![]() |
Dakota
Version 6.15
Explore and Predict with Confidence
|
Class for the Adaptive Importance Sampling methods within DAKOTA. More...
Public Member Functions | |
NonDAdaptImpSampling (ProblemDescDB &problem_db, Model &model) | |
standard constructor More... | |
NonDAdaptImpSampling (Model &model, unsigned short sample_type, int samples, int seed, const String &rng, bool vary_pattern, unsigned short is_type, bool cdf_flag, bool x_space_model, bool use_model_bounds, bool track_extreme) | |
alternate constructor for on-the-fly instantiations More... | |
~NonDAdaptImpSampling () | |
destructor | |
bool | resize () |
reinitializes iterator based on new variable size | |
void | derived_init_communicators (ParLevLIter pl_iter) |
derived class contributions to initializing the communicators associated with this Iterator instance | |
void | derived_set_communicators (ParLevLIter pl_iter) |
derived class contributions to setting the communicators associated with this Iterator instance | |
void | derived_free_communicators (ParLevLIter pl_iter) |
derived class contributions to freeing the communicators associated with this Iterator instance | |
void | nested_variable_mappings (const SizetArray &c_index1, const SizetArray &di_index1, const SizetArray &ds_index1, const SizetArray &dr_index1, const ShortArray &c_target2, const ShortArray &di_target2, const ShortArray &ds_target2, const ShortArray &dr_target2) |
set primaryA{CV,DIV,DRV}MapIndices, secondaryA{CV,DIV,DRV}MapTargets within derived Iterators; supports computation of higher-level sensitivities in nested contexts (e.g., derivatives of statistics w.r.t. inserted design variables) | |
void | core_run () |
performs adaptive importance sampling and computes probability of failure | |
void | print_results (std::ostream &s, short results_state=FINAL_RESULTS) |
print the final statistics | |
unsigned short | sampling_scheme () const |
return importanceSamplingType | |
int | refinement_samples () const |
return refineSamples | |
void | initialize (const RealVectorArray &full_points, bool x_space_data, size_t resp_index, Real initial_prob, Real failure_threshold) |
initializes data needed for importance sampling: an initial set of points around which to sample, a failure threshold, an initial probability to refine, and flags to control transformations More... | |
void | initialize (const RealMatrix &full_points, bool x_space_data, size_t resp_index, Real initial_prob, Real failure_threshold) |
initializes data needed for importance sampling: an initial set of points around which to sample, a failure threshold, an initial probability to refine, and flags to control transformations More... | |
void | initialize (const RealVector &full_point, bool x_space_data, size_t resp_index, Real initial_prob, Real failure_threshold) |
initializes data needed for importance sampling: an initial point around which to sample, a failure threshold, an initial probability to refine, and flags to control transformations More... | |
Real | final_probability () |
returns the final probability calculated by the importance sampling | |
const RealRealPairArray & | extreme_values () const |
return extremeValues | |
![]() | |
NonDSampling (Model &model, const RealMatrix &sample_matrix) | |
alternate constructor for evaluating and computing statistics for the provided set of samples More... | |
~NonDSampling () | |
destructor | |
void | compute_statistics (const RealMatrix &vars_samples, const IntResponseMap &resp_samples) |
For the input sample set, computes mean, standard deviation, and probability/reliability/response levels (aleatory uncertainties) or intervals (epsitemic or mixed uncertainties) | |
void | compute_intervals (RealRealPairArray &extreme_fns) |
called by compute_statistics() to calculate min/max intervals using allResponses | |
void | compute_intervals (const IntResponseMap &samples) |
called by compute_statistics() to calculate extremeValues from samples | |
void | compute_intervals (RealRealPairArray &extreme_fns, const IntResponseMap &samples) |
called by compute_statistics() to calculate min/max intervals using samples | |
void | compute_moments (const RealVectorArray &fn_samples) |
calculates sample moments from a matrix of observations for a set of QoI | |
void | compute_moments (const IntResponseMap &samples) |
calculate sample moments and confidence intervals from a map of response observations | |
void | compute_moments (const IntResponseMap &samples, RealMatrix &moment_stats, RealMatrix &moment_grads, RealMatrix &moment_conf_ints, short moments_type, const StringArray &labels) |
convert IntResponseMap to RealVectorArray and invoke helpers | |
void | compute_moment_gradients (const RealVectorArray &fn_samples, const RealMatrixArray &grad_samples, const RealMatrix &moment_stats, RealMatrix &moment_grads, short moments_type) |
compute moment_grads from function and gradient samples | |
void | compute_moment_confidence_intervals (const RealMatrix &moment_stats, RealMatrix &moment_conf_ints, const SizetArray &sample_counts, short moments_type) |
compute moment confidence intervals from moment values | |
void | archive_moments (size_t inc_id=0) |
archive moment statistics in results DB | |
void | archive_moment_confidence_intervals (size_t inc_id=0) |
archive moment confidence intervals in results DB | |
void | archive_extreme_responses (size_t inc_id=0) |
archive extreme values (epistemic result) in results DB | |
void | compute_level_mappings (const IntResponseMap &samples) |
called by compute_statistics() to calculate CDF/CCDF mappings of z to p/beta and of p/beta to z as well as PDFs More... | |
void | print_statistics (std::ostream &s) const |
prints the statistics computed in compute_statistics() | |
void | print_intervals (std::ostream &s) const |
prints the intervals computed in compute_intervals() with default qoi_type and moment_labels | |
void | print_intervals (std::ostream &s, String qoi_type, const StringArray &interval_labels) const |
prints the intervals computed in compute_intervals() | |
void | print_moments (std::ostream &s) const |
prints the moments computed in compute_moments() with default qoi_type and moment_labels | |
void | print_moments (std::ostream &s, String qoi_type, const StringArray &moment_labels) const |
prints the moments computed in compute_moments() | |
void | print_wilks_stastics (std::ostream &s) const |
prints the Wilks stastics | |
void | update_final_statistics () |
update finalStatistics from minValues/maxValues, momentStats, and computedProbLevels/computedRelLevels/computedRespLevels | |
void | transform_samples (Pecos::ProbabilityTransformation &nataf, bool x_to_u=true) |
transform allSamples imported by alternate constructor. This is needed since random variable distribution parameters are not updated until run time and an imported sample_matrix is typically in x-space. More... | |
void | transform_samples (Pecos::ProbabilityTransformation &nataf, RealMatrix &sample_matrix, int num_samples=0, bool x_to_u=true) |
transform the specified samples matrix from x to u or u to x | |
unsigned short | sampling_scheme () const |
return sampleType | |
const String & | random_number_generator () const |
return rngName | |
![]() | |
void | requested_levels (const RealVectorArray &req_resp_levels, const RealVectorArray &req_prob_levels, const RealVectorArray &req_rel_levels, const RealVectorArray &req_gen_rel_levels, short resp_lev_tgt, short resp_lev_tgt_reduce, bool cdf_flag, bool pdf_output) |
set requestedRespLevels, requestedProbLevels, requestedRelLevels, requestedGenRelLevels, respLevelTarget, cdfFlag, and pdfOutput (used in combination with alternate ctors) | |
void | print_level_mappings (std::ostream &s) const |
prints the z/p/beta/beta* mappings reflected in {requested,computed}{Resp,Prob,Rel,GenRel}Levels for default qoi_type and qoi_labels | |
void | print_level_mappings (std::ostream &s, String qoi_type, const StringArray &qoi_labels) const |
prints the z/p/beta/beta* mappings reflected in {requested,computed}{Resp,Prob,Rel,GenRel}Levels More... | |
void | print_level_mappings (std::ostream &s, const RealVector &level_maps, bool moment_offset, const String &prepend="") |
print level mapping statistics using optional pre-pend More... | |
bool | pdf_output () const |
get pdfOutput | |
void | pdf_output (bool output) |
set pdfOutput | |
short | final_moments_type () const |
get finalMomentsType | |
void | final_moments_type (short type) |
set finalMomentsType | |
![]() | |
const VariablesArray & | all_variables () |
return the complete set of evaluated variables | |
const RealMatrix & | all_samples () |
return the complete set of evaluated samples | |
const IntResponseMap & | all_responses () const |
return the complete set of computed responses | |
![]() | |
Iterator (std::shared_ptr< TraitsBase > traits=std::shared_ptr< TraitsBase >(new TraitsBase())) | |
default constructor More... | |
Iterator (ProblemDescDB &problem_db, std::shared_ptr< TraitsBase > traits=std::shared_ptr< TraitsBase >(new TraitsBase())) | |
alternate envelope constructor that assigns a representation pointer More... | |
Iterator (ProblemDescDB &problem_db, Model &model, std::shared_ptr< TraitsBase > traits=std::shared_ptr< TraitsBase >(new TraitsBase())) | |
alternate envelope constructor which uses the ProblemDescDB but accepts a model from a higher level (meta-iterator) context, instead of constructing its own More... | |
Iterator (const String &method_string, Model &model, std::shared_ptr< TraitsBase > traits=std::shared_ptr< TraitsBase >(new TraitsBase())) | |
alternate envelope constructor for instantiations by name without the ProblemDescDB More... | |
Iterator (const Iterator &iterator) | |
copy constructor More... | |
virtual | ~Iterator () |
destructor | |
Iterator | operator= (const Iterator &iterator) |
assignment operator | |
virtual void | post_input () |
read tabular data for post-run mode | |
virtual void | reset () |
restore initial state for repeated sub-iterator executions | |
virtual void | nested_response_mappings (const RealMatrix &primary_coeffs, const RealMatrix &secondary_coeffs) |
set primaryResponseCoefficients, secondaryResponseCoefficients within derived Iterators; Necessary for scalarization case in MLMC NonDMultilevelSampling to map scalarization in nested context | |
virtual void | initialize_iterator (int job_index) |
used by IteratorScheduler to set the starting data for a run | |
virtual void | pack_parameters_buffer (MPIPackBuffer &send_buffer, int job_index) |
used by IteratorScheduler to pack starting data for an iterator run | |
virtual void | unpack_parameters_buffer (MPIUnpackBuffer &recv_buffer, int job_index) |
used by IteratorScheduler to unpack starting data for an iterator run | |
virtual void | unpack_parameters_initialize (MPIUnpackBuffer &recv_buffer, int job_index) |
used by IteratorScheduler to unpack starting data and initialize an iterator run | |
virtual void | pack_results_buffer (MPIPackBuffer &send_buffer, int job_index) |
used by IteratorScheduler to pack results data from an iterator run | |
virtual void | unpack_results_buffer (MPIUnpackBuffer &recv_buffer, int job_index) |
used by IteratorScheduler to unpack results data from an iterator run | |
virtual void | update_local_results (int job_index) |
used by IteratorScheduler to update local results arrays | |
virtual bool | accepts_multiple_points () const |
indicates if this iterator accepts multiple initial points. Default return is false. Override to return true if appropriate. | |
virtual void | initial_point (const Variables &pt) |
sets the initial point for this iterator (user-functions mode for which Model updating is not used) | |
virtual void | initial_point (const RealVector &pt) |
sets the initial point (active continuous variables) for this iterator (user-functions mode for which Model updating is not used) | |
virtual void | initial_points (const VariablesArray &pts) |
sets the multiple initial points for this iterator. This should only be used if accepts_multiple_points() returns true. | |
virtual void | variable_bounds (const RealVector &cv_lower_bnds, const RealVector &cv_upper_bnds) |
assign nonlinear inequality and equality constraint allowables for this iterator (user-functions mode for which Model updating is not used) | |
virtual void | linear_constraints (const RealMatrix &lin_ineq_coeffs, const RealVector &lin_ineq_lb, const RealVector &lin_ineq_ub, const RealMatrix &lin_eq_coeffs, const RealVector &lin_eq_tgt) |
assign linear inequality and linear equality constraints for this iterator (user-functions mode for which Model updating is not used) | |
virtual void | nonlinear_constraints (const RealVector &nln_ineq_lb, const RealVector &nln_ineq_ub, const RealVector &nln_eq_tgt) |
assign nonlinear inequality and equality constraint allowables for this iterator (user-functions mode for which Model updating is not used) | |
virtual void | initialize_graphics (int iterator_server_id=1) |
initialize the 2D graphics window and the tabular graphics data More... | |
virtual unsigned short | uses_method () const |
return name of any enabling iterator used by this iterator More... | |
virtual void | method_recourse () |
perform a method switch, if possible, due to a detected conflict | |
virtual void | sampling_increment () |
increment to next in sequence of refinement samples | |
virtual IntIntPair | estimate_partition_bounds () |
estimate the minimum and maximum partition sizes that can be utilized by this Iterator | |
virtual void | declare_sources () |
Declare sources to the evaluations database. | |
void | init_communicators (ParLevLIter pl_iter) |
initialize the communicators associated with this Iterator instance | |
void | set_communicators (ParLevLIter pl_iter) |
set the communicators associated with this Iterator instance | |
void | free_communicators (ParLevLIter pl_iter) |
free the communicators associated with this Iterator instance | |
void | resize_communicators (ParLevLIter pl_iter, bool reinit_comms) |
Resize the communicators. This is called from the letter's resize() | |
void | parallel_configuration_iterator (ParConfigLIter pc_iter) |
set methodPCIter | |
ParConfigLIter | parallel_configuration_iterator () const |
return methodPCIter | |
void | run (ParLevLIter pl_iter) |
invoke set_communicators(pl_iter) prior to run() | |
void | run () |
orchestrate initialize/pre/core/post/finalize phases More... | |
void | assign_rep (std::shared_ptr< Iterator > iterator_rep) |
replaces existing letter with a new one More... | |
void | iterated_model (const Model &model) |
set the iteratedModel (iterators and meta-iterators using a single model instance) | |
Model & | iterated_model () |
return the iteratedModel (iterators & meta-iterators using a single model instance) | |
ProblemDescDB & | problem_description_db () const |
return the problem description database (probDescDB) | |
ParallelLibrary & | parallel_library () const |
return the parallel library (parallelLib) | |
void | method_name (unsigned short m_name) |
set the method name to an enumeration value | |
unsigned short | method_name () const |
return the method name via its native enumeration value | |
void | method_string (const String &m_str) |
set the method name by string | |
String | method_string () const |
return the method name by string | |
String | method_enum_to_string (unsigned short method_enum) const |
convert a method name enumeration value to a string | |
unsigned short | method_string_to_enum (const String &method_str) const |
convert a method name string to an enumeration value | |
String | submethod_enum_to_string (unsigned short submethod_enum) const |
convert a sub-method name enumeration value to a string | |
const String & | method_id () const |
return the method identifier (methodId) | |
int | maximum_evaluation_concurrency () const |
return the maximum evaluation concurrency supported by the iterator | |
void | maximum_evaluation_concurrency (int max_conc) |
set the maximum evaluation concurrency supported by the iterator | |
size_t | maximum_iterations () const |
return the maximum iterations for this iterator | |
void | maximum_iterations (size_t max_iter) |
set the maximum iterations for this iterator | |
void | convergence_tolerance (Real conv_tol) |
set the method convergence tolerance (convergenceTol) | |
Real | convergence_tolerance () const |
return the method convergence tolerance (convergenceTol) | |
void | output_level (short out_lev) |
set the method output level (outputLevel) | |
short | output_level () const |
return the method output level (outputLevel) | |
void | summary_output (bool summary_output_flag) |
Set summary output control; true enables evaluation/results summary. | |
size_t | num_final_solutions () const |
return the number of solutions to retain in best variables/response arrays | |
void | num_final_solutions (size_t num_final) |
set the number of solutions to retain in best variables/response arrays | |
void | active_set (const ActiveSet &set) |
set the default active set (for use with iterators that employ evaluate_parameter_sets()) | |
const ActiveSet & | active_set () const |
return the default active set (used by iterators that employ evaluate_parameter_sets()) | |
void | active_set_request_vector (const ShortArray &asv) |
return the default active set request vector (used by iterators that employ evaluate_parameter_sets()) | |
const ShortArray & | active_set_request_vector () const |
return the default active set request vector (used by iterators that employ evaluate_parameter_sets()) | |
void | active_set_request_values (short asv_val) |
return the default active set request vector (used by iterators that employ evaluate_parameter_sets()) | |
void | sub_iterator_flag (bool si_flag) |
set subIteratorFlag (and update summaryOutputFlag if needed) | |
bool | is_null () const |
function to check iteratorRep (does this envelope contain a letter?) | |
std::shared_ptr< Iterator > | iterator_rep () const |
returns iteratorRep for access to derived class member functions that are not mapped to the top Iterator level | |
virtual void | eval_tag_prefix (const String &eval_id_str) |
set the hierarchical eval ID tag prefix More... | |
std::shared_ptr< TraitsBase > | traits () const |
returns methodTraits for access to derived class member functions that are not mapped to the top TraitsBase level | |
bool | top_level () |
Return whether the iterator is the top level iterator. | |
void | top_level (const bool &tflag) |
Set the iterator's top level flag. | |
Private Member Functions | |
void | select_rep_points (const RealVectorArray &var_samples_u, const RealVector &fn_samples) |
select representative points from a set of samples | |
void | converge_statistics (bool cov_flag) |
iteratively generate samples and select representative points until probability and (optionally) coefficient of variation converge | |
void | generate_samples (RealVectorArray &var_samples_u) |
generate a set of samples based on multimodal sampling density | |
void | evaluate_samples (const RealVectorArray &var_samples_u, RealVector &fn_samples) |
evaluate the model at the sample points and store the responses | |
void | calculate_statistics (const RealVectorArray &var_samples_u, const RealVector &fn_samples, size_t total_samples, Real &sum_prob, Real &prob, bool compute_cov, Real &sum_var, Real &cov) |
calculate the probability of exceeding the failure threshold and the coefficent of variation (if requested) | |
Real | distance (const RealVector &a, const RealVector &b) |
compute Euclidean distance between points a and b | |
Real | recentered_density (const RealVector &sample_point) |
compute density between a representative point and a sample point, assuming standard normal | |
Private Attributes | |
Model | uSpaceModel |
importance sampling is performed in standardized probability space. This u-space model is either passed in (alternate constructor for helper AIS) or constructed using ProbabilityTransformModel (standard constructor for stand-alone AIS) | |
unsigned short | importanceSamplingType |
integration type (is, ais, mmais) provided by input specification | |
bool | initLHS |
flag to identify if initial points are generated from an LHS sample | |
bool | useModelBounds |
flag to control if the sampler should respect the model bounds | |
bool | invertProb |
flag for inversion of probability values using 1.-p | |
bool | trackExtremeValues |
flag for tracking min/max values encountered when evaluating samples | |
int | refineSamples |
size of sample batch within each refinement iteration | |
size_t | respFnIndex |
the active response function index in the model to be sampled | |
RealVector | designPoint |
design subset for which uncertain subset is being sampled | |
RealVectorArray | initPointsU |
the original set of u-space samples passed in initialize() | |
RealVectorArray | repPointsU |
the set of representative points in u-space around which to sample | |
RealVector | repWeights |
the weight associated with each representative point | |
Real | probEstimate |
the probability estimate that is iteratively refined by importance sampling | |
Real | failThresh |
the failure threshold (z-bar) for the problem. | |
Additional Inherited Members | |
![]() | |
static void | compute_moments (const RealVectorArray &fn_samples, SizetArray &sample_counts, RealMatrix &moment_stats, short moments_type, const StringArray &labels) |
core compute_moments() implementation with all data as inputs | |
static void | compute_moments (const RealVectorArray &fn_samples, RealMatrix &moment_stats, short moments_type) |
core compute_moments() implementation with all data as inputs | |
static void | compute_moments (const RealMatrix &fn_samples, RealMatrix &moment_stats, short moments_type) |
alternate RealMatrix samples API for use by external clients | |
static void | print_moments (std::ostream &s, const RealMatrix &moment_stats, const RealMatrix moment_cis, String qoi_type, short moments_type, const StringArray &moment_labels, bool print_cis) |
core print moments that can be called without object | |
static int | compute_wilks_sample_size (unsigned short order, Real alpha, Real beta, bool twosided=false) |
calculates the number of samples using the Wilks formula Static so I can test without instantiating a NonDSampling object - RWH | |
static Real | compute_wilks_residual (unsigned short order, int nsamples, Real alpha, Real beta, bool twosided) |
Helper function - calculates the Wilks residual. | |
static Real | compute_wilks_alpha (unsigned short order, int nsamples, Real beta, bool twosided=false) |
calculates the alpha paramter given number of samples using the Wilks formula Static so I can test without instantiating a NonDSampling object - RWH | |
static Real | compute_wilks_beta (unsigned short order, int nsamples, Real alpha, bool twosided=false) |
calculates the beta paramter given number of samples using the Wilks formula Static so I can test without instantiating a NonDSampling object - RWH | |
static Real | get_wilks_alpha_min () |
Get the lower and upper bounds supported by Wilks bisection solves. | |
static Real | get_wilks_alpha_max () |
static Real | get_wilks_beta_min () |
static Real | get_wilks_beta_max () |
![]() | |
NonDSampling (ProblemDescDB &problem_db, Model &model) | |
constructor More... | |
NonDSampling (unsigned short method_name, Model &model, unsigned short sample_type, int samples, int seed, const String &rng, bool vary_pattern, short sampling_vars_mode) | |
alternate constructor for sample generation and evaluation "on the fly" More... | |
NonDSampling (unsigned short sample_type, int samples, int seed, const String &rng, const RealVector &lower_bnds, const RealVector &upper_bnds) | |
alternate constructor for sample generation "on the fly" More... | |
NonDSampling (unsigned short sample_type, int samples, int seed, const String &rng, const RealVector &means, const RealVector &std_devs, const RealVector &lower_bnds, const RealVector &upper_bnds, RealSymMatrix &correl) | |
alternate constructor for sample generation of correlated normals "on the fly" More... | |
void | pre_run () |
pre-run portion of run (optional); re-implemented by Iterators which can generate all Variables (parameter sets) a priori More... | |
void | core_run () |
int | num_samples () const |
void | sampling_reset (int min_samples, bool all_data_flag, bool stats_flag) |
resets number of samples and sampling flags More... | |
void | sampling_reference (int samples_ref) |
set reference number of samples, which is a lower bound during reset | |
void | random_seed (int seed) |
assign randomSeed | |
void | vary_pattern (bool pattern_flag) |
set varyPattern | |
void | get_parameter_sets (Model &model) |
Uses lhsDriver to generate a set of samples from the distributions/bounds defined in the incoming model. More... | |
void | get_parameter_sets (Model &model, const int num_samples, RealMatrix &design_matrix) |
Uses lhsDriver to generate a set of samples from the distributions/bounds defined in the incoming model and populates the specified design matrix. More... | |
void | get_parameter_sets (Model &model, const int num_samples, RealMatrix &design_matrix, bool write_msg) |
core of get_parameter_sets that accepts message print control | |
void | get_parameter_sets (const RealVector &lower_bnds, const RealVector &upper_bnds) |
Uses lhsDriver to generate a set of uniform samples over lower_bnds/upper_bnds. More... | |
void | get_parameter_sets (const RealVector &means, const RealVector &std_devs, const RealVector &lower_bnds, const RealVector &upper_bnds, RealSymMatrix &correl) |
Uses lhsDriver to generate a set of normal samples. More... | |
void | update_model_from_sample (Model &model, const Real *sample_vars) |
Override default update of continuous vars only. | |
void | sample_to_variables (const Real *sample_vars, Variables &vars) |
override default mapping of continuous variables only | |
void | variables_to_sample (const Variables &vars, Real *sample_vars) |
override default mapping of continuous variables only | |
const RealVector & | response_error_estimates () const |
return error estimates associated with each of the finalStatistics | |
void | initialize_lhs (bool write_message, int num_samples) |
increments numLHSRuns, sets random seed, and initializes lhsDriver | |
void | active_set_mapping () |
in the case of sub-iteration, map from finalStatistics.active_set() requests to activeSet used in evaluate_parameter_sets() More... | |
void | mode_counts (const Variables &vars, size_t &cv_start, size_t &num_cv, size_t &div_start, size_t &num_div, size_t &dsv_start, size_t &num_dsv, size_t &drv_start, size_t &num_drv) const |
compute sampled subsets (all, active, uncertain) within all variables (acv/adiv/adrv) from samplingVarsMode and model More... | |
void | mode_bits (const Variables &vars, BitArray &active_vars, BitArray &active_corr) const |
define subset views for sampling modes | |
![]() | |
static void | gnewton_set_recast (const Variables &recast_vars, const ActiveSet &recast_set, ActiveSet &sub_model_set) |
conversion of request vector values for the Gauss-Newton Hessian approximation More... | |
![]() | |
int | seedSpec |
the user seed specification (default is 0) | |
int | randomSeed |
the current seed | |
const int | samplesSpec |
initial specification of number of samples | |
int | samplesRef |
reference number of samples updated for refinement | |
int | numSamples |
the current number of samples to evaluate | |
String | rngName |
name of the random number generator | |
unsigned short | sampleType |
the sample type: default, random, lhs, < incremental random, or incremental lhs | |
bool | wilksFlag |
flags use of Wilks formula to calculate num samples | |
unsigned short | wilksOrder |
Real | wilksAlpha |
Real | wilksBeta |
short | wilksSidedness |
RealMatrix | momentGrads |
gradients of standardized or central moments of response functions, as determined by finalMomentsType. Calculated in compute_moments() and indexed as (var,moment) when moment id runs from 1:2*numFunctions. | |
RealVector | finalStatErrors |
standard errors (estimator std deviation) for each of the finalStatistics | |
int | samplesIncrement |
current increment in a sequence of samples | |
Pecos::LHSDriver | lhsDriver |
the C++ wrapper for the F90 LHS library | |
bool | statsFlag |
flags computation/output of statistics | |
bool | allDataFlag |
flags update of allResponses < (allVariables or allSamples already defined) | |
short | samplingVarsMode |
the sampling mode: ALEATORY_UNCERTAIN{,_UNIFORM}, EPISTEMIC_UNCERTAIN{,_UNIFORM}, UNCERTAIN{,_UNIFORM}, ACTIVE{,_UNIFORM}, or ALL{,_UNIFORM}. This is a secondary control on top of the variables view that allows sampling over subsets of variables that may differ from the view. | |
short | sampleRanksMode |
mode for input/output of LHS sample ranks: IGNORE_RANKS, GET_RANKS, SET_RANKS, or SET_GET_RANKS | |
bool | varyPattern |
flag for generating a sequence of seed values within multiple get_parameter_sets() calls so that these executions (e.g., for SBO/SBNLS) are not repeated, but are still repeatable | |
RealMatrix | sampleRanks |
data structure to hold the sample ranks | |
SensAnalysisGlobal | nonDSampCorr |
initialize statistical post processing | |
bool | backfillFlag |
flags whether to use backfill to enforce uniqueness of discrete LHS samples | |
RealRealPairArray | extremeValues |
Minimum and maximum values of response functions for epistemic calculations (calculated in compute_intervals()),. | |
bool | functionMomentsComputed |
Function moments have been computed; used to determine whether to archive the moments. | |
![]() | |
static NonD * | nondInstance |
pointer to the active object instance used within static evaluator functions in order to avoid the need for static data | |
Class for the Adaptive Importance Sampling methods within DAKOTA.
The NonDAdaptImpSampling implements the multi-modal adaptive importance sampling used for reliability calculations. (eventually we will want to broaden this). Need to add more detail to this description.
NonDAdaptImpSampling | ( | ProblemDescDB & | problem_db, |
Model & | model | ||
) |
standard constructor
This is the primary constructor. It accepts a Model reference. It will perform refinement for all response QOI and all probability levels.
References Dakota::abort_handler(), Model::assign_rep(), NonD::finalMomentsType, ProblemDescDB::get_iv(), Iterator::iteratedModel, NonDSampling::numSamples, Iterator::probDescDB, NonDAdaptImpSampling::refineSamples, NonDSampling::sampleType, NonDSampling::statsFlag, NonDAdaptImpSampling::useModelBounds, and NonDAdaptImpSampling::uSpaceModel.
NonDAdaptImpSampling | ( | Model & | model, |
unsigned short | sample_type, | ||
int | refine_samples, | ||
int | refine_seed, | ||
const String & | rng, | ||
bool | vary_pattern, | ||
unsigned short | is_type, | ||
bool | cdf_flag, | ||
bool | x_space_model, | ||
bool | use_model_bounds, | ||
bool | track_extreme | ||
) |
alternate constructor for on-the-fly instantiations
This is an alternate constructor for instantiations on the fly using a Model but no ProblemDescDB. It will perform refinement for one response QOI and one probability level (passed in initialize()).
References Model::assign_rep(), NonD::cdfFlag, NonDSampling::extremeValues, NonD::finalMomentsType, Iterator::maxEvalConcurrency, Analyzer::numFunctions, NonDAdaptImpSampling::refineSamples, NonDAdaptImpSampling::trackExtremeValues, NonDAdaptImpSampling::useModelBounds, and NonDAdaptImpSampling::uSpaceModel.
void initialize | ( | const RealVectorArray & | acv_points, |
bool | x_space_data, | ||
size_t | resp_index, | ||
Real | initial_prob, | ||
Real | failure_threshold | ||
) |
initializes data needed for importance sampling: an initial set of points around which to sample, a failure threshold, an initial probability to refine, and flags to control transformations
Initializes data using a vector array of starting points.
References NonDAdaptImpSampling::designPoint, NonDAdaptImpSampling::failThresh, NonDAdaptImpSampling::initPointsU, NonDAdaptImpSampling::invertProb, NonD::numCAUV, Model::probability_transformation(), NonDAdaptImpSampling::probEstimate, NonDAdaptImpSampling::respFnIndex, NonD::startCAUV, and NonDAdaptImpSampling::uSpaceModel.
Referenced by NonDAdaptImpSampling::core_run().
void initialize | ( | const RealMatrix & | acv_points, |
bool | x_space_data, | ||
size_t | resp_index, | ||
Real | initial_prob, | ||
Real | failure_threshold | ||
) |
initializes data needed for importance sampling: an initial set of points around which to sample, a failure threshold, an initial probability to refine, and flags to control transformations
Initializes data using a matrix of starting points.
References NonDAdaptImpSampling::designPoint, NonDAdaptImpSampling::failThresh, NonDAdaptImpSampling::initPointsU, NonDAdaptImpSampling::invertProb, NonD::numCAUV, Analyzer::numContinuousVars, Model::probability_transformation(), NonDAdaptImpSampling::probEstimate, NonDAdaptImpSampling::respFnIndex, NonD::startCAUV, and NonDAdaptImpSampling::uSpaceModel.
void initialize | ( | const RealVector & | acv_point, |
bool | x_space_data, | ||
size_t | resp_index, | ||
Real | initial_prob, | ||
Real | failure_threshold | ||
) |
initializes data needed for importance sampling: an initial point around which to sample, a failure threshold, an initial probability to refine, and flags to control transformations
Initializes data using only one starting point.
References NonDAdaptImpSampling::designPoint, NonDAdaptImpSampling::failThresh, NonDAdaptImpSampling::initPointsU, NonDAdaptImpSampling::invertProb, NonD::numCAUV, Model::probability_transformation(), NonDAdaptImpSampling::probEstimate, NonDAdaptImpSampling::respFnIndex, NonD::startCAUV, and NonDAdaptImpSampling::uSpaceModel.