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Abstract. Experimental techniques to measure the thermal properties of solids are
discussed. Experimental measurements and parameter estimation techniques are
used to estimate the thermal properties. The importance of experimental design is
emphasized, and criteria that give insight to the parameter estimation process and
experiment are cited. A code-to-code communication technique is presented, which
allows standard stand-alone direct solution programs to be linked with parameter
estimation codes without modification. This method is called reusable interface
technology (RIT). Aspects of this computational technique are discussed. The
experimental/computational techniques are demonstrated with an experiment to
estimate the thermal properties of an orthotropic carbon–carbon composite
material. Two-dimensional, transient temperature and heat flux data are used to
estimate two components of thermal conductivity (in the principal directions of the
material) and the volumetric heat capacity.

Nomenclature

b parameter vector
b̂ estimated parameter vector
C specific heat (J kg−1 ◦C−1)
k thermal conductivity (W m−1 ◦C−1)
L length (m)
q heat flux (W m−2)
S sum-of-squares function
T temperature (◦C)
W weighting matrix for sensors (◦C−2)
X,X sensitivity coefficient, matrix
X̄, X̄ scaled sensitivity coefficient, matrix (◦C)
Y,Y measured temperature, vector (◦C)
α thermal diffusivity (m2 s−1)
1 optimality criteria
ρ density (kg m−3)
� electrical resistance (�)

Subscripts

cc carbon–carbon
x direction parallel to the fibre direction
y direction normal to the fibre direction

1. Introduction

Frequently in thermal engineering the modelling of energy
transfer in a solid requires coefficients or parameters in

the describing equation(s). Examples of these parameters
are thermal conductivity, emittance, convection coefficient,
specific heat, and density. These parameters relate
the microscopic nature of the solid to the observed
macroscopic energy transfer. Because the relationship
between microscopic and macroscopic energy transfer is
quite complex, empirical results are typically used to
determine the relationship. In this paper we restrict our
focus to the thermal properties associated with solids, but
the techniques and concepts are applicable to a diverse
range of physics.

The techniques use an experiment which records an
easily measured quantity, such as temperature and/or elec-
trical power, to determine desired (unknown) parameters
which cannot be easily measured. Measurements from the
experiment are related to the parameters through a compu-
tational model. The model can be an algebraic equation,
an ordinary differential equation, or a partial differential
equation. Problems that use the interaction of measure-
ments (experiments) and a describing model (analysis) to
infer otheraspects of the model are generally called inverse
problems. Two main distinctions of inverse problems are
parameter estimation and function estimation. In parameter
estimation, a small number of unknowns (typically less than
five) are estimated; the parameters are usually coefficients
in the describing equations. Function estimation, however,
determines functions represented by many unknowns, pos-
sibly several thousand, which may vary spatially and with
time. Estimating a function tends to be ill-posed and very
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sensitive to measurement errors (Becket al 1985). The
functions that are estimated generally appear as boundary
conditions in the describing equations. The function es-
timation and parameter estimation problems have similar
attributes and are closely related. In this paper the focus is
restricted to parameter estimation. Books by Kurpisz and
Nowak (1995), Alifanov (1994), and Becket al (1985) dis-
cuss several approaches for function estimation, or ill-posed
problems.

Several experimental approaches exist for measuring
the thermal properties of solids. However, this paper is
not intended to be a comprehensive survey of experimental
techniques to measure thermal properties—two techniques
are selected to illustrate accepted experimental approaches
to the problem and contrast the techniques with the method
presented in this paper. An early method, called the
guarded hot plate technique (ASTM 1997), imposes a
measured heat flux across a sample of known thickness.
The thermal conductivity is computed from a discrete
approximation of Fourier’s law

k = qL/1T . (1)

In equation (1)q is the measured heat flux,L is the sample
thickness, and1T is the temperature difference across
the sample. Another experimental approach is known as
the flash diffusivity method (Parkeret al 1961). In the
flash diffusivity method a short duration burst of energy,
typically from a laser, heats the surface of a thin specimen
approximately 2 cm in diameter. Transient temperature is
measured on the face of the specimen opposite the heating.
Thermal diffusivity is computed as (Parkeret al 1961)

α = k

ρC
= 1.38L2

π2t1/2
(2)

where L is the specimen thickness andt1/2 is the time
required for the temperature at the back surface to reach
one-half its maximum, the so called half-time (other time
intervals may also be used, e.g.t1/3, t1/4).

A common aspect for the two experimental approaches
discussed is the simple basis of the analysis. An algebraic
expression is evaluated to compute the unknown parameter.
In order to arrive at a simple algebraic data reduction
equation, a number of assumptions must be made. The
two experimental cases discussed assume that heat flow
is one dimensional, heat losses to the environment are
negligible, the material is isotropic, and thermal properties
are independent of temperature. Often it is difficult to
satisfy these assumptions. Furthermore, the estimated
parameters are more accurate when these effects, which
may be more influential than expected, are included in the
analysis. The methodology presented here can relieve the
necessity of making the above assumptions.

The main advantage of using the referenced analysis
techniques is that they are simple. There are several
disadvantages to using analysis techniques that simplify the
process to a ‘plug-and-chug’ operation, such as that shown
for the guarded hot plate and flash diffusivity methods, as
follows.

1. The (heat conduction) model equation, in which the
estimated parameters are ultimately used, is not necessarily
satisfied or checked.

2. Typically few measurements are used, in some cases
only one measurement.

3. The thermal propertiesk andρC cannot be obtained
independently in all experimental configurations.

4. Generalizing these methods is difficult, if not
impossible. For example, it is not apparent how to
extend the methods for the multi-dimensional case, a more
complex model including heat losses, or the nonlinear
problem with temperature dependent thermal properties.

5. Using statistics to quantify the accuracy of the
estimated parameters is not easily done.

6. The analysis does not provide insight to the adequacy
of the experiment or insight to improve the experiment.

Parameter estimation techniques, which are applicable
to the previously described experiments, do not possess
the limitations of these other simplified analysis methods.
Beck (1996) discusses applying parameter estimation
techniques to the flash diffusivity experiment. Beck
estimates parameter groups describing the heat input and
heat losses, in addition to the thermal diffusivity, and
demonstrates that the model can be refined using parameter
estimation results to improve the accuracy of the estimated
thermal diffusivity. In this process, not only is the
analysis improved, but parameter estimation also helps
to better understand and indicate improvements in the
experiment. Simply using equation (2) to calculate the
thermal diffusivity does not permit such an analysis or
provide (engineering) insight. Hence, the more general
method of applying parameter estimation techniques is a
preferred approach.

The theory of the experimental techniques in this paper,
using electric heaters for estimating the thermal properties,
are detailed in a book by Beck and Arnold (1977, see
ch 7). A consequence of using electric heaters (and heat
flux boundary conditions) is that typically both thermal
conductivity and volumetric heat capacity can be estimated
simultaneously.

Other methods with known heat flux and transient
temperature measurements are described by Becket al
(1991), Scott and Beck (1992a, b), and Beck and Osman
(1991). The first of these papers uses an internal heat
flux transducer. The papers by Scott and Beck (1992a, b)
relate to composite materials during and after curing.
A method to sequentially estimate thermal properties by
mathematically connecting a series of discrete experiments,
with various temperature ranges, is presented by Beck and
Osman (1991). Loh and Beck (1991) give results for
experimentally determining two components of the thermal
conductivity for a carbon–carbon composite. Papers by
Garnieret al (1992, 1993) describe a method for estimating
thermal properties without requiring temperature sensors
inside the specimen(s). Also relevant is the study of optimal
experiments, which are discussed in chapter 8 of Beck and
Arnold (1977) and in the paper by Taktaket al (1993).

One advantage of an analysis such as that shown
by equations (1) and (2) is that the relationships to
compute the parameters are simple. However, several
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disadvantages were previously noted. The incorporation of
parameter estimation techniques requires solving the model
(heat conduction) equation, which for realistic experimental
configurations requires a numerical solution. Hence to
implement a parameter estimation solution, a thermal
analysis code (such as finite element, finite difference, finite
control volume, or boundary element) for solving the direct
problem is coupled with a parameter estimation code. (A
closed form analytical solution such as a Fourier series
can also be used.) A general purpose thermal analysis
code allows for multiple materials, arbitrary geometries,
and convective and radiative heat losses, and is needed to
model complex processes. The code is usually coupled with
the parameter estimation techniques in an invasive manner
and significant effort is required to modify the analysis code
to link it with parameter estimation techniques (see Osman
and Beck 1989). Such an implementation requires detailed
knowledge of the thermal analysis code. An alternative to
this process for parameter estimation uses reusable interface
technology (RIT) (Blackwell and Eldred 1997).

In RIT a complex thermal analysis code is externally
coupled to a parameter estimation code. In the past, thermal
analysis codes were modified, in most cases converted to
subroutines, to link them with the parameter estimation
code to form a new parameter estimation/thermal analysis
code. In this previous linking process, the connection
between the original developers of the thermal analysis
code and the new parameter estimation/thermal analysis
code may be severed. Consequently, future enhancements
to the original thermal analysis code may be difficult and
time consuming to implement in the combined code. Also,
it is possible to link commercial thermal analysis software
(for which a source code is not available) to the parameter
estimation code by means of RIT.

The RIT approach is to isolate the interface mechanisms
from the optimization and analysis codes such that both
codes (thermal analysis and parameter estimation) are
allowed to evolve independently. That is, rather than
modifying the source code of the thermal analysis package
to convert it into a subroutine, one should allow the
optimization and analysis systems to coexist on their own
terms and build reusable communication links between
them. Moreover, if these isolated interface mechanisms
are built in a general, reusable manner, then the amount of
work required to update the interfaces for new code versions
can be minimized and sometimes eliminated entirely. This
approach is the cornerstone of RIT.

In this paper, the use of parameter estimation techniques
are demonstrated to estimate the thermal properties of a
carbon–carbon composite material. Emphasis on parameter
estimation results to understand and provide insight into
the estimation procedure and help improve the experiment
are discussed. RIT is shown to reduce the effort required
to analyse experiments that require a complex analysis
and has the potential to change the parameter estimation
computational procedure.

Parameter estimation techniques are discussed in the
next section. Aspects of RIT are addressed in section 3. An
experiment to estimate the thermal properties of a carbon–
carbon composite demonstrates the application of parameter

estimation and RIT in section 4. Results are discussed in
section 5 and the final section provides a summary and
conclusions.

2. Parameter estimation techniques

In this section parameter estimation techniques are
discussed as they apply to the estimation of thermal
properties in the heat conduction equation. The techniques
are not restricted to estimating thermal properties. These
ideas are applicable to any process for which measurements
are available and the parameters are related to the
experimental measurements through a model equation. In
applying parameter estimation techniques it is important
that errors associated with the measurements are understood
(see Beck and Arnold (1977) for a discussion of
measurement errors).

Techniques to estimate parameters in a model equation
are also detailed in Beck and Arnold (1977, see ch 6 and 7).
The basic process involves minimizing a sum-of-squares
function

S = (Y − T̂ )TW(Y − T̂ ) (3)

whereY andT̂ are vectors of the measured and calculated
temperatures andW is a weighting matrix (typically the
identity matrix). To determine the thermal properties
the functionS is minimized with respect to the thermal
properties, i.e. b1 = (ρC)cc, b2 = ky,cc and b3 = kx,cc.
This is accomplished by setting the first derivative ofS
with respect to each parameter equal to zero, and solving
for the estimated parameters(b̂). The derivatives ofS with
respect to the parameters involves sensitivity coefficients,
defined as

X = [Xb1,Xb2, . . . ,Xbp ] (4)

Xbi = ∂T /∂bi. (5)

The sensitivity coefficients were computed using a finite
difference approximation on the temperature output of
the thermal analysis code COYOTE (Gartling and Hogan
1994). A relative finite difference step size of 0.005 was
used. The minimization ofS was performed using the
DAKOTA software (Eldredet al 1996a, b). DAKOTA in
turn uses the commercially available optimization package
DOT (Vanderplaats 1995), along with other optimization
algorithms. The specific optimization method used for the
work was the BFGS method (Broyden 1970, Fletcher 1970,
Goldfarb 1970, Shanno 1970), which is gradient based.

The sensitivity coefficients can provide considerable
insight into the estimation problem and aid in the design of
the experiment to obtain estimates with optimum accuracy
(Beck and Arnold 1977, ch 8). One criteria for an ‘optimal’
experiment that is valid for additive, zero mean normal
errors in Y , and errorless independent variables, is to
maximize

1 ≡ |XTX|. (6)

This criteria is appropriate because it corresponds to
minimizing the volume of the confidence region for the
estimated parameters (Beck and Arnold 1977). By studying
the experimental design prior to conducting experiments,
such that equation (6) is maximized, maximum information
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Figure 1. Reusable interface technology—the Application
Interface.

is available from an experiment. In addition to the criteria
proposed in equation (6), a constraint requiring a fixed
number of observations and/or the same temperature rise,
may be required to provide consistency in comparing
experimental designs with multiple sensors. Additional
investigations on experimental design are concerned with
optimal placement of sensors (Fadaleet al 1995a) and
uncertainty information (Fadaleet al 1995b, Emery and
Fadale, 1996).

To implement the parameter estimation techniques a
code-to-code communication technique is used; a complex
thermal analysis code is linked with a parameter estimation
code, completely external to both codes. The concept is
called RIT and aspects of this method are now discussed.

3. Reusable interface technology (RIT)

3.1. Overview of RIT

In order for the thermal analysis code development to be
independent of the optimization code development, it is
desirable to employ a flexible, reusable communication
mechanism which does not require modification of either
the thermal analysis or the optimization packages. This
approach will ensure that the two codes are always
compatible and allows the codes to be developed
independently. The DAKOTA iterator toolkit (Eldredet al
1996a, b, DAKOTA 1997) is the software system which
implements the RIT concept.

In DAKOTA, interfaces are implemented in terms
of communication protocols, such as CORBA, MPI,
and file-based I/O, and specialized function evaluation
interfaces, such as the Application Interface, the Test
Function Interface, the Approximation Interface, and the
Multidisciplinary Optimization Interface. The simplest
example of a DAKOTA interface is the Application
Interface, which utilizes system calls and file-based I/O
for process spawning and data communication respectively.
The Application Interface approach is sufficient for this
parameter estimation application since the thermal analysis
and optimization programs are executed on the same
machine.

A schematic diagram of the Application Interface is
given in figure 1. The Application Interface isolates
application specifics from an iterator method by providing
a generic interface for the mapping of a set of parameters
(e.g. a vector of design variables) into a set of responses
(e.g. an objective function, constraints, and/or sensitivities).
Housed within the Application Interface are three pieces

of software. The input filter program (IFilter) provides
a communication link which transforms the set of input
parameters into input files for the simulator program. The
simulator program reads the input files and generates results
in the form of output files or databases. Finally, the output
filter program (OFilter) provides another communication
link through the recovery of data from the output files
and the computation of the desired response data set.
Generally, the application developer (e.g. the thermal
parameter estimation investigator) will develop these input
and output filters for the particular analysis code of interest.
If care is taken to develop quality filter programs, then
libraries of input and output filters can be built up over
time, thereby maximizing reuse and minimizing duplication
effort. Moreover, the amount of work required to update the
filter programs for new analysis and optimization package
versions can be minimized and sometimes eliminated
entirely.

This mapping of parameters to responses provides
generic information to the iterator/estimator, and the
application and implementation specifics are hidden.
This encapsulation of application-related complexity is
an essential part of providing a flexible and extensible
capability for systems analysis in general, and thermal
parameter estimation in particular.

3.2. Details of RIT

The schematic of the information flow process given in
figure 1 is a simplification of the actual process. Some
additional details are presented here. All the calculations
presented are run on UNIXTM work stations. A shell
script is used to run the various codes in sequence. The
output filter is a FORTRAN code that reads data files
containing the experimental temperatures and the computed
temperatures, computes the mean square errorS, and writes
S to a file to be read by the iterator.

The input filter is somewhat more complicated. The
input to a large-scale finite element, finite difference, or
finite volume code has a certain amount of structure to
it. For each simulation, this input deck has to be rebuilt
automatically without human intervention. This involves
inserting the latest parameter values into the appropriate
location in the input data file. While the UNIXTM

utilities sed and awk could be used to perform some of
these operations, we chose instead to use the algebraic
preprocessor APREPRO (Sjaardema 1992) which allows
one to build an input deck in symbolic form. For example,
if the unknown thermal conductivity in thex-direction is
given the symbolic name{cond x} in the input file and a
second file containing the line{cond x = 59.46} is read by
APREPRO, the output from APREPRO is a line containing
the number 59.46. In effect, APREPRO replaces an alpha
string by a numeric string. This code was originally
developed to aid in the preparation of multiple input data
files for parameter studies, and was ideally suited for the
task at hand. The output from the iterator is a list of the
latest parameters along with an alpha-numeric identifier;
a simple FORTRAN code was written to translate the
parameter list into a string that can be read by APREPRO.
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Figure 2. Schematic of experimental set-up used for
estimating thermal properties of a carbon–carbon
composite. For one-dimensional experiments all heaters
are activated. Two-dimensional experiments activate only
one heater.

4. Experimental aspects

To demonstrate the application of parameter estimation
techniques and RIT, an experiment to estimate the thermal
properties of a carbon–carbon composite is presented. A
sketch of the experimental set-up is shown in figure 2.
It consist of two nominally identical carbon–carbon
specimens (7.62 cm× 7.62 cm× 0.914 cm) and ceramic
insulations (7.62 cm × 7.62 cm × 2.54 cm, Zircar
Products Inc., Florida, NY) with a mica heater assembly
(Thermal Circuits, Inc., Salem, MA,�(Troom) = 33 �)
located between the identical halves. Five thermocouples
(Type E, 0.254 mm nominal wire diameter) are embedded
on the surface of each carbon–carbon specimen at the
heater/specimen interface. The thermocouples (insulation
removed) are attached with electrically insulating high-
temperature cement into grooves (0.38 mm by 0.46 mm)
that extend the length of the specimen. Two thermocouples
are located at each interface of the carbon–carbon specimen
and the ceramic insulation. The entire set-up is mounted
between two 3.18 mm thick aluminum plates that are
connected with threaded rods and hold the numerous layers
firmly in place; the apparatus is placed in a furnace which
allows variation of the initial temperature. Further details
of the experimental procedure are discussed in Ulbrichet al
(1994).

The experiments are conducted and processed using a
12-bit data acquisition system (National Instruments) with
a 486 PC. The system provides accurate data acquisition
with minimum sampling intervals in the microsecond
range. Two eight-channel data acquisition boards are linked
providing sixteen channels of data acquisition. The system
controls and acquires the power (voltage and current)
delivered to the heaters and acquires the thermocouple
voltages. The current is acquired by measuring the voltage

Table 1. Sensor locations in experimental apparatus.

Location
Sensor
number x (cm) y (cm)

3, 8 0.89 0
4, 9 1.91 0
5, 10 3.18 0
6, 11 4.45 0
7, 12 6.73 0
1, 13 1.27 0.91(Ly )
2, 14 6.35 0.91(Ly )

composite specimen

ceramic insulation

T/C# 3,8 4,9 5,10 6,11 7,12

1,13 2,14

1/2 mica
heater

assembly
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0
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0

=

L
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Figure 3. Heat transfer model for two-dimensional
experiments.

across a known resistance. The heat flux is calculated from
the power measurements assuming the heating is uniform
over the heating area (7.62 cm× 7.62 cm) and divides
equally to the symmetric experimental halves.

The measured temperatures are averaged on opposite
sides of the heater assembly to determine the temperature
at each location. The locations of the thermocouples are
shown in figure 2 and given in table 1. The sensors that
are embedded in the specimen are assumed to measure
the temperature at the surface of the specimen. Since
thermal conductivity normal to the fibre is much greater
than the conductivity of the insulation(ky,cc � kins),
small temperature gradients exist in the specimen near the
specimen/insulation interface. The non-embedded sensors
are assumed to measure the temperature at the rear of the
carbon–carbon specimen.

The thermal model for the two-dimensional experiment
is shown in figure 3. All outer surfaces are assumed to
be adiabatic, except for the surface where the energy is
introduced by the heater. The energy to the heater is
assumed to divide equally between the two halves and
emanate from the middle of the heater assembly (y =
−0.042 cm). The adequacy of the assumed adiabatic outer
surfaces for the model can be verified by a comparison
of heat losses by natural convection with the anticipated
applied heat flux from the heater assembly. Since a
temperature rise of 20 to 25◦C above ambient is expected
for a typical experiment, the heat loss is mainly due
to natural convection(h ≈ 4 W m−2 ◦C). These losses
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Figure 4. Mesh 1, the coarsest mesh (525 elements),
showing sensor placement.

are negligible (qconv ≈ 100 W m−2) in comparison to
the applied heat flux, which was 17 000 W m−2 for the
experiment analysed. Hence, adiabatic boundary conditions
on the outer surfaces are a good approximation.

Numerical issues are more important for the inverse
(parameter estimation) analysis than they may be for a
standard direct solution. Because inverse problems are
more computationally intensive, numerical issues such as
the mesh size and time step selected for the numerical
method can greatly influence the amount of time required
to obtain a solution and the accuracy of this solution.
The coarsest mesh used for this analysis contains 525
(quadrilateral) elements and is shown in figure 4. Twenty-
five elements are along the 7.62 cm surface (x-direction)
for all materials. There is one element across the mica
heater assembly and ten elements across the carbon–
carbon specimen and ceramic insulation (y-direction). The
computational time step chosen was 0.32 s, which is half
the experimental time step. Some results from other refined
meshes are also presented.

5. Results and discussion

5.1. Introduction

In the thermal model (figures 3 and 4), in addition to
the carbon–carbon material, the mica heater and ceramic
insulation are present. To determine the properties of
the carbon–carbon specimen, the mica heater and ceramic
insulation are included in the model so their thermal
properties must be known or estimated. Neglecting the
mica heater in the model is not appropriate because the
contact resistance results in a large temperature drop
between the heater and carbon–carbon specimen. If the
heater is neglected, the carbon–carbon properties will
incorrectly reflect this effect. Also, including the heat loss
to the insulation, instead of assuming a perfect insulated
condition (at the specimen/insulation interface), increases
the accuracy of the properties estimated for the carbon–
carbon. If known (tabulated or published) properties are
used for these materials (mica and insulation), several
problems arise. First, thermal properties are typically not
known very accurately. Second, contact resistance between
adjacent layers is typically not negligible and must be
considered. Third, the ceramic insulation was sprayed
with a rigidizing material, possibly changing its thermal

Figure 5. Experimental data for the two-dimensional case,
see table 1 for sensor locations.

properties. By experimentally estimating the effective
properties of these materials, these problems are less
influential in the estimated properties of the carbon–carbon.

This approach requires additional experimental work,
however. The experimental conditions (length of
experiment and heating duration) to determine the
properties of the mica and insulation are quite different from
the conditions necessary to estimate the properties of the
carbon–carbon. Separate series of tests are performed, one
set with the carbon–carbon specimen removed, to determine
the properties of the insulation and mica heater assembly.
These are effective properties, which will account for
any contact resistance due to imperfect contacts between
the different material layers. The contact resistance may
vary, however, when the set-up is reconfigured to test
the carbon–carbon composite. Therefore, to determine the
properties of the carbon–carbon composite, a short duration
experiment is conducted to characterize the effective
thermal properties of the mica heater and contact resistance.
The short duration experiment is conducted such that the
thermal properties of the mica heater, including the contact
resistance, are important in the thermal model, but the
properties of the carbon–carbon are not important. The
importance of the materials in the model is quantified by the
sensitivity coefficients (discussed in section 2). A duration
is selected that produces results that are sensitive to the
properties of the mica, but relatively insensitive to the
properties of the carbon–carbon. A discussion of the design
and sensitivity coefficients for an experiment to estimate
effective properties of the mica heater are given in Dowding
et al (1998).

The data analysed in this paper are part of a larger study
to determine the temperature dependent thermal properties
of a carbon–carbon composite. Several experiments
over a temperature range of 500◦C with one- and two-
dimensional heat flows were analysed to estimate the
thermal properties. Two-dimensional results are supported
by independent one-dimensional results (see Dowdinget al
(1995, 1996) for the complete analysis of one- and two-
dimensional experiments respectively). Only one of the
two-dimensional experiments is presented in this paper.
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5.2. Experimental data

Experimental data for a two-dimensional test that started
at an initial temperature of 297◦C are shown in figure 5.
A sample interval of 0.64 s is used to acquire data for
this experiment. The heating begins at approximately
16 s and ends at approximately 56 s. The complexity
of this experiment is that volumetric heat capacity and
two components of thermal conductivity are simultaneously
estimated. The experimental conditions must be selected
to provide information about all three parameters. An
alternative is to conduct a series of experiments, each
experiment providing information on one (or more)
particular parameter. Then the different experiments are
analysed in a sequential manner. Beck and Osman
(1991) used such a procedure to estimate temperature
dependent thermal properties. For this model a single
experiment provides adequate information on all three
thermal properties and a sequential procedure is not
required.

The effect of the orthotropic thermal conductivity can
be seen by comparing (in figure 5) the temperature rise for
sensors (5, 10) atx = 3.81 cm on the heated surface and
sensors (1, 13) atx = 1.27 cm on the insulated surface.
The larger thermal conductivity in thex-direction results
in a nearly instantaneous response at sensors (5, 10) on
the heated surface, while sensors (1, 13) on the insulated
surface have approximately a four second time delay before
responding. This delay exists even though the sensors are
approximately the same distance from the active heater
(∼10% difference, 0.835 and 0.914 cm from the sensor
on the heated surface and insulated surface respectively).

The temperature data are acquired after the heating
has ended. Continuing to acquire data after stopping the
heat flux results in better estimates because the sensitivity
coefficients change character after heating stops. These
effects result in a more accurate estimation of multiple
thermal properties based on the criteria ‘D-optimality with
constraints’ (Beck and Arnold 1977, p 459). Possible heat
losses in the experimental set-up can also be monitored
with these data, although significant losses do not appear
in this experiment, since all temperature sensors converge
to a constant.

5.3. Parameter estimation

Using the experimental temperatures given in figure 5
and Mesh 1 given in figure 4, the thermal parameters
of the carbon–carbon composite were estimated using
the DAKOTA/COYOTE (Eldred et al 1996a, b) code
combination. The sample rate for the experimental data was
0.64 s; the time step for the Mesh 1 simulations was 0.32 s.
A fully implicit time integrator with a lumped capacitance
matrix was utilized in COYOTE (Gartling and Hogan
1994), a Galerkin finite element thermal analysis code. The
resulting parameter estimates are given in table 2. Five
iterations with 30 function evaluations were required for
convergence of the iterative process (for Mesh 1). The
convergence criterion used was that the relative change
in the sum-of-squares function must be less than 10−5 for
two successive iterations. A relative finite difference step

Figure 6. Root mean square (RMS) error in the vicinity of
the minimum; b∗i is the converged value of parameter bi .
The relative finite difference step size was 0.005.

size of 0.005 was used for the calculation of the sensitivity
coefficients.

Ideally, parameter estimation should be performed
on grid converged numerical results. In practice, there
will always be some numerical errors present. In order
to investigate the effect of grid convergence errors, the
mesh was refined both spatially and temporally. Since
a rectangular mesh was used, it was easy to double the
number of elements in each coordinate direction; this gives
a factor of four increase in the total number of elements.
Since a first-order time integration scheme was used, the
time step for Mesh 2 (0.08 s) was a factor of four smaller
than that for Mesh 1 (0.32 s). The parameter estimation
results for Mesh 2 are also given in table 2, along with the
per cent difference between the two results. The Mesh 1
parameter estimation results are different by approximately
1%. The variation in the estimated parameters between
Mesh 1 and Mesh 2 is not significant. The difference
between the two meshes is of the order of the computed
confidence intervals, modelling measurement errors only
in temperature, from a past analysis of this experiment
(Dowding 1997). The estimated properties and confidence
intervals from this previous investigation are shown in the
final row of table 2. A more accurate indication of the
uncertainty accounts for errors in all measured experimental
quantities. A quantification of the experimental uncertainty
is also given near the bottom of table 2.

It is advisable to look at the shape of the objective
function in the vicinity of the minimum. The DAKOTA
software has a convenient option to perform such a
parameter study. Figure 6 presents the root mean square
(RMS) error as a function of normalized parameter values;
at the converged value, the normalized parameter values
are zero. All three parameters have the classical bowl
shape in the vicinity of the minimum. Bothkx andky have
similar shapes, indicating that they both have approximately
the same sensitivity in the experiment. TheρC curve is
much steeper, indicating that the estimated volumetric heat
capacity is known with greater certainty than iskx or ky .
Additional insight into the sensitivity of the experiment can
be gained by looking at the sensitivity coefficients; this is
done later.
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Table 2. Summary of estimated parameters.

kx ,cc (W m−1 ◦C−1) ky,cc (W m−1 ◦C−1) (ρC)cc (J m−3 ◦C−1)

Mesh 1, 525 elementsa 59.46 5.011 2.356× 106

Mesh 2, 2100 elementsa 60.13 4.933 2.371× 106

Per cent difference mesh 1 and 2 1.11 −1.57 0.65
Mesh 1, 525 elementsb 58.8 4.97 2.36× 106

Confidence intervalsb ± 0.5 ± 0.05 ± 0.01× 106

Experimental uncertaintyb ± 2.5 ± 0.3 ± 0.09× 106

a Present investigation.
b Dowding (1997).

On the scale of the results presented in figure 6
(relative finite difference step size of 0.005), the RMS
errors appear to be smooth functions of the parameter
values. Theoretically, one would expect this to be the case.
However, additional computational experiments indicate
that if a relative finite difference step size of 0.001 is
used, there is enough numerical noise for the solution
space to not appear smooth. If the solution space is non-
smooth, then gradient-based methods may have significant
difficulty in locating the minimum. All the parameter
estimation computations reported here were run on Unix
workstations using single precision arithmetic; the impact
of using double precision arithmetic on the numerical
noise present in the objective function is presently under
investigation. For any new experimental configuration for
which parameter estimation techniques are to be used, it is
recommended that computational experiments be performed
to develop some understanding of the numerical noise in the
solution.

5.4. Parameter estimation results

An advantage of parameter estimation is that the accuracy
of the estimated properties can be evaluated using residuals,
sensitivity coefficients, and sequential estimates of the
properties. These quantities provide insight into the
estimation as well as insight into the experiment. Observing
them can help improve the understanding of the experiment
and support the accuracy of the estimated properties. The
typical procedure uses these results in an iterative manner
to develop insight into the experiment and analysis. As
experiments and analyses are repeated, observation of
these quantities helps to develop a deeper understanding
of the parameter estimation process. The residuals,
sequential estimates, and sensitivity coefficients provide a
link between the analysis and experiment.

Currently the analysis code used in RIT does not
return the sequential estimates or the sensitivity coefficients.
Sequential estimates have been presented and discussed in
Dowding et al (1995, 1996). A separate analysis code
(Dowding et al 1996) was used to compute the sensitivity
coefficients shown in this investigation. Temperature
residuals and sensitivity coefficients are discussed next.

5.4.1. Residuals. It is important to look at the
temperature residuals in order to ascertain the quality of
the parameter estimation results. The residuals represent

the difference between the measured and calculated
temperatures. Figure 7 presents these temperature residuals
for a representative run. Sensors 8 and 9, which are the
closest to the active portion of the heater, have the greatest
residuals. There is a pronounced spike in these residuals,
both when the heater is turned on and when it is turned
off. Some of this is due to the difficulty in numerically
simulating a step change in the heat flux while using a
finite size time step. In general, the residuals are smaller
during the cool down phase than during the heating phase.

5.4.2. Sensitivity coefficients. As previously noted,
observation of the sensitivity coefficients can provide
insight into the estimation problem. Observation of the
sensitivity coefficients at this stage may be too late, since
the experiment is essentially designed and moving sensors
or changing the heated area is not easily done. However,
some minor modifications may improve the accuracy, such
as changing the heating duration or magnitude. When
possible, an analysis of the sensitivity coefficients should
be conducted prior to running the experiments. The quality
of the parameter estimates is a strong function of the time
spent on experiment design.

Sensitivity coefficients provide information that may be
used to design and understand experiments. In general,
the scaled sensitivity coefficients are desired to be large
for each parameter and uncorrelated (linearly independent)
for different parameters. A sense of the magnitude of
the sensitivity coefficients is gained through normalizing
the sensitivity coefficients. Normalization is performed
by multiplying by the parameters, resulting in units of
temperature for all the scaled sensitivity coefficients. The
scaled sensitivity coefficient for parameterη is

X̄η = η∂T /∂η. (7)

A comparison is then permitted with the temperature rise
of the experiment. Using a separate finite element code
the scaled sensitivity coefficients are computed for the
current experimental design and are shown in figures 8
to 10. Figure 8 shows the sensitivity toρCcc, X̄ρC ,
and figures 9 and 10 show the sensitivity to the thermal
conductivitiesky,cc and kx,cc, X̄ky and X̄kx . Because the
sensitivity coefficients are scaled, a direct comparison of
their magnitudes is possible. Some observations are drawn
from the sensitivity coefficient plots.
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(a)

(b)

(c)

Figure 7. Temperature residuals for experiment begun at
T = 297 ◦C and Mesh 1: (a) on the surface below the
active heater; (b) on the heated surface, but not on the
area of the active heater; and (c) at the
carbon–carbon/insulation interface.

The most information is available on the active heater
surface (sensor locationsx = 0.89 cm and 1.91 cm for
y = 0). At these locations the sensitivity coefficients
have the largest magnitudes and therefore have the most
influence on the values of the estimated properties. Notice
in figure 9 that Xky undergoes a sign change across
the specimen (in they-direction) and in figure 10X̄kx

Figure 8. Scaled sensitivity coefficient for volumetric heat
capacity, X̄ρC .

Figure 9. Scaled sensitivity coefficient for thermal
conductivity in y-direction, X̄ky .

undergoes a sign change along the specimen (in thex-
direction). The implications of these sign changes are
that there exist (1) ay-location within the body where the
temperature is insensitive toky,cc and, more importantly,
(2) a x-location where the temperature is insensitive to
kx,cc. The latter result is more important for this case where
surfaces temperatures are measured, because seemingly
logical locations along the measurement surfacesy = 0, Ly
may be insensitive tokx,cc. Although it is desirable to
avoid locations where the sensitivity coefficients change
sign because the sensitivity is quite small, sensor locations
that have sensitivity coefficients with opposite signs are
beneficial. This situation produces contrasting effects
which improves the accuracy of the estimates. Hence, the
locations near the edges of the specimen (x = 0, 7.62 cm),
which have oppositely signed sensitivity coefficients, are
chosen for the measurement locations. Fortunately, the
surfaces of the specimen (y = 0, Ly) are the most sensitive
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Figure 10. Scaled sensitivity coefficient for thermal
conductivity in x-direction, X̄kx .

in that direction. Finally, the experiment was halted
after heating for approximately 40 s in order to make the
magnitudes of the sensitivity coefficients for all thermal
properties comparable. In figure 9̄Xky approaches a steady
state value, while the sensitivities tōXkx , figure 10, and
X̄ρC , figure 8, do not. The sensitivity coefficient̄XρC
does not have a steady state solution and will continue
to increase linearly with time. If heating was continued
for a longer durationX̄ky and X̄ρC would be much larger
than X̄kx . Consequently, the estimates for the two former
properties would be considerably more accurate than that
for the latter.

6. Summary

Techniques for estimating thermal properties from exper-
imental measurements have been presented. Parameter
estimation techniques permit analysis for general thermal
models and are applicable to other problems involving dif-
ferent physics and parameters. The benefits of using pa-
rameter estimation and methods for aiding the experimen-
tal design were discussed. The use of parameter estimation
provides a link between the experiment and analysis pro-
viding insight into both aspects. The quantities used in this
process are residuals, sensitivity coefficients, and sequential
estimates.

An approach for linking complex (thermal) analysis
codes with parameter estimation techniques was discussed.
It is a powerful alternative to previous approaches.
Called RIT, the procedure allows analysis codes and
parameter estimation codes to be developed separately and
independently.

Acknowledgments

This work was performed at Michigan State University
and Sandia National Laboratories under US Air Force

contract number FY1456-91-N0058. KJD was also
partially supported by the Research Excellence Fund of the
State of Michigan through the Composite Materials and
Structures Center at Michigan State University. Most of
the experimental data were collected by Arthur Ulbrich.

References

Alifanov O M 1994 Inverse Heat Transfer Problems(New York:
Springer)

ASTM (American Society for Testing and Materials) 1997C
177-85 Standard Test Method for Steady-State Heat Flux
Measurements of the Guarded-Hot-Plate ApparatusASTM,
100 Barr Harbor Drive, Conshohocken, PA 19428-2951,
USA

Beck J V 1996 Parameter estimation concepts and modeling:
flash diffusivity applicationProc. Second Int. Conf. on
Inverse Problems in Engineering: Theory and Practice,
(LeCroisic, France) 9–14 June 1996ed D Delaunay,
K Woodbury and M Raynaud (New York: ASME)

Beck J V and Arnold K 1977Parameter Estimation in
Engineering and Science(New York: Wiley)

Beck J V, Blackwell B and St Clair C R 1985Inverse Heat
Conduction(New York: Wiley)

Beck J V and Osman A M 1991 Sequential estimation of
temperature-dependent thermal propertiesHigh Temp.-High
Pressure23 255–66

Beck J V, Petrie T W and Courville G E 1991 Using parameter
estimation to analyze building envelope thermal
performanceIn-Situ Heat Flux Measurements in
Buildings—Applications and Interpretation of Resultsed
Steven N Flanders (Hanover, NH: US Army Cold Regions
Research and Engineering Laboratories) Special Report
91-3 pp 161–91

Blackwell B F and Eldred M S 1997 Application of reusable
interface technology for thermal parameter estimationProc.
32nd National Heat Transfer Conf.vol 2 ed
G S Dulikravich and K E Woodbury HTD-Vol 340
(New York: ASME) pp 1–8

Broyden C G 1970 The convergence of a class of double rank
minimization algorithms, Parts I and IIJ. Inst. Math. Appl.
6 76–90

——1970 The convergence of a class of double rank
minimization algorithms, Parts I and IIJ. Inst. Math. Appl.
6 222–31

DAKOTA 1997 DAKOTA Iterator Toolkit, World Wide Web
URL: http://endo.sandia.gov/9234/sdoptim dakota.html.

Dowding K J 1997 Multi-dimensional estimation of thermal
properties and surface heat flux using experimental data and
a sequential gradient methodPhD DissertationMichigan
State University, East Lansing, MI, USA

Dowding K J, Beck J V and Blackwell B F 1996 Estimation of
directional-dependent thermal properties in a carbon–carbon
compositeInt. J. Heat Mass Transfer39 (15) 3157–64

Dowding K, Beck J, Ulbrich A, Blackwell B and Hayes J 1995
Estimation of thermal properties and surface heat flux in a
carbon–carbon composite materialJ. Thermophys. Heat
Transfer9 (2) 345–51

Dowding K J, Blackwell B F and Cochran R J 1998 Application
of sensitivity coefficients for heat conduction problems7th
AIAA/ASME Joint Therm. Heat Transfer Conf.
(Albuquerque, NM) June 15–18, 1998to appear

Eldred M S, Hart W E, Bohnhoff W J, Romero V J,
Hutchinson S A and Salinger A G 1996a Utilizing
object-oriented design to build advanced optimization
strategies with generic implementation6th
AIAA/USAF/NASA/ISSMO Symp. on Multidisciplinary
Analysis and Optimization (4–6 September 1996, Bellevue,
WA) (Washington, DC: AIAA)

886



Measurement of thermal properties

Eldred M S, Outka D E, Bohnhoff W J, Witkowski W R,
Romero V J, Ponslet E R and Chen K S 1996b Optimization
of complex mechanics simulations with object-oriented
software designComput. Model. Sim. Eng.1 (3) 323–52

Emery A F and Fadale T D 1996 Design of experiments using
uncertainty informationJ. Heat Transfer118 532–8

Fadale T D, Nenarokomov A V and Emery A F 1995a Two
approaches to optimal sensor locationsJ. Heat Transfer117
373–9

Fadale T D, Nenarokomov A V and Emery A F 1995b
Uncertainties in parameter estimation: the inverse problem
Int. J. Heat Mass Transfer38 511–8

Fletcher R 1970 A new approach to variable metric algorithms
Computer J.13 317–22

Garnier B, Delaunay D and Beck J V 1992 Estimation of
thermal properties without instrumentation inside the
samplesInt. J. Thermophys.13 (6) 1097–111

——1994 Improved measurement of surface temperature of
composite materials for the optical estimation of their
thermal propertiesHigh Temperatures—High Pressures26
15–23

Gartling D K and Hogan R E 1994Coyote II—A Finite Element
Computer Program for Nonlinear Heat Conduction
Problems, Part I—Theoretical BackgroundSandia National
Laboratories, SAND94-1197

Goldfarb D 1970 A family of variable metric methods derived
by variational meansMath. Comput.24 23–6

Kurpisz K and Nowak A J 1995Inverse Thermal Problems
(Southampton, UK: Computational Mechanics)

Loh M and Beck J V 1991 Simultaneous estimation of two
thermal conductivity components from transient
two-dimensional experimentsPresented at ASME Winter

Annual Meeting (1–6 December 1991, Atlanta, GA)
(New York: ASME) Paper 91-WA/HT-11

Osman A M and Beck J V 1989QUENCH2D: A General
Computer Program for Two-Dimensional Inverse Heat
Transfer Problems(East Lansing, MI: Michigan State
University) Report MSU-ENGR-89-017

Parker W J, Jenkins R J, Butler C P and Abbott G L 1961 Flash
method of determining thermal diffusivity, heat capacity,
and thermal conductivityJ. Appl. Phys.32 (9)
pp 1679–84

Scott E P and Beck J V 1992a Estimation of thermal properties
in carbon/epoxy matrix materials during curingJ. Comp.
Mater. 26 (1) 21–36

——1992b Estimation of thermal properties in epoxy
matrix/carbon fiber composite materialsJ. Comp. Mater.26
(1) 132–49

Shanno D F 1970 Conditioning of quasi-Newton methods for
function minimizationMath. Comput.24 647–56

Sjaardema G D 1992APREPRO: An Algebraic Preprocessor for
Parameterizing Finite Element AnalysesSandia National
Laboratories, SAND92-2291

Taktak R, Beck J V and Scott E 1993 Optimal experimental
design for estimating thermal properties of composite
materialsInt. J. Heat Mass Transfer36 (12) 2977

Ulbrich A, Beck J V and Dowding K 1993 Measurements of
transient temperatures and heat fluxes in a composite
material for the estimation of thermal properties—part I:
experimental aspects (East Lansing, MI: Michigan State
University) Report MSU-ENGR-009-93

Vanderplaats G N 1995Design Optimization Tools (DOT) Users
Manual (Colorado Springs, CO: Vanderplaats Research and
Development)

887


