Center for Computing Research

@ National
Laboratories

Exceptional

service
in the
national

interest

SAND2015-6865 TR

Dakota Software Training

Parallelism

http://dakota.sandia.gov

W

; ¥, U.S. DEPARTMENT OF ' W B A
“©/ENERGY /MVAAM™S

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

&
Module Goals rh

Laboratories

= Discuss what to consider when designing a parallelized study

= Understand what Dakota provides and its limitations

= Be able to choose the best parallelism approach

= Know how to configure Dakota and your interface for your
parallelism approach

Opportunities for parallelization &

Sandia
ll'l National
Laboratories

Example 1: Parallel simulation

= The user’s simulation code has been parallelized using
MPI, OpenMP, GPU, etc.

Example 2: Gradient-based optimization
= Finite differencing can be performed in parallel

Example 3: Sampling
= Every sample is independent of all the others

<
o
=
@D
O
o
D
-
%2,
P
Q
—
L.
-
®
Q.

Example 4: Multi-start optimization
= Every optimization is independent of all the others

Things to Consider m@

Laboratories

= Available Concurrency
= Adaptive vs. single pass algorithms

= Characteristics of your simulation
= Serial or parallel
= Parallel scaling/efficiency
= Memory requirements
= Duration

= Characteristics of computing resource
= Number of cores and memory
= Time limits

= Onsome HPCs, “fork” and “system” are disallowed

Local Parallelism @

[l‘ National
Laboratories

asynchrono
evaluation_conc

, ev“al.ll
:Eiiig}!!!!!!IIIIIIIII’

One instance of Dakota launches multiple instances of the analysis driver

« Simple and portable
* Works with either seri

/\\\
al/ Evaluations will not be launched across
or parallel

. ; y a network (Hence “local”)
simulation codes -~ ~~

« Method of ch\b'ége/fér desktop computing

« lterators dQsequeﬁtially /

Serial versus Parallel Simulation m

Laboratories
= Suppose your simulation _
has been parallelized and Evaluation Cores per
p . Concurrency Evaluation
your workstation has 24 o
cores. —

= Naturally, you want to use
all of them and minimize
how long your Dakota
study will take.

1
2
3
4
6
8

= Which combination is 12
best? 24

R N W B~ O

Serial versus Parallel Simulation &

Sandia
ll'l National
Laboratories

= Parallel efficiency Amdahl’s Law
24.00 |
= Fewer cores are better —100.0%
. [0 /
= Memory requirements 2000 zzz; //
= Upper limit on number of o 0% T —o5.0% /
concurrent evaluations § oo L| ——90.0% /
Q
. /
= Available Concurrency & -
8.00 /"'“ I
= Another upper limit on —
- A/_———
number of concurrent
evaluations 0.00
0 4 8 12 16 20 24

Number of Cores

Parallel Dakota @

Sandia
ﬂ'l National
Laboratories

em 2

‘H‘Iﬂ
eval2 eval5 eval9
evm ‘ev .10
* mealll

Dakota (rank C

Dakota launched in parallel; each “rank” runs analysis drivers

» Still pretty simple.. » Serial simulations ONLY

» Works across the network * Not supported on Windows

» Parallel iterators (experimental) « Dakota must be built with- MPI1 support
« Dakota highly configurable « Dakota highly configurable

8
-~ ...

Dakota, “Large” Simulations, and HPC

How can Dakota manage evaluations that require large™*, parallel

simulations on many cores?

*More than will fit on a workstation

Two strategies—

@
g
™ ~ . o
\\/ // Evaluation Submission
\ (N - Evaluation Tiling
C~_T

AN\
~—A

&

m

Sandia
National
Laboratories

Approach 1: Evaluation Submission ml

Laboratories

Evaluation Steps JOB STATE
1. Dakota invokes analysis driver as eval.1 Running
usual eval.2 Running
Driver performs pre-processing eval.3 Running
Driver submits a job to the eval.4 Waiting
gueue and waits for it to finish Dako sl e

4. Job starts, runs the simulation, _
eval.6 Waiting

and finishes

5. Driver performs post-processing

and exits
eval.N Waiting

6. Dakota reads results file and
continues

10
-~ ...

Example Interface

Analysis driver snippet

&

Sandia
ll'l National

Laboratories

~___—— evalsbatch

Pre-processing done above (omitted

sbatch (eval.sbatch)> sbatch.out

Wait until the batch job finishes before
continuing.

jobid=$(tail -1 sbatch.out | egrep -o '[0-9]+")
while [$(squeue -j $jobid | wc -1) -ne @];
do
sleep 300
done

Post-processing done below (omitted)

#!/bin/bash

#SBATCH --nodes=64

#SBATCH --time=08:00:00
#SBATCH --account=my_account
#SBATCH --job-name=eval.l

module load my_simulation

mpirun -np 1024 my_simulation

Instead of waiting ml

Laboratories

When using ‘single-pass’ methods, Dakota can be run in two
steps

= Step 1: Job Creation

= Analysis driver set up to submit jobs then immediately exit, returning
“dummy” values to Dakota

= Step 2: Data Collection (after all jobs have finished)

= Analysis driver set up to post-process and return real result to Dakota

Tip: Dakota must generate the same parameters in both steps.
For stochastic methods use the seed keyword.

Recommended Dakota Input m@

Laboratories

interface
analysis driver "driver.sh"

fork

asynchronous

. Submit multiple jobs
evaluation_ concurrency 20

Prevent Dakota from

allow existing results . e
— — erasing existing results

work directory "runs/run” . . .
— Keep simulation run files

directory_tag separate from one another

. and preserve run folders
directory save

13
-~ ...

Approach 2: Evaluation Tiling

Evaluation Steps

Dakota invokes analysis driver as usual
Driver performs pre-processing

Driver determines node placement (if
necessary)

Driver launches parallel simulation

Driver performs post-processing and
exits

Dakota reads results file and continues

Sandia
l"l National

Laboratories

One submitted job

Compute Nodes

Node Placement Methods ml

Laboratories

Automatic tiling

= just launch (srun, aprun)

Relative node list or Machine files

= Compute list of relative nodes based on—
= Number of nodes in allocation
= Number of MPI tasks per node
= Number of MPI tasks per simulation run
= evaluation number (obtain from e.g. file tag)

= Then launch simulation with relative node list option (-host) or
machinefile option (-machinefile)

= Use local evaluation_scheduling static
= Examplesin
= examples/Case3 OpenMPI/
= examples/Case3 MachinefileMgmt/
15

Example Analysis Driver

Pre-processing done above (omitted)

APPLIC_PROCS=2
Simple case: srun -n $APPLIC PROCS my simulation

num=$(echo $params | awk -F. '{print $NF}')
CONCURRENCY=4
PPN=16
applic_nodes=$(((APPLIC_PROCS+PPN-1) / PPN))
relative node=$(((num - 1) % CONCURRENCY * APPLIC _PROCS / PPN))
="+n${relative _node}"
for node_increment in $(seq 1 $((applic_nodes - 1))); do
node list="$node list,+n$((relative _node + node_increment))"
done
mpirun -np $APPLIC_PROCS -host $node list my simulation

sleep 30
Post-processing done below (omitted)

&

Sandia
ll'l National

Laboratories

No. procs/simulation

No. concurrent
evaluations

Procs per node

No. nodes required by
simulation

0-based index of
starting node

16

Recommended Dakota Input

ﬂ'l National
Laboratories

interface
analysis driver "driver.sh"

fork

asynchronous Run multiple concurrent
evaluation_concurrency 4 evaluations

local evaluation_scheduling static Use static scheduling

file tag File taggmg to extract

— evaluation number

work_directory "runs/run” Keep simulation run files

directory_tag directory save separate from one another
and preserve run folders

17
-~ ...

Tiling versus Submission &

Sandia
m lNaag:Jnrg?o;ries
Consider submission when.. Consider tiling when..
= Memory or core count = Memory or core count
requirements are large requirements are modest
= Fork/system is disallowed = Using an adaptive method

on the compute nodes

Examples and Documentation @

ll'l National
Laboratories

= Examples folder (examples/parallelism)
= User’s Manual (Chapter 17)

= Note: In these resources, running Dakota in parallel is

referred to as “Case 1” parallelism, Evaluation Submission is
“Case 4,” and Evaluation Tiling is “Case 3.” (Sorry.)

