
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Dakota Software Training

Parallelism

http://dakota.sandia.gov

SAND2015-6865 TR

Module Goals

 Discuss what to consider when designing a parallelized study

 Understand what Dakota provides and its limitations

 Be able to choose the best parallelism approach

 Know how to configure Dakota and your interface for your
parallelism approach

Opportunities for parallelization

Example 1: Parallel simulation
 The user’s simulation code has been parallelized using

MPI, OpenMP, GPU, etc.

Example 2: Gradient-based optimization
 Finite differencing can be performed in parallel

Example 3: Sampling
 Every sample is independent of all the others

Example 4: Multi-start optimization
 Every optimization is independent of all the others

3

M
ore C

oarse-grained

Things to Consider

 Available Concurrency
 Adaptive vs. single pass algorithms

 Characteristics of your simulation
 Serial or parallel
 Parallel scaling/efficiency
 Memory requirements
 Duration

 Characteristics of computing resource
 Number of cores and memory
 Time limits
 On some HPCs, “fork” and “system” are disallowed

4

Local Parallelism

5

Dakota

eval.1
eval.2
eval.3
eval.4

eval.8
eval.5
eval.7
eval.6

eval.12
eval.9
eval.10
eval.11

asynchronous
 evaluation_concurr 4 eval.15

eval.13
eval.14
eval.16

time

One instance of Dakota launches multiple instances of the analysis driver

• Simple and portable
• Works with either serial or parallel

simulation codes
• Method of choice for desktop computing

• Evaluations will not be launched across
a network (Hence “local”)

• Iterators run sequentially

Serial versus Parallel Simulation

 Suppose your simulation
has been parallelized and
your workstation has 24
cores.

 Naturally, you want to use
all of them and minimize
how long your Dakota
study will take.

 Which combination is
best?

6

Evaluation
Concurrency

Cores per
Evaluation

1 24
2 12
3 8
4 6
6 4
8 3

12 2
24 1

Serial versus Parallel Simulation

 Parallel efficiency
 Fewer cores are better

 Memory requirements
 Upper limit on number of

concurrent evaluations

 Available Concurrency
 Another upper limit on

number of concurrent
evaluations

 7

Amdahl’s Law

Parallel Dakota

8

Dakota launched in parallel; each “rank” runs analysis drivers

• Still pretty simple..
• Works across the network
• Parallel iterators (experimental)
• Dakota highly configurable

• Serial simulations ONLY
• Not supported on Windows
• Dakota must be built with MPI support
• Dakota highly configurable

$ mpirun –np 4 dakota my.in

time

Dakota (rank 0)
Dakota
Dakota
Dakota

eval.1
eval.2
eval.3
eval.4

eval.8
eval.5
eval.7
eval.6

eval.12
eval.9
eval.10
eval.11

eval.15
eval.13
eval.14
eval.16

Dakota, “Large” Simulations, and HPC

How can Dakota manage evaluations that require large*, parallel
simulations on many cores?

*More than will fit on a workstation

9

Two strategies—

• Evaluation Submission

• Evaluation Tiling

Login Node

Approach 1: Evaluation Submission

Evaluation Steps
1. Dakota invokes analysis driver as

usual
2. Driver performs pre-processing
3. Driver submits a job to the

queue and waits for it to finish
4. Job starts, runs the simulation,

and finishes
5. Driver performs post-processing

and exits
6. Dakota reads results file and

continues

10

Dakota

JOB STATE

eval.1 Running

eval.2 Running

eval.3 Running

eval.4 Waiting

eval.5 Waiting

eval.6 Waiting

eval.N Waiting

…

Example Interface

Pre-processing done above (omitted)

sbatch eval.sbatch > sbatch.out

Wait until the batch job finishes before
continuing.

jobid=$(tail -1 sbatch.out | egrep -o '[0-9]+')
while [$(squeue -j $jobid | wc -l) -ne 0];
do
 sleep 300
done

Post-processing done below (omitted)

#!/bin/bash

#SBATCH --nodes=64
#SBATCH --time=08:00:00
#SBATCH --account=my_account
#SBATCH --job-name=eval.1

module load my_simulation

mpirun –np 1024 my_simulation

11

Analysis driver snippet eval.sbatch

Instead of waiting

When using ‘single-pass’ methods, Dakota can be run in two
steps
 Step 1: Job Creation

 Analysis driver set up to submit jobs then immediately exit, returning
“dummy” values to Dakota

 Step 2: Data Collection (after all jobs have finished)
 Analysis driver set up to post-process and return real result to Dakota

Tip: Dakota must generate the same parameters in both steps.
For stochastic methods use the seed keyword.

12

Recommended Dakota Input

interface
 analysis_driver "driver.sh"
 fork
 asynchronous
 evaluation_concurrency 20

 allow_existing_results

 work_directory "runs/run"
 directory_tag
 directory_save
 13

Submit multiple jobs

Prevent Dakota from
erasing existing results

Keep simulation run files
separate from one another
and preserve run folders

Approach 2: Evaluation Tiling

14

Compute Nodes
eval.1

Dakota

eval.2

eval.3

eval.4

eval.5

eval.6

eval.7

eval.8

…

time

4 nodes

One submitted job

Evaluation Steps
1. Dakota invokes analysis driver as usual
2. Driver performs pre-processing
3. Driver determines node placement (if

necessary)
4. Driver launches parallel simulation
5. Driver performs post-processing and

exits
6. Dakota reads results file and continues

Node Placement Methods
Automatic tiling
 just launch (srun, aprun)

Relative node list or Machine files
 Compute list of relative nodes based on—

 Number of nodes in allocation
 Number of MPI tasks per node
 Number of MPI tasks per simulation run
 evaluation number (obtain from e.g. file_tag)

 Then launch simulation with relative node list option (-host) or
machinefile option (-machinefile)

 Use local_evaluation_scheduling static
 Examples in

 examples/Case3_OpenMPI/
 examples/Case3_MachinefileMgmt/

15

Example Analysis Driver
Pre-processing done above (omitted)

APPLIC_PROCS=2
Simple case: srun –n $APPLIC_PROCS my_simulation

num=$(echo $params | awk -F. '{print $NF}')
CONCURRENCY=4
PPN=16
applic_nodes=$(((APPLIC_PROCS+PPN-1) / PPN))
relative_node=$(((num - 1) % CONCURRENCY * APPLIC_PROCS / PPN))
node_list="+n${relative_node}"
for node_increment in $(seq 1 $((applic_nodes - 1))); do
 node_list="$node_list,+n$((relative_node + node_increment))"
done
mpirun -np $APPLIC_PROCS -host $node_list my_simulation

sleep 30
Post-processing done below (omitted)

16

No. procs/simulation

No. concurrent
evaluations

Procs per node

No. nodes required by
simulation

0-based index of
starting node

List of nodes where
simulation will run

Recommended Dakota Input

interface
 analysis_driver "driver.sh"
 fork
 asynchronous
 evaluation_concurrency 4

 local_evaluation_scheduling static

 file_tag

 work_directory "runs/run"
 directory_tag directory_save

17

Run multiple concurrent
evaluations

Use static scheduling

Keep simulation run files
separate from one another
and preserve run folders

File tagging to extract
evaluation number

Tiling versus Submission

Consider submission when..
 Memory or core count

requirements are large
 Fork/system is disallowed

on the compute nodes

Consider tiling when..
 Memory or core count

requirements are modest
 Using an adaptive method

18

Examples and Documentation

 Examples folder (examples/parallelism)

 User’s Manual (Chapter 17)

 Note: In these resources, running Dakota in parallel is
referred to as “Case 1” parallelism, Evaluation Submission is
“Case 4,” and Evaluation Tiling is “Case 3.” (Sorry.)

19

Compute Nodes

eval.1
Login Node

Approach 1: Evaluation Submission

Evaluation Steps
1. Dakota invokes analysis driver as

usual
2. Driver performs pre-processing
3. Driver submits a job to the

queue and waits for it to finish
4. Job starts, runs the simulation,

and finishes
5. Driver performs post-processing

and exits
6. Dakota reads results file and

continues

20

Dakota

eval.2

eval.3
Large
No. of
nodes

One eval
per job

Queue

eval.4
eval.5

eval.6

eval.7
eval.8

eval.9

	Dakota Software Training
	Module Goals
	Opportunities for parallelization
	Things to Consider
	Local Parallelism
	Serial versus Parallel Simulation
	Serial versus Parallel Simulation
	Parallel Dakota
	Dakota, “Large” Simulations, and HPC
	Approach 1: Evaluation Submission
	Example Interface
	Instead of waiting
	Recommended Dakota Input
	Approach 2: Evaluation Tiling
	Node Placement Methods
	Example Analysis Driver
	Recommended Dakota Input
	Tiling versus Submission
	Examples and Documentation
	Approach 1: Evaluation Submission

