![]() |
Dakota Reference Manual
Version 6.2
Large-Scale Engineering Optimization and Uncertainty Analysis
|
Finds optimal variable values using adaptive mesh-based search
Alias: none
Argument(s): none
Required/Optional | Description of Group | Dakota Keyword | Dakota Keyword Description | |
---|---|---|---|---|
Optional | function_precision | Specify the maximum precision of the analysis code responses | ||
Optional | seed | Seed of the random number generator | ||
Optional | history_file | Name of file where mesh adaptive search records all evaluation points. | ||
Optional | display_format | Information to be reported from mesh adaptive search's internal records. | ||
Optional | variable_neighborhood_search | Percentage of evaluations to do to escape local minima. | ||
Optional | neighbor_order | Number of dimensions in which to perturb categorical variables. | ||
Optional | display_all_evaluations | Shows mesh adaptive search's internally held list of all evaluations | ||
Optional | linear_inequality_constraint_matrix | Define coefficients of the linear inequality constraints | ||
Optional | linear_inequality_lower_bounds | Define lower bounds for the linear inequality constraint | ||
Optional | linear_inequality_upper_bounds | Define upper bounds for the linear inequality constraint | ||
Optional | linear_inequality_scale_types | Specify how each linear inequality constraint is scaled | ||
Optional | linear_inequality_scales | Define the characteristic values to scale linear inequalities | ||
Optional | linear_equality_constraint_matrix | Define coefficients of the linear equalities | ||
Optional | linear_equality_targets | Define target values for the linear equality constraints | ||
Optional | linear_equality_scale_types | Specify how each linear equality constraint is scaled | ||
Optional | linear_equality_scales | Define the characteristic values to scale linear equalities | ||
Optional | model_pointer | Identifier for model block to be used by a method |
The mesh adaptive direct search algorithm[8] is a derivative-free generalized pattern search in which the set of points evaluated becomes increasingly dense, leading to good convergence properties. It can handle unconstrained problems as well as those with bound constraints and general nonlinear constraints. Furthermore, it can handle continuous, discrete, and categorical variables.
Default Behavior
By default, mesh_adaptive_search
operates on design variables. The types of variables can be expanded through the use of the active
keyword in the variables block in the Dakota input file. Categorical variables, however, must be limited to design variables.
Expected Outputs
The best objective function value achieved and associated parameter and constraint values can be found at the end of the Dakota output. The method's internally summarized iteration history will appear in the screen output. It also generates a history file containing a list of all function evaluations done.
Additional Discussion
The mesh adaptive direct search method is made available in Dakota through the NOMAD software[1], available to the public under the GNU LGPL from http://www.gerad.ca/nomad.
The following is an example of a Dakota input file that makes use of mesh_adaptive_search
to optimize the textbook function.
method, mesh_adaptive_search seed = 1234 variables, continuous_design = 3 initial_point -1.0 1.5 2.0 upper_bounds 10.0 10.0 10.0 lower_bounds -10.0 -10.0 -10.0 descriptors 'x1' 'x2' 'x3' interface, direct analysis_driver = 'text_book' responses, objective_functions = 1 no_gradients no_hessians \end verbatim The best function value and associated parameters are found at the end of the %Dakota output. \verbatim <<<<< Function evaluation summary: 674 total (674 new, 0 duplicate) <<<<< Best parameters = 1.0000000000e+00 x1 1.0000000000e+00 x2 1.0000000000e+00 x3 <<<<< Best objective function = 1.0735377280e-52 <<<<< Best data captured at function evaluation 658
A NOMAD-generated iteration summary is also printed to the screen.
MADS run { BBE OBJ 1 17.0625000000 2 1.0625000000 13 0.0625000000 24 0.0002441406 41 0.0000314713 43 0.0000028610 54 0.0000000037 83 0.0000000000 105 0.0000000000 112 0.0000000000 114 0.0000000000 135 0.0000000000 142 0.0000000000 153 0.0000000000 159 0.0000000000 171 0.0000000000 193 0.0000000000 200 0.0000000000 207 0.0000000000 223 0.0000000000 229 0.0000000000 250 0.0000000000 266 0.0000000000 282 0.0000000000 288 0.0000000000 314 0.0000000000 320 0.0000000000 321 0.0000000000 327 0.0000000000 354 0.0000000000 361 0.0000000000 372 0.0000000000 373 0.0000000000 389 0.0000000000 400 0.0000000000 417 0.0000000000 444 0.0000000000 459 0.0000000000 461 0.0000000000 488 0.0000000000 492 0.0000000000 494 0.0000000000 501 0.0000000000 518 0.0000000000 530 0.0000000000 537 0.0000000000 564 0.0000000000 566 0.0000000000 583 0.0000000000 590 0.0000000000 592 0.0000000000 604 0.0000000000 606 0.0000000000 629 0.0000000000 636 0.0000000000 658 0.0000000000 674 0.0000000000 } end of run (mesh size reached NOMAD precision) blackbox evaluations : 674 best feasible solution : ( 1 1 1 ) h=0 f=1.073537728e-52