![]() |
Dakota
Version 6.15
Explore and Predict with Confidence
|
Wrapper class for the NL2SOL nonlinear least squares library. More...
Public Member Functions | |
NL2SOLLeastSq (ProblemDescDB &problem_db, Model &model) | |
standard constructor | |
NL2SOLLeastSq (Model &model) | |
alternate constructor | |
~NL2SOLLeastSq () | |
destructor | |
void | core_run () |
core portion of run; implemented by all derived classes and may include pre/post steps in lieu of separate pre/post More... | |
Static Private Member Functions | |
static void | calcr (int *np, int *pp, Real *x, int *nfp, Real *r, int *ui, void *ur, Vf vf) |
evaluator function for residual vector | |
static void | calcj (int *np, int *pp, Real *x, int *nfp, Real *J, int *ui, void *ur, Vf vf) |
evaluator function for residual Jacobian | |
Private Attributes | |
int | auxprt |
auxilary printing bits (see Dakota Ref Manual): sum of < 1 = x0prt (print initial guess) < 2 = solprt (print final solution) < 4 = statpr (print solution statistics) < 8 = parprt (print nondefault parameters) < 16 = dradpr (print bound constraint drops/adds) < debug/verbose/normal use default = 31 (everything), < quiet uses 3, silent uses 0. | |
int | outlev |
frequency of output summary lines in number of iterations < (debug/verbose/normal/quiet use default = 1, silent uses 0) | |
Real | dltfdj |
finite-diff step size for computing Jacobian approximation < ( | |
Real | delta0 |
finite-diff step size for gradient differences for H < (a component of some covariance approximations, if desired) < ( | |
Real | dltfdc |
finite-diff step size for function differences for H < ( | |
int | mxfcal |
function-evaluation limit (max_function_evaluations ) | |
int | mxiter |
iteration limit (max_iterations ) | |
Real | rfctol |
relative fn convergence tolerance (convergence_tolerance ) | |
Real | afctol |
absolute fn convergence tolerance (absolute_conv_tol ) | |
Real | xctol |
x-convergence tolerance (x_conv_tol ) | |
Real | sctol |
singular convergence tolerance (singular_conv_tol ) | |
Real | lmaxs |
radius for singular-convergence test (singular_radius ) | |
Real | xftol |
false-convergence tolerance (false_conv_tol ) | |
int | covreq |
kind of covariance required (\c covariance): < 1 or -1 ==> sigma^2 H^-1 J^T J H^-1 < 2 or -2 ==> sigma^2 H^-1 < 3 or -3 ==> sigma^2 (J^T J)^-1 < 1 or 2 ==> use gradient diffs to estimate H < -1 or -2 ==> use function diffs to estimate H < default = 0 (no covariance) | |
int | rdreq |
whether to compute the regression diagnostic vector < ( | |
Real | fprec |
expected response function precision (function_precision ) | |
Real | lmax0 |
initial trust-region radius (initial_trust_radius ) | |
Static Private Attributes | |
static NL2SOLLeastSq * | nl2solInstance |
pointer to the active object instance used within the static evaluator functions | |
Additional Inherited Members | |
![]() | |
static Real | sum_squared_residuals (size_t num_pri_fns, const RealVector &residuals, const RealVector &weights) |
return weighted sum of squared residuals | |
static void | print_residuals (size_t num_terms, const RealVector &best_terms, const RealVector &weights, size_t num_best, size_t best_index, std::ostream &s) |
print num_terms residuals and misfit for final results | |
static void | print_model_resp (size_t num_pri_fns, const RealVector &best_fns, size_t num_best, size_t best_index, std::ostream &s) |
print the original user model resp in the case of data transformations | |
![]() | |
LeastSq (std::shared_ptr< TraitsBase > traits) | |
default constructor | |
LeastSq (ProblemDescDB &problem_db, Model &model, std::shared_ptr< TraitsBase > traits) | |
standard constructor More... | |
LeastSq (unsigned short method_name, Model &model, std::shared_ptr< TraitsBase > traits) | |
alternate "on the fly" constructor | |
~LeastSq () | |
destructor | |
void | initialize_run () |
void | post_run (std::ostream &s) |
void | finalize_run () |
utility function to perform common operations following post_run(); deallocation and resetting of instance pointers More... | |
void | print_results (std::ostream &s, short results_state=FINAL_RESULTS) |
void | get_confidence_intervals (const Variables &native_vars, const Response &iter_resp) |
Calculate confidence intervals on estimated parameters. More... | |
![]() | |
static void | gnewton_set_recast (const Variables &recast_vars, const ActiveSet &recast_set, ActiveSet &sub_model_set) |
conversion of request vector values for the Gauss-Newton Hessian approximation More... | |
![]() | |
size_t | numLeastSqTerms |
number of least squares terms | |
LeastSq * | prevLSqInstance |
pointer containing previous value of leastSqInstance | |
bool | weightFlag |
flag indicating whether weighted least squares is active | |
RealVector | confBoundsLower |
lower bounds for confidence intervals on calibration parameters | |
RealVector | confBoundsUpper |
upper bounds for confidence intervals on calibration parameters | |
RealVector | bestIterPriFns |
storage for iterator best primary functions (which shouldn't be stored in bestResponseArray when there are transformations) | |
bool | retrievedIterPriFns |
whether final primary iterator space functions have been retrieved (possibly by a derived class) | |
![]() | |
static LeastSq * | leastSqInstance |
pointer to LeastSq instance used in static member functions | |
Wrapper class for the NL2SOL nonlinear least squares library.
The NL2SOLLeastSq class provides a wrapper for NL2SOL (TOMS Algorithm 573), in the updated form of Port Library routines dn[fg][b ] from Bell Labs; see http://www.netlib.org/port/readme. The Fortran from Port has been turned into C by f2c. NL2SOL uses a function pointer approach for which passed functions must be either global functions or static member functions.
|
virtual |
core portion of run; implemented by all derived classes and may include pre/post steps in lieu of separate pre/post
Virtual run function for the iterator class hierarchy. All derived classes need to redefine it.
Details on the following subscript values appear in "Usage Summary for Selected Optimization Routines" by David M. Gay, Computing Science Technical Report No. 153, AT&T Bell Laboratories, 1990. http://netlib.bell-labs.com/cm/cs/cstr/153.ps.gz
Reimplemented from Iterator.
References NL2SOLLeastSq::afctol, NL2SOLLeastSq::auxprt, LeastSq::bestIterPriFns, Iterator::bestVariablesArray, Minimizer::boundConstraintFlag, NL2SOLLeastSq::calcj(), NL2SOLLeastSq::calcr(), Model::continuous_lower_bounds(), Model::continuous_upper_bounds(), Model::continuous_variables(), Dakota::copy_data(), NL2SOLLeastSq::covreq, NL2SOLLeastSq::delta0, NL2SOLLeastSq::dltfdc, NL2SOLLeastSq::dltfdj, NL2SOLLeastSq::fprec, Model::gradient_type(), Iterator::iteratedModel, NL2SOLLeastSq::lmax0, NL2SOLLeastSq::lmaxs, NL2SOLLeastSq::mxfcal, NL2SOLLeastSq::mxiter, NL2SOLLeastSq::nl2solInstance, Minimizer::numContinuousVars, LeastSq::numLeastSqTerms, NL2SOLLeastSq::outlev, NL2SOLLeastSq::rdreq, LeastSq::retrievedIterPriFns, NL2SOLLeastSq::rfctol, NL2SOLLeastSq::sctol, Minimizer::speculativeFlag, Minimizer::vendorNumericalGradFlag, NL2SOLLeastSq::xctol, and NL2SOLLeastSq::xftol.