
AIAA 2003-0649

OVERVIEW OF MODERN DESIGN OF EXPERIMENTS METHODS FOR
COMPUTATIONAL SIMULATIONS

Anthony A. Giunta*, Steven F. Wojtkiewicz Jr.†, and Michael S. Eldred‡

Sandia National Laboratories§

Albuquerque, NM USA

Abstract

The intent of this paper is to provide an overview of modern design of experiments (DOE)
techniques that can be applied in computational engineering design studies. The term modern re-
fers to DOE techniques specifically designed for use with deterministic computer simulations. In
addition, this term is used to contrast classical DOE techniques that were developed for labora-
tory and field experiments that possess random error sources. Several types of modern DOE
methods are described including pseudo-Monte Carlo sampling, quasi-Monte Carlo sampling,
Latin hypercube sampling, orthogonal array sampling, and Hammersley sequence sampling.

Keywords: sampling, pseudo-Monte-Carlo, quasi-Monte Carlo, Latin hypercube, orthogonal ar-
ray, Hammersley sequence, design of experiments.

* Senior Member of Technical Staff, Optimization and Uncertainty Estimation Department; Senior Member
AIAA
† Senior Member of Technical Staff, Structural Dynamics and Smart Systems Department; Member AIAA
‡ Principal Member of Technical Staff, Optimization and Uncertainty Estimation Department; Senior
Member AIAA
§ Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for
the United States Department of Energy under contract DE-AC04-94AL85000.
 This material is declared a work of the U.S. Government and is not subject to copyright protection in the
United States.

1. Introduction
1.1 Overview

Both classical and modern design of
experiments (DOE) techniques share the
common goal of extracting as much infor-
mation as possible from a limited set of
laboratory or computer experiments. This
knowledge extraction process is commonly
referred to as sensitivity analysis, trend
analysis, analysis of variance, or uncertainty
quantification.

 The fundamental difference between
classical and modern DOE stems from the
assumption that random error exists in a
laboratory experiment, but does not exist in
a computer experiment (i.e., a deterministic
computer simulation). Classical DOE tech-
niques arose from technical disciplines that
assumed some randomness and non-

repeatability in field experiments (e.g., agri-
cultural yield studies, experimental chemis-
try). Hence, classical DOE approaches such
as central composite design, Box-Behnken
design, and full- and fractional-factorial de-
sign generally put sample points at the ex-
tremes of the parameter space, since these
designs offer more reliable trend extraction
in the presence of non-repeatability.

Modern DOE methods are distin-
guished from classical DOE methods in that
the non-repeatability component can be
omitted since deterministic computer simu-
lations are involved. In these cases, space
filling designs such as quasi-Monte Carlo
sampling, orthogonal array sampling, and
Latin hypercube sampling are more com-
monly employed in order to accurately ex-
tract trend information.

1
American Institute of Aeronautics and Astronautics

Another feature that distinguishes clas-
sical DOE from modern DOE is the choice
of probability distribution functions associ-
ated with design parameters. That is, classi-
cal DOE typically assumes that the possible
values of a design parameter are uniformly
distributed (i.e., equally likely) between a
lower and upper bound. In contrast, modern
DOE methods are intended to handle design
parameters that have both uniform and non-
uniform (e.g., Gaussian, Weibull) probabil-
ity distributions.

A common attribute shared by both
classical DOE and modern DOE is that the
sample points are independent, and thus are
amenable to concurrent evaluation. In the
case of computer experiments, it is possible
to exploit parallel computing, either on a
multiprocessor computer or over a network,
to compress the wall-clock time needed to
complete the set of simulations prescribed
by a DOE method.

The data produced by a DOE study can
be used in other aspects of the engineering
design process. For example, a common ap-
proach is to reuse the data generated by a
DOE study to build surrogate functions, of-
ten referred to as response surface approxi-
mations, to assist the engineer in optimizing
a particular product design.

1.2 Motivation

The motivation for this document is
that there presently is no concise description
of modern DOE methods. Rather, descrip-
tions of modern DOE techniques are scat-
tered throughout the literature in the statis-
tics, applied mathematics, and engineering
communities. As can be expected, there is
only limited similarity between the notation
and terms used in these publications due to
discipline-specific jargon. Unfortunately,
this unnecessarily complicates the under-
standing and application of modern DOE
methods to engineering design problems.

In contrast, there are numerous well-
written texts on classical DOE techniques
that provide easy-to-use tables, and in some
cases actual software, for generating sets of
samples. Readily available classical DOE
methods, coupled with a lack of appreciation

of the differences between deterministic
computer experiments and nondeterministic
laboratory experiments, has resulted in the
widespread, and in some cases, inappropri-
ate use of classical DOE methods in compu-
tational engineering design studies.

While DOE methods can be misap-
plied, it is the authors’ opinion that the use
of any DOE approach is better than the ad
hoc “trial-and-error” or “build-and-break”
approaches to engineering design. Thus,
both modern and classical DOE methods
provide utility in performing engineering
design studies. The goal of this paper is to
educate the computational engineering audi-
ence about the advantages and disadvan-
tages of modern DOE techniques, so that the
engineer can choose the DOE technique,
modern or classical, that best fits a particular
design problem.

The remainder of this document is or-
ganized with Section 2 providing some
background material on the notation and
terms used in modern DOE techniques. Sec-
tion 3 covers pseudo-Monte Carlo sampling
methods and related variants. Sections 4-6
address Latin hypercube sampling, orthogo-
nal array sampling, and quasi-Monte Carlo
sampling, respectively. Section 7 describes
some of the publicly available software for
performing modern DOE. Finally, Section 8
provides a summary.

2. Background and Notation
2.1 Definitions and Terms

Prior to discussing classical and mod-
ern DOE techniques, it is useful to present
some standard definitions and terms.

Design Variables: the parameters or quanti-
ties to be varied during the experiment. A
synonym in the statistical literature is “fac-
tors.” In this text, a design variable is repre-
sented as an element in an n-dimensional
vector, xi, where i=1,…,n. The entire vector
of design variables is represented in bold
font as x.

Design Space: The n-dimensional space de-
fined by the lower and upper bounds of each

2
American Institute of Aeronautics and Astronautics

design variable. Typically, the design space
bounds are scaled to range from –1 to +1 or
from 0 to +1. This scaling is a convenience
for representing tables of samples, as well as
a mathematical necessity for avoiding ill
conditioned matrices in some of the linear
algebra used in generating DOE samples.
An n-dimensional design space is indicated
in this text using the closed interval notation
[-1,1]n or [0,1]n, as appropriate for the par-
ticular DOE method. Both [-1,1]n and [0,1]n
define n-dimensional hypercube design
spaces. Note that, in this document, the n
design variables are considered to be real-
valued (i.e.,). Some modern DOE
methods are applicable to cases where the x-
values are integers or discrete real values,
however, this aspect of modern DOE is not
addressed here.

nx ∈ℜ

Sample: A specific instance of x, where all
values in the vector x fall within the bounds
of the design space. The terms “design
point” and “point” are synonymous with
“sample.” A sample is represented as either
a vector of length n, or as an ordered n-tuple
of the form (x1, x2,,…, xn).

Design of Experiments: A procedure for
choosing a set of samples in the design
space, with the general goal of maximizing
the amount of information gained from a
limited number of samples. The phrase “de-
sign and analysis of computer experiments”
(DACE) is used in some sources as a syno-
nym for modern DOE methods.

Response: A dependent quantity that is
measured or evaluated for a specific design
point. Mathematically, this is represented as
y(x). A vector of responses is represented as
either y(x) or Y.

Response Surface: Any function that repre-
sents the trends of a response over the range
of the design variables. In some engineering
fields, the term “response surface” denotes
the use of a low-order polynomial function.
However, this is not consistent with the sta-
tistical community in which “response sur-

face” is the true, unknown response trend,
and “response surface approximation” de-
notes a user-defined function that models the
response trend. Synonyms for “response
surface approximation” include “model,”
“metamodel,” “surrogate model,” “approxi-
mation model, and “DACE model.”

Note that response surface approxima-
tions are often associated with design of ex-
periments. In some classical DOE methods,
there is a strong connection between the
form of the response model and the DOE
approach (e.g., polynomial models and D-
optimal experimental designs1). However,
for modern DOE methods, there is little or
no connection between the form of the re-
sponse model and the DOE approach. Thus,
response approximation methods are not
address in this paper. One study that has ex-
amined the connection between response
modeling and modern DOE approaches is
the work of Simpson, et al.2

2.2 Discussion – Classical DOE

Classical design of experiments such as
central composite design, Box-Behnken de-
sign and full-factorial design have a rich
history of statistical and mathematical de-
velopment along with practical application
in scientific and engineering studies.1 An
often-overlooked aspect of classical DOE is
the assumption that a measured response
quantity contains a random error term. This
is described mathematically as

() () ,m ty y ε= +x x (1)

where ym is the measured response, yt is the
true response, and ε is a random error term.

In many cases, the ε values are assumed
to be independent and identically distributed
(i.i.d.). For ease of explanation in this text,
consider ε to be a normal (i.e., Gaussian)
random variable with a mean value of zero
and a variance of unity. Because of the ran-
dom error term, ym is non-repeatable even
when exactly the same values of x are used
in two measurements.
 One of the goals of a typical design of
experiments study is to estimate and predict
the trends in the response data. While there
are many forms for the approximation func-

3
American Institute of Aeronautics and Astronautics

tions, a generic approximation model is used
here with the form

ˆ() (, ())my f= s sx x y x , (2)

where the sample points are denoted as xs,
the measured response data are represented
as , f is a user-selected function, and

is the approximate response value
computed at an arbitrary design point, x.
Typical functions for f include low-order
polynomials, splines, kriging, neural net-
works, and radial basis functions.

()m sy x
ˆ()y x

 The key feature of Equation (1) is the
random error term and the accompanying
assumption that ε is always present due to
sources such as measurement error, inherent
fluctuations in the response quantity (e.g.,
turbulence), or other sources. Another criti-
cal assumption is that the experimenter has
knowledge of the general trends of the true
response, yt. Based on these assumptions,
the goal of most classical DOE methods is to
place a fixed number of samples in the de-
sign space so as to minimize the influence of
the random error term in subsequent compu-
tations, e.g., where the approximation model
given in Equation (2) is computed.
 In classical DOE, the goal of minimiz-
ing the effects of random error has the ef-
fects of placing the sample sites near or on
the boundaries of the design space. Myers
and Montgomery1 provide a detailed de-
scription of why this occurs, but the general
idea can be observed in Figures 1 and 2.

In Figure 1, there are two sample points
x1 and x2. The measured response value for
each point is indicated by the diamond sym-
bol. The true trend is shown by the solid
line, and the estimated trend, , is
shown by the dotted line. In this illustration,
the random errors, ε

ˆ()y x

1 and ε2, cause the esti-
mated trend to be a poor approximation of
the true trend.

Figure 2 illustrates the effect of moving
sample sites x1 and x2 to the lower and upper
bounds of x. In this case, ε1 and ε2, remain
the same, but the resulting estimated trend is
a better approximation to the true trend.

ε1

x

y(x)

x2 x1

ε2

Figure 1. An illustration of the effect of random
errors in producing an estimated linear model
(dashed) that has a different slope than the true
linear model (solid).

ε1

x

y(x)

x2 x1

ε2

Figure 2. By moving the samples to the
boundaries of the design space, the effect of the
random error terms is reduced. Now, the
estimated linear model (dashed) is a better
approximation to the true linear model (solid).

 From a statistical perspective, it is eas-
ier to discriminate the response trend com-
ponent from the random error component
when the sample sites are spaced as far apart
as possible. This principle is followed in
classical DOE methods that place samples
on the boundaries and/or vertices of the de-
sign space, but place very few samples in
the interior of the design space.
 Another feature of classical DOE that
differs from modern DOE is the use of repli-
cated sampling. Since the measured re-

4
American Institute of Aeronautics and Astronautics

sponse, ym, contains a random error term,
repeated measurements taken for identical
design variable values will result in slightly
different ym values. Classical DOE methods
typically employ replicated sampling to
permit a lack-of-fit statistical analysis and to
measure the magnitude of the error term in
Equation (1).1

2.3 Classical DOE Example
 Figure 3 illustrates a commonly used
classical DOE technique, central composite
design (CCD), for the design space [0,1]2. In
CCD, the number of samples grows with the
dimension of the design space, n, according
to the formula 2n + 2n + 1. The 2n samples
correspond to the “corner” points at the ver-
tices of [0,1]2, while the 2n samples corre-
spond to the points that lie outside of [0,1]2
(where the distance of these points from the
center of the design space changes with re-
spect to n, see Ref. 1). If this CCD were to
be used on a laboratory experiment, repli-
cated samples would be taken, at least, at the
center of the design space, and at all sample
sites if economically possible.

x1

x2

0

0

1

1

Figure 3. A central composite design from clas-
sical DOE for n=2. Note that the number of sam-
ple sites (stars) scales as the number of vertices,
i.e., as 2n.

 Figure 3 clearly illustrates some of the
drawbacks to classical DOE. That is, at best,
the number of samples in CCD scales as 2n;
a rate that can be unacceptable if n is large
and/or if experiments are expensive. Fur-
thermore, CCD and other classical DOE

methods tend to place samples on or near the
boundary of the design space, leaving the
interior of the design space largely unex-
plored. For example, in the two-dimensional
CCD shown in Figure 3, eight of the nine
samples are on or outside the boundary of
the design space, and only one sample, the
center point, lies in the interior of the design
space. Similar trends are exhibited by Box-
Behnken design and many other classical
DOE methods.

2.4 Discussion – Modern DOE

In modern DOE applied to determinis-
tic computer experiments, there is no notion
of random error. That is, if a computer simu-
lation is run twice with exactly the same
input data, then the output data produced
from both simulations will, in general, be
exactly the same. In addition to the assump-
tion that there is no random error in a com-
puter experiment, an additional assumption
made in modern DOE is that the true re-
sponse trend is unknown. For this reason,
modern DOE methods tend to place samples
on the interior of the design space in what is
often termed a “space-filling” set of sam-
ples. Sampling in the interior of the design
space is performed in an effort to minimize
bias error. Bias errors arise when there is a
difference between the functional form of
the true response trend, and the functional
form of the assumed or estimated trend. For
example, if the true trend is a cubic polyno-
mial and the assumed trend is a quadratic
polynomial, then bias error reflects the in-
ability of a quadratic function to model the
trends in the cubic function, irrespective of
how many data samples are used.

Myers and Montgomery1 provide an
example that demonstrates how sampling in
the interior of the design space can reduce
bias error in an approximation model. In this
example, the true function trend is a quad-
ratic function of a single variable, x, and the
approximation model is a linear function.
Myers and Montgomery show that the bias
error in the approximation model is reduced
by placing two samples inside the interval
[xL, xU], rather than at the endpoints of the
interval. While the sampling approach de-

5
American Institute of Aeronautics and Astronautics

scribed by Myers and Montgomery does not
correspond to any of the modern DOE
methods described below, conceptually
there are many similarities.

The remaining sections of this report
describe various modern DOE approaches.
This is not intended to be an all-inclusive
list, but rather it is intended to serve as an
overview of some of the more commonly
used techniques in modern DOE.

3. Pseudo-Monte Carlo Sampling
3.1 Basic Method

Pseudo-random sampling, also known
as pseudo-Monte Carlo sampling, was first
applied to computer simulations by Me-
tropolis and Ulam3 in 1949. The prefix
pseudo- refers to the use of a pseudo-
random number generation algorithm that is
intended to mimic a truly random natural
process. In many cases, the pseudo- prefix is
dropped and this class of DOE methods is
known simply as Monte Carlo methods.
However, it is important to note that pseudo-
Monte Carlo methods differ from quasi-
Monte Carlo methods which do not use ran-
dom number generation algorithms. More
information on quasi-Monte Carlo sampling
is provided in Section 6.

Given an interval [xL, xU], pseudo-
Monte Carlo (MC) sampling selects a ran-
dom number that lies in the interval. For a 1-
dimensional design space this random num-
ber is the sample site. Of course, this sam-
pling approach is readily extended to an n-
dimensional design space [xL, xU]n in which
the sample site is an ordered n-tuple. Figure 4
shows MC samples in a two dimensional
design space on the interval [0,1]2.

For design spaces that are convex but
not rectangular, it is relatively straightfor-
ward to adapt MC sampling to the design
space, either by enforcing simple geometric
properties (e.g., to produce MC samples in a
circular region, inscribe the circle in a
square, sample over the square and discard
samples that fall outside of the circle), or by
applying some type of transformation that
maps the boundary of the rectangular design
space to the boundary of the convex design

space. For nonconvex design spaces, MC
sampling can be more difficult to employ,
especially in high-dimensional design
spaces, depending on how the nonconvex
region is defined.

x1

x2

0

0

1

1

Figure 4. An example of pseudo-Monte Carlo
sampling in a two-dimensional design space. The
sample sites (stars) are randomly placed in the
interval [0,1]2.

A nontrivial aspect of MC sampling is

the selection of a reliable algorithm to gen-
erate random numbers. This topic is covered
in numerous texts on numerical methods and
statistics and is not addressed here.

While MC sampling is simple to im-
plement, a set of MC samples will often
leave large regions of the design space un-
explored. This occurrence stems from the
random and independent nature of the sam-
ple sites produced by a random number gen-
erator. Several modern DOE methods have
been developed to address this deficiency of
basic MC sampling. Some of these are vari-
ants are described below.

3.2 Stratified Monte Carlo Sampling

The stratified Monte Carlo sampling
method4 was developed in an effort to pro-
vide a more uniform sampling of the design
space as compared to the basic MC sam-
pling approach. In stratified Monte Carlo
sampling each of the n intervals of [xL, xU]n

is divided into subintervals, or “bins,” of
equal probability. In the case where all of
the design variables have uniform probabil-

6
American Institute of Aeronautics and Astronautics

ity distributions, the bins are of equal size.
Once the bins are defined, a sample site then
is randomly selected within each bin.

An example of stratified MC sampling
is shown in Figure 4, where there are two
design variables, x1 and x2, both of which
have uniform probability distributions. The
interval along x1 is subdivided into four bins
and the interval along x2 is subdivided into
three bins. This yields 12 equally sized bins.

1

x1

x2

0
0 1

Figure 5. Stratified Monte Carlo sampling where
the bins are sized to have equal probability, and a
sample is randomly placed in each bin.

Stratified MC sampling provides better
overall coverage of the design space than
does basic MC sampling. In addition, the
user has flexibility in choosing the number
of subintervals created in each interval in
[xL, xU]n. This allows the user to control the
number of bins in the design space to best
match the available computational budget.
Some of the other modern DOE methods do
not permit the user to specify a different
number of bins for each interval.

A drawback to stratified MC sampling
is that the number of samples scales at best
as 2n, i.e., two bins for each design variable
interval. In cases where n is large, and/or
where computer simulation runs are expen-
sive, it may not be possible to evaluate O(2n)
samples.

3.3 Monte Carlo Sampling Algorithm

As stated above, an integral aspect of
pseudo-Monte Carlo sampling is the selec-
tion of a reliable method for generating ran-

dom real-valued numbers. In addition to the
numerous textbooks on numerical methods
that cover random number generation, many
computer languages have random number
generation functions/subroutines as standard
features. Modern DOE software packages
that contain variants of pseudo-MC sam-
pling are described in Section 7.

The field of Monte Carlo sampling is
much more broad than presented here. For
example, there are entire texts devoted to
variants of Monte Carlo sampling in situa-
tions where the design variables have non-
uniform probability distributions, or where
correlations exist among the design vari-
ables. For additional information on Monte
Carlo sampling and its many variants, see
the texts by Sobol5, Niederreiter6, and Evans
and Swartz7.

4. Latin Hypercube Sampling
4.1 Overview

Latin hypercube sampling (LHS) is one
popular modern DOE method that has found
wide application in computational applica-
tions. McKay, et al, originally developed the
LHS method.8 as an alternative to pseudo-
Monte Carlo sampling. Under certain as-
sumptions associated with the function to be
sampled, Latin hypercube sampling provides
a more accurate estimate of the mean value
of the function than does Monte Carlo sam-
pling. That is, given an equal number of
samples, the LHS estimate of the mean will
have less error (i.e., smaller confidence
bounds) than the mean value obtained
through Monte Carlo sampling.

Another attractive aspect of LHS is that
it allows the user to tailor the number of
samples to the available computational
budget. That is, a LHS experimental design
can be configured with any number of sam-
ples and is not restricted to sample sizes that
are specific multiples or powers of n. For
example, with an expensive computer simu-
lation with n design parameters, one may
only be able to afford O(n) samples. In con-
trast, for many classical DOE methods, and
some modern DOE methods, the number of

7
American Institute of Aeronautics and Astronautics

samples scales as O(2n), e.g., central com-
posite design and stratified-MC sampling.

Figure 6 demonstrates Latin hypercube
sampling on a two-variable parameter space.
Here, the range of both parameters, x1 and
x2, is [0,1]. Also, for this example both x1
and x2 have uniform probability distribu-
tions. For p Latin hypercube samples, the
range of each parameter is divided into p
bins of equal probability. For n design pa-
rameters, this partitioning yields a total of pn
bins in the parameter space. Next, p samples
are randomly selected in the parameter
space, with the following restrictions: (a)
each sample is randomly placed inside a bin,
and (b) for all one-dimensional projections
of the p samples and bins, there will be one
and only one sample in each bin.

In a two-dimensional example such as
that shown in Figure 6, the sample placement
rules for LHS guarantee that only one bin
can be selected in each row and column.
For p=4, there are four partitions in both x1
and x2. This gives a total of 16 bins, of
which four will be chosen according to crite-
ria (a) and (b) described above. The stars in
Figure 6 represent the four sample sites in
this example, where each sample is ran-
domly located in its bin.

An inspection of Figure 6 shows how
LHS criterion (b) is satisfied. That is, if all
four of the samples are projected vertically
down to the x1 axis, there would be one
sample in each bin along x1. Similarly, if the
four samples were projected horizontally
over to the x2 axis, there would be one sam-
ple in each of the x2 bins.

This insight is useful in visualizing
LHS sampling in three dimensions. For ex-
ample, for n=3, add a third axis, x3, (out of
the page) to Figure 6. This would produce 64
equally sized bins in the design space. Next,
re-position the four samples in the vertical
direction so that one sample is located in
each interval along x3. Again, all one-
dimensional projections of the four samples
would yield one sample per bin along each
axis.

One drawback to Latin hypercube sam-
pling is that there is more than one possible
arrangement of bins and samples that meets

the LHS criteria. For example, the four sam-
ple sites in Figure 6 could have been placed
in the four bins along either diagonal. Not
only is this a poor arrangement of samples
with respect to coverage of the design space,
but also the four samples sites would be
nearly co-linear (in statistical jargon, this is
known as high spatial correlation). This can
lead to ill conditioned systems of linear
equations when the sample site data are used
in other calculations (e.g., linear regression).

x1

x2

0
0

1

1

Figure 6. Latin hypercube sampling with four
bins in each of the parameters x1 and x2. The
stars are sample sites randomly selected inside
each bin.

Fortunately, there are extensions to the

basic LHS technique that minimize the
amount of correlation among the sample
sites, or, at the user’s discretion, can enforce
a user-prescribed correlation among the
samples. These techniques are available in
some, but not all software packages that per-
form Latin hypercube sampling. One soft-
ware package that does employ the correla-
tion minimizing approach is the “LHS” code
originally developed by Iman and Shorten-
carrier.9 See Section 7 for more information
on the LHS code.

4.2 LHS Algorithm

The algorithm that generates Latin hy-
percube sample sites is described in detail
by Koehler and Owen.4 This algorithm is
presented below using a slightly different
notation to maintain consistency within this

8
American Institute of Aeronautics and Astronautics

document. The algorithm for generating
LHS points is:

() ()
()

for 1 and 1 ,

,
i i

j ji
j

j n i k

U
x

k
π

≤ ≤ ≤ ≤

+
=

(3)

where k is the number of samples, n is the
number of design variables, U is a uniform
random value on [0,1], and π is an inde-
pendent random permutation of the se-
quence of integers 0,1,…,k-1. The subscript
j denotes the dimension index and the super-
script (i) denotes the sample number. Note
that there are p! permutations of the se-
quence of integers in π, all of which are
equally probable.
 For example, the Latin hypercube sam-
ples shown in Figure 6 were constructed us-
ing the sequence

and the sequence .
These sequences for π are then arranged as
consecutive columns in a matrix. This pro-
duces the (row, column) bin location of each
sample, e.g., (0,1), (1,3), (2,0), and (3,2),
where bin (0,0) is in the lower left corner of
Figure 6. The approximate values of the ran-
dom value sequences are

 and

.
These random values determine the location
of each sample within its respective bin.

(1) (4)
1 1, , 0,1, 2,3π π =…

(1) (4)
2 2, , 1,3,0,2π π =…

(1) (4)
1 1, , 0.09,0.63,0.71,0.34U U =…

(1) (4)
2 2, , 0.60,0.08,0.54,0.41U U =…

 A simple modification to the Latin hy-
percube sampling algorithm produces what
is known as lattice sampling. In lattice sam-
pling the Ui

(j)
 sequence is replaced with a

fixed value of 0.5. The result is that each
sample is placed at the center of its respec-
tive bin, rather than randomly within the bin.

As with stratified Monte Carlo sam-
pling, it is possible to perform Latin hyper-
cube sampling and lattice sampling for de-
sign variables that have non-normal prob-
ability distributions as well as correlations
among the variables. See the text by Helton
and Davis10 for more information on vari-
ants of Latin hypercube sampling that are
applicable in these cases.

5. Orthogonal Array Sampling
5.1 Overview

Conceptually, orthogonal array (OA)
sampling shares many similarities with Latin
hypercube sampling, and in fact, the OA
algorithm can be used to produce Latin hy-
percube samples.4,11 The key feature of OA
sampling is that it produces a set of samples
that yield uniform sampling in any t-
dimensional projection of an n-dimensional
design space (where t<n). In Latin hyper-
cube sampling, t=1, and hence LHS can be
considered to be a special case of orthogonal
array sampling. The value of t is known as
the strength of the OA.

An orthogonal array is characterized by
five integer values with the notation
OA(k,n,p,t) and the expression k=λpt. In this
notation, k is the total number of samples, n
is the dimension of the design space, p is the
number of bins in each variable (p is the
same for all variables), t is the strength of
the array, and λ is the index of the array. The
index term refers to the number of samples
that occur in each bin following a t-
dimensional projection of the samples.

Note that the term orthogonal in OA is
not related to the definition of orthogonal as
used in linear algebra (i.e., where two n-
dimensional vectors, u and v, are orthogonal
if uTv=0). Rather, in the context of OAs,
orthogonality is a special property of the
matrix of integers (i.e., the array) used to
generate sample sites. This k × n matrix, A,
is said to be orthogonal if for any t columns
of the matrix (t<n), each ordered t-tuple ap-
pears exactly λ times.

Figure 7 illustrates a simple orthogonal
array having four samples in a three-
dimensional design space. The three design
variables have uniform probability distribu-
tions, and each interval is subdivided into
two bins. Each shaded bin contains one
randomly placed sample site. Thus, for all
two-dimensional projections of the design
space, there is one sample in each bin. Using
the OA notation described above, this set of
samples is represented as OA(4,3,2,2) with
λ=1. The array, A, that produced the shaded
bins is:

9
American Institute of Aeronautics and Astronautics

000
101
110
011

A
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

.

Note that for any t=2 columns of A, each of
the four bins in the two-dimensional projec-
tion (i.e., (0,0), (1,0), (0,1), (1,1)), appears
one time. Hence, λ=1. Also note that the
integers in A correspond to the p bins in
each interval, where the bins are numbered
0, 1, …, p-1.

To produce an OA with λ=2, consider
the case where Figure 7 is changed so that
there is one sample point in each of the eight
bins. In such a case, A becomes:

0 0 0
0 0 1
0 1 0
1 0 0
0 1 1
1 1 0
1 0 1
1 1 1

A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,

and all two-column projections of A yield
two samples in each bin.

x2

x3

x1

Figure 7. A four sample, strength=2 orthogonal
array in a three-dimensional design space. There
is one sample in each of the shaded bins.

A disadvantage of OA sampling is that

the user does not have the ability to specify
an arbitrary number of samples if strength ≥
2 is desired. That is, there are only certain
values of k, n, p, t, and λ that generate an A
array that satisfies orthogonality. As an ex-
ample, OA(36,4,6,2) does not exist.12

Since OA generation can be nontrivial,
and since there can be several valid permu-
tations of an OA, various often used arrays
have been published in tabular form (cf.

Reference 11). With the bin locations speci-
fied by a given array, it is then left to the
user to place the sample site at either the
center of the bin or randomly within the bin.

In addition to tables of OAs, some pub-
lic-use software products are available for
generating OA samples. See Section 7 for
more information.

5.2 Orthogonal Array Algorithm

The algorithm for generating orthogo-
nal array samples is:

() ()
()

for 1 and 1 .

()
,

i i
j j ji

j

j n i

A U
x

p
π

≤ ≤ ≤ ≤

+
=

k

(4)

As with the LHS algorithm, k is the number
of samples, n is the number of design vari-
ables, U is a uniform random value on [0,1],
the subscript j denotes the dimension index
and the superscript (i) denotes the sample
number. The term πj(Aj

(i)) denotes the (i, j)th
element in array A, where the columns of A
satisfy the OA definition of orthogonality.
 As with the pseudo-Monte Carlo and
Latin hypercube sampling methods, it is
possible to employ OA sampling with de-
sign variables having non-uniform distribu-
tions. Some of the available OA software
packages (see Section 7) are able to accom-
modate non-uniform design variables.

6. Quasi-Monte Carlo Sampling
6.1 Background

The final class of sampling methods
addressed in this paper is known as quasi-
Monte Carlo methods, or, alternatively, as
low-discrepancy sampling.6 As mentioned in
Section 3, there is a difference between
quasi-Monte Carlo sampling and the classi-
cal pseudo-Monte Carlo approach. However,
both quasi-Monte Carlo sampling and
pseudo-Monte Carlo sampling have a com-
mon heritage in that both methods were de-
veloped for multidimensional integration.

The quasi- prefix refers to a sampling
approach that employs a deterministic algo-
rithm to generate sample sites in an n-
dimensional space, so that the points are as

10
American Institute of Aeronautics and Astronautics

close as possible to a uniform sampling. The
term discrepancy refers to a quantitative
measure of how much the distribution of
samples deviates from an ideal uniform dis-
tribution. Hence, low-discrepancy is a de-
sired feature of this class of sampling meth-
ods. Stated another way, quasi-MC sampling
seeks to distribute the sample sites evenly
throughout the design space, but does not
employ a regular grid or a Cartesian lattice
of sample sites. Conceptually, think of the
quasi-MC sample sites as a cloud of elec-
trons that, due to electrostatic repulsion,
move around inside an n-dimensional space
[0,1]n until some sort of minimum energy
state is reached. In the final state, the elec-
trons would not lie on a regular grid, but
instead would be nearly equally spaced, but
unstructured, throughout [0,1]n.

6.2 Error Bounds for Numerical Inte-

gration Methods
The text by Niederreiter6 provides a

discussion of the error bounds in multidi-
mensional integration when using classical
integration methods (e.g., trapezoidal rule),
pseudo-Monte Carlo sampling, and a par-
ticular variant of quasi-Monte Carlo sam-
pling that uses the Hammersley sequence.13
In summary, these error bounds are listed in
Table 1 where N is the number of samples
and n is the dimension of the design space.

For this comparison, all of the pseudo-
MC and related sampling methods (basic-
MC, stratified-MC, Latin hypercube, or-
thogonal arrays) have the same order-of-
magnitude error bounds. The differences
between the various pseudo-MC methods
are in the constant terms rather than in the
exponent on the number of samples.14

Note that the pseudo-MC error bound is
a probabilistic bound (due to random sam-
pling) whereas the classical integration and
quasi-MC error bounds are absolute (due to
deterministic sampling). Figure 8, Figure 9,
and Figure 10 plot these error bound trends
versus increasing N for n=2, n=3, and n=5,
respectively.

Table 1. Error bounds for numerical integration
methods (obtained from Ref. 6).

Method Error Bound
Classical Integration O(N-2/n)
Pseudo-Monte Carlo O(N-1/2)
Quasi-Monte Carlo O(N-1(log10N)n-1))

 In Figure 8 both classical integration
and the Hammersley sequence (HS) variant
of quasi-MC sampling have lower error
bounds than pseudo-MC sampling. Stated
another way, for a fixed number of samples,
numerical integration in a two-dimensional
design space using either classical methods
or quasi-MC samples will be more accurate
than integration using pseudo-MC samples.
 However, the error trends shown in
Figure 8 are not maintained when consider-
ing higher dimensional design spaces.
Figure 9 shows that quasi-MC sampling
leads to lower integration errors than the
other two methods for n=3. The same is true
for n=4 (plot not shown).
 For n≥5 the error bound trends shift
again. Figure 10 (for n=5) shows that for
100 ≤ N ≤ 1.0×106, pseudo-MC sampling
yields lower errors, whereas for N ≤ 100 and
N ≥ 1.0×106 quasi-MC sampling yields
lower errors. These general trends hold in
higher dimensional spaces. That is, pseudo-
MC sampling yields lower integration errors
for most reasonable values of N that one
might use in an actual numerical integration
task.

In summary, for n<5, quasi-MC sam-
pling leads to lower integration errors than
pseudo-MC sampling. For n≥5 the average
error of pseudo-MC sampling is lower than
the exact error of quasi-MC sampling over
most reasonable values of the number of
samples. However, since the error bound on
pseudo-MC sampling is a probabilistic
quantity, there is no guarantee that any par-
ticular set of pseudo-MC samples attains this
error bound. For this reason, many research-
ers in the numerical integration community
prefer using quasi-MC sampling for numeri-
cal integration when n≥5, since the error
bound is exactly known. Interestingly, there
is current research in the statistics commu-

11
American Institute of Aeronautics and Astronautics

nity that explores the combination of
pseudo-MC and quasi-MC methods.14

6.3 Quasi-Monte Carlo Sampling as a

Modern DOE Method
The text above addresses the error

bounds for numerical integration given a set
of N points in an n-dimensional design
space, but it does not specifically address the
use of quasi-MC sampling as a modern de-
sign of experiments method. It is reasonable
to argue that the main attribute of quasi-MC
sampling that leads to well-characterized
error bounds, i.e., uniform sampling of an n-
dimensional space, is also a desirable feature
of a modern DOE method. That is, the goal
of modern DOE approaches is to gather in-
formation on the trends of the response
function(s) over the entire design space.
Thus, a quasi-MC sampling approach that
uniformly disperses sample sites throughout
the design space should be an attractive
DOE method.

One example of the use of the Ham-
mersley sequence variant of quasi-Monte
Carlo sampling as a DOE method is de-
scribed by Kalagnanam and Diwekar.15 This
source also provides an algorithm for gener-
ating Hammersley sequence points. This
algorithm is provided below, with minor
modifications to preserve consistency with
the notation used earlier in this document.

6.4 Hammersley Sampling Algorithm

The algorithm that generates a set of N
Hammersley points makes use of the radix-R
notation of an integer. That is, a specific
integer, p, in radix-R notation can be repre-
sented as

1 2 1 0
2

0 1 2

m m
m

m

p p p p p p
p p p R p R p R

−=
= + + + +

…
…

where m = [logRp] = [(ln p)/(ln R)], and the
square brackets, [], denote the integer por-
tion of the number inside the brackets. For
example, in the familiar base-10 (i.e., radix-
10) number system, the integer 756 has p0 =
6, p1 = 5, and p2 = 7, with R=10 and m=2.
 The inverse radix number function con-
structs a unique number on the interval [0,1]

by reversing the order of the digits of p
around the decimal point. The inverse radix
number function is:

()
()

0 1 2
1 2

0 1

.R m
m

R m

p p p p p
p p R p R p R

φ
φ 1− − −

=
= + + +

…
… −

Finally, the Hammersley sequence of n-
dimensional points is generated as

() () ()
1 2 1

() , , , ,
nn R R R

px p p p
N

ϕ ϕ ϕ
−

⎛ ⎞= ⎜ ⎟
⎝ ⎠

… p

where p = 0,1,2,…,N-1; and the values for
R1, R2,…, Rn-1 are the first n-1 prime num-
bers (2,3,5,7,11,13,17,…). This approach
generates a set of N points in the n-
dimensional design space [0,1]n.

Table 2. A Maple™ computer program to gener-
ate N Hammersley sequence points in an n-
dimensional design space [0,1]n. This program is
available online from Reference 16.

user supplies values for
n and N
n:=5:N:=100:

Hammersley:=proc(n,N,I)
local R,x,y,j,k,T;
 T:=[0$k=1..n];
 T[1]:=i/N;
 for k from 2 to n do
 R:=ithprime(k-1);
 for j to i do
 x:=1-T[k];
 y:=1/R;
 while x<=y do
 y:=y/R
 od;
 T[k]:= T[k]+(R+1)*y-1
 od
 od;
 T
end:

plot([‘eval(Hammersley(2,N,i))
’$’i’=0..N-1],x=0..1,y=0..1,
style=POINT,
symbol=CIRCLE,
scaling=CONSTRAINED,
axes=BOXED,
title=`Hammersley Sequence`);

12
American Institute of Aeronautics and Astronautics

Aszkenazy16 has written a computer
program (Table 2) for the Maple™ mathe-
matics software package to generate Ham-
mersley sequence points for an n-
dimensional space. This algorithm is similar
to the algorithm outlined in Kalagnanam and
Diwekar, but there are minor differences
(e.g., Aszkenazy uses the sequence
p=0,1,…,N-1, whereas Kalagnanam and
Diwekar use p=1,2,…,N). Using the Ham-
mersley sampling algorithm given in Table 2
with n=5 and N=8 produces the data points
listed in Table 3.

Table 3. Eight data points in [0,1]5 produced by
the Hammersley sequence algorithm.

Pt.
Num.

x1 x2 x3 x4 x5

1 0 0 0 0 0
2 1/8 1/2 1/3 1/5 1/7
3 1/4 1/4 2/3 2/5 2/7
4 3/8 3/4 1/9 3/5 3/7
5 1/2 1/8 4/9 4/5 4/7
6 5/8 5/8 7/9 1/25 5/7
7 3/4 3/8 2/9 6/25 6/7
8 7/8 7/8 5/9 11/25 1/49

7. Modern DOE Software
There are numerous sources of modern

DOE software, both public domain and
commercial. The text given below is in-
tended to cover some of the publicly avail-
able, or soon-to-be publicly available, mod-
ern DOE software packages. In particular,
software developed by staff at Sandia Na-
tional Laboratories is emphasized, since it is
these software packages with which the au-
thors are most familiar.

7.1 Pseudo-Monte Carlo Sampling
If all of the design variables have uni-

form distributions, then there are many op-
tions for software to generate pseudo-MC
samples. As stated in Section 3, there are
numerous textbooks that describe the gen-
eration of pseudo-random number se-

quences. Also many computer languages
provide functions or subroutines that pro-
vide pseudo-random number sequences.
Thus, it is relatively easy to write a com-
puter program to generate Monte Carlo
samples.

One source of publicly available soft-
ware for pseudo-Monte Carlo sampling is
the GNU Scientific Library (GSL).17 The
GSL provides C-language functions in many
different areas of mathematics and statistics.
For example, the GSL contains functions for
random number generation (uniform distri-
bution and many non-uniform distributions),
as well functions for several types of linear
and nonlinear curve fitting.

In some cases it may be easier to use
existing software rather than to write a spe-
cialized computer program. The LHS and
DDACE software packages, described be-
low, provide various options for pseudo-MC
sampling for variables with non-normal dis-
tributions.

7.2 Latin Hypercube Sampling

LHS Software Package

The LHS software package developed
by Sandia National Laboratories, provides
pseudo-Monte Carlo sampling and Latin
hypercube sampling, both of which can be
used with design variables having various
random distributions including Gaussian
(normal), lognormal, uniform, loguniform,
Weibull, and user-supplied histograms.

In addition, the user can supply a corre-
lation matrix for the design variables and the
LHS code will attempt to produce a set of
sample sites that best matches the user’s cor-
relation matrix. This approach is used to
generate uncorrelated samples where the
desired correlation matrix is the identity ma-
trix.

LHS is in the public domain as a FOR-
TRAN77 software package. Current efforts
are underway at Sandia to develop a FOR-
TRAN90 version of LHS. The current F77
version of LHS is available in the DAKOTA
Toolkit (see below), and plans are to incor-
porate the F90 version of LHS into DA-

13
American Institute of Aeronautics and Astronautics

KOTA once the newest LHS code becomes
available and approved for public release.

DDACE Software Package

The DDACE (Distributed Design and
Analysis of Computer Experiments) soft-
ware package18 also has been developed by
Sandia National Laboratories. DDACE con-
tains both modern and classical design of
experiments methods. The modern DOE
methods are pseudo-Monte Carlo sampling,
Latin hypercube sampling, and orthogonal
array sampling (where the OA software li-
brary is due to Prof. A. B. Owen, see be-
low). These three modern DOE methods
support design variables that have either
normal or uniform distributions. The classi-
cal DOE methods include central composite
design sampling and Box-Behnken design
and are only applicable to variables that
have uniform distributions.

DDACE is currently in review for re-
lease under the GNU general public license.
The timeframe for the public release of
DDACE is early-to-mid 2003.

7.3 Orthogonal Array Sampling

Prof. A. B. Owen of Stanford has de-
veloped a library of C-language functions
for generating OA samples. The software
package is named “oa.c” and it is available
on the StatLib online software repository
(see: http://lib.stat.cmu.edu/designs/).19 As
noted above, Owen’s orthogonal array sam-
pling package has been incorporated in the
DDACE package.

7.4 Quasi-Monte Carlo Sampling

The GNU Scientific Library contains
functions for various types of quasi-Monte
Carlo sampling and low-discrepancy se-
quence generation. Another software library
of quasi-Monte Carlo methods is “libseq”
which is available as a beta-release from the
Caltech Multi-Res Modeling Group.20

Note that the Hammersley sampling se-
quence is not available in either of these
software packages. The algorithm given by
Aszkenazy is the only publicly available

Hammersley sampling software program
known to the authors.

7.5 DAKOTA Toolkit

The DAKOTA (Design Analysis Kit
for Optimization and Terascale Applica-
tions) Toolkit21 is an open-source software
framework for systems analysis and design.
DAKOTA includes methods for optimiza-
tion, parameter estimation, sensitivity analy-
sis, uncertainty quantification, design of ex-
periments, and statistical sampling. It also
provides parallel computing services and
various simulation code interface methods

Both LHS and DDACE have been in-
corporated into the DAKOTA toolkit, al-
though until DDACE is publicly released it
is only available to Sandia users and to other
users affiliated with the U.S. Government.

The open-source status of DAKOTA is
intended to promote software sharing and
co-development through a community of
users. Near-term plans for DAKOTA in-
clude the implementation of quasi-Monte
Carlo sampling methods. Those interested in
pursuing a software development collabora-
tion via DAKOTA are encouraged to contact
the authors.

8. Summary
This paper has provided an overview of

modern design of experiments techniques
including pseudo-Monte Carlo sampling
(and variants such as stratified-Monte Carlo
sampling, Latin hypercube sampling, and
orthogonal array sampling) and quasi-Monte
Carlo sampling. Modern DOE techniques
are preferable to classical DOE techniques
when using deterministic computer experi-
ments, since assumptions in classical DOE
related to experimental error and non-
repeatability are not valid when using de-
terministic computer simulations.

When pseudo-Monte Carlo and quasi-
Monte Carlo methods are used in numerical
integration, theoretical predictions of error
bounds indicate that quasi-Monte Carlo
techniques are preferable to pseudo-Monte
Carlo techniques for distributing sample
points in the n-dimensional interval [0,1]n

14
American Institute of Aeronautics and Astronautics

when n < 5. For cases where n ≥ 5, error
bound predictions favor pseudo-Monte
Carlo sampling over quasi-Monte Carlo
sampling for most reasonable sample sizes
that would be used in a computational study
(although quasi-Monte Carlo is better for
extremely large sample sizes, e.g., ≥107
samples for n=5). However, there is no ab-
solute method to determine when pseudo-
Monte Carlo techniques are preferable to
quasi-Monte Carlo techniques since the

pseudo-Monte Carlo bounds are probabilis-
tic quantities and the quasi-Monte Carlo er-
ror bounds are absolute quantities. Current
research in the statistical community is fo-
cused on DOE techniques that are combina-
tions of pseudo-Monte Carlo and quasi-
Monte Carlo sampling. Thus, the research
and development of modern DOE methods
is an active field of study.

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+00 1.E+02 1.E+04 1.E+06 1.E+08

Number of Samples, N

E
rr

or
 B

ou
nd

, n
=2

Classical
Integration

pseudo-Monte
Carlo

quasi-Monte
Carlo (HS)

Figure 8. Numerical integration error bounds versus the number of samples for a two-dimensional (n=2)
design space.

15
American Institute of Aeronautics and Astronautics

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+00 1.E+02 1.E+04 1.E+06 1.E+08
Number of Samples, N

E
rr

or
 B

ou
nd

, n
=3 Classical

Integration

pseudo-Monte
Carlo

quasi-Monte
Carlo (HS)

Figure 9. Numerical integration error bounds versus the number of samples for a three-dimensional (n=3)
design space.

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+00 1.E+02 1.E+04 1.E+06 1.E+08

Number of Samples, N

E
rr

or
 B

ou
nd

, n
=5

Classical
Integration

pseudo-Monte
Carlo

quasi-Monte
Carlo (HS)

Figure 10. Numerical integration error bounds versus the number of samples for a five-dimensional (n=5)
design space.

16
American Institute of Aeronautics and Astronautics

References

1 Myers, R. H., and Montgomery, D. C., Response Surface Methodology: Process and Product Optimiza-
tion Using Designed Experiments, John Wiley & Sons, Inc., New York, NY, 1995.
2 Simpson, T. W., Lin, D. K. J., and Chen, W., “Sampling Strategies for Computer Experiments: Design
and Analysis,” Intl. J. of Reliability and Applications, Vol. 2, No. 3, 2001, pp. 209-240.
3 Metropolis, N., and Ulam, S., “The Monte Carlo Method,” Journal of the American Statistical Associa-
tion, Vol. 44, No. 247, 1949, pp. 335-341.
4 Koehler, J. R., and Owen, A. B., “Computer Experiments,” in Handbook of Statistics (eds. S. Ghosh and
C. R. Rao), Vol. 13, Elsevier-Science, 1996, pp. 261-308.
5 Sobol’, I. M., A Primer for the Monte Carlo Method, CRC Press, New York, NY, 1994.
6 Niederreiter, H., Random Number Generation and Quasi-Monte Carlo Methods, SIAM Press, Philadel-
phia, PA, 1992.
7 Evans, M., and Swartz, T., Approximating Integrals via Monte Carlo and Deterministic Methods, Oxford
University Press, Oxford, UK, 2000.
8 McKay, M. D., Beckman, R. J., and Conover, W. J., “A Comparison of Three Methods for Selecting Val-
ues of Input Variables in the Analysis of Output from a Computer Code,” Technometrics, Vol. 21, No. 2,
1979, pp. 239-245.
9 Iman, R. L. and Shortencarier, M. J., ‘‘A Fortran 77 Program and User’s Guide for the Generation of
Latin Hypercube Samples for Use with Computer Models,’’ NUREG/CR-3624, Technical Report
SAND83-2365, Sandia National Laboratories, Albuquerque, NM, 1984.
10 Helton, J. C., and Davis, F. J., “Sampling-Based Methods for Uncertainty and Sensitivity Analysis,” San-
dia Report SAND99-2240, Sandia National Laboratories, Albuquerque, NM, 2000.
11 Hedayat, A. S., Sloane, N. J. A., and Stufken, J., Orthogonal Arrays: Theory and Applications, Springer,
New York, NY, 1999.
12 Owen, A. B., “Orthogonal Arrays for Computer Experiments, Integration and Visualization,” Statistica
Sinca, Vol. 2, 1992, pp. 439-452.
13 Hammersley, J.M., “Monte Carlo Methods for Solving Multivariable Problems,” Annals of the New York
Academy of Sciences, Vol. 86, Art. 3, 1960, pp. 844-874.
14 Owen, A.B., “Monte Carlo Extension of Quasi-Monte Carlo,” Winter Simulation Conference Proceed-
ings. (D. J. Medieiros, E.F. Watson, M. Manivannan, and J. Carson, Eds.), 1998, pp. 571—577. (see:
http://www-stat.stanford.edu/~owen/reports/)
15 Kalagnanam, J. R. and Diwekar, U. M., “An Efficient Sampling Technique for Off-line Quality Control,”
Technometrics, Vol. 39, No. 3, 1997.
16 Aszkenazy, W. O., “MUG: Hammersley/Halton Sequence Generation,” online document: http://www-
math.math.rwth-aachen.de/MapleAnswers/456.html, Oct. 2002.
17 Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Booth, M., and Rossi, F., GNU Scientific
Library: Reference Manual Edition 1.3, Dec. 2002. (see http://www.gnu.org/software/gsl)
18 Tong, C. H., and Meza, J. C., ‘‘DDACE: A Distributed Object-Oriented Software with
Multiple Samplings for the Design and Analysis of Computer Experiments,’’ Sandia Report (in prepara-
tion), Sandia National Laboratories, Livermore, CA. (see http://csmr.ca.sandia.gov)
19 Owen, A. B., Software Package “oa.c”, StatLib online repository of statistics software. (see:
http://lib.stat.cmu.edu/ and http://lib.stat.cmu.edu/designs/)
20 Friedel, I., and Keller, A., “Fast Generation of Low-Discrepancy Point Sets,” online document, Caltech
Multi-Res Modeling Group, 2002. (see: http://www.multires.caltech.edu/software/libseq/)
21 Eldred, M. S., Giunta, A. A., van Bloemen Waanders, B. G., Wojtkiewicz, S. F., Jr., Hart, W. E. and Al-
leva, M. P., DAKOTA Users Manual: Version 3.0, Sandia Technical Report SAND2001-3796, Sandia Na-
tional Laboratories, Albuquerque, NM, 2001. (see: http://endo.sandia.gov/DAKOTA/software.html)

17
American Institute of Aeronautics and Astronautics

http://www-math.math.rwth-aachen.de/MapleAnswers/456.html
http://www-math.math.rwth-aachen.de/MapleAnswers/456.html
http://csmr.ca.sandia.gov/
http://lib.stat.cmu.edu/
http://lib.stat.cmu.edu/designs/
http://www.multires.caltech.edu/software/libseq/
http://endo.sandia.gov/DAKOTA)

	Introduction
	Overview
	Motivation

	Background and Notation
	Definitions and Terms
	Discussion – Classical DOE
	Classical DOE Example
	Discussion – Modern DOE

	Pseudo-Monte Carlo Sampling
	Basic Method
	Stratified Monte Carlo Sampling
	Monte Carlo Sampling Algorithm

	Latin Hypercube Sampling
	Overview
	LHS Algorithm

	Orthogonal Array Sampling
	Overview
	Orthogonal Array Algorithm

	Quasi-Monte Carlo Sampling
	Background
	Error Bounds for Numerical Integration Methods
	Quasi-Monte Carlo Sampling as a Modern DOE Method
	Hammersley Sampling Algorithm

	Modern DOE Software
	Pseudo-Monte Carlo Sampling
	Latin Hypercube Sampling
	LHS Software Package
	DDACE Software Package
	Orthogonal Array Sampling
	Quasi-Monte Carlo Sampling
	DAKOTA Toolkit

	Summary

