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Importance sampling is an unbiased sampling method used to sample random variables 
from different densities than originally defined.  These importance sampling densities are 
constructed to pick “important” values of input random variables to improve the estimation 
of a statistical response of interest, such as a mean or probability of failure.  Conceptually, 
importance sampling is very attractive:  for example one wants to generate more samples in 
a failure region when estimating failure probabilities.  In practice, however, importance 
sampling can be challenging to implement efficiently, especially in a general framework that 
will allow solutions for many classes of problems.  We are interested in the promises and 
limitations of importance sampling as applied to computationally expensive finite element 
simulations which are treated as “black-box” codes.   In this paper, we present a customized 
importance sampler that is meant to be used after an initial set of Latin Hypercube samples 
has been taken, to help refine a failure probability estimate.  The importance sampling 
densities are constructed based on kernel density estimators.  We examine importance 
sampling with respect to two main questions:  is importance sampling efficient and accurate 
for situations where we can only afford small numbers of samples?  And does importance 
sampling require the use of surrogate methods to generate a sufficient number of samples so 
that the importance sampling process does increase the accuracy of the failure probability 
estimate?  We present various case studies to address these questions. 

I. Introduction 
Importance sampling is an unbiased sampling method used to sample random variables from different densities 

than originally defined.  These importance sampling densities are constructed to pick “important” values of input 
random variables to improve the estimation of a statistical response of interest, such as a mean or probability of 
failure of a response from a simulation model.  The use of input sampling densities will result in biased estimators if 
they are applied directly to the simulation results. However, the simulation results are weighted to correct for the use 
of the importance sampling densities, and this ensures that the importance sampling estimators are unbiased.   

Conceptually, importance sampling is very attractive:  for example one wants to generate more samples in a 
failure region when estimating failure probabilities. In practice, however, importance sampling can be challenging to 
implement efficiently, especially in a general framework that will allow solutions for many classes of problems.  We 
are interested in the promises and limitations of importance sampling as applied to computationally expensive finite 
element simulations which are treated as “black-box” codes.  One of the authors is a developer of the DAKOTA 
software framework [Eldred et al., 2006].  DAKOTA is a “wrapper” around simulation codes and is used to perform 
a variety of optimization and uncertainty quantification studies.  One of the most commonly used uncertainty 
quantification methods is Latin Hybercube sampling (LHS), a stratified sampling technique which places samples in 
equi-probability bins throughout the space [Swiler and Wyss, 2004].  The DAKOTA team frequently gets requests 
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from users to be able to perform additional samples “customized” to a region of interest after an initial LHS 
sampling is performed.  That is, we get requests such as:  “I have run an LHS sample of size 50 and I want to take 
50 more samples that are more tailored to the failure region (or area of interest).  How do I do this?”  These 
questions provide the basic motivation for this paper.  A major concern is that even if we are able to provide an 
importance sampling density that will preferentially sample in the failure region, the resulting failure probability 
estimate may not be significantly improved due to the small number of samples that are able to be performed.       

In this paper, we present a customized importance sampler that is meant to be used after an initial set of Latin 
Hypercube samples has been taken, to help refine a failure probability estimate.  The importance sampling densities 
are constructed based on kernel density estimators.  We examine importance sampling with respect to two main 
questions:  is importance sampling efficient and accurate for situations where we can only afford small numbers of 
samples?  And does importance sampling require the use of surrogate methods to generate a sufficient number of 
samples so that the importance sampling process does increase the accuracy of the failure probability estimate?  We 
present various case studies to address these questions.  The paper is organized as follows:  Section 2 provides 
background on importance sampling, including a discussion of current approaches; Section 3 discusses the 
importance sampling density based on kernel density estimators that we are using; Section 4 presents some results 
on various failure estimation problems; Section 5 discusses the use of surrogates in the process; and Section 6 
provides a summary.  

 

II. Importance Sampling Background 
Accurate computation of high-dimensional integrals is common to many engineering and scientific applications.   

Monte Carlo methods have been commonly used for many years to approximation the expectation of functions of 
random variables by using the sample mean.  That is, when calculating the expectation:  

 dxxfxrXrE X )()())((       (1) 

where r(X) is a response function:   r: d1  and X is a multidimensional random variable having probability 
density function , the Monte Carlo estimator of E(r(X)) is: 
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Note that many quantities of interest can be cast as expectations, including probabilities of failure.  For 
calculation of failure probabilities, the probability that r(X) takes on a value in set A of interest (defined as the 
failure region) can be written as:  

)](E[IA)Prob( {A} r(X)r(X)       (3) 

where 1I{A}   when r(X)A and 0 when r(X)A.   
 

 The purpose of importance sampling is to sample the random variables from a different distribution than the 

original distribution of interest and use those samples to calculate an estimate ))((Ê n Xr  , with the goal of reducing 

the variance in the estimate.  To do this, the Monte Carlo estimate must be weighted appropriately.  If )(xhX   is the 
new distribution4 from which the random variables will be sampled (note h must have the same support as f), the 
new estimate is derived as follows:   
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Where h(x) is called the importance sampling density, and the product of the integrand and the original density is 

called the importance function, and f(x)/h(x) is called the weight function.   There are certain choices that one should 

                                                           
4  From here on, we drop the notation )(xf X  and )(xXh  when referring to density functions and simply use f(x) 
and h(x). 
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make when picking h(x).  The variance of the importance sampling estimator hÊ is minimized when h(x)  

|r(x)f(x)|.    
Much of the work in importance sampling has been finding minimum variance estimators for specific cases.  The 

fundamental issue in implementing importance sampling is the choice of the new distribution which encourages the 
important regions of the input variables.  If you have a good distribution, the payoff is a much lower simulation cost, 
but if you choose a poor importance sampling density, the run times could actually be longer than standard Monte 
Carlo simulation.  There are various measures used to calculate the goodness of the importance sampling scheme.  
One is the ratio of the variance obtained by a pure Monte Carlo vs. the variance of the importance sampling result: 

2

2

IS

MC




 ; another measure is the ratio of the number of samples required by each scheme, given the same output 

variance (this is called simulation gain):  NMC/NIS.  In general, a good importance sampling function should be as 
follows:  

 
1. h(x) > 0 whenever r(x)f(x) 0. 
2. h(x) should be close to being proportional to |r(x)f(x)|.    
3. It should be relatively easy to generate samples from h(x) and also to calculate the density h(x) for 

particular values of x. 
 
 Some standard approaches to determining h(x) including scaling, where the original random variable X is scaled 
by  or linearly shifted (e.g. h(x) = f(x-c)) to put more probability density into a particular region (for failure 
probability estimation, for example).   Another classical approach is to assume that h(x) belongs to a parametric 
distribution family.  Then, the problem is determining that values of the parameters governing that distribution (for 
example, determining the mean and variance for h(x) if h is assumed to be normal).  Often these parameters are 

obtained by optimizing the variance of importance sampling estimator hÊ , but this implies that one can calculate an 

analytic expression or approximation for this estimator.  Oh and Berger (1993) used an approach where they used a 
mixture distribution (a set of weighted individual distributions), where the individual distributions were 
multivariate-t distributions.  They then had to determine the weights, location, and scale parameters of the t-
distributions, which they did by numerical minimization of the estimate of the squared variation coefficient of the 
weight function.   

 
 For black-box simulations that have multiple uncertain inputs which may come from a wide variety of random 
input distribution types, we cannot generally assume that the importance sampling density will be normal or have a 
parametric form.  Thus, we examined nonparametric methods.  The use of nonparametric approaches in importance 
sampling is fairly recent.  The first papers were mid-1990s, and include Bayesian approaches (e.g. Givens and 
Raftery) and kernel density estimators [Zhang].  The most common nonparametric approach is to use kernel density 
estimators for the importance sampling density.  Zhang (1996) has a nice explanation of the tradeoffs of the 
increased convergence but higher computation of going to the nonparametric methods:  “The most difficult part in 
parametric importance sampling is choosing a suitable distribution family to start with.  There is no general recipe, 
and the issue remains largely a matter of art in the literature.  Most parametric distributions fail to include g (the 
optimal importance sampling density) as a member.  Consequently, parametric strategies yield estimates of the 
expectation that typically have mean squared error of the order O(N-1).  For a d-dimensional integral, we show in 
this article that the MSE of a nonparametric estimate is of the order O(N-(d+8/d+4)) which nearly doubles the 
parametric rate when d is small.  The faster convergence rate is achieved at the cost of increased computation.”  The 
computational cost from kernel density approaches comes from the fact that the number of density components is 
equal to the sample size, and governing parameters (e.g. bandwidth, weights) have to be determined for each 
component. 
 
Bayesian implementation of importance sampling [Givens and Raftery] adds another layer of complexity, because 
there are priors on the parameters governing the importance sampling function h(x).  In Bayesian analysis, the 
expectation usually has a normalizing factor in the denominator, and f(x) is a probability density which may be 
intractable.  When f(x) is a posterior distribution from a Bayesian analysis, it may only be known up to a constant of 
proportionality and is written as:   
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where w(x)= f(x)/h(x).   We do not use Bayesian approaches in this paper, in part because of the additional Monte 
Carlo Markov Chain computation required to estimate the parameters governing the importance sampling density.  
 Many technical fields seem to have discovered importance sampling and have sets of papers/theory particular to 
that field. For example, there are applications in the statistical physics field, and an entirely different set of 
applications in the econometrics and mathematical finance field which do not reference each other although the 
needs are very similar.   The papers we read tended to have simple examples with a one-dimensional random 
variable.  Richard and Zhang state: “Importance samples have to be carefully tailored to the problem under 
consideration.  This has proved to be a significant obstacle to routine applications of importance sampling….None 
of the existing importance sampling methods appear to be applicable to (very) high-dimensional applications.”   
Comments such as these, along with the previous comment about the selection of an importance sampling density 
being an art, are somewhat discouraging in terms of developing a general framework which would allow users to 
subsequently refine failure probability estimates using importance sampling.  However, there are many examples of 
successful uses of importance sampling in failure estimation.  For example, Bichon and Mahadevan [Bichon et al. 
2008, Dey and Mahadevan] use importance sampling in analytic reliability methods.  These methods have a nice 
analytic form, where the inputs are transformed to standard normal space, so the importance sampling does have a 
natural parametric form (also standard normal, around points that have been identified as on or near the limit state 
function).  In the analytic reliability methods, importance sampling has been very effective.  Our goal is to see if we 
can develop something similar where failure probabilities are calculated based on sampling.  
 

III. Importance sampling density via kernel density estimators 
Kernel Density Estimation (KDE) [Rosenblatt, Parzen] is a technique used to estimate the density of a random 

variable X given n independent samples X1, ..., Xn of it.  If one considers the discrete distribution obtained from the 
sampled 
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the KDE can be viewed as a smoothed version of this estimator.  Let K(.) be a probability density function (K(.)0) 

and  then the KDE is  1)( dxxK
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Here, h is known as the bandwidth parameter which controls the influence of each sample in providing a density 
estimate at a near-by point.  Small h corresponds to a small region of influence; a large h to a large one.  In the case 
of estimating a hitting probability we only want points in the target set (which may be defined by an indicator 
function ) to contribute to the approximated density so we use ))(( cXrI i 
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following [Zhang,1996].  Integrating over all x we see that the above estimate gives us the initial Monte Carlo 
sample estimated probability. 
 Selection of the bandwidth parameter is the subject of a vast literature.  Popular methods include cross validation 
(see [Silverman and Turlach]) and asymptotic analysis (see [Silverman and Wand]).  The analysis used to derive the 
optimal bandwidth in the asymptotic case requires that the target density (in our case an indicator function) be twice 
differentiable.  Although our response is an indicator function, we chose to use the optimal bandwidth obtained by 
minimizing the asymptotic mean-squared error of the importance sampling density.  This approach produced good 
results.  The optimal bandwidth was calculated according to Equation (5) in Zhang:  
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Where the full kernel is a product kernel of the marginal densities )()...()( 1 dd xKxKK x

Î

, is the variance of 

the marginal kernel function K, R(Kd) and A are given in Equation 10, and we assumed J=1.   refers to the initial 

estimate of the failure probability generated from the initial set of LHS samples, xinit, which are used to seed the 
KDE process. 
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 The kernel function, K, can, in theory be any probability density function.  However, as we will use this density 
in importance sampling, we need it to have support over the entire domain.  In many settings there is a large variety 
of usable kernels, however, most of these have finite support and are thus not suitable for use in importance 
sampling (leading to a biased estimator).  We therefore pick the Gaussian kernel 
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which has infinite support.  This has the effect of making the density a mixture of Gaussians, which will lead to an 
efficient implementation in the Importance Sampling algorithm. 
 Much of the literature on KDE addresses densities with infinite support (the random variables can take on any 
value on the real line).  However, in our case, our input random variables are typically drawn from a bounded 
domain.  To address this, we truncate each of the kernels at the boundary of the input random variables and scale the 
kernel by the mass that remains in the domain (forcing it to remain a probability density).  In the case of a product 
kernel, this reduces to truncating each kernel in one dimension, and the product kernel remains a probability density.   
 Once we have fit the KDE to the observations, it remains to sample this density.  We note that a KDE is a 
mixture of densities (the kernel centered around observation i) and thus we can sample from each of the kernels with 
uniform probability.  In general, the kernel may not be easily sampled; in this case we use the Acceptance Rejection 
Algorithm to sample from the estimated density.  At the moment, we use only a uniform density as the proposal 
distribution; more efficient choices may be found depending on the kernels used.  When a (truncated) Gaussian 
kernel is used, the KDE is a mixture of Gaussians and can thus be efficiently sampled by uniformly sampling each 
Gaussian.  We then estimate the failure probability via 
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IV. Results for failure probability estimation 
 This section presents results using the kernel density estimator approach described in Section 3 to generate 
importance sampling densities.  The output measures were failure probability estimates.  As discussed in Section 2, 
we want to identify both advantages and limitations of importance sampling used in a particular way:  we assume 
that an initial set of LHS samples is taken, a threshold on the response function is specified which defines a failure 
region (or region of interest), and we want to use importance sampling with approximately the same number of 
samples as were originally taken in the LHS sample to improve the failure probability estimate.  
 To demonstrate with a simple example, our first test involves the Rosenbrock function which has two inputs and 
is defined as (x2 – x1

2)2 + (1- x1)
2.   The bounds on the input variables are:   -2   x1  2 and -2   x2   2.  We 

assumed that x1 and x2 are uniformly distributed between their bounds, and that they are independent.   Note that this 
implies the probability density function of any point Xi = {x1i,x2i} is 1/16 if both x1, and x2 are within their bounds.  
Thus, f(Xi ) =1/16 if -2   x1  2 and -2   x2   2 and 0 elsewhere.  Figure 1 shows what the Rosenbrock function 
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looks like over this domain.  Note that there is a large region near the center of this domain where the function is 
small and the function increases significantly near the boundaries.  We chose the probability that the Rosenbrock 
function is less than 3 over these bounds to be the failure probability of interest.  The area where the Rosenbrock 
function is less than 3 is a sliver shown in Figure 2 which plots the indicator function (the value 1 means the 
function is less than 3:  note this region is NOT symmetric).    
 Table 1 shows the results for importance sampling on the Rosenbrock function, where Gaussian kernel density 
estimation is used to create the importance density. A number of initial LHS points is used to find a set of points 
satisfying the failure criteria.  It is around these points that the density estimators are constructed.  The number of 
importance sampling points listed in the table are the number of points sampled using the importance sampling 
framework to construct the revised probability of failure. We chose small numbers of (LHS,IS) points to realistically 
represent combinations that people working with computationally expensive models might be able to afford.  We 
repeat the importance sampling process K times (where K = 100) to generate statistics on the importance sampling 
failure probability estimates, so all of the results in this table are based on 100 iterations of the importance sampling 
process.  Note that the mean of the failure probability estimates from importance sampling are closer to the “true” 
estimate obtained by sampling 1 million points, however the standard deviation estimates tend to be large.  Also, we 
report the 5th and 95th percentile estimate of the importance sampling failure probability as well as the percentage of 
points generated in the importance sampling process that “fail.”  Note that in the example in Table 1, the importance 
sampling process generates approximately three times the number of failure points as from a standard LHS sampling 
process.   The true failure probability is approximately 3.8% but approximately 12-14% of the points generated by 
the importance sampling density fail.    
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Figure 1.  The Rosenbrock function 

 

 
Figure 2.  Failure region defined as (Rosenbrock function < 3) 

6 
American Institute of Aeronautics and Astronautics 

 



AIAA-2010-2850 

 
 
Number 
of 
initial 
LHS 
samples 

Number  
of 
Importance 
samples 

LHS 
Mean 
Failure 
probability  

LHS Std 
dev. 
Failure 
Probability 

IS Mean 
Failure 
probability 

IS Std dev. 
Failure 
Probability 

5th 
percentile 
IS Failure 
Probability  

95th 
percentile 
IS Failure 
Probability 

Mean 
percentage 
of IS that 
“fail” 

100 200 0.03900 0.01096 0.03798 0.01139 0.01904 0.05515 0.1283 
50 100 0.04320 0.01429 0.03854 0.01665 0.01821 0.06369 0.1159 
100 100 0.03600 0.01241 0.03986 0.01567 0.02085 0.06486 0.1330 
200 200 0.03785 0.00955 0.03774 0.00823 0.02322 0.05454 0.1412 
200 400 0.03702 0.00843 0.03868 0.00768 0.02768 0.05036 0.1432 

Table 1.  Failure estimation of (Rosenbrock function < 3).   True value is 0.0383. 
 
Table 2 shows the results for estimating a smaller failure probability (Rosenbrock function < 1).  The true value of 
this is 0.014919.  Note that the kernel density estimation process must have at least one point in the initial set of 
LHS samples that fails to start the process.   As expected, increasing the number of initial LHS points and increasing 
the number of points taken via importance sampling tends to improve the failure probability estimate.   
 
Number  
of 
Initial 
LHS 
samples 

Number  
of 
Importance 
samples 

LHS 
Mean 
Failure 
probability  

LHS Std 
dev. 
Failure 
Probability 

IS Mean 
Failure 
probability 

IS Std dev. 
Failure 
Probability 

5th 
percentile 
IS Failure 
Probability  

95th 
percentile 
IS Failure 
Probability 

Mean 
percentage 
of IS that 
“fail” 

100 200 0.01677 0.00674 0.01494 0.00569 0.00680 0.02497 0.0616 
50 100 0.01680 0.00784 0.01288 0.00775 0.00178 0.02443 0.0517 
100 100 0.01785 0.00851 0.01506 0.00731 0.00466 0.02849 0.0636 
200 200 0.01515 0.00607 0.01472 0.00634 0.00711 0.02236 0.0692 
200 400 0.01638 0.00556 0.01377 0.00358 0.00854 0.01913 0.0635 

Table 2.  Failure estimation of (Rosenbrock function < 1).   True value is 0.0149. 
 
Table 3 shows the results for estimating the failure probability (Rosenbrock function < 3) when the input variables 
are defined as truncated normal distributions, not as uniform distributions.  We chose truncated normals to represent 
the fact that parameters in computational models are often required to be constrained.  The 2 input variables were 
truncated normal with zero mean and standard deviation of two, constrained to be in the interval [-2,2]. 
 
Table 3 shows that the standard deviation and the 5th/95th importance sampling failure estimates narrow as the 
number of initial LHS samples and number of importance samples increases.  Additionally, the percentage of 
importance samples that are in the failed region increases as the number of input samples increases.    
 
Number  
Of 
Initial 
LHS 
samples 

Number  
Of 
Importance 
Samples 

LHS 
Mean 
Failure 
probability  

LHS Std 
dev. 
Failure 
Probability 

IS Mean 
Failure 
probability 

IS Std dev. 
Failure 
Probability 

5th 
percentile 
IS Failure 
Probability  

95th 
percentile 
IS Failure 
Probability 

Mean 
percentage 
of IS that 
“fail” 

100 200 0.04430 0.01175 0.04611 0.02673 0.02626 0.06523 0.1244 
50 100 0.04580 0.01556 0.04678 0.02032 0.02244 0.07007 0.1142 
100 100 0.04660 0.01369 0.04599 0.01750 0.02248 0.07060 0.1285 
200 200 0.04690 0.01064 0.04662 0.00854 0.03290 0.05830 0.1455 
200 400 0.04613 0.00810 0.04500 0.00681 0.03337 0.05423 0.1410 

Table 3.  Failure estimation of (Rosenbrock function < 3) with truncated normal inputs.   True value is 
0.0458. 
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The next example tested was one with a discontinuous failure domain.  This function, called F2, is given as:  
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This example is shown in Figure 3 and is documented in [Romero and Bankston, 1998].  It has two input variables, 
p1 and p2, which are taken as uniform distributions on [0,1].  Table 4 shows the failure probability estimate for the 
function being a threshold value of 0.5 as depicted in Figure 3 as approximately 55%.  The importance sampling 
process generates more samples in the failure region (approximately 68%).  This case demonstrates that the kernel 
density estimation is accurately capturing the discontinuous failure region.   
 
 
Number  
of 
initial 
LHS 
samples 

Number  
Of 
Importance 
samples 

LHS 
Mean 
Failure 
probability  

LHS Std 
dev. 
Failure 
Probability 

IS Mean 
Failure 
probability 

IS Std dev. 
Failure 
Probability 

5th 
percentile 
IS Failure 
Probability  

95th 
percentile 
IS Failure 
Probability 

Mean 
percentage 
of IS that 
“fail” 

100 200 0.55757 0.02969 0.55447 0.02995 0.50432 0.60248 0.6800 
50 100 0.54753 0.04141 0.55115 0.04928 0.45469 0.62585 0.6538 
100 100 0.55260 0.03678 0.55141 0.03976 0.48320 0.61335 0.6767 
200 200 0.55133 0.02630 0.55560 0.02610 0.51041 0.59695 0.6959 
200 400 0.55892 0.01779 0.54946 0.02053 0.51490 0.58168 0.6921 

Table 4.  Failure estimation of (F2>0.5).   True value is 0.5547. 
 

 
Figure 3.  Test function F2, demonstrating failure probability estimation over discontinuous failure domain 

 
The final test problem examined was the Rosenbrock function in 5 dimensions.  Again, we assume a bounded 
domain on the inputs of [-2,2]5, uniformly distributed.    We examine the failure probability (Rosenbrock-5D <100).  
The results are shown in Table 5.  There are a few things to note:  importance sampling in this problem is obtaining 
failure probability estimates closer to the true value than LHS sampling, which appears to be biased slightly high.  
Also, it is important to remember that we are generating 100 iterations of the importance sampling process.  Thus, 
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although the mean estimates look good, if a user were performing this importance sampling process just once, they 
could obtain a very high estimate (e.g. 95th percentile estimate) or a very low estimate (e.g. such as the 5th percentile 
estimate).  Thus, in practice, one might expect to see poorer results both with LHS sampling and importance 
sampling unless multiple replicates are taken.  Finally, in this higher dimensional problem, we do see the percentage 
of importance sampling points that “fail” increasing as the number of initial LHS points is increased and/or the 
number of importance samples increases.  Additionally, the spread of the failure estimates generated by importance 
sampling narrows as the number of samples increases.  Finally, the percentage of importance sampling points that 
fail is approximately 8 times the original failure probability for this test problem. 
 
 
Number  
of 
initial 
LHS 
samples 

Number  
of 
Importance 
samples 

LHS 
Mean 
Failure 
probability  

LHS Std 
dev. 
Failure 
Probability 

IS Mean 
Failure 
probability 

IS Std dev. 
Failure 
Probability 

5th 
percentile 
IS Failure 
Probability  

95th 
percentile 
IS Failure 
Probability 

Mean 
percentage 
of IS that 
“fail” 

100 200 0.01123 0.00542 0.00788 0.00287 0.00349 0.01350 0.0706 
50 100 0.01447 0.00740 0.00861 0.00494 0.00220 0.01827 0.0621 
100 100 0.01250 0.00566 0.00873 0.00539 0.00195 0.01542 0.0738 
200 200 0.00963 0.00403 0.00861 0.00353 0.00367 0.01434 0.0868 
200 400 0.00977 0.00340 0.00882 0.00350 0.00501 0.01158 0.0882 

Table 5.  Failure estimation of (Rosenbrock 5D < 100).   True value is 0.0090. 

 

V. Use of surrogates in the importance sampling process 
As demonstrated in Section IV, the use of small numbers of samples in importance sampling helped generate more 
points in the failure region, but did not always improve the failure probability estimates significantly.   This section 
examines the use of surrogate methods (also called meta-models or response surface models) in the importance 
sampling process. The approach we take is simple:  as before, we generate an initial number of LHS samples over 
the input domain according to the distributions on the input parameters.  Based on the LHS samples, we construct a 
surrogate.  The importance sampling density is again based on kernel density estimators.  The only difference is that 
instead of evaluating input points from the importance sampling density with the “true” function, we evaluate the 
input points using the surrogate.  Thus, the failure probability estimation is based on the surrogate response function, 

instead of the true response function, : )(ˆ xr )(xr
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The construction of meta-models for computational simulations is a large field of study; for good overviews see 
[Simpson et al., Viana et al.].  For the purposes of this study, we focus on two classes of surrogates which span the 
spectrum:  quadratic polynomials (which are very cheap to evaluate via standard regression methods but tend to be 
inaccurate) and Gaussian process models (which are expensive to construct but much more accurate).  More details 
about quadratic regression can be found in [Kutner et al.], and more details about Gaussian process models can be 
found in [Rasmussen and Williams].  We use a typical approach in both situations:  both are implemented in Matlab.  
For the quadratic polynomial, we use the Matlab command ‘regstats’, and for the Gaussian process model, we use 
the library GPML using an exponential correlation function.   
 
We first considered a quadratic polynomial surrogate.  Table 6 presents some importance sampling results, based on 
the initial version of the Rosenbrock problem presented in Section IV where the goal is to obtain an estimate of the 
probability that the Rosenbrock function is less than 3, over uniform bounds on the input variables as follows:   -2   
x1  2 and -2   x2   2.  The important thing to notice is that these quadratic polynomial surrogates, while not awful 
(average R2 value around .77), are not very accurate and thus the resulting importance sampling estimates of failure 
probability are inaccurate (e.g. around 20% where the true value of this failure probability is 0.0383.  If we look 
more carefully at the results of the quadratic surrogate as shown in Figure 4, we see that while the polynomial 
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follows the general trend of the Rosenbrock function, it “under-predicts” significantly in many cases, and often 
predicts a negative value for this function, which is not accurate (the Rosenbrock function is always positive).  The 
predictions of negative values for Rosenbrock contribute to the overall failure probability estimation, since the 
indicator function will be 1 when ))(ˆ( cXrI i  3)(ˆ iXr .  In this case, more points are “flagged” as failure 

points and contribute to the failure probability estimation as given in Equation 13, thus resulting in a failure estimate 
that is very high.  The main lesson from examining quadratic polynomial surrogates is that even if the surrogate gets 
the general trend of the function approximately correct, this does not satisfy the requirements necessary to obtain 
accurate failure probability estimates via importance sampling. 
 
Number 
of 
initial 
LHS 
samples 

Number  
of 
Importance 
samples 

LHS 
Mean 
Failure 
probability  

LHS Std 
dev. 
Failure 
Probability 

IS Mean 
Failure 
probability 

IS Std dev. 
Failure 
Probability 

Mean percentage 
of IS that “fail” 
according to 
surrogate 

Mean  
R-squared value 

100 200 0.03790 0.00942 0.23711 0.05731 0.4889 0.774 
50 100 0.04080 0.01650 0.24725 0.08307 0.4594 0.792 
100 100 0.03775 0.01162 0.23631 0.07030 0.5008 0.775 
200 200 0.03895 0.01033 0.23833 0.07215 0.5130 0.761 
200 400 0.03795 0.00746 0.23754 0.05025 0.5121 0.764 

Table 6.  Failure estimation of (Rosenbrock function < 3) based on quadratic polynomial surrogate.    
True value is 0.0383. 

 

0 500 1000 1500 2000 2500 3000
-500

0

500

1000

1500

2000

True value of Rosenbrock function

P
re

di
ct

ed
 v

al
ue

 f
ro

m
 q

ua
dr

at
ic

 p
ol

yn
om

ia
l

 
Figure 4.  Quadratic Polynomial Surrogate Model for Rosenbrock Function 

 
The other surrogate that we examined is expensive but much more accurate:  Gaussian process surrogate models.  
The Gaussian process surrogate models tended to result in estimates that were similar to those obtained by 
performing the importance sampling directly on the function.  Table 7 shows the failure estimates and Figure 5 
shows the goodness of the predicted values using the GPs.   Note that the Gaussian process predictions equal the true 
value of the Rosenbrock function, as indicated by the straight line in Figure 5, in contrast with Figure 4.  In these 
cases, the failure estimation is better.  HOWEVER, we were not able to average these results over one hundred 
iterations as we did for the previous analysis, because we had frequent problems with the ill-conditioning of the 
covariance matrix and estimation of the hyperparameters governing the covariance model.  Thus, Table 7 shows 
results only for 10 iterations of the importance sampling process, where each iteration is based on a Gaussian 
process surrogate model.  In general, the Rosenbrock function is very hard for GP emulators because of the wide 
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range of the output values over a small domain.  We do see some behavior that we expect, such as the results from 
the GP surrogates built from larger numbers of initial points (e.g. 200 vs. 50) gave more stable importance sampling 
estimates.   
 

Number 
of 
initial 
LHS 
samples 

Number  
of 
Importance 
samples 

LHS 
Mean 
Failure 
probability 

LHS Std 
dev. 
Failure 
Probability 

IS Failure 
probability 

IS Std dev. 
Failure 
Probability 

percentage of IS 
that “fail” 
according to 
surrogate 

100 200 0.04100 0.00955 0.03652 0.01038 0.1215 
50 100 0.03799 0.01543 0.04053 0.01507 0.1240 
200 400 0.03650 0.00506 0.03746 0.00281 0.1435 

Table 7.  Failure estimation of (Rosenbrock function < 3) based on Gaussian process surrogate.    
True value is 0.0383. 
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Figure 5.  Gaussian Process Surrogate Model for Rosenbrock Function 

 
To address the ill-conditioning of the GP, we took the log of the output and based the importance sampling estimates 
on prediction of the Rosenbrock function (by exponentiating the GP prediction).  This gave better conditioned 
covariance estimates but overall gave poorer results than the GP in Figure 5, as indicated by less accurate GP 
predictions as well as less accurate importance sampling estimates shown in Figure 6 and Table 8.  Note that, as 
expected, the importance sampling estimates are better than the very inaccurate quadratic polynomial but not as 
good as the GP based on the actual (not log transformed) data.    
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Figure 5.  Gaussian Process Surrogate Model for Rosenbrock Function, performed in log transform space 

Number 
of 
initial 
LHS 
samples 

Number  
of 
Importance 
samples 

LHS 
Mean 
Failure 
probability 

LHS Std 
dev. 
Failure 
Probability 

IS Failure 
probability 

IS Std dev. 
Failure 
Probability 

percentage of IS 
that “fail” 
according to 
surrogate 

100 200 0.03957 0.01012 0.02628 0.01872 0.1045 
50 100 0.03960 0.01495 0.02377 0.01999 0.0968 
200 400 0.03758 0.00780 0.03420 0.01223 0.1461 

Table 8.  Failure estimation of (Rosenbrock function < 3) based on Gaussian process surrogate using a log 
transform.   True value is 0.0383. 

  
 This has been a very limited investigation of surrogate model use in importance sampling.  However, this 
examination has demonstrated that the surrogate must be extremely accurate to generate accurate failure probability 
estimates using importance sampling.   

VI. Conclusions 
This paper has presented an importance sampling approach based on kernel density estimators.  Although many 
nonparametric approaches to importance sampling in the literature use some type of density estimation, we tried to 
develop an approach that is robust, could be implemented for any type of “black-box” simulation problem, and is 
initially seeded or started based on an initial set of Latin Hypercube samples from the black-box simulation.   We 
tested this approach on a variety of test problems, focusing on situations with small sample sizes to be representative 
of expensive computational simulations.  We found that importance sampling using this approach is reasonably 
robust and can produce failure probability estimates that are comparable to or more accurate than similar failure 
estimates produced by small numbers of LHS sample points.  However, the accuracy of the failure estimates was not 
greatly improved by using the importance sampling approach given the limitations on the number of samples that we 
used.  The main benefit we see by using this approach is that the kernel density estimators provide a quick way to 
generate more samples in the failure region, for situations where the users do not know a priori anything about 
where the failure region may be located.  We found that importance sampling increased the number of samples in 
the failure region by a factor of 3 to 8 for our test cases.  However, the overall failure probabilities obtained were not 
significantly better than those obtained by pure sampling, in large part because the number of points generated was 
small.  Users need to be cautious about the accuracy of failure estimates generated by importance sampling in small 
sample situations.   Finally, surrogate models should only be used in the importance sampling process in the case of 
very accurate surrogate models.  
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