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Finding the optimal (lightest, least expensive, etc.) design for an engineered component
that meets or exceeds a specified level of reliability is a problem of obvious interest across
a wide spectrum of engineering fields. Various methods for this reliability-based design
optimization problem have been proposed. Unfortunately, this problem is rarely solved
in practice because, regardless of the method used, solving the problem is too expensive
or the final solution is too inaccurate to ensure that the reliability constraint is actually
satisfied. This is especially true for engineering applications involving expensive, implicit,
and possibly nonlinear performance functions (such as large finite element models). The
Efficient Global Reliability Analysis method was recently introduced to improve both the
accuracy and efficiency of reliability analysis for this type of performance function. This
paper explores how this new reliability analysis method can be used in a design optimiza-
tion context to create a method of sufficient accuracy and efficiency to enable the use of
reliability-based design optimization as a practical design tool.

I. Introduction

Reliability-based design optimization (RBDO) is used to perform design optimization (such as minimizing
the weight of a component) while accounting for reliability constraints. A general RBDO problem is typically
of the form:

minimize f (d)
subject to P [g (d,x) ≥ z̄] ≤ p̄f (1)

where the objective function f is a function of only the deterministic design variables d, but the response
function in the reliability constraint g is a function of d and x, a vector of random variables defined by
known probability distributions. The probability of failure pf is defined as the probability that the response
function g(d,x) exceeds some threshold value z̄ and is calculated as:

pf =
∫
· · ·
∫

g > z̄

fx(x) dx (2)

where fx is the joint probability density function of the random variables x, and the integration is performed
over the failure region where g > z̄. In general, fx is impossible to obtain, and even when it is available,
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evaluating the multiple integral is impractical.18 Because of these complications, methods of approximating
this integral are used in practice.

Common approximations include sampling methods and methods based on the concept of the most
probable point (MPP). MPP-based methods, such as the First-Order Reliability Method (FORM), require
solving an equality-constrained optimization problem to locate the MPP, which may fail. They then rely
on a low-order approximation to the shape of the limit state (the contour on the response function where
g = z̄) to calculate pf and will therefore be inaccurate if this approximation is poor. Sampling methods,
such as Monte Carlo sampling, do not rely on an approximation to the shape of the limit state and are
therefore generally more accurate, but they are usually too computationally expensive to be practical. The
authors previously introduced Efficient Global Reliability Analysis (EGRA) to provide a method that is both
computationally efficient and accurate for any arbitrarily shaped limit state.3 This paper investigates how
EGRA might be used in the various formulations of the RBDO problem.

A. Nested RBDO

The simplest and most direct RBDO approach is the nested approach in which a full reliability analysis
is performed for every optimization function evaluation. This involves a nesting of two distinct levels of
optimization within each other, one at the design level and one at the reliability analysis level.

An important performance enhancement for nested methods when MPP-based reliability analysis meth-
ods are used is the use of sensitivity analysis to analytically compute the design gradients of the probability
constraint. When design variables are separate from the uncertain variables (i.e., they are not distribution
parameters), then the following first-order expression may be used:1,19,21

∇dpf = −φ(−β)
1

‖∇uG‖
∇dg (3)

where β is the reliability index (the distance from the median response to the MPP), φ is the standard normal
probability density function, u are the random variables transformed into standard normal space (where the
MPP search is performed), and G(u) ≡ g(x) by definition. The authors provide similar sensitivities for
second-order reliability analyses in Ref. 13.

The ability to provide this kind of sensitivity information is an advantage of MPP-based methods, but
because of the possible inaccuracy in this type of reliability analysis, they can lead to optimal solutions that
do not satisfy the constraint on the probability of failure. Approximate sensitivities can be derived for Monte
Carlo Sampling, but in a nested formulation, the probability of failure must be calculated a large number of
times, making this type of reliability analysis rarely feasible due to the computational expense involved.

B. Single-Loop RBDO

This formulation of the RBDO problem simultaneously optimizes the objective function and searches for
the MPP, satisfying the probabilistic constraint only at the optimal solution. The Karush-Kuhn-Tucker
(KKT) conditions are used to reformulate the first-order reliability constraint into an equivalent deterministic
constraint. In this way, the need to locate the MPP for the constraints is completely eliminated, but at
convergence, the MPPs of the active constraints are still found. The new optimization problem is stated as:

minimize f (d)
subject to β ≥ β̄

G(d,u) = 0
∇uG

Tu + β‖∇uG‖ = 0

(4)

The first constraint states that the final reliability index must be greater than a minimum reliability index
β̄, which is derived from the original probability constraint assuming a first order limit state, β̄=−Φ−1(p̄f ),
where Φ is the standard normal cumulative distribution function. The second constraint ensures that the
MPP lies on the limit state. The third constraint is the KKT optimality constraint, the derivation of which
also relies on the first-order limit state assumption. Note that the equations shown assume that z̄= 0, but
the response function can always be rearranged to facilitate this assumption.

Investigations into this formulation of the RBDO problem in Ref. 8,22,23 have shown that it is far more
efficient than the nested formulation, but the accuracy of the final solution relies on the accuracy of the
underlying first-order assumption.
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C. Sequential RBDO

An alternative RBDO approach is the sequential approach, in which additional efficiency is sought through
breaking the nested relationship of the MPP and design searches. The general concept is to iterate between
optimization and uncertainty quantification, updating the optimization goals based on the most recent
probabilistic assessment results. This update may be based on safety factors35 or other approximations.12

A particularly effective approach for updating the optimization goals is to use the pf sensitivity analysis
in combination with local surrogate models.37 In Ref. 14, first-order Taylor series approximations were
explored, and in Ref. 13, second-order Taylor series approximations were investigated. In both cases, a
trust-region model management framework17 is used to adaptively manage the extent of the approximations
and ensure convergence of the RBDO process. Surrogate models can be used for both the objective function
and the constraints, although the use of constraint surrogates alone is sufficient to remove the nesting.

In particular, trust-region surrogate-based RBDO employs surrogate models of f and pf within a trust
region ∆k centered at dc:

minimize f(dc) +∇df(dc)T (d− dc)
subject to pf (dc) +∇dpf (dc)T (d− dc) (5)

‖d− dc‖∞ ≤ ∆k

where first-order Taylor series are shown, but as mentioned, second-order expansions could also be used.
Sequential RBDO is more efficient than the nested formulation, but generally more expensive than the

single-loop formulation. It can be more accurate than single-loop results due to the possible inclusion of
second-order approximations to the limit state, but will still be inaccurate if that approximation is poor.

II. Efficient Global Optimization and Reliability Analysis

Efficient global optimization (EGO) was originally proposed by Jones et al.20 to solve unconstrained
optimization problems. The main features of this method are its use of Gaussian Process models and the
Expected Improvement Function (EIF). The EIF is used to select the location at which a new training point
should be added to the Gaussian process model by maximizing the amount of improvement in the objective
function that can be expected by adding that point. A point could be expected to produce an improvement
in the objective function if its predicted value is better than the current best solution, or if the uncertainty in
its prediction is such that the probability of it producing a better solution is high. Because the uncertainty
is higher in regions of the design space with fewer observations, this provides a balance between exploiting
areas of the design space that predict good solutions, and exploring areas where more information is needed.
The general procedure of this method is:

1. Build an initial Gaussian process model of the objective function.

2. Find the point that maximizes the EIF. If the EIF value at this point is sufficiently small, stop.

3. Evaluate the objective function at the point where the EIF is maximized. Update the Gaussian process
model using this new point. Go to Step 2.

The following sections discuss the construction of the Gaussian process model used, the form of the EIF,
and then modifications to the EGO method to make it applicable to constrained optimization problems and
reliability analysis.

A. Gaussian Process Model

Gaussian process (GP) models are set apart from other surrogate models because they provide not just a
predicted value at an unsampled point, but also an estimate of the prediction variance. This variance gives
an indication of the uncertainty in the GP model, which results from the construction of the covariance
function. This function is based on the idea that when input points are near one another, the correlation
between their corresponding outputs will be high. As a result, the uncertainty associated with the model’s
predictions will be small for input points which are near the points used to train the model, and will increase
as one moves further from the training points.
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It is assumed that the true response function being modeled G(u) can be described by:9

G(u) = h(u)Tβ + Z(u) (6)

where h() is the trend of the model, β is the vector of trend coefficients, and Z() is a stationary Gaussian
process with zero mean (and covariance defined below) that describes the departure of the model from its
underlying trend. The trend of the model can be assumed to be any function, but taking it to be a constant
value has been reported to be generally sufficient.29 For the work presented here, the trend is assumed
constant and β is taken as simply the mean of the responses at the training points. The covariance between
outputs of the Gaussian process Z() at points a and b is defined as:

Cov [Z(a), Z(b)] = σ2
ZR(a,b) (7)

where σ2
Z is the process variance and R() is the correlation function. There are several options for the

correlation function, but the squared-exponential function is common,29 and is used here for R():

R(a,b) = exp

[
−

d∑
i=1

θi(ai − bi)2

]
(8)

where d represents the dimensionality of the problem (the number of random variables), and θi is a scale
parameter that indicates the correlation between the points within dimension i. A large θi is representative
of a short correlation length.

The expected value µG() and variance σ2
G() of the GP model prediction at point u are:

µG(u) = h(u)Tβ + r(u)TR−1(g − Fβ) (9)

σ2
G(u) = σ2

Z −
[
h(u)T r(u)T

] [0 FT

F R

]−1 [
h(u)
r(u)

]
(10)

where r(u) is a vector containing the covariance between u and each of the n training points (defined by
Eq. 7), R is an n×n matrix containing the correlation between each pair of training points, g is the vector of
response outputs at each of the training points, and F is an n×q matrix with rows h(ui)T (the trend function
for training point i containing q terms; for a constant trend q=1). This form of the variance accounts for the
uncertainty in the trend coefficients β, but assumes that the parameters governing the covariance function
(σ2
Z and θ) have known values.
The parameters σ2

Z and θ are determined through maximum likelihood estimation. This involves taking
the log of the probability of observing the response values g given the covariance matrix R, which can be
written as:29

log [p(g|R)] = − 1
n

log|R| − log(σ̂2
Z) (11)

where |R| indicates the determinant of R, and σ̂2
Z is the optimal value of the variance given an estimate of

θ and is defined by:

σ̂2
Z =

1
n

(g − Fβ)TR−1(g − Fβ) (12)

Maximizing Eq. 11 gives the maximum likelihood estimate of θ, which in turn defines σ2
Z .

B. Expected Improvement Function

The expected improvement function is used to select the location at which a new training point should be
added. The EIF is defined as the expectation that any point in the search space will provide a better solution
than the current best solution based on the expected values and variances predicted by the GP model. An
important feature of the EIF is that it provides a balance between exploiting areas of the design space where
good solutions have been found, and exploring areas of the design space where the uncertainty is high. First,
recognize that at any point in the design space, the GP prediction Ĝ() follows a Gaussian distribution:

Ĝ(u) ∼ N [µG(u), σG(u)] (13)
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where the mean µG() and the variance σ2
G() were defined in Eqs. 9 and 10, respectively. The EIF is defined

as:20

EI
(
Ĝ(u)

)
≡ E

[
max

(
G(u∗)− Ĝ(u), 0

)]
(14)

where G(u∗) is the current best solution chosen from among the true function values at the training points
(henceforth referred to as simply G∗). This expectation can then be computed by integrating over the
distribution of Ĝ(u) with G∗ held constant:

EI
(
Ĝ(u)

)
=
∫ G∗

−∞
(G∗ −G) fĜ dG (15)

where G is a realization of Ĝ. This integral can be expressed analytically as:20

EI
(
Ĝ(u)

)
= (G∗ − µG) Φ

(
G∗ − µG
σG

)
+ σG φ

(
G∗ − µG
σG

)
(16)

where Φ and φ are the standard normal cumulative distribution and probability density functions, respec-
tively, and it is understood that µG and σG are functions of u.

The point at which the EIF is maximized is selected as an additional training point. With the new
training point added, a new GP model is built and then used to construct another EIF, which is then used
to choose another new training point, and so on, until the value of the EIF at its maximized point is below
some specified tolerance. Because the EIF is often highly multimodal20 an implementation of the DIRECT
global optimization algorithm is used16 to locate the point at which the EIF is maximized.

It is important to understand how the use of this EIF leads to optimal solutions. Eq. 16 indicates how
much the objective function value at x is expected to be less than the predicted value at the current best
solution. Because the GP model provides a Gaussian distribution at each predicted point, expectations can
be calculated. Points with good expected values and even a small variance will have a significant expectation
of producing a better solution (exploitation), but so will points that have relatively poor expected values
and greater variance (exploration).

C. Constrained Formulation of EGO

EGO was originally created as an unconstrained minimizer. This paper uses a new formulation to enable the
solution of constrained problems using EGO, but alternative methods have been previously introduced in
Refs. 2,4,30,31. A brief introduction to this constrained EGO formulation is presented here, but a detailed
comparison to previous methods is outside the scope of this paper and will be published separately.

Methods based on merit functions are commonly used to solve constrained optimization problems. This
type of method adds penalty terms to the objective function based on the constraint violations, thus making
them less desirable to the optimizer. One very successful type of merit function is the augmented Lagrangian
formulation. Using this formulation, the merit function for the RBDO problem in Eq. 1 could be written as:

M = f + λ [pf − p̄f ] + rp [pf − p̄f ]2 (17)

where λ is a Lagrange multiplier and rp is the penalty coefficient. Note that this equation assumes the
presence of only one constraint, but λ, pf , and ḡ could easily be replaced with vectors to form a more general
formulation. For use with EGO, Gaussian process models stand in for f and pf :

M = f̂ + λ [p̂f − p̄f ] + rp [p̂f − p̄f ]2 (18)

To drive the EGO algorithm, the expected improvement for this merit function is needed, but its calculation
is not straightforward.

Recall that at any point, the terms f̂ and p̂f do not represent values, but Gaussian distributions. A
linear combination of Gaussian distributions results in another Gaussian distribution, but the square term
in Eq. 18 means that the resulting distribution ofM is not Gaussian. To accomodate the use of EGO in an
augmented Lagrangian formulation, the Expected Violation Function (EVF) is used.
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1. Expected Violation Function

The EVF was originally introduced in Ref. 2, but was used differently in that work. Here it is used to replace
the constraint violation terms (p̂f − p̄f ) in Eq. 18 with the expected violation. For an inequality constraint
with an upper bound, the expected violation is calculated in a similar fashion as the previously derived
expected improvement function:

EV = (µp − p̄f )
[
1− Φ

(
p̄f − µp
σp

)]
+ σp φ

(
p̄f − µp
σp

)
(19)

Similar equations can be derived for inequality constraints with lower bounds and also for equality constraints,
but they are not of interest here. Using the expected violation, the augmented Lagrangian merit function
becomes:

M = f̂ + λEV + rpEV
2 (20)

Because this formulation adds deterministic values to the Gaussian distribution f̂ , the merit function is now
truly Gaussian with parameters defined by:

µM = µf + λEV + rpEV
2 (21)

σ2
M = σ2

f (22)

These values can then be used in Eq. 16 to calculate the expected improvement on the merit function.
When EGO converges, the GP models of the objective function and any constraints are theoretically

accurate in the vicinity of the optimum solution due to the sample density in this region. Recognizing this,
a gradient-based optimizer can be used to refine the EGO solution using these GPs rather than the true
functions so that no additional true function evaluations are necessary. In this study, the Nonlinear Interior
Point Solver (NIPS) in OPT++,24 an optimization package from Sandia National Laboratories, is used to
perform this solution refinement.

D. Efficient Global Reliability Analysis

The goal of EGRA is to create an accurate Gaussian process model of the response function g using only
a very small number of samples. This inexpensive surrogate model can then be sampled to give a highly
accurate estimate on the probability of failure at minimal cost. The computational expense is kept low by
focusing the training samples in the areas where accuracy is important - near the limit state. To determine
whether a given point is expected to lie on the limit state, the Expected Feasibility Function has been
introduced by the authors.3

1. Expected Feasibility Function

The expected violation function provides an indication of how much the true value of the response at a point
can be expected to violate the given constraint. In EGRA, the concern is on how much the true value of
the response at a point be expected to be equal to the value that satisfies the equality constraint G(u)= z̄.
Inspired by the contour estimation work in Ref. 27, this expectation can be calculated in a similar fashion
as Eq. 15 by integrating over a region in the immediate vicinity of the threshold value z̄ ± ε:

EF
(
Ĝ(u)

)
=
∫ z̄+ε

z̄−ε

[
ε− |z̄ −G|

]
fĜ dG (23)

where G denotes a realization of the distribution Ĝ, as before. Allowing z+ and z− to denote z̄ ± ε,
respectively, this integral can be expressed analytically as:

EF
(
Ĝ(u)

)
= (µG − z̄)

[
2 Φ
(
z̄ − µG
σG

)
− Φ

(
z− − µG
σG

)
− Φ

(
z+ − µG
σG

)]
− σG

[
2φ
(
z̄ − µG
σG

)
− φ

(
z− − µG
σG

)
− φ

(
z+ − µG
σG

)]
+ ε

[
Φ
(
z+ − µG
σG

)
− Φ

(
z− − µG
σG

)]
(24)
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where ε is proportional to the standard deviation of the GP predictor (ε ∝ σG). In this case, z−, z+, µG,
σG, and ε are all functions of the location u, while z̄ is a constant. Note that the EFF provides the same
balance between exploration and exploitation as is captured in the EIF. Points where the expected value is
close to the threshold (µG≈ z̄) and points with a large uncertainty in the prediction will have large expected
feasibility values.

2. Efficient Global Reliability Analysis Algorithm

The following process makes up the EGRA algorithm:

1. Generate a small number of samples from the true response function.

(a) Only (n+1)(n+2)
2 samples are used (n is the number of uncertain variables). This initial selection

is arbitrary, but the number of samples required to define a quadratic polynomial is used as a
convenient rule of thumb.

(b) The samples uniformly span the uncertain space over the bounds ±5σ.
(c) Latin hypercube sampling (LHS) is used to generate the samples.

2. Construct an initial Gaussian process model from these samples.

3. Find the point with maximum expected feasibility.

(a) The expected feasibility function is built with ε = 2σG.
(b) To ensure the global optimum of this multimodal function is found, DIRECT is used.
(c) If the maximum expected feasibility is less than 0.001, go to step 7.

4. Evaluate the true response function at this point.

5. Add this new sample to the previous set and build a new GP model. Go to step 3.

6. When the maximum expected feasibility is small, the Gaussian process model is accurate in the vicinity
of the limit state.

(a) The final point may not be near the limit state. This means that no point near the limit state
has enough remaining variance to have a larger EFF than the maximum point found. Therefore,
the GP model has converged in the vicnity of the limit state.

7. This surrogate model is then used to calculate the probability of failure using multimodal adaptive
importance sampling.

MAIS is typically used to reduce the sampling cost, but it can also be more accurate than using even
a large number of Monte Carlo or LHS samples if enough evaluations can be afforded to allow the method
to converge. Because all of the MAIS samples are evaluated using the GP model, they can be provided at
little cost. Additionally, MAIS would not be easy with other methods that use a random selection of true
samples with which to construct the GP model because several iterations would be necessary just to locate
the limit state. With EGRA, there are already a large number of samples near the limit state available with
which to construct the multimodal sampling density.

III. Reliability-Based Design Optimization with EGO and EGRA

A variety of ways to incorporate EGO and EGRA into each of the traditional RBDO formulations (nested,
single-loop, and sequential) are investigated.

A. Nested RBDO

In this method, EGO is used as the optimizer and for each candidate design point a full reliability analysis
is performed using EGRA. For each EGRA analysis, the design point d is set; EGRA operates only over
the random variables, u. Because this must be performed at every design point and there is no sharing of
information to either guide the optimizer or assist subsequent EGRA runs, this is expected to be the most
expensive option.
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B. Quasi-Single-Loop RBDO

In this method, EGRA is first used to locate the limit state and build a GP of g over the entire d+u space
in one step. With this GP built, any optimizer could be used at the design level; to calculate the probability
of failure corresponding to any design point, one needs only to sample the GP previously built by EGRA.
This optimization requires no additional evaluations of the response function in the probabilistic constraints.
Because EGRA is allowed to search over the full expanse of d+u at all times instead of being restricted
to adding points within a given d hyperplane, this method is expected to be more efficient than the nested
method.

At convergence, a full EGRA analysis is run to verify the reliability of the design. The function evaluations
used in this step are not counted in the method’s cost, but the result is used in determining whether the
method converged to a feasible solution.

C. Sequential RBDO

This formulation uses a GP of the response function in the probabilistic constraint that spans d+u, but rather
than update that model for every iteration of the design optimizer, it is only updated at its convergence.
The algorithm follows this outline:

1. Build an initial GP for the objective function. At each design point, use EGRA to solve for the pf at
that point using a GP for g that spans the design and uncertain spaces.

2. Use EGO to fully solve the RBDO problem. At each design point, to calculate the corresponding pf ,
sample the current GP of g.

3. When EGO converges, calculate the true pf using EGRA at d∗. The points used by EGRA to resolve
the limit state are then added to the GP of g.

4. Re-solve the RBDO problem using this new GP. Iterate until the method converges.

This method has one major advantage over the quasi-single-loop method: because it only adds points
to the GP at candidate optimal points, it does not waste time increasing the accuracy of the GP in regions
of the design space that are far from optimal. Assessing convergence of this method is difficult. Due to
the stochastic nature of EGO, the “converged to the same point” technique typically used for sequential
problems cannot be applied. Instead, this study uses a metric on the accuracy of the underlying constraint
function GP models. At the optimal point from an EGO solve, if the value of all of the constraint functions’
GP models are within 1% of the actual constraint function values after verification, the method is said to
have converged. However, while the latest analysis may have been necessary to ensure this accuracy in
the models, it is not necessarily the optimal solution found by the algorithm. All of the candidate optimal
designs are post-processed to find the best solution.

IV. Computational Experiments

Three tests problems are investigated to compare the results of these various formulations of RBDO with
EGRA to one another and to other RBDO algorithms. For each problem, two “baseline” tests were run
using previously available state-of-the-art methods in DAKOTA/UQ,34 which is the uncertainty quantifica-
tion component of DAKOTA,15 an open-source software framework for design and performance analysis of
computational models on high performance computers developed at Sandia National Laboratories. The first
test is a nested formulation using the Nonlinear Interior Point Solver (NIPS) from the OPT++24 library
for the design optimizer and the second-order iterated Advanced Mean Value method13 (AMV2+) to per-
form the reliability analysis. This nested formulation is used to find the baseline solution, but is expected
to be relatively expensive. To provide a more fair comparison on the expense of the methods, a second
more efficient baseline is run using a sequential, trust-region based method, again using NIPS and AMV2+.
These are both gradient-based methods; to simulate their use on implicit performance functions, numerical
differentiation is used to compute the gradients and, where needed, Hessian information is generated using
quasi-Hessians with Symmetric Rank 1 updating.

All other tests that use either EGO or EGRA (or both) are performed using NESSUS-PA, a probabilistic
algorithm library currently under development at Southwest Research Institute. The NIPS method uses the
same OPT++ implementation, but only the first-order AMV+ method is currently available in NESSUS-PA.
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A. Short column

The first application problem involves the plastic analysis and design of a short column with rectangular
cross section (width b and depth h) having uncertain material properties (yield stress Y ) and subject to
uncertain loads (bending moment M and axial force P ).13,22 The response function, designed to represent
the stress in the column at which the yield stress is exceeded, is defined as:

g = 1− 4M
bh2Y

− P 2

b2h2Y 2
(25)

The distributions for P , M , and Y are Normal(µ = 500, σ = 100), Normal(µ = 2000, σ = 400), and
Lognormal(µ = 5, σ = 0.5), respectively, with a correlation coefficient of 0.5 between P and M (uncorre-
lated otherwise). Failure for this response function is defined by g≤0.

An objective function of cross-sectional area and a target probability of failure are used in the design
problem:

min bh

s.t. β∗ ≥ 2.5
5.0 ≤ b ≤ 15.0

15.0 ≤ h ≤ 25.0

(26)

Table 1 gives a summary of the results from all investigated methods. Because both EGO and EGRA
are stochastic methods, average solutions are given with some additional information on the best solutions
found for 10 runs of these methods.

Table 1. Results for the short column example.

Design/Reliability Avg. Obj. Fn Avg. Violation Avg. Fn Evals
Methods (Best Feasible) (# violations) (Best Feasible)
Nested NIPS/AMV2+ 216.7 0.0 4123
Sequential NIPS/AMV2+ 216.7 0.0 2434
Nested NIPS/EGRA 215.9 (–) 0.024 (10) 2179.6 (–)
Nested EGO/AMV+ 219.1 (219.7) 0.017 (3) 283.0 (280)
Nested EGO/EGRA 216.3 (216.1) 0.015 (3) 327.8 (341)
Quasi-Single-Loop NIPS 216.4 (216.7) 0.027 (5) 140.3 (129)
Quasi-Single-Loop EGO 217.6 (217.3) 0.026 (5) 139.0 (133)
Sequential EGO/EGRA 217.8 (216.5) 0.0 (0) 146.1 (111)

The Nested NIPS/EGRA test failed to find a single feasible solution in 10 runs of the algorithm. This is
likely due to the inherent problems with using a stochastic reliability analysis method with a gradient-based
design optimizer. If the variance in the reliability estimates is on the order of (or worse, greater than) the
real change in reliability given a small change in design (for calculating the gradient via finite differences),
it will greatly hinder the optimizer’s progress. This leads to both an expensive analysis due to the greater
number of steps needed, and poor results.

The remaining Nested tests performed reasonably well. They used less than 15% of the function eval-
uations required by the Sequential NIPS/AMV2+ baseline test. The optimal objective function values are
competitive with the baselines, but 3 of the runs in each test produced an infeasible result. The Quasi-
Single-Loop tests were even less expensive requiring an average of less than 6% of the function evaluations
required by the Sequential NIPS/AMV2+ baseline test, but half of the optimal solutions were infeasible.

The Sequential EGO/EGRA test is clearly the superior method amongst the new methods introduced
in this study. It required, on average, just 6% of the function evaluations needed by the Sequential
NIPS/AMV2+ baseline test. The average objective function value is within 0.5% of the baseline tests’
results. It produced the least expensive feasible solution amongst all tests at just 111 function evaluations,
and this method produced no infeasible solutions in 10 runs of the algorithm.

9 of 12

American Institute of Aeronautics and Astronautics



B. Cantilever Beam

This test problem investigates is the cantilever beam problem that has been previously investigated in
Ref. 13, 14, 25, 32, 35 and others to test both reliability analysis and design methods. Figure 1 shows a
schematic of this problem.

L = 100”

w

t
X

Y

Figure 1. Schematic of the cantilever beam example problem.

This problem has two response functions of interest; one concerning the stress, gS and one concerning
the displacement, gD:

gS = R− 600
wt

(
Y

t
+
X

w

)
(27)

gD = D − 4L3

Ewt

√
Y 2

t4
+
X2

w4
(28)

Failure for these response functions are defined by gS≥0 and gD≥0. All variables are described in Table 2.

Table 2. Variable detail for the cantilever beam example.

Variable Mean COV Distribution
Horizonal Load, X 500 0.2 Normal
Vertical Load, Y 1,000 0.1 Normal
Yield Strength, R 40,000 0.05 Normal
Modulus of Elasticity, E 29e6 0.05 Normal
Length, L 100 — Deterministic
Max Displacement, D 2.25 — Deterministic

The design problem is to minimize the weight (or, equivalently, the cross-sectional area) of the beam
subject to probabilistic constraints on the displacement and stress. If the random variables are fixed at their
means, the resulting deterministic design problem (with constraints gS ≤ 0 and gD ≤ 0) has the solution
(w, t) = (2.352, 3.326) with an objective function of 7.824. When seeking specified reliability levels of 3.0
for these constraints, the design problem becomes:

min wt

s.t. β∗S ≥ 3.0
β∗D ≥ 3.0

1.0 ≤ w ≤ 4.0
1.0 ≤ t ≤ 4.0

(29)

Table 3 gives a summary of the results from all investigated methods. Because both EGO and EGRA
are stochastic methods, average solutions are given with some additional information on the best solutions
found for 10 runs of these methods.

The results for this test problem are similar to those seen in the previous tests. Note that constraint
1 refers to the stress constraint, and constraint 2 to the displacement. Once again, the sequential test
produces extremely competitive results with an average solution within 1% of the Nested NIPS/AMV2+
baseline result, an average cost of 8-15% of that used by the Sequential NIPS/AMV2+ baseline (while
producing an optimal objective function value that is 13% lower), and no infeasible solutions.
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Table 3. Results for the cantilever beam example.

Design/Reliability Avg. Obj. Fn Avg. Viol. 1 Avg. Viol. 2 Avg. Evals 1 Avg. Evals 2
Methods (Best Feas.) (# viols) (# viols) (Best Feas.) (Best Feas.)
Nested NIPS/AMV2+ 9.520 0.0 0.0 4176 4599
Sequential NIPS/AMV2+ 11.076 0.0 0.0 1611 1593
Nested EGO/AMV+ 9.732 (9.526) 0.00004 (2) 0.0 (0) 110.5 (100) 356 (360)
Nested EGO/EGRA 9.772 (9.531) 0.0005 (1) 0.0 (0) 111.1 (102) 194.6 (169)
Quasi-Single-Loop NIPS 9.830 (9.701) 0.0427 (5) 0.0264 (1) 82.8 (108) 84.9 (68)
Quasi-Single-Loop EGO 9.836 (9.646) 0.0194 (5) 0.0291 (2) 85.1 (76) 127.9 (101)
Sequential EGO/EGRA 9.602 (9.524) 0.0 (0) 0.0 (0) 129.0 (134) 242.4 (272)

V. Conclusions

This paper explores the applicability of EGRA and EGO to the field of reliability-based design opti-
mization. Several possibilities for applying these methods to RBDO were outlined and evaluated, the most
promising of which is a sequential formulation. This method only performs a full EGRA analysis at the
candidate optimal solution from a run of EGO on the current set of Gaussian process models. Additionally,
the Gaussian process model of the response function in the probabilistic constraint spans both the design
and uncertain spaces, thus allowing the information found at one design point to influence the search for
the limit state at subsequent design points. These two characteristics, combined with the relatively low cost
of performing an EGRA analysis, lead to a highly efficient RBDO method. This Sequential EGO/EGRA
method was shown to produce near-optimal results at a small fraction of the cost of previously available
methods.
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