
Multifidelity Uncertainty Quantification Using

Non-Intrusive Polynomial Chaos and Stochastic

Collocation

L. W. T. Ng∗

Massachusetts Institute of Technology, Cambridge, MA 02139

M. S. Eldred†

Sandia National Laboratories,‡Albuquerque, NM 87185

This paper explores the extension of multifidelity modeling concepts to the field of un-
certainty quantification. Motivated by local correction functions that enable the provable
convergence of a multifidelity optimization approach to an optimal high-fidelity point so-
lution, we extend these ideas to global discrepancy modeling within a stochastic domain
and seek convergence of a multifidelity uncertainty quantification process to globally inte-
grated high-fidelity statistics. For constructing stochastic models of both the low fidelity
model and the model discrepancy, we employ stochastic expansion methods (nonintrusive
polynomial chaos and stochastic collocation) computed from sparse grids, where we seek
to employ a coarsely resolved grid for the discrepancy in combination with a more finely
resolved grid for the low fidelity model. The resolutions of these grids may be statically
defined or determined through uniform and adaptive refinement processes. Adaptive re-
finement is particularly attractive, as it has the ability to preferentially target stochastic
regions where the model discrepancy becomes more complex; i.e., where the predictive
capabilities of the low-fidelity model start to break down and greater reliance on the high
fidelity model (via the discrepancy) is necessary. These adaptive refinement processes can
either be performed separately for the different sparse grids or within a unified multifi-
delity algorithm. In particular, we propose an adaptive greedy multifidelity approach in
which we extend the generalized sparse grid concept to consider candidate index set re-
finements drawn from multiple sparse grids. We demonstrate that the multifidelity UQ
process converges more rapidly than a single-fidelity UQ in cases where the variance of
the discrepancy is reduced relative to the variance of the high fidelity model (resulting in
reductions in initial stochastic error) and/or where the spectrum of the expansion coeffi-
cients of the model discrepancy decays more rapidly than that of the high-fidelity model
(resulting in accelerated convergence rates).

I. Introduction

In engineering design, it is desirable to quantify the effect of input uncertainties on the system responses.
If sufficient information is available to characterize the input uncertainties, then probabilistic methods can
be used to propagate the uncertainties through the system. The results are statistics of the system responses
that can be used in the engineering decision process. For example, the variance of a performance metric
and the probability of exceeding a failure threshold can be used to assess the robustness and the reliability
of the design, respectively. The prevalence of uncertainties in practical engineering problems suggests the
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need for efficient uncertainty propagation methods that can minimize the number of evaluations of expensive
high-fidelity models.

The issue of model form is prevalent in the field of uncertainty quantification. The computational
simulation of a particular physical phenomenon often has multiple discrete model selection possibilities.
Here, we will broadly characterize this issue into two classes: a model hierarchy and a model ensemble. In
the former case of a hierarchy, a clear preference structure exists among the models such that “high-fidelity”
and “low-fidelity” judgements are readily assigned. Here, the goal is to manage the trade-off between accuracy
and expense among the different model fidelities in order to achieve high quality statistical results at lower
cost. In the latter case, a clear preference structure is lacking and there is additional uncertainty created
by the lack of a clear “truth model.” In this case, the goal becomes one of management and propagation of
this model form uncertainty, or in the presence of experimental data for performing inference, model form
selection.

In this paper, we address the model hierarchy case where the system responses can be obtained accurately
by evaluating an expensive high-fidelity model or less accurately by evaluating a cheap low-fidelity model.
The low-fidelity model may be based on simplified physics, coarser discretization of the high-fidelity model,
or reduced-order models. We investigate a multifidelity approach to compute the statistics of the high-fidelity
model without the expense of relying exclusively on high-fidelity model evaluations. Such multifidelity ap-
proaches have been developed for the optimization of expensive high-fidelity models. In the multifidelity
trust-region model-management approach, the optimization is performed on a corrected low-fidelity model.
The correction function can be additive, multiplicative, or a combination of the two and is updated occa-
sionally by high-fidelity model evaluations.1,2 First-order or second-order polynomials are used to enforce
local first-order or second-order consistency, respectively, at high-fidelity model evaluation points.1,2 Other
variations have employed global correction functions (typically enforcing zeroth-order consistency) based on
the interpolation of the discrepancy between the high-fidelity model evaluations and the low-fidelity model
evaluations.3–6 The idea is that a surrogate based on a physics-based low-fidelity model and an interpolant of
the discrepancy may provide a more cost-effective approximation of the high-fidelity model than a surrogate
based only on interpolating the high-fidelity model. We carry this idea over to uncertainty propagation and
construct a surrogate of the high-fidelity model based on the low-fidelity model and a correction function
using global polynomials in terms of the stochastic parameters. Two types of surrogates are considered,
non-intrusive polynomial chaos using orthogonal polynomials and stochastic collocation using interpolation
polynomials, and we are interested in discrepancy models that can reproduce the high-fidelity results at each
of the high-fidelity collocation points to zeroth- and first-order (i.e., that exactly interpolate discrepancy
values and first derivatives).

The polynomial chaos method expands the system response as a truncated series of polynomials that are
orthogonal with respect to the probability density functions of the stochastic parameters7,8 and exponential
convergence in integrated statistical quantities (e.g., mean, variance) can be achieved for smooth functions
with finite variance. The chaos coefficients are obtained by projecting the system onto each basis. In the
non-intrusive case, the projection can be approximated by a multi-dimensional numerical integration and is
sometimes known as the pseudo-spectral method. Stochastic collocation is a related stochastic expansion
method which constructs multidimensional interpolation polynomials over the system responses evaluated at
a structured set of collocation points.9,10 If the collocation points are selected to be the Gaussian quadrature
nodes associated with the same orthogonal polynomials as the polynomial chaos expansion, then the same
exponential convergence properties can be observed. We apply the stochastic expansion methods to the
low-fidelity model and to the discrepancy between the high-fidelity model and the low-fidelity model. The
two expansions are then combined to create a surrogate stochastic expansion of the high-fidelity model from
which the desired statistics are obtained. If the low-fidelity model is sufficiently predictive, a lower-order
expansion of the discrepancy can be used, reducing the number of high-fidelity model evaluations necessary
to obtain the response statistics at the desired accuracy.

In the following, we first review the stochastic expansion methods in Section II and their multi-dimensional
construction via sparse grids. In Section III, we present the extension to the multifidelity case and provide an
algorithmic framework. Finally, we demonstrate our approach in Section IV with computational experiments
and provide concluding remarks in Section V.
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Table 1: Some standard continuous probability distributions and their corresponding Askey polynomial
bases. B(α, β) is the Beta function and Γ(α) is the Gamma function.

Distribution Density Function Polynomial Basis Orthogonality Weight Support

Normal 1√
2π

e
−x2

2 Hermite Hen(x) e
−x2

2 [−∞,∞]

Uniform 1
2 Legendre Pn(x) 1 [−1, 1]

Beta (1−x)α(1+x)β

2α+β+1B(α+1,β+1)
Jacobi P

(α,β)
n (x) (1 − x)

α
(1 + x)

β
[−1, 1]

Exponential e−x Laguerre Ln(x) e−x [0,∞]

Gamma xαe−x

Γ(α+1) Gen. Laguerre L
(α)
n (x) xαe−x [0,∞]

II. Stochastic Expansions

In this section, we briefly review the non-intrusive polynomial chaos expansion method (PCE) and the
stochastic collocation (SC) method. Let R(ξ) be a “black box” that takes d stochastic parameters ξ =
(ξ1, . . . , ξd) as inputs and return the system response as the output. Both methods construct a global
polynomial approximation to the system response and have been shown to be point-wise equivalent if non-
nested Gaussian quadrature nodes are used.11 However, one form of the polynomial expansion may be
preferred over the other, depending on the needs of the application (e.g., support for unstructured grids,
fault tolerance, or local error estimation).

II.A. Non-Intrusive Polynomial Chaos

In polynomial chaos, one must estimate the chaos coefficients for a set of basis functions. The basis functions
are obtained from the Askey family of hypergeometric orthogonal polynomials.12 To reduce the nonlinearity
of the expansion and improve convergence, the polynomial bases are chosen such that their orthogonality
weighting functions match the probability density functions of the stochastic parameters up to a constant
factor. Table 1 lists the appropriate polynomial bases for some commonly used continuous probability
distributions. If the stochastic parameters do not follow these standard probability distributions, then the
polynomial bases may be generated numerically.13–15 Alternatively or if correlations are present, variable
transformations may be used.16

The system response is approximated by the expansion

R(ξ) ≈
∑

i∈Ip

aiΨi(ξ),

where the basis functions Ψi(ξ) with multi-index i = (i1, . . . , id), ik = 0, 1, 2, . . . are the product of the
appropriate one-dimensional orthogonal polynomial basis of order ik in each dimension k = 1, . . . , d. The
series is typically truncated in one of two ways. For the total-order expansion of order p, the index set is
defined as

Ip = {i : |i| ≤ p},

where |i| = i1 + . . . + id, while for the tensor-product expansion of order p = (p1, . . . , pd), the index set is
defined as

Ip = {i : ik ≤ pk, k = 1, . . . , d}.

The number of terms required in each case is16

Ntotal-order =
(d + p)!

d! p!
=

(

d + p

d

)

,

and

Ntensor-product =

d
∏

k=1

(pk + 1),
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respectively.
One approach to calculate the chaos coefficients ai is the spectral projection method that takes advantage

of the orthogonality of the bases. This results in

ai =
〈R(ξ),Ψi(ξ)〉

〈Ψ2
i (ξ)〉

=
1

〈Ψ2
i (ξ)〉

∫

Ω

R(ξ)Ψi(ξ)ρ(ξ) dξ,

where ρ(ξ) =
∏d

k=1 ρk(ξk) is the joint probability density of the stochastic parameters over the support
Ω = Ω1 × . . . × Ωd. Thus, the bulk of the work is in evaluating the multi-dimensional integral in the
numerator. Tensor product quadrature or, if d is moderately large, sparse grid quadrature may be employed.
Gaussian quadrature rules can be chosen to match the orthogonal polynomial bases so that the weight
function of the quadrature matches the probability density in the integral. Furthermore, if sparse grid
quadrature is used to estimate the coefficients, the polynomial chaos expansion terms should be constructed
from a sum of tensor expansions in order to avoid numerical noise in the coefficients of higher order terms.11

Once the chaos coefficients are known, the statistics of the system response can be estimated directly and
inexpensively from the expansion. For example, the mean and the variance can be obtained analytically as

µR = 〈R(ξ)〉 ≈
∑

i∈Ip

ai〈Ψi(ξ)〉 = a0 (1)

and
σ2

R =
〈

R(ξ)
2
〉

− µ2
R ≈

∑

i∈Ip

∑

j∈Ip

aiaj〈Ψi(ξ)Ψj(ξ)〉 − a2
0 =

∑

i∈Ip\0
a2
i

〈

Ψ2
i (ξ)

〉

(2)

where 0 is a vector of zeros (i.e., the first multi-index). Other statistics such as probabilities can be estimated
by sampling the polynomial expansion.

II.B. Stochastic Collocation

In stochastic collocation, a multivariate polynomial interpolant is formed over the system responses evaluated
at a set of collocation points. In one-dimension, a degree n expansion (identified by the index i) has the
form

R(ξ) ≈ Ui(R)
def
=

n
∑

j=0

R
(

ξ(j)
)

ℓ(j)(ξ)

where R
(

ξ(j)
)

is the system response evaluated at collocation points ξ(j), j = 0, . . . , n and the basis ℓ(j)(ξ)
is the Lagrange polynomial

ℓ(j)(ξ) =

n
∏

k=0, k 6=j

ξ − ξ(k)

ξ(j) − ξ(k)
.

The collocation points are chosen to be the nodes of the Gaussian quadrature rules associated with the
same orthogonal polynomials as the polynomial chaos expansion. In the multivariate case, a tensor product
formulation with the multi-index i = (i1, . . . , id), ik = 0, 1, 2, . . . is applied:

R(ξ) ≈ U i(R)
def
= (Ui1 ⊗ . . . ⊗ Uid

)(R) =

n1
∑

j1=0

· · ·

nd
∑

jd=0

R
(

ξ
(j1)
1 , . . . , ξ

(jd)
d

)

ℓ
(j1)
1 (ξ1) . . . ℓ

(jd)
d (ξd).

Statistics of the system response such as the mean and the variance of a tensor product expansion can
be obtained analytically as

µR = 〈R(ξ)〉 ≈

n1
∑

j1=0

· · ·

nd
∑

jd=0

R
(

ξ
(j1)
1 , . . . , ξ

(jd)
d

)〈

ℓ
(j1)
1 (ξ1) . . . ℓ

(jd)
d (ξd)

〉

=

n1
∑

j1=0

· · ·

nd
∑

jd=0

R
(

ξ
(j1)
1 , . . . , ξ

(jd)
d

)

w
(j1)
1 . . . w

(jd)
d

def
= Qi(R)
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and

σ2
R =

〈

R(ξ)
2
〉

− µ2
R

≈

n1
∑

j1=0

· · ·

nd
∑

jd=0

n1
∑

k1=0

· · ·

nd
∑

kd=0

R
(

ξ
(j1)
1 , . . . , ξ

(jd)
d

)

R
(

ξ
(k1)
1 , . . . , ξ

(kd)
d

)〈

ℓ
(j1)
1 (ξ1) . . . ℓ

(jd)
d (ξd)ℓ

(k1)
1 (ξ1) . . . ℓ

(kd)
d (ξd)

〉

− µ2
R

=

n1
∑

j1=0

· · ·

nd
∑

jd=0

R2
(

ξ
(j1)
1 , . . . , ξ

(jd)
d

)

w
(j1)
1 . . . w

(jd)
d − µ2

R

def
= Qi

(

R2
)

− µ2
R,

where the expectation integrals are evaluated using the tensor product Gaussian quadrature corresponding
to the set of collocation points. Using the property that ℓ(s)

(

ξ(t)
)

= δs,t, the numerical quadrature of the
expectation integral leaves only the quadrature weights w. Higher moments can be obtained analytically in
a similar manner and other statistics such as probabilities can be estimated by sampling the expansion.

If d is moderately large, then a sparse grid construction may be used to alleviate the exponential increase
in the number of collocation points with respect to d. The sparse grid expansion is formed by a linear
combination of tensor products U i(R) at different multi-indices i in such a way that the exponential increase
in the number of collocation points is alleviated up to a logarithmic factor. Note that while the tensor
product expansion interpolates the system responses at the collocation points, the sparse grid expansion
may not interpolate unless a nested set of collocation points is used.17

The relationship between the index ik and the number of collocation points nk in each dimension k =
1, . . . , d is called the growth rule and is important during the sparse grid construction. If the collocation
points are chosen based on a fully nested quadrature rule, then a nonlinear growth rule that approximately
doubles nk with every increment in ik should be used to reuse model evaluations. If the collocation points
are based on a weakly-nested or non-nested quadrature rule, then a linear growth rule may alternatively be
used to provide finer granularity in the degree of the interpolant.

The formulas µR ≈ Qi(R) and σ2
R ≈ Qi

(

R2
)

− µ2
R can be extended to estimate the mean and variance

of the sparse grid stochastic collocation using a linear combination of Qi(R) or Qi

(

R2
)

, respectively, at
multi-indices i corresponding to the sparse grid construction. In the case of weakly-nested or non-nested
quadrature rules,

∑N
j=0 Rjwj and

∑N
j=0 R2

jwj may still be used for 〈R〉 and
〈

R2
〉

, but these raw moments
are no longer equivalent to the expectations of the expansion and the square of the expansion due to the
loss of the interpolation property in non-nested sparse grids (the numerical quadrature does not simplify
as in the case of the tensor product expansion). Rather, they instead correspond to the sparse numerical
integration of R and R2.

II.C. Sparse Grid Construction

Since our multifidelity approach focuses on sparse grids, we briefly review isotropic and generalized sparse
grid constructions here. Sparse grids, as employed in numerical integration18,19 and interpolation,17,20 are
contructed from a linear combination of tensor product grids with relatively small numbers of grid points in
such a way that preserves a high level of accuracy. The isotropic sparse grid at level q where q = 0, 1, 2, . . .
is defined as

Aq,d(R) =
∑

q−d+1≤|i|≤q

(−1)
q−|i|

(

d − 1

q − |i|

)

U i(R), (3)

where the tensor product interpolation formulas U i(R), i = (i1, . . . , id), ik = 0, 1, 2, . . . can be replaced by
tensor product quadrature formulas Qi(R) for the case of sparse grid integration. Alternatively, Equation 3
may be expressed in terms of the difference formulas:

Aq,d(R) =
∑

|i|≤q

∆i(R), (4)

where ∆i(R) = (∆i1 ⊗ . . . ⊗ ∆id
)(R) and ∆ik

= Uik
− Uik−1 with U−1 = 0. Thus, the tensor product grids

used in the isotropic sparse grid construction are those whose multi-indices lie within a simplex defined by
the sparse grid level q.
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The generalized sparse grid construction relaxes the simplex constraint on the multi-indices in Equation 3
to provide flexibility for adaptive refinement. In the relaxed constraint, the set of multi-indices J is admissible
if i − ek ∈ J for all i ∈ J , ik ≥ 1, k = 1, . . . , d, where ek is the kth unit vector.19 Thus, admissible multi-
indices can be added one by one starting with i = 0 based on a refinement metric and the generalized sparse
grid is then

Aq,d(R) =
∑

i∈J
∆i(R).

III. Multifidelity Extensions

Let Rhigh(ξ) be the system response obtained by evaluating the expensive high-fidelity model and Rlow(ξ)
be the system response obtained by evaluating the cheap low-fidelity model. In a multifidelity stochastic
expansion, the low-fidelity model values are corrected to match the high-fidelity model values (and potentially
their derivatives) at the high-fidelity collocation points.

III.A. Corrected Low-Fidelity Model

We investigate additive correction, multiplicative correction, and combined additive and multiplicative cor-
rection for the low-fidelity model. Defining the additive correction function and multiplicative correction
function as

Cα(ξ) = Rhigh(ξ) − Rlow(ξ)

and

Cβ(ξ) =
Rhigh(ξ)

Rlow(ξ)
,

respectively, then
Rhigh(ξ) = Rlow(ξ) + Cα(ξ)

or
Rhigh(ξ) = Rlow(ξ)Cβ(ξ).

In the combined case,
Rhigh(ξ) = γ(Rlow(ξ) + Cα(ξ)) + (1 − γ)Rlow(ξ)Cβ(ξ),

where γ ∈ [0, 1] defines a convex combination that determines the proportion of additive correction or
multiplicative correction employed in the combined correction.

Let Sq,d[R] be the stochastic expansion (non-intrusive polynomial chaos or stochastic collocation) of
R(ξ) at sparse grid level q with dimension d. We add the superscript “pc” or “sc” when we refer specifically
to non-intrusive polynomial chaos or stochastic collocation, respectively. Also, let Nq,d be the number of
model evaluations required to construct Sq,d[R]. Thus, Rhigh(ξ) ≈ Sq,d[Rhigh](ξ). We further approximate

the stochastic expansion of the high-fidelity model with Sq,d[Rhigh](ξ) ≈ R̃high(ξ), where R̃high(ξ) is the
multifidelity stochastic expansion based on the additive, multiplicative, or combined correction of the low-
fidelity model

R̃high = Sq,d[Rlow] + Sq−r,d[Cα],

R̃high = Sq,d[Rlow]Sq−r,d[Cβ ],

R̃high = γ(Sq,d[Rlow] + Sq−r,d[Cα]) + (1 − γ)Sq,d[Rlow]Sq−r,d[Cβ ],

respectively, where r < q is a sparse grid level offset between the stochastic expansion of the low-fidelity
model and the stochastic expansion of the correction function. Thus, the multifidelity stochastic expansion
at sparse grid level q can be constructed with Nq−r,d instead of Nq,d high-fidelity model evaluations plus
Nq,d low-fidelity model evaluations. If the low-fidelity model is much cheaper to evaluate than the high-
fidelity model, then significant computational savings will be obtained. Furthermore, if the low-fidelity
model is sufficiently predictive, then accuracy comparable to the single fidelity expansion with Nq,d high-
fidelity model evaluations can be achieved. This notion of a sparse grid level offset is used in the case of
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predetermined grid levels and enforces computational savings explicitly, with less regard to managing the
accuracy in R̃high(ξ). In the case of adaptive refinement, we instead manage the accuracy explicitly by

investing resources where they are most needed for resolving statistics of R̃high(ξ), and the computational
savings that result are achieved implicitly.

In the combined correction, there is flexibility in the choice of γ. One option is to compute γ based on
a regularization of the combined correction function to prevent overfitting. We propose a simple expression
that can be computed analytically by minimizing the magnitude of the additive and multiplicative correction
in the mean-square sense:

min
γ∈[0,1]

〈

γ2C2
α(ξ) + (1 − γ)

2
C2

β(ξ)
〉

,

which gives

γ =

〈

C2
β(ξ)

〉

〈C2
α(ξ)〉 +

〈

C2
β(ξ)

〉 ,

where the second moments of the Cα(ξ) and Cβ(ξ) can be estimated analytically from their stochastic
expansions as described in Sections II.A and II.B. This choice of γ balances the additive correction and the
multiplicative correction such that neither becomes too “large”.

III.B. Analytic Moments

In order to compute the moments of the multifidelity stochastic expansion analytically, we collapse the sum
or product of the expansion of the low-fidelity model and the expansion of the correction function into a
single expansion and then employ the standard moment calculation techniques from Sections II.A and II.B.
This is most straightforward for non-intrusive polynomial chaos expansions with additive correction, and we
will start with this case using a statically determined sparse grid offset. Let Jq,d be the set of multi-indices
of the d-dimensional polynomial chaos expansion bases at sparse grid level q. Then,

Spc
q,d[Rlow](ξ) =

∑

i∈Jq,d

alowiΨi(ξ)

and
Spc

q−r,d[Cα](ξ) =
∑

i∈Jq−r,d

aCα iΨi(ξ).

Since the Jq−r,d ⊂ Jq,d, the bases Ψi(ξ), i ∈ Jq−r,d are common between Sq,d[Rlow] and Sq−r,d[Cα]. There-
fore, the chaos coefficients of those bases can be added to produce a single non-intrusive polynomial chaos
expansion

Spc
q,d[Rlow](ξ) + Spc

q−r,d[Cα](ξ) =
∑

i∈Jq−r,d

(alowi + aCα i)Ψi(ξ) +
∑

i∈Jq,d\Jq−r,d

alowiΨi(ξ).

As shown in Equations 1 and 2, the mean and the variance can be computed directly from the multifidelity
non-intrusive polynomial chaos as

µR ≈ alow0 + aCα0

σ2
R ≈

∑

i∈Jq−r,d\0
(alowi + aCα i)

〈

Ψ2
i (ξ)

〉

+
∑

i∈Jq,d\Jq−r,d

alowi

〈

Ψ2
i (ξ)

〉

.

In the multiplicative correction case for non-intrusive polynomial chaos, we again combine the low fidelity
and discrepancy expansions and then compute the moments from the aggregated expansion. Multiplication
of chaos expansions is a kernel operation within stochastic Galerkin methods. The coefficients of a product
expansion are computed as follows (shown generically for z = xy where x, y, and z are each expansions of
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arbitrary form):

Pz
∑

k=0

zkΨk(ξ) =

Px
∑

i=0

Py
∑

j=0

xiyjΨi(ξ)Ψj(ξ)

zk =

∑Px

i=0

∑Py

j=0 xiyj〈ΨiΨjΨk〉

〈Ψ2
k〉

where three-dimensional tensors of one-dimensional basis triple inner products 〈ψiψjψk〉 are typically sparse
and can be efficiently precomputed using one dimensional quadrature for fast lookup within the multidimen-
sional basis triple inner products 〈ΨiΨjΨk〉. The form of the high-fidelity expansion must first be defined to
include all polynomial orders indicated by the products of each of the basis polynomials in the low fidelity and
discrepancy expansions. These are readily estimated from total-order, tensor, or sum of tensor expansions
since they involve simple polynomial order additions for each tensor or total-order expansion product.

Evaluating the moments for stochastic collocation with either additive or multiplicative correction involves
forming a new interpolant on the more refined (low fidelity) grid. Therefore, we perform an additional step
to create a single stochastic expansion

Ssc
q,d

{

Ssc
q,d[Rlow] + Ssc

q−r,d[Cα]
}

Ssc
q,d

{

Ssc
q,d[Rlow]Ssc

q−r,d[Cβ ]
}

from which the variance and higher moments can be obtained analytically. This requires evaluating Ssc
q,d[Rlow](ξ)

and either Ssc
q−r,d[Cα](ξ) or Ssc

q−r,d[Cβ ](ξ) at the collocation points associated with the multi-indices in Jq,d.
For the former, the low-fidelity model values at all of the collocation points are readily available and can be
used directly. For the latter, the discrepancy expansion Ssc

q−r,d[Cα](ξ) or Ssc
q−r,d[Cβ ](ξ) must be evaluated.

Since the correction function values are available at collocation points associated with the multi-indices of
Jq−r,d, it may be tempting to only evaluate Ssc

q−r,d[Cα](ξ) or Ssc
q−r,d[Cβ ](ξ) at collocation points associated

with the multi-indices in Jq,d \ Jq−r,d. However, because sparse grid stochastic collocation does not in-
terpolate unless the set of collocation points are nested,17 the function values of Cα(ξ) and Cβ(ξ) are not
consistent with those from Ssc

q−r,d[Cα](ξ) and Ssc
q−r,d[Cβ ](ξ) and should not be mixed together.

III.C. Adaptive Refinement

Conceptually speaking, the goal of an adaptive refinement procedure applied to multifidelity modeling should
be to preferentially refine where the model discrepancy has the greatest complexity. This corresponds to
regions of the stochastic domain where the low fidelity model becomes less predictive. It is often the case
in real-world applications that low fidelity models may be predictive for significant portions of a parameter
space, but, in other portions of the space, the simplifying assumptions break down and a higher-fidelity
model must be relied upon. By selectively targeting these regions, we rely on the low fidelity model where it
is effective and more faithfully resolve the discrepancy where it is not. Thus, adaptive refinement procedures
can extend the utility of multifidelity uncertainty quantification approaches in cases where the predictive
capability of low fidelity models is strongly parameter-dependent.

For adaptive refinement in a multifidelity context, we will employ a greedy adaptation based on the
generalized sparse grid procedure described in Section II.C. One option is to separately adapt the low fidelity
and discrepancy models; however, an optimal approach for controlling the relative levels of refinement (e.g.,
enforcing different convergence tolerances for the low fidelity and discrepancy adaptations) is not obvious
in this case. Moreover, the effect of the individual candidate refinements on their individual statistical
QOIs (e.g., low fidelity or discrepancy variance) are not viewed in the aggregated multifidelity context (e.g.,
high fidelity variance or failure probability). Thus, we instead propose a further generalization to generalized
sparse grids in which we consider candidate index sets from multiple sparse grids simulaneously, and measure
their effects within the aggregated context using appropriate cost normalization. The algorithmic steps can
be summarized as:

1. Initialization: Starting from an initial reference sparse grid for the lowest fidelity model and each level
of discrepancy within a multifidelity hierarchy, accept these reference index sets as the old set and
define active index sets using the admissible forward neighbors of all old index sets.

8 of 17

American Institute of Aeronautics and Astronautics



2. Trial set evaluation: For each trial active index set within each of the sparse grids, perform the
tensor grid evaluations of either the low fidelity or discrepancy functions, form the tensor polynomial
chaos expansion or tensor interpolant corresponding to the grid, combine the trial expansion with the
reference expansion for the particular level in the expansion hierarchy to which it corresponds (update
Sqlow,d[Rlow], Sqα,d[Cα], or Sqβ ,d[Cβ ]), and then combine each of the levels to generate a high fidelity

expansion (R̃high). Note that index sets associated with discrepancy expansions require evaluation of
two levels of fidelity, so caching and reuse of the lowest and all intermediate fidelity evaluations should
be performed among the different sparse grids. Bookkeeping should also be performed to allow efficient
restoration of previously evaluated tensor expansions, as they will remain active until either selected
or processed in the finalization step.

3. Trial set selection: From among all of the candidates, select the trial index set that induces the largest
change in the high fidelity statistical QOI, normalized by the cost of evaluating the trial index set (as
indicated by the number of new collocation points and the average model run time per point). Initial
estimates of relative simulation cost among the different fidelities are thus required to appropriately
bias the adaptation, and discrepancy evaluations must incur the cost of two fidelities. To achieve
greater parallelism, the best n index sets may be selected simultaneously, resulting in additional trial
sets on the following cycle.

4. Update sets: If the largest change induced by the active trial sets exceeds a specified convergence
tolerance, then promote the selected trial set(s) from the active set to the old set and update the
active set with new admissible forward neighbors; return to step 2 and evaluate all active trial sets
with respect to the new reference grid. If the convergence tolerance is satisfied, advance to step 5.
In the common case of two levels of fidelity, we can choose to always promote selected discrepancy
index sets into the old sets for both the low fidelity and discrepancy grids, such that the discrepancy
index sets are always a subset of the low fidelity index sets. While there can be a small penalty for
doing this (additional low fidelity trial sets that are generated may not be in perfect overlap with the
additional discrepancy trial sets, due to different active set states), this backfill is consistent with the
intent of more fully resolving the low-fidelity expansion and the overhead in any additional low-fidelity
evaluations should be small. For multiple levels of fidelity, a full recursion in the promotion process can
be similarly enforced so that all index sets in higher level grids are subsets of those in the lower levels;
however, the additional degrees of freedom in this case admit other strategies as well (e.g., a minimal
enforcement of overlap in the reference grids would ensure that the lowest fidelity grid contains all old
index sets in the discrepancy level immediately above and all mid-level discrepancies contain all old
index sets included within both of its nearest neighbors in the hierarchy).

5. Finalization: Promote all remaining active sets to the old set, update all expansions within the hier-
archy, and perform a final combination of the low fidelity and discrepancy expansions to arrive at the
final result for the high fidelity statistical QOI.

In the limiting case where the low fidelity model provides no useful information, then this algorithm will
prefer refinements to the model discrepancy and will closely mirror the single-fidelity case, with the penalty
of carrying along the low fidelity evaluations needed to resolve the discrepancy. This suggests an additional
adaptive control, in which one drops low (and intermediate) fidelity models from the hierarchy that are
adding expense but not adding value (as measured by their frequency of selection in step 3). In addition,
this general framework can be extended to include pointwise local refinement using hierarchical surpluses21

as well as adjoint-enhanced approaches.22,23

IV. Computational Results

We compare the performance of multifidelity stochastic expansion and single-fidelity stochastic expansion
for several algebraic and PDE models. We demonstrate cases for which the multifidelity stochastic expansion
converges more quickly than the single-fidelity stochastic expansion as well as cases for which the multifidelity
stochastic expansion offers no efficiency gain.
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IV.A. Simple One-Dimensional Example

First, we present a simple example to motivate the approach and demonstrate the efficiency improvements
that are possible when an accurate low-fidelity model is available. The system responses of the high-fidelity
model and the low-fidelity model are, respectively,

Rhigh(ξ) = e−0.05ξ2

cos 0.5ξ − 0.5e−0.02(ξ−5)2

Rlow(ξ) = e−0.05ξ2

cos 0.5ξ,

where ξ ∼ Uniform[−8, 12]. An additive correction Cα(ξ) = Rhigh(ξ) − Rlow(ξ) is used, which is just the
second term of Rhigh(ξ). In Figure 1, we compare the convergence in mean and standard deviation of the
single (high) fidelity PCE with the convergence of the multifidelity PCE. The multifidelity PCE is constructed
from a PCE of the correction function at order 1 to 20 combined with a PCE of the low-fidelity model at
order 60 (for which the low-fidelity statistics are converged to machine precision). This corresponds to the
simpler case where low-fidelity expense can be assumed to be negligible, and by eliminating any issues related
to low fidelity accuracy, we can focus more directly on comparing the convergence of the correction function
with convergence of the high-fidelity model (in the short column example to follow, we will employ grid
level offsets that accommodate nontrivial low-fidelity expense). The error is plotted against the number of
high-fidelity model evaluations and is measured with respect to an overkill single-fidelity PCE solution at
order 60. The multifidelity stochastic expansion converged much more rapidly because the additive correction
function in the example has lower complexity than the high-fidelity model. This can be seen from comparison
of the decay of the normalized spectral coefficients as plotted in Figure 2, which shows that the discrepancy
expansion converges more rapidly allowing the moments of the discrepancy expansion to achieve a given
accuracy using fewer PCE terms than that required by the high-fidelity model.

0 5 10 15 20
10

−20

10
−15

10
−10

10
−5

10
0

Number of High−Fidelity Model Evaluations

A
bs

ol
ut

e 
E

rr
or

 

 

High−Fidelity
Multifidelity

(a) Error in mean

0 5 10 15 20
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Number of High−Fidelity Model Evaluations

A
bs

ol
ut

e 
E

rr
or

 

 

High−Fidelity
Multifidelity

(b) Error in standard deviation

Figure 1: Convergence of single-fidelity PCE and multifidelity PCE with additive correction for the one-
dimensional example.

IV.B. Short Column Example

The five-dimensional short column example24 serves to demonstrate a more realistic, albeit still algebraic,
problem involving multifidelity models. For this example, we will employ relative grid refinement levels
between low-fidelity and high-fidelity, which are more appropriate for cases where the low-fidelity model
expense in non-negligible. Let the system response of the high-fidelity model be

Rhigh(ξ) = 1 −
4M

bh2Y
−

(

P

bhY

)2

, (5)
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Figure 2: Normalized spectral coefficients of the high-fidelity model and the additive correction function for
the one-dimensional example.

where ξ = (b, h, P,M, Y ), b ∼ Uniform[5, 15], h ∼ Uniform[15, 25], P ∼ Normal[500, 100], M ∼ Normal[2000, 400],
and Y ∼ Lognormal[5, 0.5] and we neglect the traditional correlation between P and M for simplicity. We
consider three artificially constructed low-fidelity models of various predictive quality:

Rlow1(ξ) = 1 −
4P

bh2Y
−

(

P

bhY

)2

, Cα1(ξ) =
4(P − M)

bh2Y
,

Rlow2(ξ) = 1 −
4M

bh2Y
−

(

M

bhY

)2

, Cα2(ξ) =
M2 − P 2

(bhY )
2 ,

Rlow3(ξ) = 1 −
4M

bh2Y
−

(

P

bhY

)2

−
4(P − M)

bhY
, Cα3(ξ) =

4(P − M)

bhY
.

In Figure 3, PCE with isotropic sparse grids is used and the offset r in the sparse grid level between the
low-fidelity model and the correction function is fixed at one. It can be seen that the multifidelity case using
Rlow1(ξ) results in a reduction in the number of high-fidelity model evaluations required for a given error
compared to the single-fidelity case using Rhigh(ξ). For example, at 10−5 error, the number of high-fidelity
model evaluations is reduced from about 500 to about 100. While still a rational function with broad spectral
content, the correction function, Cα1(ξ), is similar to the middle term in Eq. 5 and has eliminated the final
term possessing the greatest nonlinearity. Conversely, the correction function for the second low-fidelity
model, Cα2(ξ), is similar to the final term in Eq. 5 and has expanded it to include an additional dimension,
resulting in a larger number of high-fidelity model evaluations for a given error compared to the single-fidelity
case. For the third low-fidelity model, the convergence rate is faster than the single-fidelity case but the
starting error is also larger, resulting in a break-even point at about 11 high-fidelity model evaluations. This
suggests that while a smoother and/or less complex correction function provides a faster convergence rate,
it is also important to consider the magnitude of the correction.

We modify Rlow3(ξ) by changing the scalar in the last term from 4 to 0.4 and label it Rlow4(ξ). Similarly,
we also change the scalar in the last term from 4 to 40 and label it Rlow5(ξ). Thus, the correction functions
Cα3(ξ), Cα4(ξ), and Cα5(ξ) have the same smoothness and spectral content, but the magnitude of the
correction is an order of magnitude smaller for Cα4(ξ) and an order of magnitude larger for Cα5(ξ). As
plotted in Figure 4, the means have similar convergence rates, but a smaller correction results in lower error.

Figure 5 is the same as Figure 3 but with the sparse grid level offset, r, increased from one to two,
resulting in greater resolution in the low fidelity expansion for a particular discrepancy expansion resolution.
The results from Figure 3 are included as solid lines, and the new results with r = 2 are shown as dashed
lines. A small improvement can be seen in the mean convergence for multifidelity using Rlow1(ξ) and
Rlow3(ξ) and for standard deviation convergence using Rlow1(ξ), but results are mixed and it is unclear
whether the benefit of increasing the offset is worth the additional low-fidelity evaluations, especially in the
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Figure 3: Convergence of single-fidelity PCE and multifidelity PCE with additive correction using isotropic
sparse grids for the short column example. The multifidelity sparse grid level offset is set to one.
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Figure 4: Convergence of single-fidelity PCE and multifidelity PCE with additive correction using isotropic
sparse grids for the short column example. The multifidelity sparse grid level offset is set to one.

case where their expense is nontrivial. Thus, it is evident that an automated procedure will be needed to
optimize these offsets accounting for relative cost. This motivates the adaptive refinement strategy described
in Section III.C.

IV.C. Elliptic PDE Example

Next, we consider the stochastic PDE in one spatial dimension

−
d

dx

[

κ(x, ω)
du(x, ω)

dx

]

= 1, x ∈ (0, 1), u(0, ω) = u(1, ω) = 0.

The coefficient is described by the following 10-dimensional Karhunen-Loève expansion

κ(x, ω) = 0.1 + 0.03
10
∑

k=1

√

λkφk(x)Yk(ω), Yk ∼ Uniform[−1, 1]
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Figure 5: Convergence of single-fidelity PCE and multifidelity PCE with additive correction using isotropic
sparse grids for the short column example. The multifidelity sparse grid level offset is compared using r = 1
from Figure 3 (solid lines) and r = 2 (dashed lines).

for the Gaussian covariance kernel

Cκκ(x, x′) = exp

[

−

(

x − x′

0.2

)2
]

.

The PDE is solved by finite elements and the output of interest is u(0.5, ω). We use a fine spatial grid with
500 states for the high-fidelity model and a coarse spatial grid with 50 states for the low-fidelity model. The
ratio of average run time between the high-fidelity model and the low-fidelity model is rwork = 40.

We compute the mean and standard deviation using multifidelity PCE with sparse grid level 4 applied
to the low-fidelity model and sparse grid level 3 applied to the additive correction function (i.e., sparse grid
level offset r = 1). Table 2 compares the relative error with single-fidelity PCE of the high-fidelity model at
sparse grid level 4 and at sparse grid level 3. It can be seen that the multifidelity PCE is able to achieve
lower relative error than the single-fidelity PCE at sparse grid level 3 while using the same number of high-
fidelity evaluations. The cost of low-fidelity evaluations is equivalent to about 325 additional high-fidelity
evaluations, resulting in greater than an 80% reduction in total cost for comparable accuracy.

Table 2: Comparison of the relative error and the number of model evaluations for the elliptic PDE example.

Relative Error Relative Error High-Fidelity Low-Fidelity

in Mean in Std Deviation Evaluations Evaluations

Single-Fidelity (q = 3) 5.3 × 10−6 2.7 × 10−4 1981 –

Single-Fidelity (q = 4) 4.1 × 10−7 2.3 × 10−5 12,981 –

Multifidelity (q = 4, r = 1) 4.7 × 10−7 2.6 × 10−5 1981 12,981

Figure 6 shows the convergence for the single-fidelity and multifidelity PCE with additive correction
function based on adaptive refinement using generalized sparse grids. The single-fidelity case uses the
standard generalized sparse grid procedure,19 whereas the multifidelity case uses the algorithm described in
Section III.C. The initial grid for both the low-fidelity model and the correction function is a level one sparse
grid (requiring 11 model evaluations). We use the equivalent number of high-fidelity model evaluations,
defined as Neqv = Nhigh + Nlow/rwork, to include the additional cost of low-fidelity model evaluations in
the comparison with the single-fidelity case. By considering the potential error reduction per unit cost of
refining the sparse grid of the correction function versus that of refining the sparse grid of the low-fidelity
model, the multifidelity adaptive algorithm is able to achieve a faster convergence than the single-fidelity
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adaptive generalized sparse grid. Relative to the non-adaptive results from Table 2, the adaptive multifidelity
algorithm reduces the equivalent number of high-fidelity evaluations by 33% for the mean and 62% for the
standard deviation.
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Figure 6: Convergence of single-fidelity PCE and multifidelity PCE with additive correction using adaptive
generalized sparse grids for the elliptic PDE example.

IV.D. Horn Acoustics Example

We model the propagation of acoustic waves through a two-dimensional horn with the non-dimensional
Helmholtz equation ∇2u + k2u = 0. The incoming wave of wave number k enters the waveguide and exits
the flare of the horn into the exterior domain with a truncated absorbing boundary.25 The horn geometry
is illustrated in Figure 7. The stochastic parameters are the wave number k ∼ Uniform[1.3, 1.5], upper horn
wall impedance zu ∼ Normal[50, 9], and lower horn wall impedance zl ∼ Normal[50, 9], where the latter two
represent imperfections in the horn wall. We compute the mean and standard deviation of the reflection
coefficient, where a low reflection coefficient is desired for an efficient horn.

wave

Figure 7: 2-D horn geometry and the propagation of acoustic waves.

The high-fidelity model solves the Helmholtz equation by finite elements using 35895 states and the low-
fidelity model is a reduced basis model constructed from the finite element discretization26 using 50 bases.
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The ratio of average run time between the high-fidelity model and the low-fidelity model is rwork = 40.
A comparison of the convergence between single-fidelity PCE and the multifidelity PCE with an additive

correction function based on adaptive refinement with generalized sparse grids is shown in Figure 8. For this
problem, the multifidelity approach offers no efficiency gain over the single-fidelity PCE. This is because the
reduced basis model (i.e., the low-fidelity model) interpolates the finite element model at the 50 snapshots
used to generated the bases. Despite the accuracy of the reduced basis model (the maximum discrepancy
between the reduced basis model and the finite element model is about 2%), its interpolatory nature results
in oscillations that require a higher order PCE expansion to resolve. This example demonstrates that the
performance of the multifidelity approach depends crucially on the choice of the low-fidelity model and
that the ideal low-fidelity model would capture the true high order components of the high-fidelity model
(resulting in low order model discrepancy) without introducing new high order components that are not
present in the high-fidelity model (resulting in high order model discrepancy, with order possibly higher than
the original high-fidelity model). It is worth noting that the multifidelity performance is not worse than
the single-fidelity approach, despite the introduction of erroneous oscillations in the low-fidelity model. In
this case, the low-fidelity and discrepancy expansions will be adapted to similar levels and the effects of the
oscillations will be cancelled in the resolution of R̃high.
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Figure 8: Convergence of single-fidelity PCE and multifidelity PCE with additive correction using adaptive
generalized sparse grids for the acoustic horn example.

V. Conclusions

In this paper, we have presented a general framework for constructing stochastic expansions (non-intrusive
polynomial chaos and stochastic collocation) in a multifidelity setting using a hierarchical approximation ap-
proach in which we resolve expansions for the low fidelity model and one or more levels of model discrepancy.
Compared to the approach of directly estimating the statistics of the system response from a limited number
of expensive high-fidelity model evaluations, greater computational efficiency can be obtained by incorpo-
rating information about the system response from a less expensive low-fidelity model at these and other
locations in the stochastic space.

An adaptive multifidelity algorithm has been presented which extends the generalized sparse grid ap-
proach to consider candidate index sets from multiple sparse grids. Using normalization by relative cost of
the different model fidelities, this adaptive procedure can select the refinements that provide the greatest
benefit per unit cost in resolving the high fidelity statistics.

The ideal low-fidelity model for multifidelity UQ is one in which the discrepancy between the low- and
high-fidelity models is a less complex function than the high-fidelity model (i.e., the spectrum of coefficients
of the discrepancy expansion decays more rapidly than the high-fidelity expansion) and/or has lower variance
than the high-fidelity model. Examples with good low-fidelity models (short column Rlow1, elliptic PDE) have
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demonstrated approximately an 80% reduction in high fidelity evaluations. In non-ideal cases where the low-
fidelity model is non-informative or actually introduces erroneous high order information (horn acoustics),
the multifidelity approach does not appear to degrade significantly from the single-fidelity performance, as
the algorithms can fall back to reliance on resolving the original high-fidelity trends.
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