![]() |
Dakota Reference Manual
Version 6.2
Large-Scale Engineering Optimization and Uncertainty Analysis
|
Specifies the parameter set to be iterated by a particular method.
This keyword is related to the topics:
Alias: none
Argument(s): none
Required/Optional | Description of Group | Dakota Keyword | Dakota Keyword Description | |
---|---|---|---|---|
Optional | id_variables | Name the variables block; helpful when there are multiple | ||
Optional | active | Set the active variables view a method will see | ||
Optional (Choose One) | Group 1 | mixed | Maintain continuous/discrete variable distinction | |
relaxed | Allow treatment of discrete variables as continuous | |||
Optional | continuous_design | Continuous design variables; each defined by a real interval | ||
Optional | discrete_design_range | Discrete design variables; each defined by an integer interval | ||
Optional | discrete_design_set | Set-valued discrete design variables | ||
Optional | normal_uncertain | Aleatory uncertain variable - normal (Gaussian) | ||
Optional | lognormal_uncertain | Aleatory uncertain variable - lognormal | ||
Optional | uniform_uncertain | Aleatory uncertain variable - uniform | ||
Optional | loguniform_uncertain | Aleatory uncertain variable - loguniform | ||
Optional | triangular_uncertain | Aleatory uncertain variable - triangular | ||
Optional | exponential_uncertain | Aleatory uncertain variable - exponential | ||
Optional | beta_uncertain | Aleatory uncertain variable - beta | ||
Optional | gamma_uncertain | Aleatory uncertain variable - gamma | ||
Optional | gumbel_uncertain | Aleatory uncertain variable - gumbel | ||
Optional | frechet_uncertain | Aleatory uncertain variable - Frechet | ||
Optional | weibull_uncertain | Aleatory uncertain variable - Weibull | ||
Optional | histogram_bin_uncertain | Aleatory uncertain variable - continuous histogram | ||
Optional | poisson_uncertain | Aleatory uncertain discrete variable - Poisson | ||
Optional | binomial_uncertain | Aleatory uncertain discrete variable - binomial | ||
Optional | negative_binomial_uncertain | Aleatory uncertain discrete variable - negative binomial | ||
Optional | geometric_uncertain | Aleatory uncertain discrete variable - geometric | ||
Optional | hypergeometric_uncertain | Aleatory uncertain discrete variable - hypergeometric | ||
Optional | histogram_point_uncertain | Aleatory uncertain variable - discrete histogram | ||
Optional | uncertain_correlation_matrix | Correlation among aleatory uncertain variables | ||
Optional | continuous_interval_uncertain | Epistemic uncertain variable - values from one or more continuous intervals | ||
Optional | discrete_interval_uncertain | Epistemic uncertain variable - values from one or more discrete intervals | ||
Optional | discrete_uncertain_set | Set-valued discrete uncertain variables | ||
Optional | continuous_state | Continuous state variables | ||
Optional | discrete_state_range | Discrete state variables; each defined by an integer interval | ||
Optional | discrete_state_set | Set-valued discrete state variables |
The variables
specification in a Dakota input file specifies the parameter set to be iterated by a particular method.
In the case of
To accommodate these different studies, Dakota supports different:
Use the variables page to browse the available variables by type and domain.
Variable Types
initial_value
is used as the only value for the state variable for all other methods, unless active
state
is invoked.Variable Domains
Continuous variables are defined by bounds. Discrete variables can be defined in one of three ways, which are discussed on the page discrete_variables.
Ordering of Variables
The ordering of variables is important, and a consistent ordering is employed throughout the Dakota software. The ordering is shown in dakota.input.summary and can be summarized as:
Ordering of variable types below this granularity (e.g., from normal to histogram bin within aleatory uncertain - continuous ) is defined somewhat arbitrarily, but is enforced consistently throughout the code.
Active Variables
The reason variable types exist is that methods have the capability to treat variable types differently. All methods have default behavior that determines which variable types are "active" and will be assigned values by the method. For example, optimization methods will only vary the design variables - by default.
The default behavior should be described on each method page, or on topics pages that relate to classes of methods. In addition, the default behavior can be modified using the active keyword.
Several examples follow. In the first example, two continuous design variables are specified:
variables, continuous_design = 2 initial_point 0.9 1.1 upper_bounds 5.8 2.9 lower_bounds 0.5 -2.9 descriptors 'radius' 'location'
In the next example, defaults are employed. In this case, initial_point
will default to a vector of 0
. values, upper_bounds
will default to vector values of DBL_MAX
(the maximum number representable in double precision for a particular platform, as defined in the platform's float.h
C header file), lower_bounds
will default to a vector of -DBL_MAX
values, and descriptors
will default to a vector of 'cdv_i'
strings, where i
ranges from one to two:
variables, continuous_design = 2
In the following example, the syntax for a normal-lognormal distribution is shown. One normal and one lognormal uncertain variable are completely specified by their means and standard deviations. In addition, the dependence structure between the two variables is specified using the uncertain_correlation_matrix
.
variables, normal_uncertain = 1 means = 1.0 std_deviations = 1.0 descriptors = 'TF1n' lognormal_uncertain = 1 means = 2.0 std_deviations = 0.5 descriptors = 'TF2ln' uncertain_correlation_matrix = 1.0 0.2 0.2 1.0
An example of the syntax for a state variables specification follows:
variables, continuous_state = 1 initial_state 4.0 lower_bounds 0.0 upper_bounds 8.0 descriptors 'CS1' discrete_state_range = 1 initial_state 104 lower_bounds 100 upper_bounds 110 descriptors 'DS1'
And in a more advanced example, a variables specification containing a set identifier, continuous and discrete design variables, normal and uniform uncertain variables, and continuous and discrete state variables is shown:
variables, id_variables = 'V1' continuous_design = 2 initial_point 0.9 1.1 upper_bounds 5.8 2.9 lower_bounds 0.5 -2.9 descriptors 'radius' 'location' discrete_design_range = 1 initial_point 2 upper_bounds 1 lower_bounds 3 descriptors 'material' normal_uncertain = 2 means = 248.89, 593.33 std_deviations = 12.4, 29.7 descriptors = 'TF1n' 'TF2n' uniform_uncertain = 2 lower_bounds = 199.3, 474.63 upper_bounds = 298.5, 712. descriptors = 'TF1u' 'TF2u' continuous_state = 2 initial_state = 1.e-4 1.e-6 descriptors = 'EPSIT1' 'EPSIT2' discrete_state_set_int = 1 initial_state = 100 set_values = 100 212 375 descriptors = 'load_case'