Dakota Reference Manual  Version 6.4
Large-Scale Engineering Optimization and Uncertainty Analysis
 All Pages

Aleatory uncertain variable - uniform


This keyword is related to the topics:


Alias: none

Argument(s): INTEGER

Default: no uniform uncertain variables

Required/Optional Description of Group Dakota Keyword Dakota Keyword Description
Required lower_bounds Specify minimum values
Required upper_bounds Specify maximium values
Optional initial_point

Initial values

Optional descriptors

Labels for the variables


Within the uniform uncertain optional group specification, the number of uniform uncertain variables and the distribution lower and upper bounds are required specifications, and variable descriptors is an optional specification. The uniform distribution has the density function:

\[f(x) = \frac{1}{U_U-L_U}\]

where $U_U$ and $L_U$ are the upper and lower bounds of the uniform distribution, respectively. The mean of the uniform distribution is $\frac{U_U+L_U}{2}$ and the variance is $\frac{(U_U-L_U)^2}{12}$.


Note that this distribution is a special case of the more general beta distribution.