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1. Introduction 
1.1 Overview 

Both classical and modern design of 
experiments (DOE) techniques share the 
common goal of extracting as much infor-
mation as possible from a limited set of 
laboratory or computer experiments. This 
knowledge extraction process is commonly 
referred to as sensitivity analysis, trend 
analysis, analysis of variance, or uncertainty 
quantification. 

 The fundamental difference between 
classical and modern DOE stems from the 
assumption that random error exists in a 
laboratory experiment, but does not exist in 
a computer experiment (i.e., a deterministic 
computer simulation). Classical DOE tech-
niques arose from technical disciplines that 
assumed some randomness and non-

repeatability in field experiments (e.g., agri-
cultural yield studies, experimental chemis-
try). Hence, classical DOE approaches such 
as central composite design, Box-Behnken 
design, and full- and fractional-factorial de-
sign generally put sample points at the ex-
tremes of the parameter space, since these 
designs offer more reliable trend extraction 
in the presence of non-repeatability.  

Modern DOE methods are distin-
guished from classical DOE methods in that 
the non-repeatability component can be 
omitted since deterministic computer simu-
lations are involved. In these cases, space 
filling designs such as quasi-Monte Carlo 
sampling, orthogonal array sampling, and 
Latin hypercube sampling are more com-
monly employed in order to accurately ex-
tract trend information. 
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Another feature that distinguishes clas-
sical DOE from modern DOE is the choice 
of probability distribution functions associ-
ated with design parameters. That is, classi-
cal DOE typically assumes that the possible 
values of a design parameter are uniformly 
distributed (i.e., equally likely) between a 
lower and upper bound. In contrast, modern 
DOE methods are intended to handle design 
parameters that have both uniform and non-
uniform (e.g., Gaussian, Weibull) probabil-
ity distributions. 

A common attribute shared by both 
classical DOE and modern DOE is that the 
sample points are independent, and thus are 
amenable to concurrent evaluation. In the 
case of computer experiments, it is possible 
to exploit parallel computing, either on a 
multiprocessor computer or over a network, 
to compress the wall-clock time needed to 
complete the set of simulations prescribed 
by a DOE method.  

The data produced by a DOE study can 
be used in other aspects of the engineering 
design process. For example, a common ap-
proach is to reuse the data generated by a 
DOE study to build surrogate functions, of-
ten referred to as response surface approxi-
mations, to assist the engineer in optimizing 
a particular product design. 

 
1.2 Motivation 

The motivation for this document is 
that there presently is no concise description 
of modern DOE methods. Rather, descrip-
tions of modern DOE techniques are scat-
tered throughout the literature in the statis-
tics, applied mathematics, and engineering 
communities. As can be expected, there is 
only limited similarity between the notation 
and terms used in these publications due to 
discipline-specific jargon. Unfortunately, 
this unnecessarily complicates the under-
standing and application of modern DOE 
methods to engineering design problems.  

In contrast, there are numerous well-
written texts on classical DOE techniques 
that provide easy-to-use tables, and in some 
cases actual software, for generating sets of 
samples. Readily available classical DOE 
methods, coupled with a lack of appreciation 

of the differences between deterministic 
computer experiments and nondeterministic 
laboratory experiments, has resulted in the 
widespread, and in some cases, inappropri-
ate use of classical DOE methods in compu-
tational engineering design studies.  

While DOE methods can be misap-
plied, it is the authors’ opinion that the use 
of any DOE approach is better than the ad 
hoc “trial-and-error” or “build-and-break” 
approaches to engineering design. Thus, 
both modern and classical DOE methods 
provide utility in performing engineering 
design studies. The goal of this paper is to 
educate the computational engineering audi-
ence about the advantages and disadvan-
tages of modern DOE techniques, so that the 
engineer can choose the DOE technique, 
modern or classical, that best fits a particular 
design problem. 

The remainder of this document is or-
ganized with Section 2 providing some 
background material on the notation and 
terms used in modern DOE techniques. Sec-
tion 3 covers pseudo-Monte Carlo sampling 
methods and related variants. Sections 4-6 
address Latin hypercube sampling, orthogo-
nal array sampling, and quasi-Monte Carlo 
sampling, respectively. Section 7 describes 
some of the publicly available software for 
performing modern DOE. Finally, Section 8 
provides a summary. 

2. Background and Notation 
2.1 Definitions and Terms 

Prior to discussing classical and mod-
ern DOE techniques, it is useful to present 
some standard definitions and terms.  
 
Design Variables: the parameters or quanti-
ties to be varied during the experiment. A 
synonym in the statistical literature is “fac-
tors.” In this text, a design variable is repre-
sented as an element in an n-dimensional 
vector, xi, where i=1,…,n. The entire vector 
of design variables is represented in bold 
font as x. 
 
Design Space: The n-dimensional space de-
fined by the lower and upper bounds of each 
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design variable. Typically, the design space 
bounds are scaled to range from –1 to +1 or 
from 0 to +1. This scaling is a convenience 
for representing tables of samples, as well as 
a mathematical necessity for avoiding ill 
conditioned matrices in some of the linear 
algebra used in generating DOE samples. 
An n-dimensional design space is indicated 
in this text using the closed interval notation 
[-1,1]n or [0,1]n, as appropriate for the par-
ticular DOE method. Both [-1,1]n and [0,1]n 
define n-dimensional hypercube design 
spaces. Note that, in this document, the n 
design variables are considered to be real-
valued (i.e., ). Some modern DOE 
methods are applicable to cases where the x-
values are integers or discrete real values, 
however, this aspect of modern DOE is not 
addressed here. 

nx ∈ℜ

 
Sample: A specific instance of x, where all 
values in the vector x fall within the bounds 
of the design space. The terms “design 
point” and “point” are synonymous with 
“sample.” A sample is represented as either 
a vector of length n, or as an ordered n-tuple 
of the form (x1, x2,,…, xn). 
 
Design of Experiments: A procedure for 
choosing a set of samples in the design 
space, with the general goal of maximizing 
the amount of information gained from a 
limited number of samples. The phrase “de-
sign and analysis of computer experiments” 
(DACE) is used in some sources as a syno-
nym for modern DOE methods. 
 
Response: A dependent quantity that is 
measured or evaluated for a specific design 
point. Mathematically, this is represented as 
y(x). A vector of responses is represented as 
either y(x) or Y.  
 
Response Surface: Any function that repre-
sents the trends of a response over the range 
of the design variables. In some engineering 
fields, the term “response surface” denotes 
the use of a low-order polynomial function. 
However, this is not consistent with the sta-
tistical community in which “response sur-

face” is the true, unknown response trend, 
and “response surface approximation” de-
notes a user-defined function that models the 
response trend. Synonyms for “response 
surface approximation” include “model,” 
“metamodel,” “surrogate model,” “approxi-
mation model, and “DACE model.”  

Note that response surface approxima-
tions are often associated with design of ex-
periments. In some classical DOE methods, 
there is a strong connection between the 
form of the response model and the DOE 
approach (e.g., polynomial models and D-
optimal experimental designs1). However, 
for modern DOE methods, there is little or 
no connection between the form of the re-
sponse model and the DOE approach. Thus, 
response approximation methods are not 
address in this paper. One study that has ex-
amined the connection between response 
modeling and modern DOE approaches is 
the work of Simpson, et al.2
 
2.2 Discussion – Classical DOE 

Classical design of experiments such as 
central composite design, Box-Behnken de-
sign and full-factorial design have a rich 
history of statistical and mathematical de-
velopment along with practical application 
in scientific and engineering studies.1 An 
often-overlooked aspect of classical DOE is 
the assumption that a measured response 
quantity contains a random error term. This 
is described mathematically as 

( ) ( ) ,m ty y ε= +x x  (1) 

where ym is the measured response, yt is the 
true response, and ε is a random error term. 

In many cases, the ε values are assumed 
to be independent and identically distributed 
(i.i.d.). For ease of explanation in this text, 
consider ε to be a normal (i.e., Gaussian) 
random variable with a mean value of zero 
and a variance of unity. Because of the ran-
dom error term, ym is non-repeatable even 
when exactly the same values of x are used 
in two measurements. 
 One of the goals of a typical design of 
experiments study is to estimate and predict 
the trends in the response data. While there 
are many forms for the approximation func-
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tions, a generic approximation model is used 
here with the form 

ˆ( ) ( , ( ))my f= s sx x y x , (2) 

where the sample points are denoted as xs, 
the measured response data are represented 
as , f is a user-selected function, and 

is the approximate response value 
computed at an arbitrary design point, x. 
Typical functions for f include low-order 
polynomials, splines, kriging, neural net-
works, and radial basis functions. 

( )m sy x
ˆ( )y x

 The key feature of Equation (1) is the 
random error term and the accompanying 
assumption that ε is always present due to 
sources such as measurement error, inherent 
fluctuations in the response quantity (e.g., 
turbulence), or other sources. Another criti-
cal assumption is that the experimenter has 
knowledge of the general trends of the true 
response, yt. Based on these assumptions, 
the goal of most classical DOE methods is to 
place a fixed number of samples in the de-
sign space so as to minimize the influence of 
the random error term in subsequent compu-
tations, e.g., where the approximation model 
given in Equation (2) is computed. 
 In classical DOE, the goal of minimiz-
ing the effects of random error has the ef-
fects of placing the sample sites near or on 
the boundaries of the design space. Myers 
and Montgomery1 provide a detailed de-
scription of why this occurs, but the general 
idea can be observed in Figures 1 and 2.  

In Figure 1, there are two sample points 
x1 and x2. The measured response value for 
each point is indicated by the diamond sym-
bol. The true trend is shown by the solid 
line, and the estimated trend, , is 
shown by the dotted line. In this illustration, 
the random errors, ε

ˆ( )y x

1 and ε2, cause the esti-
mated trend to be a poor approximation of 
the true trend.  

Figure 2 illustrates the effect of moving 
sample sites x1 and x2 to the lower and upper 
bounds of x. In this case, ε1 and ε2, remain 
the same, but the resulting estimated trend is 
a better approximation to the true trend. 

ε1

x 

y(x)

x2 x1

ε2 

 
Figure 1. An illustration of the effect of random 
errors in producing an estimated linear model 
(dashed) that has a different slope than the true 
linear model (solid). 

 
   
 

ε1

x 

y(x)

x2 x1

ε2 

 
Figure 2. By moving the samples to the 
boundaries of the design space, the effect of the 
random error terms is reduced. Now, the 
estimated linear model (dashed) is a better 
approximation to the true linear model (solid). 

 From a statistical perspective, it is eas-
ier to discriminate the response trend com-
ponent from the random error component 
when the sample sites are spaced as far apart 
as possible. This principle is followed in 
classical DOE methods that place samples 
on the boundaries and/or vertices of the de-
sign space, but place very few samples in 
the interior of the design space.  
 Another feature of classical DOE that 
differs from modern DOE is the use of repli-
cated sampling. Since the measured re-
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sponse, ym, contains a random error term, 
repeated measurements taken for identical 
design variable values will result in slightly 
different ym values. Classical DOE methods 
typically employ replicated sampling to 
permit a lack-of-fit statistical analysis and to 
measure the magnitude of the error term in 
Equation (1).1 
 
2.3 Classical DOE Example 
 Figure 3 illustrates a commonly used 
classical DOE technique, central composite 
design (CCD), for the design space [0,1]2. In 
CCD, the number of samples grows with the 
dimension of the design space, n, according 
to the formula 2n + 2n + 1. The 2n samples 
correspond to the “corner” points at the ver-
tices of [0,1]2, while the 2n samples corre-
spond to the points that lie outside of [0,1]2 
(where the distance of these points from the 
center of the design space changes with re-
spect to n, see Ref. 1). If this CCD were to 
be used on a laboratory experiment, repli-
cated samples would be taken, at least, at the 
center of the design space, and at all sample 
sites if economically possible. 

 

x1   

x2 

  

0 
  

0   
  

1 
  

1 

 
Figure 3. A central composite design from clas-
sical DOE for n=2. Note that the number of sam-
ple sites (stars) scales as the number of vertices, 
i.e., as 2n. 
 
 Figure 3 clearly illustrates some of the 
drawbacks to classical DOE. That is, at best, 
the number of samples in CCD scales as 2n; 
a rate that can be unacceptable if n is large 
and/or if experiments are expensive. Fur-
thermore, CCD and other classical DOE 

methods tend to place samples on or near the 
boundary of the design space, leaving the 
interior of the design space largely unex-
plored. For example, in the two-dimensional 
CCD shown in Figure 3, eight of the nine 
samples are on or outside the boundary of 
the design space, and only one sample, the 
center point, lies in the interior of the design 
space. Similar trends are exhibited by Box-
Behnken design and many other classical 
DOE methods. 
  
2.4 Discussion – Modern DOE 

In modern DOE applied to determinis-
tic computer experiments, there is no notion 
of random error. That is, if a computer simu-
lation is run twice with exactly the same 
input data, then the output data produced 
from both simulations will, in general, be 
exactly the same. In addition to the assump-
tion that there is no random error in a com-
puter experiment, an additional assumption 
made in modern DOE is that the true re-
sponse trend is unknown. For this reason, 
modern DOE methods tend to place samples 
on the interior of the design space in what is 
often termed a “space-filling” set of sam-
ples. Sampling in the interior of the design 
space is performed in an effort to minimize 
bias error. Bias errors arise when there is a 
difference between the functional form of 
the true response trend, and the functional 
form of the assumed or estimated trend. For 
example, if the true trend is a cubic polyno-
mial and the assumed trend is a quadratic 
polynomial, then bias error reflects the in-
ability of a quadratic function to model the 
trends in the cubic function, irrespective of 
how many data samples are used.  

Myers and Montgomery1 provide an 
example that demonstrates how sampling in 
the interior of the design space can reduce 
bias error in an approximation model. In this 
example, the true function trend is a quad-
ratic function of a single variable, x, and the 
approximation model is a linear function. 
Myers and Montgomery show that the bias 
error in the approximation model is reduced 
by placing two samples inside the interval 
[xL, xU], rather than at the endpoints of the 
interval. While the sampling approach de-
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scribed by Myers and Montgomery does not 
correspond to any of the modern DOE 
methods described below, conceptually 
there are many similarities. 

The remaining sections of this report 
describe various modern DOE approaches. 
This is not intended to be an all-inclusive 
list, but rather it is intended to serve as an 
overview of some of the more commonly 
used techniques in modern DOE. 

3. Pseudo-Monte Carlo Sampling  
3.1 Basic Method 

Pseudo-random sampling, also known 
as pseudo-Monte Carlo sampling, was first 
applied to computer simulations by Me-
tropolis and Ulam3 in 1949. The prefix 
pseudo- refers to the use of a pseudo-
random number generation algorithm that is 
intended to mimic a truly random natural 
process. In many cases, the pseudo- prefix is 
dropped and this class of DOE methods is 
known simply as Monte Carlo methods. 
However, it is important to note that pseudo-
Monte Carlo methods differ from quasi-
Monte Carlo methods which do not use ran-
dom number generation algorithms. More 
information on quasi-Monte Carlo sampling 
is provided in Section 6. 

Given an interval [xL, xU], pseudo-
Monte Carlo (MC) sampling selects a ran-
dom number that lies in the interval. For a 1-
dimensional design space this random num-
ber is the sample site. Of course, this sam-
pling approach is readily extended to an n-
dimensional design space [xL, xU]n in which 
the sample site is an ordered n-tuple. Figure 4 
shows MC samples in a two dimensional 
design space on the interval [0,1]2. 

For design spaces that are convex but 
not rectangular, it is relatively straightfor-
ward to adapt MC sampling to the design 
space, either by enforcing simple geometric 
properties (e.g., to produce MC samples in a 
circular region, inscribe the circle in a 
square, sample over the square and discard 
samples that fall outside of the circle), or by 
applying some type of transformation that 
maps the boundary of the rectangular design 
space to the boundary of the convex design 

space. For nonconvex design spaces, MC 
sampling can be more difficult to employ, 
especially in high-dimensional design 
spaces, depending on how the nonconvex 
region is defined. 

 

 
x1   

x2
 

0
 

0 
 

1 

1

 
Figure 4. An example of pseudo-Monte Carlo 
sampling in a two-dimensional design space. The 
sample sites (stars) are randomly placed in the 
interval [0,1]2. 

 
A nontrivial aspect of MC sampling is 

the selection of a reliable algorithm to gen-
erate random numbers. This topic is covered 
in numerous texts on numerical methods and 
statistics and is not addressed here.  

While MC sampling is simple to im-
plement, a set of MC samples will often 
leave large regions of the design space un-
explored. This occurrence stems from the 
random and independent nature of the sam-
ple sites produced by a random number gen-
erator. Several modern DOE methods have 
been developed to address this deficiency of 
basic MC sampling. Some of these are vari-
ants are described below. 
 
3.2 Stratified Monte Carlo Sampling 

The stratified Monte Carlo sampling 
method4 was developed in an effort to pro-
vide a more uniform sampling of the design 
space as compared to the basic MC sam-
pling approach. In stratified Monte Carlo 
sampling each of the n intervals of [xL, xU]n 

is divided into subintervals, or “bins,” of 
equal probability. In the case where all of 
the design variables have uniform probabil-
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ity distributions, the bins are of equal size. 
Once the bins are defined, a sample site then 
is randomly selected within each bin.  

An example of stratified MC sampling 
is shown in Figure 4, where there are two 
design variables, x1 and x2, both of which 
have uniform probability distributions. The 
interval along x1 is subdivided into four bins 
and the interval along x2 is subdivided into 
three bins. This yields 12 equally sized bins. 

1 

x1 

x2 

0 
0 1

 
Figure 5. Stratified Monte Carlo sampling where 
the bins are sized to have equal probability, and a 
sample is randomly placed in each bin. 
 

Stratified MC sampling provides better 
overall coverage of the design space than 
does basic MC sampling. In addition, the 
user has flexibility in choosing the number 
of subintervals created in each interval in 
[xL, xU]n. This allows the user to control the 
number of bins in the design space to best 
match the available computational budget. 
Some of the other modern DOE methods do 
not permit the user to specify a different 
number of bins for each interval. 

A drawback to stratified MC sampling 
is that the number of samples scales at best 
as 2n, i.e., two bins for each design variable 
interval. In cases where n is large, and/or 
where computer simulation runs are expen-
sive, it may not be possible to evaluate O(2n) 
samples. 

 
3.3 Monte Carlo Sampling Algorithm 

As stated above, an integral aspect of 
pseudo-Monte Carlo sampling is the selec-
tion of a reliable method for generating ran-

dom real-valued numbers. In addition to the 
numerous textbooks on numerical methods 
that cover random number generation, many 
computer languages have random number 
generation functions/subroutines as standard 
features. Modern DOE software packages 
that contain variants of pseudo-MC sam-
pling are described in Section 7. 

The field of Monte Carlo sampling is 
much more broad than presented here. For 
example, there are entire texts devoted to 
variants of Monte Carlo sampling in situa-
tions where the design variables have non-
uniform probability distributions, or where 
correlations exist among the design vari-
ables. For additional information on Monte 
Carlo sampling and its many variants, see 
the texts by Sobol5, Niederreiter6, and Evans 
and Swartz7. 

4. Latin Hypercube Sampling 
4.1 Overview 

Latin hypercube sampling (LHS) is one 
popular modern DOE method that has found 
wide application in computational applica-
tions. McKay, et al, originally developed the 
LHS method.8 as an alternative to pseudo-
Monte Carlo sampling. Under certain as-
sumptions associated with the function to be 
sampled, Latin hypercube sampling provides 
a more accurate estimate of the mean value 
of the function than does Monte Carlo sam-
pling. That is, given an equal number of 
samples, the LHS estimate of the mean will 
have less error (i.e., smaller confidence 
bounds) than the mean value obtained 
through Monte Carlo sampling. 

Another attractive aspect of LHS is that 
it allows the user to tailor the number of 
samples to the available computational 
budget. That is, a LHS experimental design 
can be configured with any number of sam-
ples and is not restricted to sample sizes that 
are specific multiples or powers of n. For 
example, with an expensive computer simu-
lation with n design parameters, one may 
only be able to afford O(n) samples. In con-
trast, for many classical DOE methods, and 
some modern DOE methods, the number of 
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samples scales as O(2n), e.g., central com-
posite design and stratified-MC sampling. 

Figure 6 demonstrates Latin hypercube 
sampling on a two-variable parameter space. 
Here, the range of both parameters, x1 and 
x2, is [0,1]. Also, for this example both x1 
and x2 have uniform probability distribu-
tions. For p Latin hypercube samples, the 
range of each parameter is divided into p 
bins of equal probability. For n design pa-
rameters, this partitioning yields a total of pn 
bins in the parameter space. Next, p samples 
are randomly selected in the parameter 
space, with the following restrictions: (a) 
each sample is randomly placed inside a bin, 
and (b) for all one-dimensional projections 
of the p samples and bins, there will be one 
and only one sample in each bin. 

In a two-dimensional example such as 
that shown in Figure 6, the sample placement 
rules for LHS guarantee that only one bin 
can be selected in each row and column.  
For p=4, there are four partitions in both x1 
and x2. This gives a total of 16 bins, of 
which four will be chosen according to crite-
ria (a) and (b) described above. The stars in 
Figure 6 represent the four sample sites in 
this example, where each sample is ran-
domly located in its bin.  

An inspection of Figure 6 shows how 
LHS criterion (b) is satisfied. That is, if all 
four of the samples are projected vertically 
down to the x1 axis, there would be one 
sample in each bin along x1. Similarly, if the 
four samples were projected horizontally 
over to the x2 axis, there would be one sam-
ple in each of the x2 bins. 

This insight is useful in visualizing 
LHS sampling in three dimensions. For ex-
ample, for n=3, add a third axis, x3, (out of 
the page) to Figure 6. This would produce 64 
equally sized bins in the design space. Next, 
re-position the four samples in the vertical 
direction so that one sample is located in 
each interval along x3. Again, all one-
dimensional projections of the four samples 
would yield one sample per bin along each 
axis. 

One drawback to Latin hypercube sam-
pling is that there is more than one possible 
arrangement of bins and samples that meets 

the LHS criteria. For example, the four sam-
ple sites in Figure 6 could have been placed 
in the four bins along either diagonal. Not 
only is this a poor arrangement of samples 
with respect to coverage of the design space, 
but also the four samples sites would be 
nearly co-linear (in statistical jargon, this is 
known as high spatial correlation). This can 
lead to ill conditioned systems of linear 
equations when the sample site data are used 
in other calculations (e.g., linear regression).  

 

x1 

x2

0
0

1

1

 
Figure 6. Latin hypercube sampling with four 
bins in each of the parameters x1 and x2. The 
stars are sample sites randomly selected inside 
each bin. 

 
Fortunately, there are extensions to the 

basic LHS technique that minimize the 
amount of correlation among the sample 
sites, or, at the user’s discretion, can enforce 
a user-prescribed correlation among the 
samples. These techniques are available in 
some, but not all software packages that per-
form Latin hypercube sampling. One soft-
ware package that does employ the correla-
tion minimizing approach is the “LHS” code 
originally developed by Iman and Shorten-
carrier.9 See Section 7 for more information 
on the LHS code. 

 
4.2 LHS Algorithm 

The algorithm that generates Latin hy-
percube sample sites is described in detail 
by Koehler and Owen.4 This algorithm is 
presented below using a slightly different 
notation to maintain consistency within this 
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document. The algorithm for generating 
LHS points is: 

( ) ( )
( )

for 1  and 1 ,

,
i i

j ji
j

j n i k

U
x

k
π

≤ ≤ ≤ ≤

+
=

 

(3) 

where k is the number of samples, n is the 
number of design variables, U is a uniform 
random value on [0,1], and π is an inde-
pendent random permutation of the se-
quence of integers 0,1,…,k-1. The subscript 
j denotes the dimension index and the super-
script (i) denotes the sample number. Note 
that there are p! permutations of the se-
quence of integers in π, all of which are 
equally probable. 
 For example, the Latin hypercube sam-
ples shown in Figure 6 were constructed us-
ing the sequence  

and the sequence . 
These sequences for π are then arranged as 
consecutive columns in a matrix. This pro-
duces the (row, column) bin location of each 
sample, e.g., (0,1), (1,3), (2,0), and (3,2), 
where bin (0,0) is in the lower left corner of 
Figure 6. The approximate values of the ran-
dom value sequences are 

 and 

. 
These random values determine the location 
of each sample within its respective bin. 

(1) (4)
1 1, , 0,1, 2,3π π =…

(1) (4)
2 2, , 1,3,0,2π π =…

(1) (4)
1 1, , 0.09,0.63,0.71,0.34U U =…

(1) (4)
2 2, , 0.60,0.08,0.54,0.41U U =…

 A simple modification to the Latin hy-
percube sampling algorithm produces what 
is known as lattice sampling. In lattice sam-
pling the Ui

(j)
 sequence is replaced with a 

fixed value of 0.5. The result is that each 
sample is placed at the center of its respec-
tive bin, rather than randomly within the bin. 

As with stratified Monte Carlo sam-
pling, it is possible to perform Latin hyper-
cube sampling and lattice sampling for de-
sign variables that have non-normal prob-
ability distributions as well as correlations 
among the variables. See the text by Helton 
and Davis10 for more information on vari-
ants of Latin hypercube sampling that are 
applicable in these cases.  

5. Orthogonal Array Sampling 
5.1 Overview 

Conceptually, orthogonal array (OA) 
sampling shares many similarities with Latin 
hypercube sampling, and in fact, the OA 
algorithm can be used to produce Latin hy-
percube samples.4,11 The key feature of OA 
sampling is that it produces a set of samples 
that yield uniform sampling in any t-
dimensional projection of an n-dimensional 
design space (where t<n). In Latin hyper-
cube sampling, t=1, and hence LHS can be 
considered to be a special case of orthogonal 
array sampling. The value of t is known as 
the strength of the OA. 

An orthogonal array is characterized by 
five integer values with the notation 
OA(k,n,p,t) and the expression k=λpt. In this 
notation, k is the total number of samples, n 
is the dimension of the design space, p is the 
number of bins in each variable (p is the 
same for all variables), t is the strength of 
the array, and λ is the index of the array. The 
index term refers to the number of samples 
that occur in each bin following a t-
dimensional projection of the samples.  

Note that the term orthogonal in OA is 
not related to the definition of orthogonal as 
used in linear algebra (i.e., where two n-
dimensional vectors, u and v, are orthogonal 
if uTv=0). Rather, in the context of OAs, 
orthogonality is a special property of the 
matrix of integers (i.e., the array) used to 
generate sample sites. This k × n matrix, A, 
is said to be orthogonal if for any t columns 
of the matrix (t<n), each ordered t-tuple ap-
pears exactly λ times. 

Figure 7 illustrates a simple orthogonal 
array having four samples in a three-
dimensional design space. The three design 
variables have uniform probability distribu-
tions, and each interval is subdivided into 
two bins. Each shaded bin contains one 
randomly placed sample site. Thus, for all 
two-dimensional projections of the design 
space, there is one sample in each bin. Using 
the OA notation described above, this set of 
samples is represented as OA(4,3,2,2) with 
λ=1. The array, A, that produced the shaded 
bins is: 
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000
101
110
011

A
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

. 

Note that for any t=2 columns of A, each of 
the four bins in the two-dimensional projec-
tion (i.e., (0,0), (1,0), (0,1), (1,1) ), appears 
one time. Hence, λ=1. Also note that the 
integers in A correspond to the p bins in 
each interval, where the bins are numbered 
0, 1, …, p-1. 

To produce an OA with λ=2, consider 
the case where Figure 7 is changed so that 
there is one sample point in each of the eight 
bins. In such a case, A becomes: 

0 0 0
0 0 1
0 1 0
1 0 0
0 1 1
1 1 0
1 0 1
1 1 1

A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 

and all two-column projections of A yield 
two samples in each bin. 

 
 

x2 

x3 

x1 
 

Figure 7. A four sample, strength=2 orthogonal 
array in a three-dimensional design space. There 
is one sample in each of the shaded bins. 

 
A disadvantage of OA sampling is that 

the user does not have the ability to specify 
an arbitrary number of samples if strength ≥ 
2 is desired. That is, there are only certain 
values of k, n, p, t, and λ that generate an A 
array that satisfies orthogonality. As an ex-
ample, OA(36,4,6,2) does not exist.12  

Since OA generation can be nontrivial, 
and since there can be several valid permu-
tations of an OA, various often used arrays 
have been published in tabular form (cf. 

Reference 11). With the bin locations speci-
fied by a given array, it is then left to the 
user to place the sample site at either the 
center of the bin or randomly within the bin.  

In addition to tables of OAs, some pub-
lic-use software products are available for 
generating OA samples. See Section 7 for 
more information. 

 
5.2 Orthogonal Array Algorithm 

The algorithm for generating orthogo-
nal array samples is: 

( ) ( )
( )

for 1  and 1 .

( )
,

i i
j j ji

j

j n i

A U
x

p
π

≤ ≤ ≤ ≤

+
=

k
 

(4) 

As with the LHS algorithm, k is the number 
of samples, n is the number of design vari-
ables, U is a uniform random value on [0,1], 
the subscript j denotes the dimension index 
and the superscript (i) denotes the sample 
number. The term πj(Aj

(i)) denotes the (i, j)th 
element  in array A, where the columns of A 
satisfy the OA definition of orthogonality. 
 As with the pseudo-Monte Carlo and 
Latin hypercube sampling methods, it is 
possible to employ OA sampling with de-
sign variables having non-uniform distribu-
tions. Some of the available OA software 
packages (see Section 7) are able to accom-
modate non-uniform design variables. 

6. Quasi-Monte Carlo Sampling 
6.1 Background 

The final class of sampling methods 
addressed in this paper is known as quasi-
Monte Carlo methods, or, alternatively, as 
low-discrepancy sampling.6 As mentioned in 
Section 3, there is a difference between 
quasi-Monte Carlo sampling and the classi-
cal pseudo-Monte Carlo approach. However, 
both quasi-Monte Carlo sampling and 
pseudo-Monte Carlo sampling have a com-
mon heritage in that both methods were de-
veloped for multidimensional integration.  

The quasi- prefix refers to a sampling 
approach that employs a deterministic algo-
rithm to generate sample sites in an n-
dimensional space, so that the points are as 
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close as possible to a uniform sampling. The 
term discrepancy refers to a quantitative 
measure of how much the distribution of 
samples deviates from an ideal uniform dis-
tribution. Hence, low-discrepancy is a de-
sired feature of this class of sampling meth-
ods. Stated another way, quasi-MC sampling 
seeks to distribute the sample sites evenly 
throughout the design space, but does not 
employ a regular grid or a Cartesian lattice 
of sample sites. Conceptually, think of the 
quasi-MC sample sites as a cloud of elec-
trons that, due to electrostatic repulsion, 
move around inside an n-dimensional space 
[0,1]n until some sort of minimum energy 
state is reached. In the final state, the elec-
trons would not lie on a regular grid, but 
instead would be nearly equally spaced, but 
unstructured, throughout [0,1]n. 

 
6.2 Error Bounds for Numerical Inte-

gration Methods 
The text by Niederreiter6 provides a 

discussion of the error bounds in multidi-
mensional integration when using classical 
integration methods (e.g., trapezoidal rule), 
pseudo-Monte Carlo sampling, and a par-
ticular variant of quasi-Monte Carlo sam-
pling that uses the Hammersley sequence.13 
In summary, these error bounds are listed in 
Table 1 where N is the number of samples 
and n is the dimension of the design space.  

For this comparison, all of the pseudo-
MC and related sampling methods (basic-
MC, stratified-MC, Latin hypercube, or-
thogonal arrays) have the same order-of-
magnitude error bounds. The differences 
between the various pseudo-MC methods 
are in the constant terms rather than in the 
exponent on the number of samples.14

Note that the pseudo-MC error bound is 
a probabilistic bound (due to random sam-
pling) whereas the classical integration and 
quasi-MC error bounds are absolute (due to 
deterministic sampling). Figure 8, Figure 9, 
and Figure 10 plot these error bound trends 
versus increasing N for n=2, n=3, and n=5, 
respectively. 

 

Table 1. Error bounds for numerical integration 
methods (obtained from Ref. 6). 

Method Error Bound 
Classical Integration O(N-2/n) 
Pseudo-Monte Carlo O(N-1/2) 
Quasi-Monte Carlo O(N-1(log10N)n-1)) 
 
 In Figure 8 both classical integration 
and the Hammersley sequence (HS) variant 
of quasi-MC sampling have lower error 
bounds than pseudo-MC sampling. Stated 
another way, for a fixed number of samples, 
numerical integration in a two-dimensional 
design space using either classical methods 
or quasi-MC samples will be more accurate 
than integration using pseudo-MC samples. 
 However, the error trends shown in 
Figure 8 are not maintained when consider-
ing higher dimensional design spaces. 
Figure 9 shows that quasi-MC sampling 
leads to lower integration errors than the 
other two methods for n=3. The same is true 
for n=4 (plot not shown). 
 For n≥5 the error bound trends shift 
again. Figure 10 (for n=5) shows that for 
100 ≤ N ≤ 1.0×106, pseudo-MC sampling 
yields lower errors, whereas for N ≤ 100 and 
N ≥ 1.0×106 quasi-MC sampling yields 
lower errors. These general trends hold in 
higher dimensional spaces. That is, pseudo-
MC sampling yields lower integration errors 
for most reasonable values of N that one 
might use in an actual numerical integration 
task.  

In summary, for n<5, quasi-MC sam-
pling leads to lower integration errors than 
pseudo-MC sampling. For n≥5 the average 
error of pseudo-MC sampling is lower than 
the exact error of quasi-MC sampling over 
most reasonable values of the number of 
samples. However, since the error bound on 
pseudo-MC sampling is a probabilistic 
quantity, there is no guarantee that any par-
ticular set of pseudo-MC samples attains this 
error bound. For this reason, many research-
ers in the numerical integration community 
prefer using quasi-MC sampling for numeri-
cal integration when n≥5, since the error 
bound is exactly known. Interestingly, there 
is current research in the statistics commu-
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nity that explores the combination of 
pseudo-MC and quasi-MC methods.14 
 
6.3 Quasi-Monte Carlo Sampling as a 

Modern DOE Method 
The text above addresses the error 

bounds for numerical integration given a set 
of N points in an n-dimensional design 
space, but it does not specifically address the 
use of quasi-MC sampling as a modern de-
sign of experiments method. It is reasonable 
to argue that the main attribute of quasi-MC 
sampling that leads to well-characterized 
error bounds, i.e., uniform sampling of an n-
dimensional space, is also a desirable feature 
of a modern DOE method. That is, the goal 
of modern DOE approaches is to gather in-
formation on the trends of the response 
function(s) over the entire design space. 
Thus, a quasi-MC sampling approach that 
uniformly disperses sample sites throughout 
the design space should be an attractive 
DOE method.  

One example of the use of the Ham-
mersley sequence variant of quasi-Monte 
Carlo sampling as a DOE method is de-
scribed by Kalagnanam and Diwekar.15 This 
source also provides an algorithm for gener-
ating Hammersley sequence points. This 
algorithm is provided below, with minor 
modifications to preserve consistency with 
the notation used earlier in this document. 
 
6.4 Hammersley Sampling Algorithm 

The algorithm that generates a set of N 
Hammersley points makes use of the radix-R 
notation of an integer. That is, a specific 
integer, p, in radix-R notation can be repre-
sented as 

1 2 1 0
2

0 1 2

m m
m

m

p p p p p p
p p p R p R p R

−=
= + + + +

…
…  

 
where m = [logRp] = [(ln p)/(ln R)], and the 
square brackets, [ ], denote the integer por-
tion of the number inside the brackets. For 
example, in the familiar base-10 (i.e., radix-
10) number system, the integer 756 has p0 = 
6, p1 = 5, and p2 = 7, with R=10 and m=2. 
 The inverse radix number function con-
structs a unique number on the interval [0,1] 

by reversing the order of the digits of p 
around the decimal point. The inverse radix 
number function is: 

( )
( )

0 1 2
1 2

0 1

.R m
m

R m

p p p p p
p p R p R p R

φ
φ 1− − −

=
= + + +

…
… −  

 
Finally, the Hammersley sequence of n-
dimensional points is generated as 

( ) ( ) ( )
1 2 1

( ) , , , ,
nn R R R

px p p p
N

ϕ ϕ ϕ
−

⎛ ⎞= ⎜ ⎟
⎝ ⎠

… p

 
where p = 0,1,2,…,N-1; and the values for 
R1, R2,…, Rn-1 are the first n-1 prime num-
bers (2,3,5,7,11,13,17,…). This approach 
generates a set of N points in the n-
dimensional design space [0,1]n.  
 

Table 2. A Maple™ computer program to gener-
ate N Hammersley sequence points in an n-
dimensional design space [0,1]n. This program is 
available online from Reference 16. 

# user supplies values for  
# n and N 
n:=5:N:=100: 
 
Hammersley:=proc(n,N,I) 
local R,x,y,j,k,T; 
  T:=[0$k=1..n]; 
  T[1]:=i/N; 
  for k from 2 to n do 
    R:=ithprime(k-1); 
    for j to i do 
      x:=1-T[k]; 
      y:=1/R; 
      while x<=y do  
        y:=y/R  
      od; 
      T[k]:= T[k]+(R+1)*y-1 
      od 
    od; 
  T 
end: 
 
plot([‘eval(Hammersley(2,N,i)) 
’$’i’=0..N-1],x=0..1,y=0..1, 
style=POINT, 
symbol=CIRCLE, 
scaling=CONSTRAINED, 
axes=BOXED, 
title=`Hammersley Sequence`); 
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Aszkenazy16 has written a computer 
program (Table 2) for the Maple™ mathe-
matics software package to generate Ham-
mersley sequence points for an n-
dimensional space.  This algorithm is similar 
to the algorithm outlined in Kalagnanam and 
Diwekar,  but there are minor differences 
(e.g., Aszkenazy uses the sequence 
p=0,1,…,N-1, whereas Kalagnanam and 
Diwekar use p=1,2,…,N). Using the Ham-
mersley sampling algorithm given in Table 2 
with n=5 and N=8 produces the data points 
listed in Table 3. 
 
Table 3. Eight data points in [0,1]5 produced by 
the Hammersley sequence algorithm. 

Pt. 
Num. 

x1 x2 x3 x4 x5

1 0 0 0 0 0 
2 1/8 1/2 1/3 1/5 1/7 
3 1/4 1/4 2/3 2/5 2/7 
4 3/8 3/4 1/9 3/5 3/7 
5 1/2 1/8 4/9 4/5 4/7 
6 5/8 5/8 7/9 1/25 5/7 
7 3/4 3/8 2/9 6/25 6/7 
8 7/8 7/8 5/9 11/25 1/49 

 
 

7. Modern DOE Software 
There are numerous sources of modern 

DOE software, both public domain and 
commercial. The text given below is in-
tended to cover some of the publicly avail-
able, or soon-to-be publicly available, mod-
ern DOE software packages. In particular, 
software developed by staff at Sandia Na-
tional Laboratories is emphasized, since it is 
these software packages with which the au-
thors are most familiar.  

 
 

7.1 Pseudo-Monte Carlo Sampling 
If all of the design variables have uni-

form distributions, then there are many op-
tions for software to generate pseudo-MC 
samples.  As stated in Section 3, there are 
numerous textbooks that describe the gen-
eration of pseudo-random number se-

quences. Also many computer languages 
provide functions or subroutines that pro-
vide pseudo-random number sequences. 
Thus, it is relatively easy to write a com-
puter program to generate Monte Carlo 
samples.  

One source of publicly available soft-
ware for pseudo-Monte Carlo sampling is 
the GNU Scientific Library (GSL).17 The 
GSL provides C-language functions in many 
different areas of mathematics and statistics. 
For example, the GSL contains functions for 
random number generation (uniform distri-
bution and many non-uniform distributions), 
as well functions for several types of linear 
and nonlinear curve fitting. 

In some cases it may be easier to use 
existing software rather than to write a spe-
cialized computer program. The LHS and 
DDACE software packages, described be-
low, provide various options for pseudo-MC 
sampling for variables with non-normal dis-
tributions. 

  
7.2 Latin Hypercube Sampling 
 
LHS Software Package 

The LHS software package developed 
by Sandia National Laboratories, provides 
pseudo-Monte Carlo sampling and Latin 
hypercube sampling, both of which can be 
used with design variables having various 
random distributions including Gaussian 
(normal), lognormal, uniform, loguniform, 
Weibull, and user-supplied histograms.  

In addition, the user can supply a corre-
lation matrix for the design variables and the 
LHS code will attempt to produce a set of 
sample sites that best matches the user’s cor-
relation matrix. This approach is used to 
generate uncorrelated samples where the 
desired correlation matrix is the identity ma-
trix. 

LHS is in the public domain as a FOR-
TRAN77 software package. Current efforts 
are underway at Sandia to develop a FOR-
TRAN90 version of LHS. The current F77 
version of LHS is available in the DAKOTA 
Toolkit (see below), and plans are to incor-
porate the F90 version of LHS into DA-
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KOTA once the newest LHS code becomes 
available and approved for public release. 
 
DDACE Software Package 

The DDACE (Distributed Design and 
Analysis of Computer Experiments) soft-
ware package18 also has been developed by 
Sandia National Laboratories. DDACE con-
tains both modern and classical design of 
experiments methods. The modern DOE 
methods are pseudo-Monte Carlo sampling, 
Latin hypercube sampling, and orthogonal 
array sampling (where the OA software li-
brary is due to Prof. A. B. Owen, see be-
low). These three modern DOE methods 
support design variables that have either 
normal or uniform distributions. The classi-
cal DOE methods include central composite 
design sampling and Box-Behnken design 
and are only applicable to variables that 
have uniform distributions. 

DDACE is currently in review for re-
lease under the GNU general public license. 
The timeframe for the public release of 
DDACE is early-to-mid 2003. 

 
7.3 Orthogonal Array Sampling 

Prof. A. B. Owen of Stanford has de-
veloped a library of C-language functions 
for generating OA samples. The software 
package is named “oa.c” and it is available 
on the StatLib online software repository 
(see: http://lib.stat.cmu.edu/designs/).19 As 
noted above, Owen’s orthogonal array sam-
pling package has been incorporated in the 
DDACE package. 

 
7.4 Quasi-Monte Carlo Sampling 

The GNU Scientific Library  contains 
functions for various types of quasi-Monte 
Carlo sampling and low-discrepancy se-
quence generation. Another software library 
of quasi-Monte Carlo methods is “libseq” 
which is available as a beta-release from the 
Caltech Multi-Res Modeling Group.20  

Note that the Hammersley sampling se-
quence is not available in either of these 
software packages.  The algorithm given by 
Aszkenazy is the only publicly available 

Hammersley sampling software program 
known to the authors. 
 
7.5 DAKOTA Toolkit 

The DAKOTA (Design Analysis Kit 
for Optimization and Terascale Applica-
tions) Toolkit21 is an open-source software 
framework for systems analysis and design. 
DAKOTA includes methods for optimiza-
tion, parameter estimation, sensitivity analy-
sis, uncertainty quantification, design of ex-
periments, and statistical sampling. It also 
provides parallel computing services and 
various simulation code interface methods 

Both LHS and DDACE have been in-
corporated into the DAKOTA toolkit, al-
though until DDACE is publicly released it 
is only available to Sandia users and to other 
users affiliated with the U.S. Government. 

The open-source status of DAKOTA is 
intended to promote software sharing and 
co-development through a community of 
users. Near-term plans for DAKOTA in-
clude the implementation of quasi-Monte 
Carlo sampling methods. Those interested in 
pursuing a software development collabora-
tion via DAKOTA are encouraged to contact 
the authors. 

8. Summary 
This paper has provided an overview of 

modern design of experiments techniques 
including pseudo-Monte Carlo sampling 
(and variants such as stratified-Monte Carlo 
sampling, Latin hypercube sampling, and 
orthogonal array sampling) and quasi-Monte 
Carlo sampling. Modern DOE techniques 
are preferable to classical DOE techniques 
when using deterministic computer experi-
ments, since assumptions in classical DOE 
related to experimental error and non-
repeatability are not valid when using de-
terministic computer simulations. 

When pseudo-Monte Carlo and quasi-
Monte Carlo methods are used in numerical 
integration, theoretical predictions of error 
bounds indicate that quasi-Monte Carlo 
techniques are preferable to pseudo-Monte 
Carlo techniques for distributing sample 
points in the n-dimensional interval [0,1]n 
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when n < 5. For cases where n ≥ 5, error 
bound predictions favor pseudo-Monte 
Carlo sampling over quasi-Monte Carlo 
sampling for most reasonable sample sizes 
that would be used in a computational study 
(although quasi-Monte Carlo is better for 
extremely large sample sizes, e.g., ≥107 
samples for n=5). However, there is no ab-
solute method to determine when pseudo-
Monte Carlo techniques are preferable to 
quasi-Monte Carlo techniques since the 

pseudo-Monte Carlo bounds are probabilis-
tic quantities and the quasi-Monte Carlo er-
ror bounds are absolute quantities. Current 
research in the statistical community is fo-
cused on DOE techniques that are combina-
tions of pseudo-Monte Carlo and quasi-
Monte Carlo sampling. Thus, the research 
and development of modern DOE methods 
is an active field of study.  
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Figure 8. Numerical integration error bounds versus the number of samples for a two-dimensional (n=2) 
design space. 
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Figure 9. Numerical integration error bounds versus the number of samples for a three-dimensional (n=3) 
design space. 
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Figure 10. Numerical integration error bounds versus the number of samples for a five-dimensional (n=5) 
design space. 
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