Dakota Reference Manual  Version 6.2
Large-Scale Engineering Optimization and Uncertainty Analysis
 All Pages
optpp_pds


Simplex-based derivative free optimization method

Topics

This keyword is related to the topics:

Specification

Alias: none

Argument(s): none

Required/Optional Description of Group Dakota Keyword Dakota Keyword Description
Optional search_scheme_size Number of points to be used in the direct search template
Optional linear_inequality_constraint_matrix Define coefficients of the linear inequality constraints
Optional linear_inequality_lower_bounds Define lower bounds for the linear inequality constraint
Optional linear_inequality_upper_bounds Define upper bounds for the linear inequality constraint
Optional linear_inequality_scale_types Specify how each linear inequality constraint is scaled
Optional linear_inequality_scales Define the characteristic values to scale linear inequalities
Optional linear_equality_constraint_matrix Define coefficients of the linear equalities
Optional linear_equality_targets Define target values for the linear equality constraints
Optional linear_equality_scale_types Specify how each linear equality constraint is scaled
Optional linear_equality_scales Define the characteristic values to scale linear equalities
Optional model_pointer

Identifier for model block to be used by a method

Description

The direct search algorithm, PDS (parallel direct search method), supports bound constraints.

The PDS method can directly exploit asynchronous evaluations; however, this capability has not yet been implemented in Dakota.

See package_optpp for info related to all optpp methods.

See Also

These keywords may also be of interest: