Dakota  Version 6.15
Explore and Predict with Confidence
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Pages
Public Member Functions | List of all members
NPSOLTraits Class Reference

Wrapper class for the NPSOL optimization library. More...

Inheritance diagram for NPSOLTraits:
TraitsBase

Public Member Functions

 NPSOLTraits ()
 default constructor
 
virtual ~NPSOLTraits ()
 destructor
 
virtual bool is_derived ()
 A temporary query used in the refactor.
 
bool supports_continuous_variables ()
 Return the flag indicating whether method supports continuous variables.
 
bool supports_linear_equality ()
 Return the flag indicating whether method supports linear equalities.
 
bool supports_linear_inequality ()
 Return the flag indicating whether method supports linear inequalities.
 
bool supports_nonlinear_equality ()
 Return the flag indicating whether method supports nonlinear equalities.
 
bool supports_nonlinear_inequality ()
 Return the flag indicating whether method supports nonlinear inequalities.
 
NONLINEAR_INEQUALITY_FORMAT nonlinear_inequality_format ()
 Return the format used for nonlinear inequality constraints.
 
- Public Member Functions inherited from TraitsBase
 TraitsBase ()
 default constructor
 
virtual ~TraitsBase ()
 destructor
 
virtual bool requires_bounds ()
 Return the flag indicating whether method requires bounds.
 
virtual LINEAR_INEQUALITY_FORMAT linear_inequality_format ()
 Return the format used for linear inequality constraints.
 
virtual NONLINEAR_EQUALITY_FORMAT nonlinear_equality_format ()
 Return the format used for nonlinear equality constraints.
 
virtual bool expects_nonlinear_inequalities_first ()
 Return the flag indicating whether method expects nonlinear inequality constraints followed by nonlinear equality constraints.
 
virtual bool supports_scaling ()
 Return the flag indicating whether method supports parameter scaling.
 
virtual bool supports_least_squares ()
 Return the flag indicating whether method supports least squares.
 
virtual bool supports_multiobjectives ()
 Return flag indicating whether method supports multiobjective optimization.
 
virtual bool supports_discrete_variables ()
 Return the flag indicating whether method supports continuous variables.
 
virtual bool provides_best_objective ()
 Return the flag indicating whether method provides best objective result.
 
virtual bool provides_best_parameters ()
 Return the flag indicating whether method provides best parameters result.
 
virtual bool provides_best_constraint ()
 Return the flag indicating whether method provides best constraint result.
 
virtual bool provides_final_gradient ()
 Return the flag indicating whether method provides final gradient result.
 
virtual bool provides_final_hessian ()
 Return the flag indicating whether method provides final hessian result.
 

Detailed Description

Wrapper class for the NPSOL optimization library.

The NPSOLOptimizer class provides a wrapper for NPSOL, a Fortran 77 sequential quadratic programming library from Stanford University marketed by Stanford Business Associates. It uses a function pointer approach for which passed functions must be either global functions or static member functions. Any attribute used within static member functions must be either local to that function or accessed through a static pointer.

The user input mappings are as follows: max_function_evaluations is implemented directly in NPSOLOptimizer's evaluator functions since there is no NPSOL parameter equivalent, and max_iterations, convergence_tolerance, output verbosity, verify_level, function_precision, and linesearch_tolerance are mapped into NPSOL's "Major Iteration Limit", "Optimality Tolerance", "Major Print Level" (verbose: Major Print Level = 20; quiet: Major Print Level = 10), "Verify Level", "Function Precision", and "Linesearch Tolerance" parameters, respectively, using NPSOL's npoptn() subroutine (as wrapped by npoptn2() from the sol_optn_wrapper.f file). Refer to [Gill, P.E., Murray, W., Saunders, M.A., and Wright, M.H., 1986] for information on NPSOL's optional input parameters and the npoptn() subroutine. A version of TraitsBase specialized for NPSOL optimizers


The documentation for this class was generated from the following file: