
we have the following system for linear inequality constraints
ar, < Az <ay

ap < A; (diag(za)z 4+ z0) < ay
ar, — Ajzo < Aydiag(zp)E < ay — Ajzo
ap < Aii < ay

and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].
linear_inequality_scales

o Keywords Area

e method

e dot_bfgs

e linear_inequality_scales

Define the characteristic values to scale linear inequalities

6.2. METHOD 281

Topics
This keyword is related to the topics:

e linear_constraints

Specification

Alias: none
Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

Description

Eachentry in 1inear_inequality_scales may be a user-specified, nonzero characteristic value to be used
in scaling each constraint.
Behavior depends on the choice of 1inear_inequality_scale_type:

e scale_type - behavior of 1inear_inequality_scales
e 'none’ -ignored

e 'value’ - required

e ’auto’ - optional

If a single real value is specified it will apply to all components of the constraint.
Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling
on continuous design variables x:

j J
o) —x
=270

B J
Ty
we have the following system for linear inequality constraints

ar, <Az <ay
ar, < A; (diag(za)T +20) < ay
ar, — Ajzo < Aydiag(zp)z < ay — Ajzo
ap < AiE <y
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].
linear_equality_constraint_matrix
e Keywords Area
e method
e dot_bfgs

e linear_equality_constraint_matrix

Define coefficients of the linear equalities

282 CHAPTER 6. KEYWORDS AREA

Topics
This keyword is related to the topics:

e linear_constraints

Specification

Alias: none
Argument(s): REALLIST
Default: no linear equality constraints

Description

In the equality case, the constraint matrix A provides coefficients for the variables on the left hand side of:

Ax = a4

linear_equality_targets
e Keywords Area
e method
e dot_bfgs

e linear_equality_targets

Define target values for the linear equality constraints

Topics
This keyword is related to the topics:

e linear_constraints

Specification

Alias: none
Argument(s): REALLIST
Default: vector values =0 .

Description

In the equality case, the targets a; provide the equality constraint right hand sides:

Ax = a4

If this is not specified, the defaults for the equality constraint targets enforce a value of 0. for each constraint:
Az =0.0

6.2. METHOD 283

linear_equality_scale_types
e Keywords Area
e method
e dot_bfgs

e linear_equality_scale_types

Specify how each linear equality constraint is scaled

Topics
This keyword is related to the topics:

e linear_constraints

Specification

Alias: none
Argument(s): STRINGLIST
Default: vector values = 'none’

Description

linear_equality_scale_types provide strings specifying the scaling type for each linear equality con-
straint, in methods that support scaling.
An entry may be selected for each constraint. The options are:

e 'none’ -no scaling
e 'value’ - characteristic value if this is chosen, then 1inear_equality_scales must be specified
e ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:

J_ el
€T Ty

J
Tpg

j]_

we have the following system for linear equality constraints
ap < Ayw < ay
ar, < A; (diag(za)T + z0) < ay
ar, — Aizo < Aidiag(zp)E < ay — Aizo
ar < AiF < ay
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,

which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

284 CHAPTER 6. KEYWORDS AREA

linear_equality_scales

e Keywords Area
e method
e dot_bfgs

e linear_equality_scales

Define the characteristic values to scale linear equalities

Topics
This keyword is related to the topics:

e linear_constraints

Specification

Alias: none
Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

Description

Eachentry in linear_equality_scales may be a user-specified, nonzero characteristic value to be used in
scaling each constraint.
See the scaling page for details on how to use this keyword.
Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:
. P
7 = — Q
Tm
we have the following system for linear inequality constraints

ar < Ajw < ay

ar < A; (diag(zy)T +20) < ay
ar, — Ajzo < Aydiag(zp)z < ay — Ajzo
ap < AiF < ay

and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

6.2. METHOD 285

model_pointer
o Keywords Area
e method
e dot_bfgs

e model_pointer

Identifier for model block to be used by a method

Topics
This keyword is related to the topics:

e block_pointer

Specification

Alias: none
Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

Description

The model_pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior

If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model
block in the Dakota input file that has a corresponding id_model with the same name.

Usage Tips

When doing advanced analyses that involve using multiple methods and multiple models, defining a mode1-
_pointer for each method is imperative.

See block_pointer for details about pointers.

Examples

environment
tabular_graphics_data
method_pointer = ’'UQ’

method
id_method = "UQ’
model_pointer = ’SURR’
sampling,
samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 0.
0.1 0.

o N DN
= O O
O oy O

sample_type lhs
distribution cumulative

model
id_model = ’SURR’

286 CHAPTER 6. KEYWORDS AREA

surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_method = ’'DACE’
model_pointer = ’DACE_M’
sampling sample_type lhs
samples = 121 seed = 5034 rng rnum?2

model
id_model = ’DACE_M’
single
interface_pointer = 'I1’

variables
uniform_uncertain
lower_bounds =
upper_bounds
descriptors

0. 0.
1. 1.
Il ' x27

interface
id_interface = "I1’
system asynch evaluation_concurrency
analysis_driver = ’'text_book’

5

responses
response_functions = 3
no_gradients
no_hessians

6.2.18 dot slp
e Keywords Area
e method

e dot_slp

Sequential Linear Programming

Specification

Alias: none
Argument(s): none

Required/- Description of Dakota Keyword Dakota Keyword
Optional Group Description
Optional linear_inequality - | Define coefficients
constraint_matrix of the linear
inequality
constraints

6.2. METHOD

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Description

This is a duplicated keyword. Please use dot instead.

See Also

These keywords may also be of interest:

e slp

linear_inequality_constraint_matrix
e Keywords Area
e method

e dot_slp

287

288 CHAPTER 6. KEYWORDS AREA

e linear_inequality_constraint_matrix

Define coefficients of the linear inequality constraints

Topics
This keyword is related to the topics:

e linear_constraints

Specification
Alias: none
Argument(s): REALLIST
Default: no linear inequality constraints
Description
In the inequality case, the constraint matrix A provides coefficients for the variables in the two-sided formulation:

a; < Ar < ay

Where the bounds are optionally specified by 1inear_inequality_lower_bounds, and linear_—
inequality_upper_bounds. The bounds, if not specified, will default to -infinity, and 0O, respectively, re-
sulting in one-sided inequalities of the form

Az <0.0

linear_inequality_lower_bounds
o Keywords Area
e method
e dotslp

e linear_inequality_lower_bounds

Define lower bounds for the linear inequality constraint

Topics
This keyword is related to the topics:

e linear_constraints

Specification

Alias: none
Argument(s): REALLIST
Default: vector values = -infinity

6.2. METHOD 289

Description
In the inequality case, the lower a; and upper a,, bounds provide constraint limits for the two-sided formulation:
a; < Az < ay

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective_functions), the default linear inequality constraint
bounds are selected so that one-sided inequalities of the form

Ax <0.0

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than ~-bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since ~-DBL_MAX < ~bigRealBoundSize).
linear_inequality_upper_bounds

e Keywords Area

e method

e dot_slp

e linear_inequality_upper_bounds

Define upper bounds for the linear inequality constraint

Topics
This keyword is related to the topics:

e linear_constraints

Specification

Alias: none
Argument(s): REALLIST
Default: vector values =0 .

Description
In the inequality case, the lower a; and upper a,, bounds provide constraint limits for the two-sided formulation:
a < Az < ay

Where A is the constrain matrix of variable coefficients.
As with nonlinear inequality constraints (see objective_functions), the default linear inequality constraint
bounds are selected so that one-sided inequalities of the form

Az <0.0

290 CHAPTER 6. KEYWORDS AREA

result when there are no user bounds specifications (this provides backwards compatibility with previous Dakota
versions).

In a user bounds specification, any upper bound values greater than +bigRealBoundSize (1.e+30, as
defined in Minimizer) are treated as +infinity and any lower bound values less than -bigRealBoundSize are
treated as -infinity.

This feature is commonly used to drop one of the bounds in order to specify a 1-sided constraint (just as the
default lower bounds drop out since ~-DBL_MAX < -bigRealBoundSize).
linear_inequality_scale_types

o Keywords Area

e method

e dot_slp

e linear_inequality_scale_types

Specify how each linear inequality constraint is scaled

Topics
This keyword is related to the topics:

e linear_constraints

Specification

Alias: none
Argument(s): STRINGLIST
Default: vector values = 'none’

Description

linear_inequality_scale_types provide strings specifying the scaling type for each linear inequality
constraint, in methods that support scaling.
An entry may be selected for each constraint. The options are:

e ’'none’ -no scaling
e 'value’ - characteristic value if this is chosen, then 1inear_inequality_scales must be specified
e ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling
on continuous design variables x:
Jo_
#="""0
J
Tpm
we have the following system for linear inequality constraints
ar, < Ajw < ay

ap < A; (diag(zy)T + 20) < ay

6.2. METHOD

ar, — Ajro < Aydiag(za)® < ay — Airo

ap < A < ay

and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear_inequality_scales
e Keywords Area
e method
e dot_slp

e linear_inequality_scales

Define the characteristic values to scale linear inequalities

Topics
This keyword is related to the topics:

e linear_constraints

Specification

Alias: none
Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

Description

Eachentry in 1inear_inequality_scales may be a user-specified, nonzero characteristic value to be used

in scaling each constraint.

Behavior depends on the choice of 1inear_inequality_scale_type:

e scale_type - behavior of linear_inequality._scales

e 'none’ -ignored
e 'value’ -required

e ’auto’ - optional

If a single real value is specified it will apply to all components of the constraint.
Scaling for linear constraints is applied after any continuous variable scaling. For example, for variable scaling

on continuous design variables x:
J_
) — gy

J
Ty,

7 =

we have the following system for linear inequality constraints

ar, < Ajx < ay

292 CHAPTER 6. KEYWORDS AREA

ar < A; (diag(xar)T + 7o) < ay
ar, — Ajro < Aydiag(ra)T < ay — Airo
ap < Aii < ay

and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

linear_equality_constraint_matrix

e Keywords Area
e method
e dot_slp

e linear_equality_constraint_matrix

Define coefficients of the linear equalities

Topics
This keyword is related to the topics:

e linear_constraints

Specification

Alias: none
Argument(s): REALLIST
Default: no linear equality constraints

Description

In the equality case, the constraint matrix A provides coefficients for the variables on the left hand side of:

Ax = a;

linear_equality_targets

e Keywords Area
e method
e dotslp

e linear_equality_targets

Define target values for the linear equality constraints

6.2. METHOD 293
Topics
This keyword is related to the topics:

e linear_constraints

Specification

Alias: none
Argument(s): REALLIST
Default: vector values =0 .

Description

In the equality case, the targets a; provide the equality constraint right hand sides:
Ax = a4

If this is not specified, the defaults for the equality constraint targets enforce a value of 0. for each constraint:
Ax =0.0

linear_equality_scale_types

e Keywords Area
e method
e dot_slp

e linear_equality_scale_types

Specify how each linear equality constraint is scaled

Topics
This keyword is related to the topics:

e linear_constraints

Specification

Alias: none
Argument(s): STRINGLIST
Default: vector values = 'none’

294 CHAPTER 6. KEYWORDS AREA

Description

linear_equality_scale_types provide strings specifying the scaling type for each linear equality con-
straint, in methods that support scaling.
An entry may be selected for each constraint. The options are:

e 'none’ -no scaling
e 'value’ - characteristic value if this is chosen, then 1inear_equality_scales must be specified
e ’auto’ - automatic scaling If a single string is specified it will apply to all constraints.

Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:

G
#="""0
J
Ty
we have the following system for linear equality constraints
ar, < Az <ay
arg, S A, (dlag(xM)iz + CCO) S ay
ar, — Ajxzo < Aydiag(zp)E < ay — Ajzo
ar < A <y
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].
linear_equality_scales
o Keywords Area
e method

e dotslp

e linear_equality_scales

Define the characteristic values to scale linear equalities

Topics
This keyword is related to the topics:

e linear_constraints

Specification

Alias: none
Argument(s): REALLIST
Default: vector values = 1 . (no scaling)

6.2. METHOD 295

Description

Each entry in 1inear_equality_scales may be a user-specified, nonzero characteristic value to be used in
scaling each constraint.
See the scaling page for details on how to use this keyword.
Scaling for linear constraints is applied after any continuous variable scaling.
For example, for variable scaling on continuous design variables x:
2l — xé
Ty

7] =

we have the following system for linear inequality constraints

ar < Az <ay

ay, < A; (diag(zpm)Z + z0) < ay
ar, — Ajzo < Aydiag(zp)z < ay — Ajzo
ap < Aii <ay
and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,

which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

model_pointer

e Keywords Area
e method
e dotslp

e model_pointer

Identifier for model block to be used by a method

Topics
This keyword is related to the topics:

e block_pointer

Specification

Alias: none
Argument(s): STRING
Default: method use of last model parsed (or use of default model if none parsed)

296 CHAPTER 6. KEYWORDS AREA

Description

The model_pointer is used to specify which model block will be used to perform the function evaluations
needed by the Dakota method.

Default Behavior

If not specified, a Dakota method will use the last model block parsed. If specified, there must be a model
block in the Dakota input file that has a corresponding id_model with the same name.

Usage Tips

When doing advanced analyses that involve using multiple methods and multiple models, defining a mode1—-
_pointer for each method is imperative.

See block_pointer for details about pointers.

Examples

environment
tabular_graphics_data
method_pointer = 'UQ’

method

id_method = "UQ’
model_pointer = ’SURR’
sampling,
samples = 10
seed = 98765 rng rnum2
response_levels = 0.1 O.
0.1 0.

o NN
= O O
S oy O

sample_type lhs
distribution cumulative

model
id_model = ’SURR’
surrogate global,
dace_method_pointer = ’DACE’
polynomial quadratic

method
id_me