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Module Learning Goals 

In this module you will learn 
 Why you might want to tune models to match data via 

calibration (parameter estimation) 
 How to formulate calibration problems and present them to 

Dakota 
 What Dakota methods can help you achieve calibration goals 

 
 

Exercise: create a Dakota calibration study and try to infer 
unknown parameters for a synthetic data set. 
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Calibration: Fitting Models to Data 

 Use data to improve characterization of input parameter values, by 
maximizing agreement between simulation output and experiment target 
 Infer unknown conditions, source terms, or properties 
 Tune models to match specific scenarios 
 Make them more robust to predict a range of outcomes 

 
 
 
 

 Also known as parameter estimation/identification, inverse modeling 
 Can also calibrate one model to another (typically higher fidelity) model 
 
 Calibration is not validation!  Separate hold-out data must be used to 

assess whether a calibrated model is valid. 
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Classes of Model Calibration 

 Goal: maximize agreement between observations yi and corresponding 
simulation output si(θ); typically a nonlinear, implicit function of θ 
(parameterized simulation) 
 

 Deterministic calibration: seek one or more sets of parameter  
values that best match the data y, typically in the two-norm: 
 
 
 Least-squares: initial iterate θ0, nonlinear optimization, updated values θ 

 Statistical calibration: seek a statistical characterization of parameters 
most consistent with the data 

 
 

 Bayesian: prior distribution, statistical inference (MCMC), posterior 
distribution 
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Example: Parameter Estimation for a 
Material Plasticity Model 

Flow rule concentrating the effective stress evolution of isotropic hardening 

f – yields rate dependence (fit) 
Y – the yield stress (chosen) 
n – exponent in flow rule (fit)  
H – hardening in evolution of κ (fit) 
Rd – recovery in evolution of κ (fit) 
 
f 4.52 x 104   
Y 1325 MPa 
n 0.386 
H 1.10 x 105 MPa 
Rd 389 
 
NOTE: Experimental data taken 
from a representative test, 
ph13-8-h950-test-3 

*Large values of f make the formulation rate independent. I did not need to fit f. 

Courtesy Jay Foulk 

Calibrate parameters to match 
experimental stress observations 

http://dakota.sandia.gov/
http://www.sandia.gov/


Brief Group Discussion:  
Calibration Practice 

 What types of parameter estimation or calibration questions do you ask in 
your engineering or science domain? 

 What kind of data or simulation output are you trying to match? 
 What metrics do you use to assess how well the simulation agrees? 
 How do you answer your questions currently? 
 What are the key challenges you face? 
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Specifying Calibration Parameters 

 Deterministic calibration 
problems are presented to 
Dakota using design variables 
(same as optimization) 

 Initial point starts the solve for 
local methods 

 Bounds for the search are typical, 
but not required for all methods 
 

 See advanced slides for Bayesian 
methods, which use uncertain 
variables instead of design 

Cantilever calibration variable example 
 

variables 
 
 # calibration parameters 
 continuous_design 3 
  upper_bounds  3.1e7  10   10 
  initial_point 2.9e7   4    4 
  lower_bounds  2.7e7   1    1 
  descriptors   'E'    'w'  't' 
 
 # Fixed config parameters 
 continuous_state 4 
  initial_state 100 500 1000 500 
  descriptors   'L' 'X'  'Y' 'p' 
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Defining Calibration Responses 

 
Three main options: 
1. Interface returns differences (residuals) 

ri(θ) = si(θ)-yi to Dakota 
 
 

2. Interface returns simulation outputs 
si(θ) to Dakota; specify data file 
containing yi  values 
 
 

3. Interface returns composite objective 
f(θ); gives advanced users greater 
control 
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responses 
  calibration_terms = 2 
  descriptors   
    'sim_stress' 'sim_displ' 
  calibration_data_file  'myobs.dat' 
    num_experiments = 3 

responses 
  calibration_terms = 2 
  descriptors   
    'stress_diff' 'displ_diff' 

responses 
  objective_functions = 1 
  descriptors  'f_SSE' 

Local nonlinear least squares, Bayesian methods require set of residuals (Option 1 or 2) 
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Dakota Calibration Methods 

Deterministic 
 For local parameter value 

improvement; reliable simulation 
derivatives: specialized local 
least-squares solvers 

 Local search with unreliable 
derivatives: pattern search 

 Global best parameter set: global 
optimizers such as DiRECT or 
genetic algorithms (can be costly) 

 Other advanced optimization 
approaches 
 
 

Statistical (advanced topic) 
 Calibrate distribution parameters 

to match data: any of the above 
solvers with a nested model 

 Bayesian inference: Markov Chain 
Monte Carlo (QUESO) 
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Gradient Descent 
• Looks for improvement based 

on derivative 
• Requires analytic or numerical 

derivatives 
• Efficient/scalable for smooth 

problems 
• Converges to local extreme 

Derivative-Free Local  
• Sampling with bias/rules 

toward improvement 
• Requires only function values 
• Good for noisy, unreliable or 

expensive derivatives 
• Converges to local extreme 

Derivative-Free Global 
• Broad exploration with 

selective exploitation 
• Requires only function values 
• Typically computationally 

intensive 
• Converges to global extreme 

Classes of Methods 
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More About Local Calibration 
 Local, derivative-based least squares solvers are similar to Newton methods for 

general nonlinear programming 
 They can take advantage of the squared residual formulation 

 
 
 
 
 
 
and either ignore the circled Hessian term (as residuals should be small as the 
algorithm converges), or successively approximate it during optimization 

 Dakota’s NL2SOL local calibration algorithm uses a quasi-Newton update scheme to 
approximate the Hessian, and is often more robust than other solvers when the 
residuals are not small. 

 These methods can be very efficient, converging in a few function evaluations 
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Scenario: Calibrating Cantilever Beam 

Scenario: Recall that you are using Sandia’s Cantilever Physics code to 
simulate coat hooks as cantilever beams.  Before your summer  
intern left, she also worked with some experimentalists to  
gather some data to characterize a beam.  You have data  
files with observations of mass, stress, and displacement. 
 
Unfortunately, the experimentalist was unable to fully characterize the 
beam and experimental conditions.  He measured beam width w of 2.5 in., 
thickness t of 3.0 in., and knows that the vertical load Y was 500.0 lb. 
 
Your task: Use the provided data files and cantilever beam simulator, 
together with Dakota, to determine the length L, density ρ, and horizontal 
load X, of the beam in the experiments.  Assume a Young’s modulus E = 
2.9e7. 
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Exercise: Find Beam Properties 

 The directory ~/exercises/calibration/cantilever contains data files with 
observations of mass, displacement, and stress 

 As experiments were conducted, the observation error was gradually reduced 
from 10%, though 5%, 2%, 1%, 0.5%, and finally 0.1% by improving the 
measurement equipment.  The files are labeled 10perc through 0.1perc. 

 For each level of error, several runs of identical experiments were performed. The 
data files also are marked according to the number of replicates they contain. 

 Complete the Dakota input file dakota_calibration_sketch.in to use NL2SOL to 
determine the length L, density ρ, and horizontal load X for the beam used in the 
experiment.  Hold the other parameters fixed. 

Hints: 
 Previous example input files can help with the variables blocks 
 See the reference manual sections on: 

 Variables: continuous design, continuous state 
 Responses: calibration_terms (the simulator returns the predicted QOIs), 

calibration data file and its format, gradient types 
 Scaling (method, variables, responses) 
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Exercise: Find Beam Properties 

 Initially use the data file with 2% observation error and 5 
replicates. How do your estimated parameter values compare 
to your neighbors? 

 Is it sensitive to the initial point? 
 How do your parameter estimates change as the noise level in 

the data is reduced from 10% to 0.1%? 
 What happens if you use fewer data points?  More? 
 What do you observe in the final residuals and SSE? 
 What happens if you use a pattern search or DiRECT method? 
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Parameter Identifiability  

 Looking at the cantilever beam equations, which parameters 
would you expect to be able to estimate given data on which 
responses? 

 How would you determine this for an implicit function (black-
box simulation)? 
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Guide to Calibration Methods 
See Usage Guidelines in User’s Manual 

Category 

Specialized 
Calibration 
Methods General Optimization Methods C
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Gradient-
Based Local 
(smooth) 

optpp_cg x 
nl2sol dot_bfgs, dot_frcg, conmin_frcg x x 
nlssol_sqp, 
optpp_g_newton 

npsol_sqp, nlpql_sqp, dot_mmfd, dot_slp, 
dot_sqp, conmin_mfd, optpp_newton, 
optpp_q_newton, optpp_fd_newton 

x x x 

Gradient-
Based  
Global 
(smooth) 

hybrid*, 
multi_start* 

hybrid, multi_start 

x x x 

Derivative-
Free Local 
(nonsmooth) 

optpp_pds x x 
surrogate_ 
based_local* 

coliny_cobyla, coliny_pattern_search, 
coliny_solis_wets x x x 

asynch_pattern_search, mesh_adaptive_search x x x x 

Derivative-
Free 
Global 
(nonsmooth) 

ncsu_direct, genie_direct, genie_opt_darts x x 
coliny_direct, efficient_global, 
surrogate_based_global x x x 

coliny_ea, soga x x x x 

*: in conjunction with a specialized gradient-based method (nl2sol, nlssol, optpp_g_newton) 
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Calibration References 

 G. A. F. Seber and C. J. Wilde, “Nonlinear Regression”, John Wiley and Sons, Inc., 
Hoboken, New Jersey, 2003. 
 

 M. C. Hill and C. R. Tiedeman, “Effective Groundwater Model Calibration: With 
Analysis of Data, Sensitivities, Predictions, and Uncertainty”, John Wiley and Sons, 
Inc., Hoboken, New Jersey, 2007. 
 

 R. C. Aster, B. Borchers, and C. H. Thurber, “Parameter Estimation and Inverse 
Problems”, Elsevier, Inc., Oxford, UK, 2005. 
 

 Dakota User’s Manual 
 Nonlinear Least Squares Capabilities 
 Surrogate-Based Minimization 

 Dakota Reference Manual 
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BACKUP/ADVANCED TOPIC SLIDES 
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Field Response Capability 
Simulation and Experiment 

 Dakota response comprised of scalars and/or fields 
 Field responses are a relatively new feature, meant to streamline multiple 

responses (e.g. instead of the user pulling 50 temperature values from a time-
temperature curve for 50 separate scalar responses, there is one field 
response of length 50.  In this way, it is easier to have more complete fields:  
the field may have 1000 values).  

 Field has zero or more independent coordinates (abscissas), e.g., f(t,x,y) 
 Number of simulation and experiment observations may differ:  Dakota 

provides interpolation to calculate the sum-of-squares error. 
 New specification for “measurement” uncertainty: 

(block) scalar, diagonal, full 
 
 
 
 

 Can be used in traditional deterministic or Bayesian calibration 
 

σ for scalar 2 
σ for scalar 1 

Full covariance matrix  

of σ values for field 

 σ values for field quantities,  
specified only on diagonal 
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Basic Interpolation Capability 
 For each field, allow (1-D) interpolation of simulation 

sim(ti) onto observed experiment abscissas exp(tj) 
 Each experiment can have a different number of 

observations, e.g., 4, 2, 3 time points 
 Results in 1 calibration residual per experiment datum 
 Does not supplant discretization-aware interpolation or 

user-provided simulation to experiment metrics 

Sim       Exp 
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Potential Solution:  
Cantilever Least-Squares 
# Calibrate to area, stress, and displacement data generated with  
# E = 2.85e7, w = 2.5, t = 3.0 
 
method 
  nl2sol 
    convergence_tolerance = 1.0e-6 
 
variables 
  continuous_design = 3 
    upper_bounds  3.1e7 10.0 10.0 
    initial_point 2.9e7 4.0  4.0 
    lower_bounds  2.7e7 1.0  1.0 
    descriptors   'E' 'w' 't' 
  # Fix at nominal 
  continuous_state = 3 
    initial_state 40000 500 1000 
    descriptors 'R' 'X' 'Y' 
 
interface 
  direct 
    analysis_driver = 'mod_cantilever' 
 
responses 
  calibration_terms = 3 
#    calibration_data_file = 'dakota_cantilever_clean.dat' 
    calibration_data_file = 'dakota_cantilever_witherror.dat' 
    descriptors = 'area' 'stress' 'displacement' 
  analytic_gradients 
  no_hessians 

CIs with error: 
E: [ 1.992e+07, 4.190e+07 ] 
w: [ 1.962e+00, 3.918e+00 ] 
t: [ 1.954e+00, 3.309e+00 ] 

CIs without error: 
E: [ 2.850e+07, 2.850e+07 ] 
w: [ 2.500e+00, 2.500e+00 ] 
t: [ 3.000e+00, 3.000e+00 ] 

Confidence Intervals 
approximated by 
calculating the variance  
of the parameter vector 
as diagonal elements of:  
  12 )(ˆ −JJ Tσ
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Bayesian Calibration of Computer Models 
 Combine prior parameter distributions with data to update the statistical 

characterization of the parameters 
 Prior distribution and statistical inference (MCMC)  posterior distribution 

 Generate posterior distributions on model parameters, given 
 Experimental data  
 A prior distribution on model parameters 
 A presumed probabilistic relationship between experimental data and model output 

that can be defined by a likelihood function 
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Bayesian Calibration of Computer Models 

24 

 Experimental data = Model output + error 
 

 
 If we assume error terms are independent, zero mean Gaussian random 

variables with variance σ2, the likelihood is:  
 
 
 

 How do we obtain the posterior?  
 It is usually too difficult to calculate analytically 
 We use a technique called Markov Chain Monte Carlo (MCMC) 
 In MCMC, the idea is to generate a sampling density that is 

approximately equal to the posterior.  We want the sampling density 
to be the stationary distribution of a Markov chain.   
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Markov Chain Monte Carlo 
 
 

 Metropolis-Hastings is a commonly used algorithm 
 It has the idea of a “proposal density” which is used for generating θi+1 in 

the sequence, conditional on θi.  
 Generate new θ’ from current θ by drawing sample from multivariate proposal dist. 

centered at θ 
 Evaluate ratio α = p(θ’|d) / p(θ |d), from likelihood and prior 
 Accept sample for α ≥ 1; conditionally accept α < 1 with probability α 

 MCMC Method Issues:  
 Typically requires O(104) – O(105) samples  prohibitive for direct use with high fidelity 

models  
 Convergence rate can degrade with dimension due to increased mixing time, producing 

higher variance in posterior estimates 
 Need to tune the proposal density to get an “optimal” acceptance rate, 45-50% for 1-D 

problems, 20-30% for high dimensional problems 

 COMPUTATIONALLY VERY EXPENSIVE 
 

Posterior ∝ Likelihood x Prior 
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Surrogate Models 
 Since MCMC requires tens of thousands of function evaluations, it is 

necessary to have a fast-running surrogate model of the simulation 
 Dakota has the capability for using the following surrogates in the 

Bayesian calibration:  
 Gaussian Processes 
 Polynomial Chaos Expansions 
 Stochastic Collocation 

 Steps for a Bayesian analysis:  
 Take initial set of samples from simulation  

 Use LHS or Sparse Grid 
 Develop surrogate approximation of the simulation 
 Define priors on the input parameters 
 Perform Bayesian analysis using MCMC 
 Generate and analyze posterior distributions 
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Bayesian Calibration Methods in Dakota 

 QUESO is a library of UQ methods developed at the UT PECOS center.    
 Allows for four variations of the DRAM MCMC algorithm:  

 metropolis_hastings (no DR, no AM) 
 delayed_rejection (DR only) 
 adaptive_metropolis (AM only) 
 dram (both DR and AM)  
 Also have the multilevel option, an algorithm which uses an homotopy-like approach to 

move the prior incrementally to the posterior.  

 We currently can perform Bayesian calibration with a simulation directly (no 
emulator), with a Gaussian process emulator, or with a polynomial chaos or stochastic 
collocation emulator.    

 The user can specify a variety of options for the proposal_covariance, including 
 derivatives (precondition the proposal covariance with the inverse of the Hessian of 

the misfit) 
 prior (use the variance of the prior input distributions as diagonal elements of the 

covariance matrix) 
 values (specify what values you want, as diagonal elements or a full covariance matrix) 
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Bayesian Calibration Methods in DAKOTA 

 DREAM.    
 DiffeRential Evolution Adaptive Metropolis  
 Algorithm implementation developed by John Burkardt.  
 The DREAM approach runs multiple different chains simultaneously for 

global exploration, and automatically tunes the proposal covariance 
during the process by a self-adaptive randomized subspace sampling 

 GPMSA.  GPMSA (Gaussian Process Models for Simulation Analysis) is a 
code developed by Brian Williams, Jim Gattiker, Dave Higdon, et al. at LANL.    
 Original LANL code is in Matlab.   
 GPMSA was re-implemented in the QUESO framework.  We have an 

initial wrapper to it in Dakota, but much of it is hardcoded, not ready 
for general applications yet.  

 Need to handle “functional” data. 
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DAKOTA Bayesian Example 
method, 

   bayes_calibration queso 

   samples = 1000 seed = 348 

   dram 

   # | delayed_rejection | adaptive_metropolis              

   # | metropolis_hastings 

   proposal_covariance 

      diagonal values 1.0e6 1.0e-1 

            

variables, 

   uniform_uncertain 2 

     upper_bounds  1.e8  10.0 

     lower_bounds 1.e6  0.1 

     initial_point  2.85e7  2.5 

   descriptors 'E' 'w' 

      continuous_state 4 

      initial_state 3   40000   500   1000 

      descriptors 't' 'R' 'X' 'Y' 

  

interface, 

  system 

  analysis_driver = 'cantilever3' 

  

responses, 
   calibration_terms = 2 
   calibration_data_file =  
'dakota_cantilever_queso.withsigma.dat' 
   freeform 
   num_experiments = 10 
   variance_type = 'scalar'  
 descriptors = 'stress' 'displacement' 
   no_gradients 
   no_hessians 
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Bayesian Calibration for  
Heat Transfer Closure Law 
 Use data to refine predictions with COBRA-TF 

 Nusselt number (Nu): ratio of convective to conductive heat transfer normal to 
the boundary (wall heat transfer) 

 Dittus-Boelter, originally calibrated to 13 data sets: 

Nu = 0.023 Re0.8 Pr0.4 = 𝜃𝜃1Re𝜃𝜃2  Pr𝜃𝜃3  
 Make the Dittus-Boelter coefficients into parameters θ. In a typical sensitivity or 

uncertainty study, might use expert opinion to say 

 

 

 Instead use DRAM for Bayesian calibration to find possible θ consistent with data 

 This analysis based on one data set:  
Morris and Whitman, “Heat Transfer for Oils and Water in Pipes,” Industrial and 
Engineering Chemistry, Vol. 20, No. 3, pp.234-240, 1928. 

[ ]1 0.0, 0.046θ ∈ [ ]2 0.0,1.6θ ∈ [ ]3 0.0, 0.8θ ∈
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Updated Parameter Distributions 

• Lead coefficient θ1 now lower: 0.004 from 0.023. 
• Reynolds exponent θ2 now larger: 0.99 from 0.8 
• Prandlt exponent θ3 slightly larger: 0.41 from 0.4. 

 
 
 
 
 

 
• (Only used 1 of 13 data sets informing Dittus Bolter) 
• Most importantly, have uncertainty estimates 

θ1 θ2 θ3 
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Joint Samples for the Parameters 

• Bayesian analysis reveals correlations 
among parameters 

• If lead coefficient increases, Reynold’s 
exponent must decrease 

• Defines a 3-D surface indicating 
combinations of parameters that best 
match the data 

 

θ1 θ2 

θ3 

θ2 
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